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Monte Carlo Simulations 

Random Number Generators 
 A computer is a precise and deterministic machine, and hence, the output of a computer 
is predictable and not truly “random”. The word “random” represents the output of a truly 
random physical process such as the decay of radioactive nuclei. In radioactive decay 
process, we cannot predict which nucleus is going to decay and when. However, we can 
say that after time t, how many nuclei would have decayed using probabilistic models. 
Many books refer to computer generated sequences as “pseudo-random” numbers. 

Uniform Deviate 
“Uniform deviate” is a random number with a uniform probability distribution. 
What does this mean? 
1. Random number lies within a specified range, say (0,1) 
2. Any number in the range is equally likely to be picked. 
3. The basic building block of all “random” number generation is the “uniform deviate”. 
Mathematically, for a uniform random number, z, the probability distribution function 
u(z) is given by  
 

( )
1      

b-a
0    

for a z b
u z

otherwise

⎧ ≤ ≤⎪= ⎨
⎪⎩

 

Linear Congruential Scheme 
The most commonly used algorithm for generating uniform deviates is using 1-D map 
which is called the Linear Congruential Scheme. It is a recursive relation and is given as 
follows  

( )1 modn nx ax c m−= +  
where a, c and m are positive integers; a is called the multiplier, c is the increment and m 
is the modulus. 
 
Note : (x mod y) means the remainder of the division of x by y. For example,  
1 mod 2 = 1 
2 mod 2 = 0 
 
For the Linear Congruential Scheme, there is a recurrence period, i.e., it will eventually 
repeat itself. The choice of a, c and m is very important because unless the random 
number is “random”, i.e., the recurrence period is the maximum possible, the results will 
not be correct.The value of the random number generated depends on all three 
parameters. The random number generator thus has to fulfill the requirement that the 
recurrence period of the sequence be much greater than the number of random numbers 
needed in a specific calculation. “Minimal Standard” generator is the random number 
generator due to authors Park and Miller and the parameter values are 
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The advantage of this scheme is that it is very fast. 

Non-uniform Deviates 
 
Transformation Method 
Probability theory says given a probability distribution function u(z), if x is a function of 
z as in x(z), then, the density function p(x) obeys ( ) ( )x dx u z dzπ = . Probability 
remains constant irrespective of variable. So, even if there is a transformation of variables 
the area under the curve remains constant. 
To generate non-uniform deviates x according to p(x), follow the steps given below. 

1. Given that ( )
1     0 1
0    

for z
u z

otherwise
≤ ≤⎧

= ⎨
⎩

, generate z from uniform random number 

generator. 

2. Solve for x(z) by using . Generating x as per p(x) requires 

knowledge of 

( ) ( )
0 0

 
z x

u z dz z x dxπ= =∫ ∫

( )
0

x

x dxπ∫ , i.e., this integral should be analytically solvable. 

Example 
Generate non-uniform deviates x from π(x) = ax for x in (0,1) where a is a normalization 
constant. 
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u z dz x dx
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a

π=

⇒ = =
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⎝ ⎠

∫ ∫

∫  

Taking the square root of uniform deviate gives a linearly distributed non-uniform 
deviate. 
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Random Walk in 1-D 
 
Let us assume the frog in the figure below is our random walker. 
 
 

X =0 

q p

 
Let the frog’s initial position is x = 0 and every jump has a step-size of length L. The frog 
jumps forward with a probability p and backward with a probability q. The frog is only 
allowed to jump along the line and can only take one jump of step-size L after every time 
interval. 
 
If all N steps taken are in the forward direction, then the total displacement will be +NL 
and if all N steps are taken in the reverse direction then, then the total displacement will 
be –NL. Hence, the frog can have a range from –NL to +NL. 
 
Let steps be taken in the forward direction andN+ N−  steps in the reverse direction. The 
probability distribution for the N+  steps (or N− steps) is given by the Binomial 
Distribution Function. 
Displacement , ( ) ( )2x N N L N N L+ − += − = −  

Average Displacement, ( ) ( )2x N N L N N+ − += − = − L  

Deviation = ( )2x x N N+ +− = − L  
 

Mean Square Displacement = Dispersion = ( ) ( )2 22 24x x N N
+ +− = − L  

We know, 
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2Thus, dispersion is  and the mean is 2 4x NpqLσ = ( )x N p q L= − . 
 
