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1 Introduction

Molecular simulations has become an indispensable tool in developing our understanding of

various systems ranging from simple monoatomic fluids to more complex fluids made up of

polymers, surfactants and proteins. From the early Monte Carlo1 and molecular dynamics2

(MD) simulations of hard sphere systems and later on soft sphere fluids,3, 4 simulation tech-

niques have advanced significantly, and today a variety of techniques are available for evaluat-

ing thermodynamic, structural and dynamical properties. A number of standard textbooks cover

this vast subject.5, 6, 7, 8, 9 Figure 1 illustrates the regime of length and time scales probed using

classical molecular dynamics simulations which is the subject of this lecture. In this regime,

the length scales range from 1-10 nm (10 � �
m) and time scales are typically in the ns (10 � �

s)

regime. Classsical molecular dynamics lies between quantum simulations and systems that are

mesoscopic in nature. In the mesoscale regime one is interested in probing systems on the time

scale of a few � s and length scales of 10 - 1000 nm. These systems include the structure and

dynamics of phases with complex microstructure that form in oil-water-surfactant systems and

dynamics of colloidal suspensions. These systems are important in detergency, wetting and bi-

ological processes at the level of the cell membrane. Several coarse grained methods are used

to study system properties at the mesoscale. Coarse grained molecular dynamics, Brownian dy-

namics, dissipative particle dynamics and lattice Boltzmann methods are a few of the currently

used methods. Ideally one would be interested in using information from smaller length and
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Figure 1: Schematic representation of the various simulation methods and the corresponding
length and time scales typically accessible to each method. Confined fluids, self assembled
monolayers, the bilayer phase and flow past a sphere are representative of the systems discussed
in this review. Quantum methods include density functional, ab inito and Carr-Parinello molec-
ular dynamics. Atomisitic methods include molecular dynamics and Monte Carlo simulations.
Mesoscale methods include coarse grained molecular dynamics, dissipative particle dynamics,
Brownian dynamics and Lattice Boltzmann simulations. Continuum methods involve solution
of heat, mass and momentum transport equations using a variety of numerical methods such as
finite element and finite difference methods. Methods such as coarse grained molecular dynam-
ics include the overlap region between atomistic and mesoscale simulations, while dissipative
particle dynamics and Lattice Boltzmann methods include the overlap between mescoscale and
continuum regimes.
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time scales to carry out mesoscale simulations whereby the mesoscale model incorporates the

required microscopic features of the system. This is currently an active area of research.

2 Molecular Dynamics of Soft Spheres

Consider a collection of � interacting particles. The objective of a molecular dynamics simu-

lation is to describe the time evolution of the particle positions �������	��
������������� and momenta� �����	��
������������	� . The primary input into the simulation is the specific form of the interpar-

ticle interaction potential which governs the dynamics of the particles. Molecular dynamics

simulations are performed on broadly two classes of systems; hard sphere and soft spheres. We

restrict our attention to simulations of soft spheres. Assuming that the particles can be treated

classically, the particle dynamics are governed by Newton’s Second Law of motion,

� � ��� � �� � � �"!#� �$�%��
�������
&� (1)

where � � is the mass of particle � and !'� is the force acting on the � th particle. Eq. 1 which is in

vector form represents a set of 3N coupled second order differential equations which are solved

numerically to obtain the positions and momenta of the particles. In a collection of � particles

the force, !#�(� )* +�,- �/. �
+

(2)

is obtained by summing the forces acting on particle � from all other particles 0 in the system,

where . �
+

is the force between two particles � and 0 .

Eq. 1 can also be obtained from the Lagrange equations of motion. This is a useful starting

point as it provides a more general framework for deriving equations of motion for systems of

particles evolving under constraints or while carrying out molecular dynamics simulations in

ensembles such as the isothermal isobaric ensemble (NPT) or the canonical ensemble (NVT)

where an appropriate Lagrangian is the starting point. The Lagrangian,1 ��2435
�673&
&893�
�������
(:2 ) 
;:6 ) 
;:8 ) �<�>=?�@:243�
A:6B3�
(:893C�����(:2 ) 
;:6 ) 
(:8 ) �EDGFH��243�
�673�
&893�
������	2 ) 
�6 ) 
&8 ) �
(3)

where = is the kinetic energy which is only a function of the particle velocities ( :2C��
;:6I�J
(:8�� )
and F is the total potential energy of the collection of � particles, is only a function of the
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particle positions ( 2 � 
�69� 
&8�� ). In Eq. 3 dots represent time derivatives and the subscript denotes

the particle index. If � � is the mass of the � th particle the Lagrangian,1 � �� )* � - 3 � � �@:2 ���� :6 ���� :8 �� �ED FH��2435
�673�
&893�
������	2 ) 
�6 ) 
&8 ) � (4)

