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Monte Carlo Simulations

Random Number Generators

A computer is a precise and deterministic machine, and hence, the output of a computer
is predictable and not truly “random”. The word “random” represents the output of a truly
random physical process such as the decay of radioactive nuclei. In radioactive decay
process, we cannot predict which nucleus is going to decay and when. However, we can
say that after time t, how many nuclei would have decayed using probabilistic models.
Many books refer to computer generated sequences as “pseudo-random” numbers.

Uniform Deviate

“Uniform deviate” is a random number with a uniform probability distribution.

What does this mean?

1. Random number lies within a specified range, say (0,1)

2. Any number in the range is equally likely to be picked.

3. The basic building block of all “random” number generation is the “uniform deviate”.
Mathematically, for a uniform random number, z, the probability distribution function
u(z) is given by

i fora<z<b
u(z)=1b-a

0 otherwise
Linear Congruential Scheme
The most commonly used algorithm for generating uniform deviates is using 1-D map
which is called the Linear Congruential Scheme. It is a recursive relation and is given as
follows

X, = (@x,,+c)modm
where a, ¢ and m are positive integers; a is called the multiplier, c is the increment and m
is the modulus.

Note : (x mod y) means the remainder of the division of x by y. For example,
1mod2=1
2mod2=0

For the Linear Congruential Scheme, there is a recurrence period, i.e., it will eventually
repeat itself. The choice of a, ¢ and m is very important because unless the random
number is “random”, i.e., the recurrence period is the maximum possible, the results will
not be correct.The value of the random number generated depends on all three
parameters. The random number generator thus has to fulfill the requirement that the
recurrence period of the sequence be much greater than the number of random numbers
needed in a specific calculation. “Minimal Standard” generator is the random number
generator due to authors Park and Miller and the parameter values are
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a=7"=16807
c=0
m=2%-1
X, =12
The advantage of this scheme is that it is very fast.

Non-uniform Deviates

Transformation Method
Probability theory says given a probability distribution function u(z), if x is a function of

z as in X(2), then, the density function p(x) obeys |z (x)dx| =|u(z)dz]. Probability
remains constant irrespective of variable. So, even if there is a transformation of variables

the area under the curve remains constant.
To generate non-uniform deviates x according to p(x), follow the steps given below.

1 for0<z<1
1. Given that u(z):{

) , generate z from uniform random number
0 otherwise

generator.

2. Solve for x(z) by using Iu (z)dz=z= J-ﬂ'(X)dX . Generating x as per p(x) requires
0 0

knowledge of j;z(x)dx, i.e., this integral should be analytically solvable.
0

Example

Generate non-uniform deviates x from n(x) = ax for x in (0,1) where a is a normalization
constant.

z

Iu(z)dz ZE”(X)dX

0

=7 ='[axdx:£ax2
0 2

Taking the square root of uniform deviate gives a linearly distributed non-uniform
deviate.



SERC School: Molecular Simulations In Engineering Sciences
Monte Carlo Simulations

Random Walk in 1-D

Let us assume the frog in the figure below is our random walker.

S

Let the frog’s initial position is x = 0 and every jump has a step-size of length L. The frog
jumps forward with a probability p and backward with a probability g. The frog is only

allowed to jump along the line and can only take one jump of step-size L after every time
interval.

If all N steps taken are in the forward direction, then the total displacement will be +NL
and if all N steps are taken in the reverse direction then, then the total displacement will
be —NL. Hence, the frog can have a range from —NL to +NL.

Let N, steps be taken in the forward direction and N_ steps in the reverse direction. The

probability distribution for the N, steps (or N_steps) is given by the Binomial
Distribution Function.
Displacement , x=(N, =N )L:(ZN -N)L

Average Displacement, (x)=({N,)—=(N_))L=(2(N,)-N)L
Deviation = x—(x) = ( —(N +>)

Mean Square Displacement = Dispersion = <(x—<x>)2> = 4(<Nf>—<N+>2) L2

We know,

(N,)= zN: N,P(N
N, =0

(N?)= ZN N?P(N, )= Npg+N?p?
N, =0

o, =Npg
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Thus, dispersion is o; =4NpgL® and the mean is (x)=N(p—q)L.

