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Statistical Thermodynamics
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Introduction

Statistical Mechanics is the study of macroscopic phenomena from a mi-
croscopic point of view. Statistical Mechanics helps us to understand, explain and
predict macroscopic behavior of a collection of entities (e.g. molecules) given the
microscopic behavior (e.g. inter-molecular interactions). The branch of statistical
mechanics that deals with equilibrium thermodynamics behavior (e.g. pressure,
entropy, free energy) is called Statistical Thermodynamics.

Only certain problems in statistical thermodynamics are exactly solvable
(e.g. ideal gas, Einstein crystal, Ising model in one and two dimensions, etc.).
Computer simulations provide exact numerical results for problems that are
soluble by approximate methods or might be quite intractable.

Since computer simulations give exact results for a given model, these can
be used to test the predictions of theories. Historically, computer simulations
have been able to discriminate between well-founded approaches (integral equa-
tion theories) and ideas that are plausible but less successful (old cell theories of
liquids). Computer simulation results can also be directly compared with ex-
perimental results. In such cases, the results can help in validating the molecular
model used in the simulations. With a good model, the simulator can offer new
information about the system, which are difficult or impossible to access ex-
perimentally and thus assist in interpreting new experimental results.
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Figure 1: The connection between theory, experiments and computer simula-
tions
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Concept of Ensembles

The state of a macroscopic system can be specified by few properties. For
example, a pure liquid can be described completely by it mass, pressure and
temperature. However, for each macroscopic state, there exist a large number of
microscopic states corresponding to it. For quantum systems, each microscopic
state is described by the eigenfunction obtained by solving the Schrodinger wave
equation. For classical systems, the positions and momenta of all its constituent
molecules describe each microscopic state. An ensemble of systems is a collection
of various microscopic states of the system that correspond to the single macro-
scopic state of the system whose properties we are investigating.

Depending upon the thermodynamic environment of the system, we can
create various representative ensembles. The commonly encountered ensembles
are given below

Type of ensemble Constant vari- Description

ables
Microcanonical N,V,E Isolated system
Canonical N,V, T Closed isothermal system
Grand-canonical wV, T Open isothermal system
Isothermal-isobaric N,P, T Closed isothermal-isobaric system

Time averaging versus Ensemble averaging

Suppose we wish to determine experimentally the value of a mechanical
property (e.g. pressure, energy) of a system. Let us denote this property by the
variable M. In general, the instantaneous value of M will depend on positions, r¥,
and momenta, p¥, of the N particles of the system. The experimentally measured
value is the time-averaged value of M(rN(t), pN(¢)).

1 T
M) =lim— [ M(r"(z),p"(¢)) at
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Another way of determining the value of M is through averaging over the
various systems in the representative ensemble. Thus we obtain the ensemble-
averaged value of M given as

(M) = ffdrN ap” M(rN,pN) p(rN,pN),

where p(rN, pN) is the probability density distribution of finding a system in the
ensemble having a configuration with momenta pN and positions rN.

Postulates
Postulate I:

The long time average of a mechanical variable M in the thermodynamic
system of interest is equal to the ensemble average of M, in the limit as the number
of systems of the ensemble become infinitely large, provided that the systems of the
ensemble replicate the thermodynamic state and environment of the actual system
of interest.
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The first postulate tells us that we can replace the time average with an
average over instantaneous values for all the systems in the ensemble. It applies
to all types of ensembles. Thus it is not necessary to follow the time evolution of
the system in order to obtain the values for various mechanical properties. How-
ever, the postulate by itself does not help us to calculate the ensemble averages
since no information is available about the probability distribution of the various
microscopic states in the ensemble. Such information can be obtained by the ap-
plication of the second postulate.

Postulate II:

In an ensemble representative of an isolated thermodynamic system, the
systems of the ensemble are distributed uniformly, that is, with equal probability or
frequency, over the possible quantum states consistent with the specified values of
N, VandE.

The second postulate applies only to the microcanonical ensemble. It is
also known as postulate of equal a-priori probability. It states that the probabil-
ity density p is uniform in the microcanonical ensemble. The form of p for other
ensembles can be derived from the above two postulates.

Connection to Thermodynamics
Gibbs Entropy Formula

The Gibbs Entropy formula relates the entropy of a system to the prob-
ability distribution of the microstates. It can be derived from the above two pos-
tulates. Here we present it without proof.

S = —kBEPr(V)ln[Pr(v)]

where Pr(v) is the probability of finding the system in the microstate v and & is
the Boltzmann's constant.

Microcanonical Ensemble

Consider an isolated system with N particles occupying a volume V with
total energy having a value of E. Let Q be the number of microstates correspond-
ing to this system. Q is also called the partition function of the microcanonical
ensemble. From the Gibbs entropy formula, we can relate the partition function
to entropy as follows
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Entropy of an ideal gas

In order to obtain the entropy of an ideal gas, we consider N non-
interacting particles in a box and solve for the wave function using the Schrod-
inger equation. In the classical limit, the microcanonical partition function is
given as

N 2
Q(N,V,E) = ﬁf...fdpl...dedrl...drN such that 2% - E

i=l1
vV (2nmE
Y N! (3N/2)!
In the above equations # is the Planck’s constant and N! indicates that all the
particles are identical and hence indistinguishable. From the above equation, we
can obtain expressions for various thermodynamics quantities as follows

S =kyInQ
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In deriving the above equations we used the Stirling’s formula for large N

In(N!)=NInN - N

Canonical Ensemble

N, V,,E-E,

N, V.,E,

Figure 2: A closed system with surroundings isolated from the universe. The to-
tal energy of the system plus surroundings is E.

