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Chapter 1

Introduction to matrix, differential and
integral equations

Matrix, differential and integral equations arise out of models developed to describe various

physical situations. A few examples of these equations thatarise in the analysis of engineer-

ing problems are illustrated in this Chapter. Since the course is mainly concerned with linear

systems we will conclude this Chapter with a formal definition of linear operators.

1.1 Matrix Equations

Consider the following collection of linear equations, which can be compactly written in matrix

vector notation as

Ax = b (1.1)

where,

A(n× n) =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann











x =











x1
x2
...
xn











b =











b1
b2
...
bn











We are interested in findingx given the matrixA and vectorb. The matrix equation represents

a collection of linear algebraic equations which arises outof models developed to describe a

wide variety of physical situations. These include chemical reactions, staged processes such

as distillation and gas absorption, electrical networks and normal mode vibrational analysis

of molecules. Matrix equations also arise during numericalsolutions of differential equations
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using finite difference, finite volume and finite element methods as well as in the numerical

solution of integral equations using quadrature methods.

1.2 Differential Equations

Reaction-Diffusion Equation

Consider the first order reaction, A→ B, occurring in the inner surface of a cylindrical

catalyst pellet of radiusR and lengthL as shown in Fig. 1.1. Performing a mass balance on a

��
��
��
��
��

��
��
��
��
��

z = 0 z = L

dz

R

Figure 1.1: Schematic of catalyst pellet of radiusR and lengthL

differential element of thickness∆z for species A;

πR2∆z
∂CA

∂t
= jzπR

2 − jz+∆zπR
2 − k1CA2πR∆z (1.2)

wherejz is the mass flux of the species A andk1 is the first order reaction rate constant. Dividing

Eq. 1.2 withπR2∆z and using Ficks law,

jz = −DAB
∂CA

∂z
(1.3)

Eq. 1.2 reduces to
∂CA

∂t
= DAB

∂2CA

∂z2
− α1CA (1.4)

whereα1 = 2k1/R. Eq. 1.4 is the unsteady state reaction diffusion equation whose solution

yields the concentrationCA(z, t). We further note that Eq. 1.4 is a partial differential equation

2



whose complete formulation requires one initial condition(IC) and two boundary conditions

(BCs) to be specified. The initial condition is

CA(z, t = 0) = 0 (1.5)

The boundary conditions are

CA(z, t) = CA0 at z = 0 (1.6)

and
dCA

dz
= 0 at z = L (1.7)

Eq. 1.7 assumes that the face of the pore atz = L is non-reactive.

Question: Modify the boundary condition for a reactive poreend atz = L.

Eq. 1.4 is an example of a partial differential equation (PDE) since the dependent vari-

able,CA(x, t) depends on more than one independent variable(x, t). At steady state, the equa-

tion reduces to the following ordinary differential equation (ODE),

DAB
d2CA

dz2
− α1CA = 0 (1.8)

Eq. 1.8 along with the boundary conditions atz = 0 andz = L constitute what is commonly

referred to as a 2 point boundary value problem (BVP) since the boundary conditions at two

ends of the pore are required to complete the problem specification.

Unsteady State Heat Conduction Equation

Consider a three dimensional solid object,Ω heated with an internal sourcep(x, y, z) as

shown in Fig. 1.2. The unsteady state heat conduction equation is,

ρCp
∂T

∂t
= ∇ · k∇T + p(x, y, z) (1.9)

whereρ is the density,Cp is the specific heat capacity andk the thermal conductivity, which

can in general be a function of the spatial co-ordinates. Thesolution of Eq. 1.9 with appropriate

initial and boundary conditions yield the temperatureT (x, y, z, t). Eq. 1.9 is an example of a

partial differential equation that arises in conduction heat transfer. Unlike the two-point BVP

discussed earlier the boundary condition for the heat equation is specified on the entire boundary
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Ω

Γ

n

n · k∇T = h(T − T∞) onΓ

Figure 1.2: Heat conduction in a 3D object.Ω denotes the domain andΓ the surface of the
object. At the surface heat is lost by convection.h is the heat transfer coefficient.