Algorithm
1. Generate a uniform random number r in the unit interval

2. If(r<p)thenx=x+1
Elsex=x-1

Monte Carlo In The Microcanonical Ensemble

The Demon Algorithm

A crude and obvious method is to fix the number of particles, N, and volume of the
system V, while changing the positions and velocities of the individual particles at
random and retaining the microstate which has the desired total energy, E. However this
method is very inefficient because most trial configurations would not have the desired
total energy and would have to be discarded.

A more efficient MC method was developed by Cruetz and co-workers. ( Ref. Michel
Cruetz, “Microcanonical Monte Carlo Simulation”, PRL, 50, pp1411 (1983)). In this
method an extra degree of freedom (known as the demon) is added to the original
microscopic system of interest. The demon travels around the system transferring energy
as the demon attempts to the change the dynamical variables of the system. If the desired
change lowers the energy of the system, the excess energy is given to the demon. If the
desired change raises the energy of the system, the demon gives the required energy to
the system, if the demon has sufficient energy. The only constraint is that the demon can
not have negative energy, i.e. Eq >0

The demon algorithm for a classical system of particles is as follows:

Stepl. Choose a particle at random
int i = (int) (r*N) where r is a uniform deviate between 0 and 1

Step 2. Make a trial change in its position (say)

—

Fow [1]= 1 [i]+(1-21,) 6, Where 1y represents uniform deviates between 0 and 1

Step 3. Compute A E= Eyia - Eoqig = change in energy of the system due to the trial move.

Step 4. If (AE<0), the system gives |AE| amount of energy to the demon, i.e.
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E, =E, —AE (AE is negative, so, E, = E, +|AE|), and the trial change is
accepted.F,, [i]=F[i]  Enew = Euia

Step 5. If (AE > 0) and the demon has sufficient energy for the change i.e. Eq =E4- AE

And the trial configuration is accepted T, =T, and Enew = Eial Otherwise trial

configuration is rejected and the configuration remains unchanged.

The above steps are repeated until the representative sample of microstates is obtained.
After a sufficient number of steps, the demon and the system will have an average energy
for each.

Monte Carlo In The Canonical Ensemble

Monte Carlo Integration

Estimation of definite integrals is a problem that seemingly has nothing to do with the
problem of randomness. Common numerical methods of determining the value of definite
integrals include Trapezoid Rule and Simpson’s rule. Numerical methods are used in
solving low dimensional integrals. Monte Carlo methods generate a sequence of random
numbers to estimate integrals and higher dimensions.

Numerical Integration

b
Let us consider a 1-D definite integral | :j f(x)dx

a
For some choices of the integrand, f(x), integration to determine I can be done
analytically, or found in reference books (eg, the standard normal distribution function),
or evaluated in the form of a series or numerically.
Geometrical interpretation of the integral I is that I is the area under the curve of f(x)
fromx =atox=h.
Quadrature Formula (Rectangle Rule)

I :_Tf(x)dx f(x)

a Sum areas of shapes
=S F(x)A% = F, approximating shape

=) of curve

n q--—h-—h-'“-'—-._.
F =00 f (%) 7
_(b-23) *
where = \ J
X, = X +1AX 7 unmformly separated points
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with xg =a and x, = b.

Thus, we can write,
1~F, =233 1 (x)
n i
Monte Carlo (MC) Integration

MC Integration is a stochastic approach to evaluate I. It uses the same quadrature formula
as in numerical integration but uses a different selection of points.

Il
D ey T
—h
—
>
~
o
X

1 n
<f (X)>:ﬁzl: f(x)
The n points are selected according to the uniform distribution u(x) such that
1 for 0<x<1
u(x)= :
0 otherwise
Here, X; is the random number and n is the total number of trials.

