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Velocity rescaling method

Temperature of the system during the simulation is calculated from the 
kinetic energy           KE=3/2NkBT

Simplest way to maintain a constant T is to rescale the velocities 
consistent with the desired temperature  

Suppose at time t temperature  is T(t) and the velocities are multiplied by 
a factor λ. Then the change in temperature is 
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λ At each time step multiply the 
velocities by λ. T(t) is calculated 

from the KE at time t 

“equations of motion” are irreversible
“transition probabilities” cannot satisfy 

detailed balance
does not sample any well-defined ensemble



Berendsen Temperature coupling

Berendsen algorithm mimics weak coupling to a an external heat bath at constant 
temperature T0 . Such a coupling can be accomplished by inserting a stochastic and 
friction term in equation of motion
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Where γi is damping constant which determine the strength  of the coupling with the 
heat bath. For time being consider γi = γ (friction constant equal for all particles). 
R(t) is a Gaussian stochastic variable satisfying following relation

JCP, 81, 3684 (1984)

Time dependence of the total kinetic energy is given by

N is the number of particles
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You can recognize the first term: it is just equal minus the time derivative of potential 
energy. Second term is the coupling to the heat bath and we can associate this with time 
dependence of the system temperature
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Time constant for the coupling τT is equal to (2γ)-1

JCP, 81, 3684 (1984)

So we have



So the temperature deviation decays exponentially with time with time constant τT and 
the equation of motion can be written as
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From the above equation we have 

This is equivalent to the original stochastic equation



So the temperature is controlled by scaling the velocities of the particle as each time 
step with a time dependent constant given by  
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more general expression

If τT is large, then the coupling will be weak. If τT is small, the coupling will be strong 
and when the coupling parameter equal to integration time step (τT =δt) then this 
algorithm is equivalent to simple velocity rescaling method. A good value is 0.5 –1 ps
when δt = 1 fs.



Advantage:
•Strength of the coupling can be varied and adapted to the use requirement
•Very easy to code
•Very efficient to bring the system to a desired temperature. 

Disadvantage:
Does not represent a true canonical ensemble. Velocity rescaling artificially 
prolongs any temperature difference among components of the system, which 
can lead to the phenomena of ‘hot solvent’ and ‘cold solute’, even though the 
temperature of the system is at its desired value.  This can be avoided by having 
separate temperature coupling to the solute and solvent, but this leads to the 
unequal distribution of energy among various components.

Solution: Extended system method, like Nose-Hoover thermostat



For pair wise interaction the energy of the system of N particles is given 
by 
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Partition function is given by 

The momentum integral can easily be carried out  
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So the partition function becomes
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The Free energy can be written as 



Thermodynamically pressure is defined as 
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In general we can not evaluate the above expression exactly for any 
v(rij). If we assume v(rij) is small and so is f(rij). Then we can simply the 
above equation keeping only first order terms
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Taking derivative and keeping first order term we have 
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Equipartition and virial theorem

We want to compute the expectation value of            In 
the canonical ensemble it is given by jx
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Integrate by parts over xj (the numerator only)
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First part vanishes because whenever any of the coordinates takes an 
extreme value the Hamiltonian of the system becomes infinite.
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Virial theorem states that 
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Virial has two component: one from the external forces Wext (like the 
pressure  exerted by the wall of the container) and Wint arising from the 
forces between the particles.
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More details Allen and Tildesley , section 2.4



Computation of the pressure for the rigid molecules

The thermodynamic definition of the pressure

In order to derive the molecular expression for the pressure we explicit 
the volume dependence of the configurational integral by introducing 
dimensionless positional variable si, defined as 

for i = 1, … N

In terms of this new variable the partition function becomes



We have the pressure expression given by



Constant pressure simulation (NPT ensemble)
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Pressure during the simulation can be computed from the virial. For a 
pairwise additive interactions



In the same way as the temperature coupling, the system can be coupled to pressure 
path to control the pressure of the system: at each time step both the coordinates and 
box size will be rescaled. To achieve this an extra term is added to the equation of 
motion

Constant pressure simulation (NPT ensemble)

Easiest way to maintain constant pressure is by changing the volume of the simulation 
cell. The volume fluctuation is related to the isothermal compressibility
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The pressure change is related to the isothermal compressibility β as follows:
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So the modified equation of motion is given by
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With μ given by

So at each time step x is scaled by μx and length of the simulation box is scaled by μl 



The Update algorithm
Given

Positions r of all the atoms at time t
Velocities v of all atoms at time t-dt/2

Accelerations F/m on all atoms at time t
Total kinetic energy and virial

1. Compute the scaling factors λand μ

2. Update and scale velocities: v’ = λ(v+adt)

3. Compute new unconstrained coordinates: r’=r+v’dt

4. Scale coordinates and box: r = μr’ and b = μb



Pressure fluctuations

)/(2 VkTV
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For water β= 44.6x10-6/bar



Nose-Hoover thermostat
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In the extended ensemble approach the system Hamiltonian is extended by introducing 
a thermal reservoir and a friction term in the equation of motion. The friction force is 
proportional to the product of each particle velocity and a friction parameter ξ. The 
friction parameter is a fully dynamic quantity with its own equation of motion; the time 
derivative is calculated from the difference between the current and reference 
temperature

•introduce a new degree of freedom, s, representing 
reservoir
•associate kinetic and potential energy with s

•Momenta
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Nosé Thermostat 2.

• Extended-system Hamiltonian is conserved

• Thus the probability distribution can be written

– it can be shown that the molecular positions and momenta follow a canonical 
(NVT) distribution if g = 3N+1

• s can be interpreted as a time-scaling factor
– ttrue = tsim/s
– since s varies during the simulation, each “true” time step is of varying length
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Nosé-Hoover Thermostat 1.

• Scaled-variables equations of 
motion
– constant simulation Δt
– fluctuating real Δt
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• Real-variables equation of 
motion
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Advantageous to work with non-fluctuating time step



Nosé-Hoover Thermostat 2.
• Real-variable equations are of the form

• Compare to isokinetic equations

• Difference is in the treatment of the friction coefficient
– Nosé-Hoover correctly samples NVT ensemble for both momentum and 

configurations; isokinetic does NVT properly only for configurations

1

1

i
i

i

i i i

N
i

ii

m

s
s

p gkT
Q m

ξ

ξ

ξ
=

=

= −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

pr

p F p

&

&

&

&

/i i

i i

m
λ

=
= −

r p
p F p
&

&

1

1
i

i

i im

i im
λ

⋅
=

⋅
∑
∑

p F

p p

(redundant; s is not present in other equations)



Nosé-Hoover Thermostat 3.
• Equations of motion

• Integration schemes
– Verlet algorithm is feasible, but tricky to implement
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At this step, update of ξ
depends on p; update of p 
depends on ξ