Γ as illustrated in Fig. 1.2. If the heat transfer coefficient is independent of the spatial co-

ordinates Eq. 1.9, reduces to

ρCp
∂T

∂t
= k∇2T + p(x, y, z) (1.10)

At steady state, in the absence of the source term,p(x, y, z), the heat conduction equation

reduces to the Laplace equation,

∇2T = 0 (1.11)

Note: The gradient operator in Cartesian co-ordinates is defined as,

∇T = ex
∂T

∂x
+ ey

∂T

∂y
+ ez

∂T

∂z
(1.12)

and the Laplacian is

∇2T =
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
(1.13)

The Schrödinger Wave Equation

The wave equation forms the cornerstone of quantum mechanics. It arises in the de-

scription of atomic particle positions and quantization ofenergy levels. The time independent

Schrödinger wave equation is

h2

8π2m
∇2Ψn + (En − V )Ψn = 0 (1.14)

whereh is Planck’s constant,m is the particle mass,V is the potential energy field in which

the particle is located.En are the corresponding energy levels of the particle andΨn(r) is
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the wavefunction which is a function of the spatial co-ordinates. The probability of locating a

particle in a volume elementdr is Ψ(r)Ψ∗(r) dr, whereΨ∗(r), denotes the complex conjugate

of Ψ(r).

1.3 Integral equations

Many physical situations naturally give rise to integral equations. Integral equations can some-

times be derived from differential equations. Integrals equations can be broadly classified into

Volterra and Fredholm type equations. The Volterra integral equation of the first kind is,
∫ x

0

k(x, y)u(y) dy = f(x) (1.15)

wherek(x, y) is the kernel of the operator,f(x) is usually some known function andu(y) the

solution we seek lies in the integrand. The kernel of the operator is related to the physics of the

problem that results in the integral equation. A characteristic feature of the Volterra equation is

that the upper limit of the integral is not a fixed quantity.

The Fredholm integral equation of the first kind is,
∫ b

a

k(x, y)u(y) dy = f(x) (1.16)

The main difference between the Volterra equation, Eq. 1.15and the Fredholm integral equation,

Eq. 1.16 is that the limits of the integral in the Fredholm equation are fixed. Broadly speaking

the Volterra type integral equations are related to initialvalue problems (IVPs) giving rise to

the variable upper limit in the integral of Eq. 1.15 and the Fredholm type equations are related

to boundary value problems (BVPs). The final point to note is that integral equations do not

require the specification of any additional initial and/or boundary conditions. These conditions

are built into the integral equations themselves.

One final classification that is important is that both the integral equations given above

were referred to as first kind equations. The general form of aVolterra integral equations of the

second kind is
∫ x

0

k(x, y)u(y) dy+ αu(x) = f(x) (1.17)

whereα is an arbitrary scalar quantity, and the second kind Fredholm equation is,
∫ b

a

k(x, y)u(y) dy+ αu(x) = f(x) (1.18)
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In the second kind equations the unknownu(x) appears both inside and outside the integrand.

Example: The relationship between an IVP and Volterra operators can be illustrated with a

simple example. Consider the following IVP,

du

dt
+ αu = 0 u(t = 0) = u0 (1.19)

whereα andβ are constants. Integrating Eq. 1.19 and using the IC, Eq. 1.19 can be transformed

into the following Volterra integral equation of the secondkind,
∫ t

0

αu(y) dy + u(t) = u0 (1.20)

The integral equation has a simple kernel and satisfies the initial conditions of Eq. 1.19. Further

the solution to Eq. 1.19 is,u(t) = u0 exp(−αt). Naturally this is also a solution to its equivalent

integral equation, Eq. 1.20.