Algorithm 
1. Generate a uniform random number r in the unit interval 
2. If  then x = x + 1 (r p≤ )

Else x = x – 1 
 

Monte Carlo In The Microcanonical Ensemble 

The Demon Algorithm 
 
A crude and obvious method is to fix the number of particles, N, and volume of the 

system V, while changing the positions and velocities of the individual particles at 

random and retaining the microstate which has the desired total energy, E. However this 

method is very inefficient because most trial configurations would not have the desired 

total energy and would have to be discarded. 

 A more efficient MC method was developed by Cruetz and co-workers. ( Ref. Michel 

Cruetz, “Microcanonical Monte Carlo Simulation”, PRL, 50, pp1411 (1983)). In this 

method an extra degree of freedom (known as the demon) is added to the original 

microscopic system of interest. The demon travels around the system transferring energy 

as the demon attempts to the change the dynamical variables of the system. If the desired 

change lowers the energy of the system, the excess energy is given to the demon. If the 

desired change raises the energy of the system, the demon gives the required energy to 

the system, if the demon has sufficient energy. The only constraint is that the demon can 

not have negative energy, i.e. Ed ≥ 0 

The demon algorithm for a classical system of particles is as follows: 

Step1. Choose a particle at random 

           int i = (int) (r*N) where r is a uniform deviate between 0 and 1 

Step 2. Make a trial change in its position (say) 

           [ ] [ ] ( )0 1 2trial kr i r i r maxδ= + −  where rk represents uniform deviates between 0 and 1 

Step 3. Compute E= EΔ trial - Eold = change in energy of the system due to the trial move. 

Step 4. If ( E 0), the system gives Δ ≤ EΔ  amount of energy to the demon, i.e. 
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            ( E is negative, so, d dE E E= − Δ Δ d dE E E= + Δ ), and the trial change is  

           accepted. [ ] [ ]new trialr i r i=      Enew = Etrial

Step 5. If ( E > 0) and the demon has sufficient energy for the change i.e. EΔ d =Ed- EΔ   

And the trial configuration is accepted new trialr r= and Enew = Etrial otherwise trial 

configuration is rejected and the configuration remains unchanged. 

new oldr r=  Enew = Eold

The above steps are repeated until the representative sample of microstates is obtained. 
After a sufficient number of steps, the demon and the system will have an average energy 
for each. 

Monte Carlo In The Canonical Ensemble 

Monte Carlo Integration 
Estimation of definite integrals is a problem that seemingly has nothing to do with the 
problem of randomness. Common numerical methods of determining the value of definite 
integrals include Trapezoid Rule and Simpson’s rule. Numerical methods are used in 
solving low dimensional integrals. Monte Carlo methods generate a sequence of random 
numbers to estimate integrals and higher dimensions. 

Numerical Integration 

Let us consider a 1-D definite integral ( )
b

a

I f x dx= ∫  

For some choices of the integrand, f(x), integration to determine I can be done 
analytically, or found in reference books (eg, the standard normal distribution function), 
or evaluated in the form of a series or numerically. 
Geometrical interpretation of the integral I is that I is the area under the curve of f(x) 
from x = a to x = b. 
Quadrature Formula (Rectangle 

( )
b

a

I f x dx

Rule)      
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 with x0 = a and xn = b. 
 
Thus, we can write, 

( )~ n i
b a

1

n

i
I F f x

n
−

= ∑  
=

C) Integration 
 
MC Integration is a stochastic approach to evaluate I. It uses the same quadrature formula 

erent selection of points. 

Monte Carlo (M

as in numerical integration but uses a diff

( )

( ) ( ) ( )
1

i i n
i

x dx
b

I f

~

a
n

I f x x F b a f xΔ = = −

 

=

= ∫

∑
where 

( ) ( )
1

1 n

i
i

f x f
n =

= ∑  x

oints are selected according to the uniform distribution u(x) such that The n p

( )
1     0 1
0    

for x
u x

otherwise
≤ ≤⎧

= ⎨
⎩

 

 
The method described above is the “uniform sampling” MC method. 

