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The aim of thermodynamic integration is to compute the difference in a thermodynamic 
property (usually the free energy) of the system between some reference state and the 
state of interest.   To measure the free energy change from initial to final state, 
thermodynamic parameters characterizing the system are changed infinitely slowly so 
that at each stage along the path the system is in equilibrium.    This ensures that the path 
is reversible, i.e., the same path can be traversed in the opposite direction.  In an 
experimental set-up, we are limited to a few thermodynamic variables such as volume, 
pressure, temperature in order to control the path.  In a molecular simulation experiment, 
however, in addition to thermodynamic parameters, one can also change the interaction 
potential of the system and introduce suitable external potentials, making it possible to 
have a large variety of reversible paths and reference states [1].     

In many simulation experiments, one measures the work required to change a 
single parameter (say λ) that characterizes the path.   If the path is reversible, work 
measured is equal to change in the appropriate free energy.  This is seen from the 
following derivation [2]:     
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Figure 1. The system A is in contact with bath B.  Due to exchange of heat and volume, 
the system A is maintained at same temperature and pressure as it undergoes a process by 
means of reversible work source. 
 
Consider a system held at constant temperature T and pressure P as shown in the figure. 
Applying first law, reversible work done on the composite system is given by                   
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where ΔU, ΔUB, and ΔUT are the changes in the internal energies of the system (A), bath 
(B), and the composite system (A+B), respectively.   Since the system can exchange heat 
and volume with the bath:           BBB VP - ST  U ΔΔ=Δ  
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But the system is isolated and the process is reversible, therefore according to 2nd law of 
thermodynamics :          0   S  S  S BT =Δ+Δ=Δ  
Also,             0   V  V  V BT =Δ+Δ=Δ  
Combining  the above equations, we get 
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 Similarly, one can show that for a system held at constant temperature, WREV=ΔF 
(Change in Helmholtz free energy).    
 
First order transitions and hysteresis:  
 
The main requirement of thermodynamic integration is that the path should be reversible, 
i.e., it must be free from any hysteresis.  Hysteresis usually occurs if one encounters a 
first order phase transition along the path. For example, if the density of the liquid phase 
is continuously reduced at constant temperature (see Fig. 2) the liquid phase becomes 
metastable with respect to vapor phase and at a certain density the liquid phase suddenly 
changes to vapor phase.  (The path is shown qualitatively by line LV in Fig. 3).  This 
leads to a discontinuous change in the derivative of free energy as shown in Fig.2.  For 
the reverse path, as we increase the density of vapor phase beyond coexistence density, 
the vapor phase is suddenly converted into liquid phase again leading to discontinuity in 
the derivative of free energy.   The presence of hysteresis indicates that the path is not 
reversible and hence free energy change cannot be calculated accurately.   
 

Figure 2. The thermodynamic integration path involving first-order  phase transition.  
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Figure 3. The typical phase diagram of a single-component system in temperature T-
density ρ plane.     
 
Therefore, as a general rule, any first order phase transition along the integration path 
must be avoided.  This is the most important consideration in thermodynamic integration 
and hence a qualitative knowledge of underlying phase diagram helps in designing the 
reversible path.  In case of non-physical paths,  it is often helpful to choose a reference 
state such that its structure and energy is as close as possible to the final state of interest 
[2], so as to minimize the hystereis.   
 
Phase diagram calculation using TDI method: 
 
The conditions of equilibrium for coexistence of two phases of a single component 
system are given by : (1) TI=TII (2) PI = PII and (3) μI=μII.  The difference in chemical 
potentials Δμ=(μII-μI) at a given temperature T and pressure P is related to free energy 
difference between the two phases by the following relations: 

N
Δ(PV)ΔF

N
ΔGΔμ +

==  

where ΔF is the Helmholtz free energy difference and ΔG is the Gibbs free energy 
difference between the two phases, V is the volume  and N is the number of particles.  
  