1.4 Linear Operators

Our primary concern as engineers is to obtain solutions to the different classes of equations

presented above. Presented with an equation the natural question one poses is whether the

equation is solvable or not. This is the problem of existence. If the problem is not solvable,

one has to revisit the model assumptions and the underlying physical processes that govern

the equation. If the problem is solvable, we inquire if the solution is unique. These questions

of existence and uniqueness form a general theme in this book. Most of us are familiar with

these ideas with the solution of linear equations of the formgiven in Eq. 5.59. Can we now

generalize these ideas to a more general class of equations?For example under what conditions

can one examine the existence and uniqueness conditions forEq. 1.4 or Eq. 1.15? A unifying

theory that integrates all the above questions about existence and uniqueness is the theory of

linear operators, which will form an underlying and unifying theme for the course. The theory

is general and as long as the operator is linear it will be applicable. A class of linear operators

which will require a somewhat more specialized treatment are partial differential equations.

Before we proceed further, let us formally define a linear operator.

Consider the generic equation

Lu = f (1.21)
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whereL is the operator,u is the solution we seek andf is usually specfied as part of the problem

definition. In the matrix equationL ≡ A, u ≡ x andf ≡ b L is said to be a linear operator or

linear transformation if it satisfies the following properties

L(αu) = αLu u ∈ X ∀α
L(u+ v) = Lu+ Lv u, v ∈ X

whereX is a linear space on which the operatorL acts. We will return to a formal definition of

linear spaces which contain both vectors and functions later in the text.L can also be looked

upon as a mapping of elements inX into itself,L : X → X andα lies in the associated complex

scalar field of the operator[1]. We note that both propertiesmust be satisfied for the operator to

be linear. Further one property does not imply the other. If either of the above two properties

are not satisfied the operator is said to be nonlinear. Both the above requirements of a linear

operator can be integrated into a single property,

L(αu+ βv) = αLu+ βLv u, v ∈ X ∀α, β (1.22)

Example 1: The identity operator maps elements inX into itself.

Iu = u ∀u ∈ X (1.23)

To show thatI is linear, we note that

I(αu+ βv) = αIu+ βIv

= αu+ βv

Example 2: The(n× n) matrixA is a linear transformation since

A(αu+ βv) =

n
∑

j=1

aij(αuj + βvj) i = 1 . . . n

= α
n

∑

j=1

aijuj + β
n

∑

j=1

aijvj i = 1 . . . n

= αAu+ βAv

Example 3: The reaction diffusion equation, where the operator

Lu =
∂u

∂t
−DAB

∂2u

∂z2
+ α1u (1.24)
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L(αu+ βv) =
∂(αu+ βv)

∂t
−DAB

∂2(αu+ βv)

∂z2
+ α1(αu+ βv)

= α(
∂u

∂t
−DAB

∂2u

∂z2
+ α1u) + β(

∂v

∂t
−DAB

∂2v

∂z2
+ α1v)

= αLu+ βLv

Hence the differential operator is linear. Since the operator involves both the differential equa-

tion and its associated initial and boundary conditions, the IC and BCs must also satisfy the

linearity property for the differential equation to be classified as linear. This can easily be veri-

fied for the reaction diffusion equation diffusion, Eq. 1.4.

The linearity property of differential operators, has one important consequence from the

viewpoint of obtaining solutions. It simply means that ifu andv are solutions of the differential

equation, thenw = αu + βv is also a valid solution. This idea, technically called theprinci-

ple of superposition, is used widely in the solution of of both ordinary and partial differential

equations. A familiar example is the solution of the linear differential equation

d2u

dx2
−m2u = 0

The solution to the above equation,u(x) = c1e
mx + c2e

−mx. Since the differential equation is

linear, not only areu1 = emx andu2 = e−mx independent solutions,u = c1u1 + c2u2 is also a

valid solution. The constantsc1 andc2 are obtained by using the appropriate boundary or initial

conditions. The principle of superposion has the followingconsequence for linear operators. If

u =

n
∑

i=1

ciui

then,

Lu = L
n

∑

i=1

ciui =
n

∑

i=1

ciLui
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Example 4: Volterra Integral equation (Eq. 1.15).