Here, xi is the random number and n is the total number of trials. 

 

 

Acceptance/Rejection or Hit/Miss MC 
 
Example: Suppose there is a pond of irregular shape inside a field of known area A. How 
to estimate the area of the pond, AP? 
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t the stones land at random within the 
oundary of the field and count the number of splashes,ns. The splash occurs when a 

 A MC method would be to throw stones such tha
b
stone lands in the pond. The total number of stones is ntotal. 

snA A=  P
totaln

 

Importance Sampling 
 

o calculate the integral, I, or in effect the area under the curve, more efficiently and 
obtain accurate results quickly, importance sampling is used. What this technique does is 

 where the integral receives its greatest contributions.  

T

to put more points in regions
 

Let us consider the definite integral ( )
1

2

0

3
b

a

I f x dx x dx= =∫ ∫  

n this choice of f(x), most of the contribution to the integral I is from the region neaI
1

r x = 
. In MC integration, the quadrature points are chosen not at equal spacing as is done in 

to a density distribution function, π(x).  
The function, π(x), can be chosen to be the uniform distribution. In which case, with 
numerical integration, but according 

reference to figure, there are points chosen which are wasted. 

 
 
To improve the efficiency, let us choose the points as per a linear distribution such as 
π(x) = 2x. This will however introduce a bias. How to remove this bias? For the 

portance sampled integral, ix( )
1

n

n i
i

F f x
=

= Δ∑im ,consider the unevenly spaced abscissa 

such that the spacing between the points is taken as the reciprocal of local number of 
points per unit length, i.e. 
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( ) ( )
1 1 1

2i
b ax

n x nπ
−⎛ ⎞ ⎛ ⎞Δ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
This ensures that greater the value of π(x

i ix
 

g i), more number of points and smaller spacin

 
 
So, the importance sampled quadrature integral can be written as 

( )

( )

( ) ( ) ( )
( )

( )
( )
( )

( )

1
2

0

10

3
b

a

i i

1 1~
n

i

xx

I f x dx x dx

x n x x
ππ

π π π=

= =∫ ∫
 

To generate, non uniform deviates as per π(x) = 2x, use the transformation method. 
 
In the canonical ensemble, the importance sampling algorithm used is called the 
Metropolis algorithm which is a Markov Process. Let us learn about Markov processes in 

ment of randomness. “Stochastic” is a synonym for statistic. Statistics 
 event will occur next, but can predict the average number of times 

f 
 

ij

f x f x f x
I x dxπ⇒ = =∑∫

the next section. 
 
Markov Processes 
 
Stochastic process is a movement through a series of well-defined states in a way that 
nvolves some elei

cannot predict which
n event can occur. a

 
Markov process is a stochastic process that has no memory of its history. The selection o
the next state does not depend on any prior states. The process is fully defined by a set of
transition probabilities which are collected in a transition probability matrix, Π = {π }. 
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Example: 
Consider a hydrocarbon which can exist in three states, viz., trans (state 1), gauche+ 
(state 2) and gauche- (state 3). The transition probability matrix for this system can be 
written as follows:- 
 
 
 

11 12 13

21 22 23

31 32 33

π π π
π π π
π π π

⎛ ⎞
⎜ ⎟Π ≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

If in state 1, will stay in state 1 
with probability π11

If in state2, will move to state 3 
with probability π23

 
Requirements of a transition probability matrix 
1. All probabilities are non-negative and no greater than unity. 0 1ijπ≤ ≤ . 

1ij
j

π =∑  2. Sum of each row is unity. 

3. Probability of staying in present state may be non-zero. 0iiπ ≥ . This is in contrast to 
random walk. 

 
Distribution of State Occupancies 
Consider process of repeatedly moving from one state to the next, choosing each 
subsequent state according to Π 
1 →2 → 2 → 1 → 3 → 2 → 2 → 3 → 3 → 1 → 2 → 3→  etc. 
Here, we find, 
n1 = 3  π1 = 0.33 
n2 = 5  π2 = 0.42 
n3 = 4  π3 = 0.25 
 
One could construct a histogram to describe the number of times visited in each of the 
three states during the process.  After a long period of sampling, steady state is reached 
and the histogram does not change with continued sampling.  The histogram so obtained 
is called the limiting distribution of the Markov process.   