In order to compute phase diagram, one needs chemical potentials of the bulk phases at 
given temperature and pressure.  The chemical potentials are obtained by computing the 
free energy of these bulk phases with respect to suitable references states.  In the 
following, we describe common methods to compute free energies of bulk phases. 
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Liquid phase free energy : 
 
When the gas phase of a given substance is sufficiently rarefied, it approaches ideal gas 
behavior and this state can then be used as a reference state.   However, one cannot 
directly reduce the density of the liquid phase to gas-like densities due to first order 
transition.   In order to avoid the phase transition, the integration is done in two stages.  In 
the first stage, the temperature of the liquid is increased till it becomes supercritical.  This 
is shown in figure by line L-S.  The change in free energy in this process is given as: 
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where β=1/kT is the inverse temperature, k is the Boltzmann constant, and U is the 
internal energy of the liquid at given temperature T, volume V and number of particles N. 
The integrand in above equation, i.e., U can be computed by simulation at number of 
coexistence points along the path. 
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Here, FI is the Helmholtz free energy for ideal gas with the same temperature and density 
as the supercritical state S.   The term ρkT in above equation represents the ideal gas 
pressure.  Note that β(ΔF)D=0, since at point D the gas phase behaves as ideal gas.  By 
computing the integrands in the above equations by canonical-ensemble simulations, we 
can calculate the liquid free energy.   
  
Solid phase free energy: 
 
Unlike the liquid phase, the solid phase cannot be connected to ideal gas state by a 
reversible path.  Thus, a non-physical path must be constructed to a reference phase 
whose free energy can be computed analytically.  The most common method used is 
called Einstein crystal method [2,3] which we describe below: 
 
In an Einstein crystal (see Fig. 4), particles are attached by harmonic springs to their 
respective lattice sites.  The interaction potential is given by [3],  
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Here, φ0 is the static lattice energy of the Einstein crystal phase, and K is the harmonic 
spring constant.   Both these parameters are chosen so that the properties of Einstein 
crystal phase are similar to the actual crystal phase.  The free energy of Einstein crystal 
FE can be computed analytically and is given by the following equation [3]:  
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Figure 4. The path from crystal phase of interest to the Einstein crystal phase.  In Einstein 
crystal, the springs represent the (external) harmonic potential.between the particle and 
lattice site. 
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where h is the Planck constant.  The free energy of a solid phase is obtained by 
connecting it to Einstein crystal phase through a non-physical path defined by the 
following equation: 
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Here φS is the intermolecular potential function of the solid phase of interest and φE is 
that of the Einstein crystal whose free energy is exactly known.   
 
The free energy difference is computed by: 
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The integrand on right hand side above equation is computed by canonical ensemble 
simulation as a function of λ  values.    Then, the integral is evaluated by numerical 
integration using, for example, a Gaussian quadrature scheme.  By computing the value 
of FE, one can then obtain free energy F of solid phase.  This method has been applied to 
phase diagram calculations of several molecular systems including Nitrogen, Helium [2] 
and water [4]. 
   
There are other methods to compute the free energy of solids such as Single occupancy 
cell (SOC) method and Harmonic crystal method [2].  In the SOC method, the crystal is 
expanded to gas-like densities while imposing the single occupancy constraint to prevent 
melting and thus avoiding a first-order transition along the path.  In the single-occupancy 
constraint, each particle is constrained to a volume equal to that of the Weigner-Seitz cell 
around its lattice point.   The free energy of the constrained solid in the dilute gas limit 
can be computed analytically.  In the harmonic crystal method,   the crystal is cooled to 
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very low temperatures, where it effectively behaves as a harmonic crystal.  The free 
energy of low temperature harmonic crystal can be computed analytically. 
 