L(αu+ βv) =

∫ x

0

k(x, y)[αu(y) + βv(y)] dy

=

∫ x

0

k(x, y)αu(y)dy+

∫ x

0

k(x, y)βv(y) dy

= α

∫ x

0

k(x, y)u(y) dy+ β

∫ x

0

k(x, y)v(y) dy

= αLu+ βLv

Example 5: To show that if an operator satisfies the propertyL(u+ v) = Lu+ Lv, it need not

satisfyL(αu) = αLu. ConsiderL to be the operation of complex conjugation. Ifz andw are

two complex numbers thenL(z + w) = Lz + Lw. ClearlyL(αz) 6= αLz if α is a complex

scalar.

Example 6: To show that if an operator satisfies the propertyL(u+ v) = Lu+ Lv, it need not

satisfyL(αu) = αLu. Consider the operation of mapping the components [2],x1, x2 of a 2d

vector into a point;
(

x1
x2

)

=







x1 + x2 x1x2 > 0

0 otherwise

Assuming a real field of scalarsα, and vectorsu = (1,−1) andv = (1, 1), L(u + v) = 0

whereas,Lu+ Lv = 1.

Before we conclude, we briefly discuss the classifications ofequations into homoge-

neous and inhomogeneous. In the generic equation, Eq. 1.21 the equation is homogeneous if

the right hand side,f = 0. HenceAx = 0 is an example of a homogeneous set of linear

equations. In the case of differential equationsf represents the term containing only the inde-

pendent variables andL represents the operator acting on the dependent variable. Hence the

reaction-diffusion equation, Eq. 1.4 and the Schrödingerwave equation, Eq. 1.14 are examples

of homogeneous differential equations. The unsteady stateheat equation, Eq. 1.9 is inhomo-

geneous due to the presence of the source termp(x, y, z, t) and the integral equations given

in Eqs. 1.15 and Eq. 1.16 are both inhomogeneous integral equations. In the case of differen-

tial equations the ICs and BCs can also be classified as homogeneous and inhomogeneous in a

similar manner. This classification is important, as we willsoon see that determining the solu-
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tions to the homogeneous problem forms the first step in studying the existence and uniqueness

conditions for the inhomogeneous problem.

1.5 Summary

In this Chapter we have introduced some simple examples of various kinds of equations that

commonly arise in engineering and sciences. Starting with matrix equations, the basic differ-

ence between ODEs and PDEs should be clear from the examples presented above. ODEs can

further be classified into IVP’s where all the conditions arespecified as an initial condition at

time t = 0 and BVP’s where the differential equation is accompanied byboundary conditions.

The classification presented in here is preliminary. PDEs can be further classified into vari-

ous categories and these will be discussed later in the text.Some examples and a preliminary

classification of integral equations was also introduced. Integral equations are more specialized

and do not arise as often in the description of physical problems as do differential equations.

Sometimes integral equations have an equivalent representation as a differential equation as we

encountered with the IVP problem. In many cases this equivalence is not feasible and the inte-

gral equation has to be solved directly. Linearity is an important concept and its consequence,

the principle of superposition, used routinely for solvinglinear operators should be recognized.

Finally the notion of homogeneous and inhomogeneous equations should be firmly understood.
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PROBLEMS

1. If L is a linear operator show thatLn is also a linear operator. Note thatL2 = LL and so

on. Use the method of mathematical induction for your proof.

2. Using the properties of a linear operator,L(u + v) = Lu + Lv andL(αu) = αL(u),

identify which of the following operators are linear.

(a)

Lu =
d2u

dx2
+
(

e−x + x2
) du

dx
+ xu.