 
 
Limiting distribution

2 
1 

3

 
We consider now how the limiting distribution relates to the Π.  Consider the product of 
Π with itself 
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11 12 13 11 12 13
2

21 22 23 21 22 23

31

π π π π π π
π π π π π π

 
32 33 31 32 33

11 11 12 21 13 31 11 12

21 11 22 21 23

π π π π π π π π
π π π π π π

+ + +
+ +

12 22 13 32

31 21 12 22 22 23 32

31 11 32 21 33 31 31 12 32 22

.

.
etc
etc

π π π π π π

π π π π
π π π π π π

π π π π π π π π π π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Π ≡ ×⎜ ⎟ ⎜ ⎟
⎜ ⎟

⎠ ⎝ ⎠
+

= + +
+ + + 33 32 .etcπ π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

 

Look closely at the first (1,1) element.  It is the sum of three terms.  The first term, 

⎜ ⎟
⎝

11 11π π is the probability of in sta
system started in state 1.  Similarly, the s

 te 1 for two successive steps, given that the 
econd term in the sum 

 staying
12 21π π  the probability 

that the system moves in successive steps from state 1 to state 2, and then back again.  
inally the third term is the probability of moving from 1 to 3 and back to 1.  Thus the 

ys of going from state 1 back to state 1 in 
robability at the 

tly two steps.  The same interpretation holds 
 matrix.  Thus the square of Π is a two-step transition-

F
(1,1) terms in the product matrix contains all wa
two steps.  Likewise, the (1,2) term of the product matrix is the p  th
system moves from state 1 to state 2 in exac
for all the terms in the product
probability matrix, and in general the multiple product Πn is the n-step Π 

( ) ( ) ( )
11 12 13
( ) ( ) ( )

 21 22 23
( ) ( ) ( )n n n
31 32 33

n n n

n n n

π π π
n π π π

π π π
⎜ ⎟
⎜ ⎟

 

⎛ ⎞
⎜ ⎟
⎜ ⎟≡

⎝ ⎠

Π

where each term 
( )n
ijπ  is defined as the probability of going from state i to state j in 

o
fine

exactly n v steps.  Mark
 ( )

i  as a un0π it state vector for simpicity, thus (for a 3-state system) Let us de

( ) ( ) ( )(0) (0) (0) 1 2 31 0 0 0 1 0 0 0 1π π π= = =  

Then ( )n
iπ  is a vector describing the probabilities for ending at each state after n Markov

steps beginning at state i  
 

  

The limiting distribution corresponds to , and will be independent of the initial 
state i if the Π describes an ergodic process. 

( ) ( )
( ) ( ) ( )
11 12 13

( ) (0) ( ) ( ) ( ) ( ) ( ) ( )
1 1 21 22 23 11 12 13

( ) ( ) ( )
31 32 33

1 0 0

n n n

n n n n n n nn

n n n

π π π

π π π π π π π π

π π π

⎛ ⎞
⎜ ⎟
⎜ ⎟= Π ≡ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

n → ∞

( ) ( ) ( )
1 2 3π π π= = π∞ ∞ ∞ ≡  

The limiting distribution obeys a stationary property. 
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( )(0) (0) 1lim limn n
i in n

π π π −

→∞ →∞
⎡ ⎤ ⎡ ⎤= Π = Π Π =⎣ ⎦ ⎣ ⎦

 πΠ

 
hus,  T

π π= Π  

i jπ ji
j

π π= ∑  

n 
probab
where the sum extends over all states.  If the limiting probabilities πi and the transitio

ilities πij all satisfy the following relation 

i ij j jiπ π π π=  

This relation is known as detailed balance, or the principle of microscopic reversibility.  
As demonstrated below, it presents a sufficient condition but it is not a necessary 
condition. 
The limiting probabilities πi and the transition probabilities πij also satisfy the eigenve
equation as presented before, as is easily shown 

ctor 

i j ji
j

i ij
j

i ij
j

i

π π π

π π

π π π= =∑

=

=

∑

∑  

 it i

⎛ ⎞

Here

For a given Π, s not always possible to satisfy detailed balance; e.g. for this Π 