The method described above is the “uniform sampling” MC method.

a(x)

152295 f(x)
R =1

e

# points selected from uniform
distribution n(x)

/

rmmn

Acceptance/Rejection or Hit/Miss MC

Example: Suppose there is a pond of irregular shape inside a field of known area A. How
to estimate the area of the pond, Ap?
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A MC method would be to throw stones such that the stones land at random within the
boundary of the field and count the number of splashes,ns. The splash occurs when a
stone lands in the pond. The total number of stones is Nl

n

A=A

r]total

Importance Sampling

To calculate the integral, I, or in effect the area under the curve, more efficiently and
obtain accurate results quickly, importance sampling is used. What this technique does is
to put more points in regions where the integral receives its greatest contributions.

b 1
Let us consider the definite integral | =J' f(x)dx= jsxzdx

a 0
In this choice of f(x), most of the contribution to the integral I is from the region near x =
1. In MC integration, the quadrature points are chosen not at equal spacing as is done in
numerical integration, but according to a density distribution function, n(x).
The function, t(x), can be chosen to be the uniform distribution. In which case, with
reference to figure, there are points chosen which are wasted.

4
3
j f(x)
§ 2
u(x)=1
1
0 PR % R P TR W Sgien 1

H

To improve the efficiency, let us choose the points as per a linear distribution such as
n(X) = 2X. This will however introduce a bias. How to remove this bias? For the

n
importance sampled integral, F, = Z f (xi )Axi ,consider the unevenly spaced abscissa
i=1

such that the spacing between the points is taken as the reciprocal of local number of
points per unit length, i.e.
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(5w

This ensures that greater the value of =(x;), more number of points and smaller spacing

3 f(x)= 3x?

0 0.2 0.4 i} 0.6 0.8 1

So, the importance sampled quadrature integral can be written as
b

I :J' f (x)dx:j3x2dx

1f(x)7zx x~1n f(xi)z f(x)
!z(x) (x)d n%‘)”(x) <”(X)>7r(x)

= |

To generate, non uniform deviates as per n(X) = 2x, use the transformation method.

In the canonical ensemble, the importance sampling algorithm used is called the
Metropolis algorithm which is a Markov Process. Let us learn about Markov processes in
the next section.

Markov Processes

Stochastic process is a movement through a series of well-defined states in a way that
involves some element of randomness. “Stochastic” is a synonym for statistic. Statistics
cannot predict which event will occur next, but can predict the average number of times
an event can occur.

Markov process is a stochastic process that has no memory of its history. The selection of
the next state does not depend on any prior states. The process is fully defined by a set of
transition probabilities which are collected in a transition probability matrix, IT = {m;}.
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Example:
Consider a hydrocarbon which can exist in three states, viz., trans (state 1), gauche+

(state 2) and gauche- (state 3). The transition probability matrix for this system can be
written as follows:-

If in state 1, will stay in state 1
with probability 7z,

11| %12 73

—
Il

7To1 7loo | 7023 If in state2, will move to state 3
with probability 7,3

731 732 7033

Requirements of a transition probability matrix
1. All probabilities are non-negative and no greater than unity. 0 <7, <1.

2. Sum of each row is unity. > 7, =1
j

3. Probability of staying in present state may be non-zero. z, > 0. This is in contrast to
random walk.

Distribution of State Occupancies

Consider process of repeatedly moving from one state to the next, choosing each
subsequent state according to IT

1325231 >33>32>32>33>3—>1->2->3-> elc.

Here, we find,

n,=3 m =0.33
n,=>5 m =042
n;=4 m=0.25

One could construct a histogram to describe the number of times visited in each of the
three states during the process. After a long period of sampling, steady state is reached
and the histogram does not change with continued sampling. The histogram so obtained
is called the limiting distribution of the Markov process.

Limiting distribution

We consider now how the limiting distribution relates to the IT. Consider the product of
IT with itself
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11 M2 713 11 T2 713
% =\ 7y 7 |X|7a 72 7z
731 732 733 731 732 733
Ty F MM M3y MiThp + MMy + M3y eiC.
=| 1My + oMoy + o33y T afl1p + Wpplpp + W33y EIC.

T317M + W3p oy + 33 /M3y M3y Mp + M3p /My + M3373p  €IC.
Look closely at the first (1,1) element. It is the sum of three terms. The first term,
71177111s the probability of staying in state 1 for two successive steps, given that the

system started in state 1. Similarly, the second term in the sum 7212721 the probability
that the system moves in successive steps from state 1 to state 2, and then back again.
Finally the third term is the probability of moving from 1 to 3 and back to 1. Thus the
(1,1) terms in the product matrix contains all ways of going from state 1 back to state 1 in
two steps. Likewise, the (1,2) term of the product matrix is the probability that the
system moves from state 1 to state 2 in exactly two steps. The same interpretation holds
for all the terms in the product matrix. Thus the square of IT is a two-step transition-
probability matrix, and in general the multiple product IT" is the n-step IT
n n n
”1(1) ”iz) 7753)
n_| M m _(n
I =7y 73 73
m () ("
731 73 733
where each term ”i(jn) is defined as the probability of going from state i to state j in
exactly n Markov steps.