Consider a closed system with N1 particles occupying a volume V7 inter-
acting with surroundings containing N; particles and having volume V,. We ini-
tially let the system plus surroundings interact with a heat bath having a tem-
perature T. Once equilibrium is reached, both the system and the surroundings
are removed from the heat bath and insulated. They now form an isolated sys-
tem having a total energy E. During the interaction, the system can have different
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energies corresponding to various microstates. Let E, be the energy of the sys-
tem corresponding to the microstate v. Due to conservation of energy, the sur-
roundings will have energy E - E . The number of microstates possible for the
surroundings is equal to Q(E -E, ) Since the system plus the surroundings form
an isolated system, from the postulate of equal a-priori probability we have

Pr(v)«Q(E-E,)
where Pr(v) is the probability of finding the system in state v. If the surroundings

are much larger that the system, E >> E_, and we can expand Q(E - E,) ina
Taylor series.

In[Q(E - E,)] = In[Q(E)] - E, &;‘;Q ¥
- w[o(E)]-

QE-E,)= Q(E)exp(— f )

E

P _ 4
r(v) ocexp( p )
_ exp(-E, /kyT)
Eexp kg T

O(N.V,T)= Eexp —E, /k,T)

In the above equation, Q(N,V,T) is known as the partition function of the
canonical ensemble. Since E, has a degeneracy Q(E )

Q(N.V.T) =Y Q(E)exp(-E /k,T)

Through the application of the Gibbs entropy formula we can relate the partition
function Q to the Helmholtz free energy A(N ,V,T) as follows

(&)

B

~k;TIn(Q)=(E)-TS = A(N,V,T)

In the classical limit, the canonical partition function for a system of N
particles is given as
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O(N.V,T) = A%N' [ Jexp[-H(p" x") /i, T dp" dr”

where A is the thermal de-Broglie wavelength of the particle and is given as

h2 1/2
A=
(2nkaT)

2
H(pN ,rN) = Egﬂ + U(rN) is the Hamiltonian of the system. The first and the sec-
m

ond terms denote the kinetic and potential energies of the particles respectively.
For an ideal gas, the canonical partition function can be evaluated exactly and is
given by

VN
A"VN!

The rest of the thermodynamic properties can be derived from the partition
function as follows.

A*(N,V,T) = ~kgTInQ = Niey T[In(NA® 1V ) - 1]

pit _ _(%) _ NkgT
N.T

Q%(N,V.T)=

oV v
g _ M = ENkBT
a(1/T) 2

NV
. (U 3
C,*=|=| =ZNk
Y (&T)N’V 27"
i _[0A :
w* = (w)w = kyTIn(NA' 1V
= kyTIn(A’ /K, T) + kT1n P
=u’(T)+ k;TInP

The ensemble averages in the canonical ensemble for a mechanical prop-
erty, M, is calculated as follows

E M, exp(—Ev /kBT)

Q(N,V.T)

(m)-

In the classical limit, the above equation becomes

| f...fM(pN,rN)exp[—H(pN,rN)/kBT] dp” ar®
W)= AN O(N.V.T)




SERC Molecular Simulation Workshop and Symposium: May6-9, 2009
Department of Chemical Engineering, Indian Institute of Science, Bangalore - 560012

Grand Canonical Ensemble

N-N,,V,,E-E,

Figure 3: An open system with surroundings isolated from the universe contain-
ing a total of N particles. The total energy of the system plus surroundings is E.

Consider an open system with volume V, interacting with a surrounding
of volume V,. Let the total number of particles in the system plus surrounding be
equal to N. Initially the system plus surrounding are in contact with a large heat
bath till equilibrium is attained. Then they are removed from the heat bath and
isolated. Let E be the total energy of the system plus surroundings and T be
their temperature. Let N, and E, be the number of particles and the energy of

the system respectively for the microstate v. Hence the surroundings will con-
tain N - N, particles and have energy E - E . From the postulate of equal a-

priori probability we have
Pr(v)«QE-E,,N-N,)

If the surroundings are much larger than the system then we can expand
Q(E - E,,N-N,) ina Taylor series as follows

JlnQ dlnQ
In[Q(E - E,.N-N,)|=In[Q(E.N)]- E( JE )N‘v 'NV( JE )Ev *

E
= ln[Q(E,N)] - kg; + % +

BN,
kT

QE-E,,N-N,)= Q(E,N)exp(— f;)exp

B

Pr(v) « exp(— Ii_VT) exp([ZTNTV)
exp(—Ev / kBT)exp(qu / kBT)
Eexp(—Ev /kyT)exp(uN, /k,T)

v

E(M,V,T) = Eexp(—Ev /kBT) exp(uNV /kBT)

v

In the above equation, E(M,V,T) is known as the partition function of the
grand canonical ensemble. Since E, has a degeneracy Q(E )

Pr(v) =

=(wV,T) = iexp(uN/kBT)E Q(E,N)exp(-E /k,T)

N=0 E
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E(M,V,T) is related to the thermodynamic quantities as follows
PV = k,TIn(E)

The classical form of the partition function is given as

E(wV.T)= ieng]{f;]]j 7) f fexp( ( rN)) dp" dr"
N=0

The ensemble averages in the grand canonical ensemble for a mechanical prop-
erty, M, is calculated as follows

Y M, exp(uN, /kyT)exp(-E, /k,T)
M) =
M) E(wV.T)

In the classical limit, the above equation becomes

(M) = = MV 7 ieXPEZX;’C o) f...fM(pN,rN)exp[—H(pN,rN)/kBT] dp"dr”
= N=0
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