The Lagrange equations of motion are,�� �
��� 1� :2 �	� D � 1� 2 � ��
 �$�%� 
������5
�� (5)

Substituting Eq. 4 into Eq. 5 and simplifying we obtain the following scalar forms of the equa-

tions of motion, � � ��� 2 �� � � � D � F� 2 � �����
� � �7� 69�� � � � D � F� 6I� ������
� � � � 8��� � � � D � F� 8�� ������ (6)

�$� � 
�������
��
In a molecular dynamics simulation, the above set of � � scalar equations are solved using an

appropriate numerical integration procedure. In vector notation Eqs. 6 reduces to Eq. 1.

Molecular dynamics simulations for a fixed number of particles ( � ) in a volume ( � ) with

a conservative force field, yields trajectories in a Microcanonical ensemble ( ����� ), as the total

Hamiltonian (kinetic + potential) is a constant of the equations of motion. This is true for sys-

tems that have a well defined equilibrium state in the absence of friction or other dissipative or

random forces. Additionally in the absence of external forces the momentum is also a conserved

quantity for particles interacting via pairwise additive forces.

2.1 Interaction Potentials and Forces

We will be mostly interested in particles that interact with pairwise additive interactions as two

body potentials have been extensively used to study the phase behaviour and transport properties

of a wide variety of fluids. Perhaps the most widely used two body interaction potential in

molecular simulations is the two parameter 12-6 Lennard-Jones potential,� ����� + �������	� + � �"! � +�5� + � 3 � D �"! � +��� + �$#&% 
 (7)
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where �	� + is the interaction energy between particles � and 0 ,
! � + is the atomic diameter and ��� + is

the scalar distance between particles � and 0 . The first term in the Lennard-Jones potential is soft

repulsive and the second term is the dispersion interaction which is attractive. The dispersion

interaction arises due to fluctuating dipoles that are set up between otherwise neutral entities.

The dispersion interaction is quantum mechanical in origin and the � ��� ��� # dependence is an

exact result. The repulsive � ��� ��� 3 � is empirical in nature. The total internal energy for a system

of pairwise additive interacting particles is,

F>� ) � 3* � - 3 * +
� � � �����

+ ��� (8)

Note that the sum in Eq. 8 consists of � � � D � ��� � terms.

Now let us consider the term involving the force acting on particle � in the 2 direction. From

Eq. 6, ���� � D � FH� 243�
�673&
&893�
�������2 ) 
�6 ) 
&8 )� 2 � �
� D �� 2 � ) � 3* � - 3

)* +
� � � � ���

+ �
� D ) � 3* � - 3

)* +
� �
� � � ��� + �� 2 �

� ) � 3* � - 3
)* +
� � � �� + (9)

where
� �� + �%D � � ����� + �� 2 � (10)

is the force in the 2 direction on particle � due to particle 0 and � �� given in Eq. 9 is the total

force acting on particle � in the 2 direction due to the other � D � particles in the system. In
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vector form,

. �
+ � D�� � � ����� + �

� D ��� � � � �����
+ �� 2 � � � � � � �����

+ �� 6I� � � � � � �����
+ �� 8����

� D ��� � � �� ��� + � ���
+� 2 � � � � � �� ��� + � ���

+� 69� � � � � �� ��� + � ���
+� 8�� � (11)

The last line is obtained using the chain rule for differentiation. Since the scalar distance,��� + ��� ��2 � D 6I��� � � � 6I� D 6 + � � � � 8�� D 8 + � � (12)

then, � ��� +� 2 � � 2 � D 2 +��� + 
 � ��� +� 6I� � 69� D 6 +��� + 
 � ��� +� 8�� � 8�� D?8 +��� + (13)

Substituting Eqs. 13 in Eq. 11,

. �
+ �%D � �� �5� + � �

+
��� + 
 (14)

where � � + �>� � D � + � � � � 2 � D 2 + � � � � � 6I� D 6 + � � � � � 8�� D?8 + � . The vector positions � � and � +
are illustrated for a two particle system in Fig. 2.