. 0 : o
Let us define ﬂi( ) as a unit state vector for simpicity, thus (for a 3-state system)

%=1 00 zZP=0 10 V=0 012

Then ni(”) is a vector describing the probabilities for ending at each state after n Markov
steps beginning at state i

oy Ay Ay
A" =200 =1 0 0) 2 = R |=(x =P )

A A

The limiting distribution corresponds ton — oo, and will be independent of the initial
state i if the I'T describes an ergodic process.

7z1(°°) = 7z§°°) = 7Z'§OO) =r

The limiting distribution obeys a stationary property.

10
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7= lim [ 700" | :( lim [zi(o)nn‘l])n = Al

N—o0 nN—oo

Thus,
7=l

7Z'i :zﬂ-jﬂ-jl
J

where the sum extends over all states. If the limiting probabilities rtj and the transition
probabilities m;; all satisfy the following relation

7Z'i7Z'ij = 7Z'j7Z'ji

This relation is known as detailed balance, or the principle of microscopic reversibility.
As demonstrated below, it presents a sufficient condition but it is not a necessary
condition.

The limiting probabilities w; and the transition probabilities m;; also satisfy the eigenvector
equation as presented before, as is easily shown

T = Zﬂ'J 7Z'ji
J
ZZﬂ'iﬂ'ij

J
=7 ) 7ij =7
j

For a given I1, it is not always possible to satisfy detailed balance; e.g. for this IT

01 05 04
m=|09 01 00

03 03 04

Here, 7T373o * T3

One of the elements (n,3) is zero, while its detailed-balance counterpart (w3,) is not zero.
Detailed balance cannot be satisfied for this pair (unless perhaps =3 is zero, but this
clearly is not the case here since there is a route to state 3 from state 1).

Deriving transition probabilities

The utility of detailed balance is not in determining the limiting distribution from a set of
transition probabilities. In fact, we have to answer the question given a desired &, what
transition probabilities will yield this as a limiting distribution? Construct transition
probabilities to satisfy detailed balance.

11
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Example
For the limiting distribution, 7 =(0.25 0.5 0.25), generate IT.

No unique solution, many possible choices.
0.97 0.02 0.01

I[T={0.01 098 0.01
0.01 0.02 0.97

Metropolis Algorithm
_[ f (x) p(x)dx
jp(x)dx

p(x) is an arbitrary probability distribution function that need not be normalized. We need
to know only the limiting distribution and not the transition probabilities.

This algorithm is useful for computing averages such as < f > = where

Let state k be represented by the variable, Xk, and we want to generate Xy+1.

Algorithm

Step 1) Choose a trial variable Xgia = Xk + dx where dy = (1-2r;)*dmax
Step 2) Calculate w = p(Xriar)/p(Xi)
Step 3) If (w > = 1) accept the trial change and Xi+1 = Xyrial

else If (w < 1) generate random number r;

if (r, <= w) accept the trial change Xk+1 = Xial

else Xi+1 = X

This algorithm was first published in the landmark paper Journal Of Chemical Physics,
1953, 21, pp 1087.

Metropolis Algorithm as applied to the Canonical Ensemble

1. Establish an initial microstate. For example, all N atoms are assigned initial positions.
2. Make a random trial change in the microstate.

a. Choose an atom at random: i = (int)(r,* N ') where r; is a uniform deviate

between 0 and 1.
b. Make a trial displacement

Kirial = % T (1_ 2If-2 )§max
ytrial = yi + (1_ 2r3)5max
ztrial = Zi +(1_ 2rA)é‘max
Apply Periodic Boundary Conditions
3. Compute AE =E,,, — E,, = change in energy of the system due to trial change.