0.1 0.5 0.4

0.9 0.1 0.0

0.3 0.3 0.4

Π = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

, 3 32 2 23π π π π≠  
One of the elements (π23) is zero, while its detailed-balance counterp
Detailed balance cannot be satisfied for this pair (unless perhaps π3 is zero, but this 

te to state 3 from state 1). 

art (π32) is not zero. 

clearly is not the case here since there is a rou
 
Deriving transition probabilities 
The utility of detailed balance is not in determining the limiting distribution from a set of 

 question given a desired π, what 
ribution? Construct transition 

probabilities to satisfy detailed balance. 

transition probabilities.  In fact, we have to answer the
transition probabilities will yield this as a limiting dist
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Example 
For the limiting distribution, ( )0.25 0.5 0.25π = , generate Π. 

o unique solution, many possible choices. 
⎞

⎜ ⎟Π = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

This algorithm is useful for computing averages such as 

N
0⎛ .97 0.02 0.01
0.01 0.98 0.01
0.01 0.02 0.97

 

Metropolis Algorithm 
( ) ( )f

( )
x p x dx

f
p x dx∫

p(x) is an arbitrary probability distribution function that need not be normalized. W
to know on

= ∫  where 

e need 
ly the limiting distribution and not the transition probabilities. 

 we want to generate xk+1. 
 
Algorithm

 
Let state k be represented by the variable, xk, and

 
 
Step 1) Choose a trial variable xtrial = xk + dk where dk = (1-2r1)*dmax 
Step 2) Calculate w = p(xtrial)/p(xi) 
Step 3) If (w > = 1) accept the trial change and xk+1 = xtrial

else If (w < 1) generate random number r2  
if (r2 <= w) accept the trial change xk+1 = xtrial

 
This algorithm was first published in the landmark paper Journal Of Chemical Physics, 
1953, 21, pp 1087. 

Metropolis Algorithm as applied to the Canonical Ensemble 
1. Establish an initial microstate. For example, all N atoms are assigned initial positions. 

ke a random trial change in the microstate. 

else xk+1 = xk
 

2. Ma
a. Choose an atom at random: ( )( )1int *i r N=  where r1 is a uniform deviate 

between 0 and 1. 
b. Make a trial displacement 

( )
( )

2 mtrial i ax1 2x x r δ

( )
3 max

4 max

1 2

1 2
trial i

trial i

y y r

z z r

δ

δ= + −

 

Apply Periodic Boundary Conditions 
3. Compute trial oldE E EΔ = − = change i

= + −

n energy of the system due to trial change. 

= + −
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)<=  accept the trial microstate as the new microstate and goto step 8. 4. If ( EΔ 0

[ ]exp5. If ( )0EΔ >  compute w = Eβ− Δ . 

7. If accept trial microstate as the new microstate  
Else reject and retain old microstate as the new microstate. 

8. Determine the value of desired macroscopic property. 
. Steps 2 to 8 constitute one MC step. Repeat steps 2 to 8 N times (to allow for the 

possibility for all N atoms to move) for 1 MC cycle. 
er of MC cycles specified and calculate averages. 

Note that after relaxation or equilibration cycles all sums of macroscopic properties are 
oduction cycles. 