If the functional form of the interparticle potential is known then the derivative in Eq. 14

can be evaluated. For the 12-6 Lennard-Jones interaction,� �� ��� + � D � ���	� +��� + � � � ! � +��� + � 3 � D � ! �
+
��� + � # % (15)

Substituting Eq. 15 into Eq. 11 the force,

. �
+ � � ���	� +� �� + � � � ! � +��� + � 3 � D � ! �

+
��� + � # % � � + (16)

and in scalar form, the force in the 2 direction is,

� �� + � � ���	� +� �� + � � � ! � +�5� + � 3 � D � ! � +�5� + � # % ��2 � D 2 + � (17)

Similar equations follow for the 6 and 8 components of the force. The force .
+ � � D . �

+
fol-

lows from Newton’s Third Law. In the above derivation the forces are assumed to be centrally

symmetric, i.e. the forces act only along the line of centers, ��� + and are dependent only on the

distance ��� + .
6
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Figure 2: Schematic representation of vector positions for two particles � and 0 illustrating the
direction of the force along the vector �9� + .
3 Dimensionless Quantities

While carrying out simulations it is useful to express various quantities in suitable reduced units.

Consider a set of indentical particles of mass � , interacting via a 12-6 Lennard-Jones potential

with parameters � and
!

. Using the following reduced units (indicated by a � )

� � � � � �� ! � � � � �! ! � � ! !� 
 (18)

Newton’s Second Law (Eq. 1) reduces to�7� � ��� � � � �>! �� �$� � 
������5
&� (19)

In reduced units the accelerations are equal to the forces. In component form,� � 2 ��� � � � � � �� �� � 6 ��� � � � � � �� ��7� 8 ��� � � � � � �� � (20)

�E� � 
�������� (21)
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Other quantities that are evaluated in an MD simulation are the kinetic energy,

= � � � )* � - 3 ��� �� � � � �� � � � �� � � (22)

In reduced units, = � � �� )* � - 3 ��� �� � � � � �� � � � � �� � � � (23)

where = � � = � 
 �
� ��� � � � (24)

For spherical particles, the kinetic temperature is evaluated from the equipartition theorem

which relates the kinetic energy to the temperature,
�

,

= � � � ��� � (25)

where � is the Boltzmann constant. Defining a reduced temperature,
� � ��� � � �

� � � �� � )* � - 3 ��� �� � � � � �� � � � � �� � � � (26)

The total linear momentum of the collection of paricles is

� � � )* � - 3 ��� � � � � � � � � � ��� (27)

which in reduced units is,
� � � )* � - 3 ��� �� � � � �� � � � �� � � (28)

4 Integrating the Equations of Motion

The equations of motion make up an initial value problem and consist of a set of coupled

second order ordinary differential equations. Given the positions and velocities at � � 
 the

the positions and velocities at a later time � can be obtained using a suitable algorithm. These

algorithms are based on Taylor series expansions and the resulting finite difference forms. The

two most popular methods are the Verlet algorithm and the Velocity Verlet algorithm. In what

follows we will assume that the quantities are in reduced units and the ’stars’ are henceforth

omitted. Note that in reduced units, the accelerations are equal to the forces.
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4.1 Verlet Algorithm

Forward and backward Taylor expansions about the position 2$� �	� yields

2$� � ��� �	�<� 2$���	� � :2E���	� � � ���2$���	� � � ���� � ...2 ���	� � ���� � �	� � � �	��
 (29)

and 2$���$D � �	�<� 2$� �	�ED :2 � �	� � � ���2$� �	� � � ���� D ...2 � �	� � � �� � ��� � � �	�
 (30)

respectively. Adding Eqs. 29 and 30,

2$� � ��� �	��� � 2$���	� D 2$� � D � �	� � � ���2E���	� � � � ��� � � �	�
 (31)

which is used to obtain the position 2$��� ��� �	� given the positions at � and ��D � � . Although

the backward difference formula (Eq. 30) can be used to obtain 2$� �AD � �	� at the first time step,2$���ED � �	� can be set to 2$� �	� for the first time step.

Once the positions have been obtained the velocities at time � ,
� � � �	�<� 2$��� ��� �	�ED 2$� � D � �	�� � � 
 (32)

are obtained using a central difference formula. The Verlet algorithm is popular both due to

its simplicity and good energy conserving properties for moderate values of � � . The local

truncation order for the positions is of O( � ����� . The above equations have been derived for the

positions and velocities of a given particle in the 2 direction. Similar equations hold for the

other directions. Typical time steps, � � , used in MD simulations are 1-2 fs (1 fs = � 
 � 3�� s).

