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Velocity rescaling method

Temperature of the system during the simulation is calculated from the
Kinetic energy KE=3/2NkgT

Simplest way to maintain a constant T iIs to rescale the velocities
consistent with the desired temperature

Suppose at time t temperature s T(t) and the velocities are multiplied by
a factor A. Then the change in temperature is

1 Nomw? 1 N 2m v2 At each time step multiply the
7%13 NkB 25,3 Nk velocities by A. T(t) is calculated
5 from the KE at time t
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i:\/Tdesired T *““equations of motion” are irreversible

“transition probabilities” cannot satisfy
detailed balance
ddoes not sample any well-defined ensemble



Berendsen Temperature coupling JCP, 81, 3684 (1984)

Berendsen algorithm mimics weak coupling to a an external heat bath at constant
temperature T,. Such a coupling can be accomplished by inserting a stochastic and
friction term in equation of motion
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Where v; is damping constant which determine the strength of the coupling with the

heat bath. For time being consider y; = y (friction constant equal for all particles).
R(t) is a Gaussian stochastic variable satisfying following relation

(R(DIR,(¢ + 7)) = 2m,y, kT 3(1)5,.

Time dependence of the total kinetic energy Is given by
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N Is the number of particles



Av, = v;(t + At) — v, (t)
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Using the fact that R, (¢ ‘) is uncorrelated with v;(¢) and R, ()
for ¢’ > ¢ and using the relation [from Eq. (2]

AN

t+ 4t t+ At
> f dt’ f dt” R,(t')R,(t") = 6NmykT,At,
1 V1 t

I =



JCP, 81, 3684 (1984)
So we have
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You can recognize the first term: it is just equal minus the time derivative of potential
energy. Second term is the coupling to the heat bath and we can associate this with time
dependence of the system temperature

%I 2 [To

Time constant for the coupling T+ is equal to (2y)!
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So the temperature deviation decays exponentially with time with time constant T and
the equation of motion can be written as
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From the above equation we have
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This is equivalent to the original stochastic equation



So the temperature is controlled by scaling the velocities of the particle as each time
step with a time dependent constant given by
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more general expression
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If T; Is large, then the coupling will be weak. If 11 is small, the coupling will be strong
and when the coupling parameter equal to integration time step (t; =0t) then this
algorithm is equivalent to simple velocity rescaling method. A good value is 0.5 -1 ps

when ot = 1 fs.



Advantage:

Strength of the coupling can be varied and adapted to the use requirement
*\ery easy to code

*Very efficient to bring the system to a desired temperature.

Disadvantage:

Does not represent a true canonical ensemble. Velocity rescaling artificially
prolongs any temperature difference among components of the system, which
can lead to the phenomena of “hot solvent’ and “cold solute’, even though the
temperature of the system is at its desired value. This can be avoided by having
separate temperature coupling to the solute and solvent, but this leads to the
unequal distribution of energy among various components.

Solution: Extended system method, like Nose-Hoover thermostat



For pair wise interaction the energy of the system of N particles is given
by
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Partition function is given by
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The momentum integral can easily be carried out
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So the partition function becomes
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The Free energy can be written as
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Thermodynamically pressure is defined as
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In general we can not evaluate the above expression exactly for any
v(r;;). If we assume v(r;;) Is small and so Is f(r;;). Then we can simply the
above equation keeping only first order terms
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Taking derivative and keeping first order term we have
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Equipartition and virial theorem

oH
We want to compute the expectation value of % - — In
the canonical ensemble it is given by J

Integrate by parts over x; (the numerator only)
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First part vanishes because whenever any of the coordinates takes an
extreme value the Hamiltonian of the system becomes infinite.



Second term becomes

1
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So the expectation value becomes
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This gives



Summing over all 1 from 1=1.. 3N

Virial theorem states that

W :<; q pi>:—3NkT
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Virial has two component: one from the external forces We* (like the

pressure exerted by the wall of the container) and W't arising from the
forces between the particles.
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So we have virial equation

PV = NKT +%<Wi”t>
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More details Allen and Tildesley , section 2.4



Computation of the pressure for the rigid molecules

The thermodynamic definition of the pressure

P kBT(a In QN)
T

oV

In order to derive the molecular expression for the pressure we explicit
the volume dependence of the configurational integral by introducing
dimensionless positional variable s;, defined as

r, = ‘/71382 fori = 1, ... N

In terms of this new variable the partition function becomes

QN =

- /ds dw® exp(=U({s, w}™)/kzT)



We have the pressure expression given by
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Constant pressure simulation (NPT ensemble)

Pressure during the simulation can be computed from the virial. For a
pairwise additive interactions

P = pkpT +d{/<_z_ f(rij).rij>

i<j



Constant pressure simulation (NPT ensemble)

Easiest way to maintain constant pressure is by changing the volume of the simulation
cell. The volume fluctuation is related to the isothermal compressibility
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R

In the same way as the temperature coupling, the system can be coupled to pressure
path to control the pressure of the system: at each time step both the coordinates and
box size will be rescaled. To achieve this an extra term is added to the equation of
motion

dP _ P

dt Tp

Pressure can be computed as
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The pressure change is related to the isothermal compressibility 8 as follows:

With a given by
a:—,B[PO— P)/BTP

So the modified equation of motion is given by

T

So at each time step x is scaled by ux and length of the simulation box is scaled by pl



The Update algorithm
Given
Positions r of all the atoms at time t
Velocities v of all atoms at time t-dt/2
Accelerations F/m on all atoms at time t
Total kinetic energy and virial

4
1. Compute the scaling factors Aand n
4
2. Update and scale velocities: v’ = A(v+adt)
4
3. Compute new unconstrained coordinates: r’=r+v’dt
4

4. Scale coordinates and box: r=pur’ and b = ub



Pressure fluctuations

2 — 6—P:
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So <AP>= 1/

For water 3= 44.6x10%/bar



Nose-Hoover thermostat

In the extended ensemble approach the system Hamiltonian is extended by introducing
a thermal reservoir and a friction term in the equation of motion. The friction force is
proportional to the product of each particle velocity and a friction parameter . The
friction parameter is a fully dynamic quantity with its own equation of motion; the time
derivative is calculated from the difference between the current and reference

temperature
P d 2ri F fdri
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Nosé Thermostat 2.

e Extended-system Hamiltonian is conserved

p| pS
H —U(r )+ —gkT Ins
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e Thus the probablllty dlstrlbutlon can be written

5(H Nose ENose)
) =
QNose

— it can be shown that the molecular positions and momenta follow a canonical
(NVT) distribution if g = 3N+1
e scan be interpreted as a time-scaling factor
-t =1 /S

true — “sim

— since s varies during the simulation, each “true” time step is of varying length
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Nosée-Hoover Thermostat 1.

O Advantageous to work with non-fluctuating time step

» Scaled-variables equations of .
motion

— constant simulation At
— fluctuating real At
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Real-variables equation of
motion



Nosé-Hoover Thermostat 2.

» Real-variable equations are of the form

=P
m
Pi =Fi —2p;
§ =& (redundant; s is not present in other equations)
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° Compare to i1sokinetic equatlons
ri = P; /m Z m; p'

pi=FK—-A4p Z pl Pi
« Difference is in the treatment of the frlctlon coefficient
— Nosé-Hoover correctly samples NVT ensemble for both momentum and

configurations; isokinetic does NVT properly only for configurations



Nose-Hoover Thermostat 3.

e Equations of motion

Pi = F — <P
=g

S

. 1 Np.
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» Integration schemes
— Verlet algorithm is feasible, but tricky to implement
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