 

 i.e. when ΔE > 
 as this enables an atom trapped in the local minimum to jump out and move to the 

ut to a state j  
ch that Ej > Elocalmin then the ΔElocalmin = Ej - Elocalmin . Now an atom in the global 

anting to move to state j will require ΔEglobalmin = Ej – Eglobalmin. Since, Elocalmin 
 Eglobalmin, ΔElocalmin < ΔEglobalmin and wlocalmin > wglobalmin. This means that it will be easier 

 and wglobalmin. 
ain in the global minimum as compared to the local 

 

Metro rithm In Other Ensembles 

etropolis algorithm in the Isothermal Isobaric Ensemble is as 

no overlap 

 completed for one MC cycle. The 
freq t trials : volum

3. Atom d are as seen in the Canonical ensemble. 
4. Volum : 

hange the volume of the simulation cell at random, i.e., 

6. Generate uniform deviate r . 5

( )5r w<=

9

10. Complete maximum numb
 

reset to zero so that averages are determined only over pr

In the above algorithm, if Etrial < = Ei, then ΔE <= 0.0, so that the system moves to a 
lower energy state. However, even some higher energy states are accepted
0
global minimum. Say, an atom is in the local minimum and wants to move o
su
minimum w
>
to generate a random number r between 0 and wlocalmin as compared to 0
And, the atom is more likely to rem
minimum. 

polis Algo

M
follows: 
 
1. Initialize the position of all N atoms in an initial volume. There should be 

in positions. 
2. Choose a trial move at random. The two possible moves are atom displacement trials 

and volume change trials. Both trials have to be
uency ratio of atom displacemen e change trials = N: 1 

isplacement trials 
e change trial is given below

a. C
( ) maxln ln ln ln 1 2trial i iV V d V V r δ= + = + −  

1
3

trial trialL V=  b. Calculate 

c. Scale positions of all N atoms. *old
trial

xx trial
old

L  =
L
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d. Det ( ) ( )
ln trial

trial old trial old

VN
P V V V U Uβ β

⎛ ⎞
+ ⎜ ⎟

− − − −⎝ ⎠ermine w as oldw e e e=  
e. Generate a uniform deviate, ( )0,1r′∈  

f. If ( )′ <r w  accept the trial change  
=new trialV V  and for all N atoms new trialx x=  

Else reject the trial change 
 new oldV V=  and for all N atoms new oldx x=  

Step 4 constitutes one MC cycle, thus, for a trial volu5. me change 1 MC step = 1 MC 

. Steps 2 to 4 are repeated until maximum number of MC cycles is reached. 
cycle as all N atoms are scaled to new positions. 

6

 

CASE STUDY 

The Ising Spin Model 
 
The Ising model is a simple, interacting spin model that can be conveniently used to 
study the paramagnetism to ferromagnetism transition. This model was proposed by Lenz 
and investigated by his graduate student, Ising, to study the phase transition from a 
paramagnet to a ferromagnet. 
 
Definition Of A Paramagnet 

 substanceA
field disappears is said to be a param

 that can be magnetized by an external magnetic field and disappears as the 
agnet. 

 
Definition Of A Ferromagnet 
A ferromagnet on the other hand is a substance in which the domains are aligned b
external magnetic field (eg. from another permanent magnet) so that it becomes a 
permanent m

y an 

agnet. 

 
n overed that 

er dimensions (2-D 
n.  

 
In the Ising model, a fixed lattice is constructed and spins are placed at each lattice 
points.
 
The assum  follows:- 

 
At temperatures lower than the Curie temperature, the system behaves as a ferromagnet 

 for temperatuand res above the Curie temperature (TC), the system behaves as a 
paramagnet. 

g (in 1925) computed the thermodynamic properties of the model and discIsi
the model does not have a phase transition in 1-D. However, for high
and 3-D), others showed that the model does exhibit a phase transitio

  

ptions of the Ising model are as
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1. Each lattice site may have only one of two discrete spin values associated with it, 

where +1 is for an “up” spin and -1 is for a “down” spin. 
2. Onl ract 
3. The kinetic energy of the partic ted. 
 