4.2 Velocity Verlet Algorithm

In the Verlet algorithm the velocities are evaluated only from the positions and do not inolve

the forces. The Velocity Verlet algorithm overcomes this drawback. In the Velocity Verlet

algorithm the positions and velocities are updated using,

2$��� ��� �	��� 2$���	� � :2E���	� � � � :2$���	� � � ���� (33)

and

� � � � ��� �	�<��� � ���	� � �� � ��� �2$� �	� ���2E��� ��� �	��� (34)
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The equation for the positions is obtained from a forward difference Taylor expansion (Eq. 29).

Unlike the verlet algorithm the velocities are obtained from the forces and current positions. In

order to obtain the expression for the velocities we proceed in the following manner. Taylor

expansions for the velocity and accelerations are

� � � � ��� �	�<��� � ���	� � :� � � �	� � � � �� � � �	� � � ���� � ����� (35)

:� � � � ��� �	�<� :� � ���	� � �� � � �	� � � � ...� � � �	� � � ���� � ����� (36)

From Eq. 36

�� � ���	� � � ���� � ��:� � � � ��� �	�$D :� � ���	��� � �� ��� � � � � � (37)

Eq. 34 is obtained by substituting Eq. 37 into Eq. 35 and simplifying.

An alternate derivation for the Velocity Verlet algorithm using the original Verlet equations

is given below. From Eq. 32

� � � � ��� �	�<� 2$��� � � � �	�$D 2$���	�� � � (38)

From Eq. 31 2$��� � � � �	�<� � 2$��� ��� �	�ED 2$� �	� ���2E��� ��� �	��� � �	� � (39)

Substituting Eq. 39 in Eq. 38 we obtain,

� � � � ��� �	�<� � 2$��� ��� �	�ED � 2$���	� ���2 � � ��� �	��� � �	� �� � � (40)

Substituting 2$� � ��� �	� from Eq. 31 into Eq. 40 and simplifying results in Eq. 34.

4.3 Setting up the Molecular Dynamics Simulation

Initial Velocities and Velocity Scaling

Simulations are carried out in a cubic simulation box of side
1

. The number of particles �
is determined by the density at which the simulation is to be carried out. The initial positions

can be randomnly assigned avoiding overlaps or for dense systems the initial configuration can

also be constructed by assigning the co-ordinates to a lattice. Initial velocities can be assigned

in different ways. The velocities can be assigned using a Maxwell-Boltzmann distribution5 or
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by simply assigning velocities from a uniform distribution of random numbers9, � � 
 � � 
 � � �
� D � 
�� � . Hence the velocities of the particle are,

� � �4� � � � � 
 � � �C��� � � � 
 � � �4� � � � � 
 for �A� � 
�������
where � � � � � �� � � �� � � �� � . The velocities can be scaled to obatain a desired temperature

using the following method. If
���

is the set temperature and the current temperature of the

system corresponding to velocities, � � � 
 � � �J
 � � �J
����� 
������� , using Eq. 26 is
���

then the scaled

velocities,

�
�� � � � � � � ���

��� �
�� � � � � � � ���

��� �
�� � � � � � � ���

��� for �$� � 
��������
It can easily be shown that the temperature computed from �

�
is
���

. During the equilibration

phase of the MD simulation velocity scaling using the above procedure is followed to bring the

velocities to a desired set temperature. During this velocity scaling phase, the total energy is

not conserved and the trajectories must not be used to compute any properties. Once sufficient

time has been given for equilibration, then velocity scaling is removed and the system follows

NVE dynamics. The amount of time required for equilibration depends on the system being

investigated as well as the initial configuration.

Initial Momentum

While carrying out molecular dynamics in the absence of external forces, the total linear

momentum of the system is a conserved quantity and the net acceleration of the center of mass

is zero. Since momentum is conserved a non-zero but constant center of mass momentum can

also exist. Although the presence of a non-zero center of mass is allowed, it is customary to

set the center of mass velocity to zero. This is important while computing other dynamical

quantities such as the mean squared displacements or time correlation functions for evaluating

transport coefficients. Given the velocities � � �J
 � � � 
 � � � 
�� ��� 
�������� , of a given configuration,

the linear momentum is given by Eq. 28.The scaled velocities which correspond to a zero linear
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momentum are obtained by subtracting the net linear momentum in a given direction.

�
�� � � � � � D ��

)* � - 3 � � �
�
�� � � � � � D ��

)* � - 3 � � �
�
�� � � � � � D ��

)* � - 3 � � � (41)
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