Direct computation of crystal-melt free energy difference: 
 
The methods that we described above entail computation of liquid and crystal free 
energies separately by connecting these phases to suitable reference states via reversible 
paths.  However, for phase diagram calculation, we only need the difference in free 
energies between crystal and liquid phases and not their absolute free energies.  Thus it 
will be desirable to have a method that directly calculates the free energy difference by 
connecting the two phases by reversible path.  Such a  method was first proposed by 
Grochola [5].  In this method, one directly connects liquid and crystal phases by a 
reversible path.  The integrand is evaluated by performing canonical ensemble 
simulations along the path and subsequent numerical integration  yields directly the 
Helmholtz free energy difference ΔF = (FC-FL) between liquid and crystal phases.  Based 
on the computed ΔF, one can calculate the crystal-melt coexistence point.    This method 
has an advantage over the previously discussed methods in that analytical expression for 
the free energy of a reference state is not required and this gives more flexibility in terms 
of designing the thermodynamic integration path.  This method was later adopted to 
isothermal-isobaric (NPT) ensemble to yield directly ΔG, i.e., Gibbs free energy 
difference between liquid and crystal phases [6].    In the following, we describe this NPT 
version of the method.   
 
The reversible path connecting liquid and crystal phases consists of 3 stages (see Fig. 5).  
In the first stage, the liquid phase is converted into high density gas phase by reducing the 
strength of the interaction according to following equation 
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where η is a parameter that decides the extent to which interaction strength is reduced. 
The corresponding change in free energy for the first stage is obtained by numerical 
integration of the following equation: 
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where <…> represents isothermal isobaric ensemble average which is computed by NPT 
simulations A constraint on maximum possible volume is imposed (as depicted by the 
stops in the figure), while performing NPT simulations along the path.  In the absence of 
this constraint, the volume of the system would expand to gas like densities at the end of 
the first stage leading to significant hysteresis in the second stage.  In the second stage, 
external potential consisting of Gaussian potential wells at the crystal lattice points is 
introduced linearly while maintaining the reduced strength of the interaction potential 
between the molecules.    
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The interaction potential for the second stage is given by 
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Here, ϕE is the Gaussian external potential.  The change in Gibbs free energy for the 
second stage is given by 
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In the third stage, the strength of the intermolecular potential is restored while the 
Gaussian external potential is linearly reduced to zero according to the following 
equation: 

Eϕλϕηληλϕ )1()1()( 3333 −++−=  
 
The change in Gibbs free energy for the third stage is given by 
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Finally, the Gibbs free energy difference between crystal and melt phases is obtained by 
adding contribution from the three stages, i.e., ΔG =ΔG1 + ΔG2 + ΔG3 .   
 
The method has been extended to binary mixtures  [7] and also to sublimation 
temperature computation [8].  This method (in canonical ensemble formulation) has been 
applied to compute melting temperature of molecular systems such as Sodium chloride 
[9], trizole and Benzene [10]. 
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Figure 5. The reversible path from liquid to crystal phase.  The stops represent the 
maximum volume constraint.  The grid represents external potential in the form of 
Gaussian wells located at the lattice points. 
 
 
Cleaving wall method to compute crystal-melt interfacial energy (γ): 
 
Crystal-melt interfacial energy (γ) plays an important role in the process of crystallization 
from the melt.   Particularly, the morphology of the crystal and the rate of crystallization 
depend on  γ.  However, experimental determination of this quantity is difficult and hence 
simulations can play a crucial role in predicting the value of γ.   Thermodynamically, γ is 
defined as the excess Helmholtz free energy associated with the interface: 