Therefore, in the Ising ontaining  sites each with spin si, a 
particular c f the lattice is specified by the set of variables 
{s1,s2,s3,..,s N} for a e macroscopic properties of the system are 

 

i

y the nearest neighbour spins inte
les themselves is neglec

 model, for a lattice c  N
onfiguration or microstate o
i,…..s ll the lattice sites. Th

determined by the nature of the accessible microstates. Thus, if si represents the value of
spin on site i, then the net scaled magnetic moment or magnetization, M, is given 

1

N

iM s= ∑ . Therefore, the state if the system is specified when the values of al
=

l the spin 

re given. 
 

now the dependence of the total energy on the configuration of the 
spins. The total energy E of the Ising model is given by 

N

a

It is necessary to k

 No repeatsN

1 ( ) 1i j NN i i
i j iJ s s H= − −∑ ∑ s∑  

easure of the strength of interaction between neighbouring 

E
= = =

where H is the magnetic field strength from the uniform external magnetic field; 
the summation refers to the sum over all different nearest neighbour pairs with no 
repeats; 
 is the exchange constant, a mJ

spins. 
 
1-D Ising model 
 
The 1-D case does not show phase transition from para- to ferro- magnet. However, the 

s 
 as do 

 not apply PBC, the sites 1 and N have only 1 nearest neighbour 

actions 
he ideal Ising model with J = 0. The energy expression thus reduces to  

1-D model is analytically solvable and can be used to validate the code. 
PBC: For a 1-D lattice, application of PBC results in the lattice becoming a ring and spin
at sites 1 and N interact with one another and have the same number of interactions
ther spins,. If we doo

unlike sites 2 to N-1, which have two each. PBCs wrap the system back on itself, so that 
end spins are neighbours. 
For thermodynamic property calculations, the 1-D Ising model with no spin inter
s known as ti

1

N

i
i

E H s
=

= − ∑ . 

First, let us find the expression for the canonical partition function for this model. 
 
N = total number of spins in the system 
 

For N = 2,  ( )2H HQ e e= +  β β− +

For N = 3,  ( )3H HQ e eβ β− += +  
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( ) (( ))2cosh
NH Hβ β− += + =

N
Hβ  Q e eSimilarly, for any given N, 
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plementation of Metropolis algorithm for Ising modelIm  
icrostate which is a random configuration of spins. 

 change in the microstate. Choose a spin at random and flip 
e spin. 

Step 3: Compute the change in energy of the system due to trial change.  
Step 4: If the energy change is negative or zero, then accept the trial change and the new 
microstate is the trial microstate and goto step 7. 
Step 5: If the energy change is positive, compute the Boltzmann’s weighting factor, w. 
Step 6: Generate a uniform deviate r between (0,1) and if (r <=w), then accept the trial 
change otherwise retain the previous microstate as the new microstate. 
Step 7: Determine the value for E and M (or any other property to be measured). 
Step 8: Repeat steps 2 through 7 for the required number of times, Ntrials (sample 
adequate microstates). 
Step 9: Compute averages over the Ntrials. 
 
Physics:

Step 1: Establish an initial m
Step 2: Make a random trial
th

 
The flipping of single spins can be thought as a reasonable approximation to the real 
dynamics of an anisotropic magnet whose spins are coupled to the vibrations of the 
lattice. The coupling leads to random spin flips. It is expected that 1 Monte Carlo step per 
spin is proportional to the average time between single spin flips observed in the 
laboratory. The application of the Metropolis algorithm to the Ising model is known as 
“single spin flip dynamics”. 
 
 

 
 
A non-zero m means a net number of spins are aligned in a particular direction and hence 
|M| /N =m is termed the “order parameter” of the system. Near the Curie temperature, we 
can characterize the behaviour of m by the power law. Near Curie temperature, TC, we 
can write ( ) ( )~ C

Cm T T T β− where βC is a critical exponent with values of 0.125 for 2-
D Ising model and 0.32 for 3-D Ising model. As properties at and around the critical point 
are difficult to measure experimentally, this power law behaviour is important. 
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ve been observed with the For vapour –liquid equilibria (VLE), analogous results ha
density difference as the order parameter. The equation is as follows: 

( ) C

L V B T TC

βρ ρ− = −  
Here,B is the proportionality constant and the critical exponent is the same as that for the 

e, 

Ising model. 
 
In a simulation, we often locate phase transition by computing the thermodynamic 
properties of the individual phases, then finding the coexistence point where temperatur
pressure and chemical potential of all species in all the bulk phases are equal. For, VLE 
the most common simulation method in use is the Gibbs’ Ensemble Monte Carlo 
(GEMC) method 
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