12
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If(AE <= O) accept the trial microstate as the new microstate and goto step 8.
If(AE > 0) computew = exp[-SAE].
Generate uniform deviater, .

N o o &

If(r, <= w)accept trial microstate as the new microstate

Else reject and retain old microstate as the new microstate.

8. Determine the value of desired macroscopic property.

9. Steps 2 to 8 constitute one MC step. Repeat steps 2 to 8 N times (to allow for the
possibility for all N atoms to move) for 1 MC cycle.

10. Complete maximum number of MC cycles specified and calculate averages.

Note that after relaxation or equilibration cycles all sums of macroscopic properties are
reset to zero so that averages are determined only over production cycles.

In the above algorithm, if Egiy < = E;, then AE <= 0.0, so that the system moves to a
lower energy state. However, even some higher energy states are accepted i.e. when AE >
0 as this enables an atom trapped in the local minimum to jump out and move to the
global minimum. Say, an atom is in the local minimum and wants to move out to a state j
such that Ej > Ejocaimin then the AEjocaimin = Ej - Eiocaimin . NOW an atom in the global
minimum wanting to move to state j will require AEgiobaimin = Ej — Egiobaimin. Since, Eiocaimin
> Eglobalmim AEIocalmin < AEglobalmin and Wigcalmin > ngobalmin- This means that it will be easier
to generate a random number r between 0 and Wiocaimin 8s compared to 0 and Wgigbaimin.
And, the atom is more likely to remain in the global minimum as compared to the local
minimum.

Metropolis Algorithm In Other Ensembles

Metropolis algorithm in the Isothermal Isobaric Ensemble is as
follows:

1. Initialize the position of all N atoms in an initial volume. There should be no overlap
in positions.

2. Choose a trial move at random. The two possible moves are atom displacement trials
and volume change trials. Both trials have to be completed for one MC cycle. The
frequency ratio of atom displacement trials : volume change trials = N: 1
Atom displacement trials are as seen in the Canonical ensemble.
4. Volume change trial is given below:

a. Change the volume of the simulation cell at random, i.e.,

IV, =NV, +d InV =InV, +(1-2r)35,,,

trial

w

b. Calculate L, Ve

trial

” X
c. Scale positions of all N atoms. x,,, =—24-*L .
old

13
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Vtrial

+N In[ ]
Determine w as w = e—ﬂp(vmal ‘Vum)e Vold e‘ﬂ(Utrial Vo)

Generate a uniform deviate, r'<(0,1)
f. If (r'<w) accept the trial change

Viow =Vyia @nd for all N atoms x_,., = X,
Else reject the trial change

Vyey =V, and for all N atoms x,,,, = X,

new
5. Step 4 constitutes one MC cycle, thus, for a trial volume change 1 MC step =1 MC
cycle as all N atoms are scaled to new positions.
6. Steps 2 to 4 are repeated until maximum number of MC cycles is reached.

CASE STUDY

The Ising Spin Model

The Ising model is a simple, interacting spin model that can be conveniently used to
study the paramagnetism to ferromagnetism transition. This model was proposed by Lenz
and investigated by his graduate student, Ising, to study the phase transition from a
paramagnet to a ferromagnet.

Definition Of A Paramagnet
A substance that can be magnetized by an external magnetic field and disappears as the
field disappears is said to be a paramagnet.

Definition Of A Ferromagnet

A ferromagnet on the other hand is a substance in which the domains are aligned by an
external magnetic field (eg. from another permanent magnet) so that it becomes a
permanent magnet.

At temperatures lower than the Curie temperature, the system behaves as a ferromagnet
and for temperatures above the Curie temperature (T¢), the system behaves as a
paramagnet.

Ising (in 1925) computed the thermodynamic properties of the model and discovered that
the model does not have a phase transition in 1-D. However, for higher dimensions (2-D
and 3-D), others showed that the model does exhibit a phase transition.

In the Ising model, a fixed lattice is constructed and spins are placed at each lattice
points.

The assumptions of the Ising model are as follows:-

14
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1. Each lattice site may have only one of two discrete spin values associated with it,
where +1 is for an “up” spin and -1 is for a “down” spin.