LCCL FFFγ −−=  
where FCL is the Helmholtz free energy of the combined crystal-melt system with an 
interface, FC is the free energy of bulk crystal phase, and FL is that of the bulk liquid 
phase. 
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In recent years, cleaving wall method [11] has been developed as a general molecular 
simulation method for computing γ.  In this technique, the crystal and melt phases are 
combined reversibly starting from separated bulk phases.  In the first two stages,  the 
cleaving walls are brought near to the bulk liquid and crystal phases under periodic 
boundary conditions.  The purpose of this step is to prevent the particles from crossing 
the sides of the simulation box.  In the third stage, the periodic boundary conditions in the 
z-directions are rearranged so as to reversibly combine the cleaved liquid and crystal 
phases.  In the final stage, walls are removed and one gets the desired crystal-melt 
interface.   The reversible work done per unit area along the four stage path yields the 
crystal-melt interfacial energy.  For the first, second, and fourth stages, the work done on 
the system is given by: 
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Here, ( F/ z) is the derivative of the Helmholtz free energy with respect to the distance 
z of the wall from the cleaving plane and it measures the force exerted on the system. The 
limits on the integrand, zi and zf represent the initial and final positions of the walls.   The 
work done in the third stage is given by, 
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where λ is a parameter controlling the rearrangement of the boundary conditions in the 
third stage.  The crystal melt interfacial energy is equal to the total reversible work for the 
four stages per unit area of the interface created.  The method is sufficiently precise and 
enables one to compute the dependence of γ on crystal orientation.  The method has been 
applied to Lennard-Jones potential [11], Stillinger-Weber potential of silicon [12] and 
TIP4P potential of water molecules [13].   
 
Gibbs-Duhem integration method: 
 
The methods described so far require many simulations along the reversible path to 
compute free energy difference between bulk phases from which a single coexistence 
point can be obtained.   Hence this procedure is highly computationally intensive, if one 
wants to calculate the entire phase diagram.   In 1993, Kofke [14] invented an efficient 
and general method to trace out the entire coexistence curve starting from an initial 
(known) coexistence point by thermodynamic integration.  In this method, one performs 
numerical integration of the clapeyron equation, which for a single component system 
takes the following form [1,14]: 

βΔv
Δh

dβ
dP

−=  

The derivative on the left hand side of the above equation is the rate of change of 
pressure P with respect to inverse temperature β=1/kT along the coexistence line of the 
bulk phases 1 and 2.  The terms Δh = h2-h1 and Δv = v2-v1 are the differences between 
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specific enthalpies and specific volumes of the two phases, respectively.  The right hand 
side of the above equation is evaluated by performing isothermal isobaric simulations for 
the two phases.  Then, the above first order  differential equations is integrated by means 
of standard predictor-corrector method starting from an initially known coexistence point 
(β0,P0).  The method can be extended to binary system [15] by integrating the generalized 
Clapeyron equation applicable for a mixture.   The advantage  of Gibbs Duhem 
integration method is that, one needs to perform only a few simulations (about 2 
simulations for each phase) for obtaining a single coexistence point.  Thus the method is 
highly efficient compared to traditional TDI methods.  Another advantage of GDI method 
is that it does not require parameterization of interaction potential or introduction of 
external potentials and is relatively simpler to implement than TDI method.  However, 
these is a possibility of systematic drift from the true coexistence line as the integration of 
Clapeyron equation proceeds, specially if the integration step size in the predictor-
corrector algorithm is not taken to be sufficiently small.   Hence it is desirable to counter-
check the accuracy of the method by obtaining two or more coexistence points 
independently by TDI method.   Thus the combination of TDI and GDI methods offers a 
powerful tool for accurate and efficient computation of entire coexistence line.  GDI 
method is very general and has been applied to numerous phase diagram calculations [2]. 
 
Summary: 
 
In this lecture, we have discussed various common thermodynamic integration (TDI) 
methods for phase diagram and interfacial free energy computation.  TDI methods gives 
very accurate estimates of these properties, provided that there is no hysteresis along the 
path.  Molecular simulations imparts great flexibility and versatility to thermodynamic 
integration due to possibility of employing non-physical paths.  Since one needs to 
simulate only the equilibrium states along the path,  both Monte Carlo and Molecular 
Dynamics simulations can be used.   In case of physical paths, a qualitative knowledge of  
phase diagram is helpful in designing a reversible path.  If one wants to compute free 
energy of a condensed (liquid or crystal) phase by a non-physical path, phase diagram of 
the intermediate states is not generally known.  For such paths, hysteresis is minimized 
by choosing a reference state which is very similar in structure (as determined, for 
example, by radial distribution functions) and energy to the desired condensed phase.  
With the discovery of highly efficient methods and increase of computing power, the 
utility of TDI methods is bound to increase.  
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