2. Only the nearest neighbour spins interact

3. The kinetic energy of the particles themselves is neglected.

Therefore, in the Ising model, for a lattice containing N sites each with spin si, a
particular configuration or microstate of the lattice is specified by the set of variables
{s1,52,53,-.,Si,-....Sn} for all the lattice sites. The macroscopic properties of the system are
determined by the nature of the accessible microstates. Thus, if s; represents the value of
spin on site i, then the net scaled magnetic moment or magnetization, M, is given

N

M = Z S, . Therefore, the state if the system is specified when the values of all the spin
i=1

are given.

It is necessary to know the dependence of the total energy on the configuration of the
spins. The total energy E of the Ising model is given by

N No repeats N
E=-J) > ss,—-H)s

i=1 j=NN(i) i=1
where H is the magnetic field strength from the uniform external magnetic field,
the summation refers to the sum over all different nearest neighbour pairs with no
repeats;
J is the exchange constant, a measure of the strength of interaction between neighbouring
spins.

1-D Ising model

The 1-D case does not show phase transition from para- to ferro- magnet. However, the
1-D model is analytically solvable and can be used to validate the code.

PBC: For a 1-D lattice, application of PBC results in the lattice becoming a ring and spins
at sites 1 and N interact with one another and have the same number of interactions as do
other spins,. If we do not apply PBC, the sites 1 and N have only 1 nearest neighbour
unlike sites 2 to N-1, which have two each. PBCs wrap the system back on itself, so that
end spins are neighbours.

For thermodynamic property calculations, the 1-D Ising model with no spin interactions
is known as the ideal Ising model with J = 0. The energy expression thus reduces to

N
E=-H)s,.
i=1
First, let us find the expression for the canonical partition function for this model.
N = total number of spins in the system
2
ForN=2, Q :(e’ﬁH +e*M )

For N =3, Qz(e‘ﬁH +e'/" )3

15
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Similarly, for any given N, Q = (e‘ﬂH +e*" )N = (2COSh(ﬂH ))N

16
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Implementation of Metropolis algorithm for Ising model

Step 1: Establish an initial microstate which is a random configuration of spins.

Step 2: Make a random trial change in the microstate. Choose a spin at random and flip
the spin.

Step 3: Compute the change in energy of the system due to trial change.

Step 4: If the energy change is negative or zero, then accept the trial change and the new
microstate is the trial microstate and goto step 7.

Step 5: If the energy change is positive, compute the Boltzmann’s weighting factor, w.
Step 6: Generate a uniform deviate r between (0,1) and if (r <=w), then accept the trial
change otherwise retain the previous microstate as the new microstate.

Step 7: Determine the value for E and M (or any other property to be measured).

Step 8: Repeat steps 2 through 7 for the required number of times, Ntrials (sample
adequate microstates).

Step 9: Compute averages over the Ntrials.

Physics:
The flipping of single spins can be thought as a reasonable approximation to the real

dynamics of an anisotropic magnet whose spins are coupled to the vibrations of the
lattice. The coupling leads to random spin flips. It is expected that 1 Monte Carlo step per
spin is proportional to the average time between single spin flips observed in the
laboratory. The application of the Metropolis algorithm to the Ising model is known as
“single spin flip dynamics”.

hl"l"l H=10

Y

A non-zero m means a net number of spins are aligned in a particular direction and hence
M| /N =m is termed the “order parameter” of the system. Near the Curie temperature, we
can characterize the behaviour of m by the power law. Near Curie temperature, Tc, we

can write m(T ) ~ (T, —T )" where Bc is a critical exponent with values of 0.125 for 2-

D Ising model and 0.32 for 3-D Ising model. As properties at and around the critical point
are difficult to measure experimentally, this power law behaviour is important.

17
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For vapour —liquid equilibria (VLE), analogous results have been observed with the
density difference as the order parameter. The equation is as follows:

Be

PP = B(T _Tc)

Here,B is the proportionality constant and the critical exponent is the same as that for the
Ising model.

In a simulation, we often locate phase transition by computing the thermodynamic
properties of the individual phases, then finding the coexistence point where temperature,
pressure and chemical potential of all species in all the bulk phases are equal. For, VLE
the most common simulation method in use is the Gibbs” Ensemble Monte Carlo
(GEMC) method

18
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