(b)

Lc =
∂c

∂t
− ∂

∂x

(

D (c)
∂c

∂x

)

− kc

whereD(c) is a concentration dependent diffusion coefficient andk is the reaction

rate constant. Rework this problem withD as a function only ofx.

(c)

Lu ≡
x

∫

0

u(y)
√

αx− βy
dy = f(x)
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Differentiate the above Volterra integral equation using the rules for differentiation

under an integral sign. Is the resulting operator still linear? The process of differ-

entiation converts the first kind Volterra integral equation to that of the second kind,

where the unkownu appears both inside the integral as well as outside. Note:α and

β are arbitrary scalars.

3. Using the properties of linear operators, determine which of the following operators are

linear

(a) The divergence operator,

Lu ≡ ∇·α(x, y, z)∇u

(b) The curl operator,

Lu ≡ ∇× u

(c) The Fredholm integral operator

Lu ≡
b

∫

a

ex−y u(x)dx+ u2(y)

4. In the following equations of the generic formLu = f , identify the operator and deter-

mine if the operator is linear or not.

(a) Heat equation with spatially dependent thermal conductivity

∂u

∂t
+

∂

∂x

(

sinx e−x
) ∂u

∂x
= f(x)

(b) Thenth order ordinary differential equation

a0
∂nu

∂xn
+ a1

∂n−1u

∂xn−1 + · · ·+ an = f(x)

(c) The 3D wave equation:
∂2u

∂t2
= c2∇2u

(d) Integral equation:
x

∫

0

e(x−y)dy eu(y) + u(x) = f(x)

12



(e) The Integro-differential equation,

du

dt
=

t
∫

0

e
t−t

′

τ u(t′) dt′

(f) The Korteweg -de Vries (KDV) equation used in the study ofwater waves

∂u

∂t
+ cu

∂u

∂x
+
∂3u

∂x3
= 0

(g) Which of the above equations given in parts (a) - (f) are homogeneous.

5. Check the following transforms for linearity

(a) The Laplace transform

f(s) ≡ L[f(t)] =

∞
∫

0

estf(t) dt

(b) The Fourier transform

f(ω) ≡ L[f(t)] =
1√
2π

∞
∫

−∞

eiωtf(t) dt

6. Using the following dimensionless variables,

u = CA(z)/CA0, x = z/L

the dimensionless form of the steady state differential equation (Eq. 1.8) is,

d2u

dx2
− φ2u = 0 0 < x < 1 (1.25)

whereφ2 = 2k1L
2/DABR, andL is the pore length andR is the radius of the pore. Obtain

analytical solutions for both the dead end pore and the reactive end pore. Qualitatively

sketch your solution for the dimensionless concentrationu for small and large values of

the parameterφ2. Physically interpret these two conditions.

13



14



Chapter 2

Properties of Matrices

In this section we review some basic properties of matrices.Let A be am× n matrix,

A(m× n) =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn











wherem is the number of rows andn the number of columns.aij will the i, j element in the

matrix. A column vectorx is ann× 1 matrix,

x(n× 1) =











x1
x2
...
xn











Matrices arise frequently in engineering applications andcan assume a variety of forms, some of

which are illustrated below. Many of these forms arise during numerical solution of differential

equations and recognizing the form of the matrix is important while choosing the appropriate

solution technique.

2.1 Equality of matrices

Two matricesA andB are said to be equal to each other ifaij = bij . Only matrices of similar

order can be considered to be equal.
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Figure 2.1: Various classifications of commonly occurring matrices. The solid lines and filled
regions represent non zero elements. Sparse matrices (not shown) contain a sparse distribution
of non-zero elements in the matrix.

2.2 Addition of matrices

Matrices are compatible for addition only if the corresponding numbers of rows and columns

are similar. Matrix addition is both associative and commutative

1a (A+B) +C = A+ (B+C) Associative

1b A+B = B+A Commutative

2.3 Scalar multiplication

When a matrix is multiplied by a scalarα all the elements of the matrix are multipliedα.

αA(m× n) =











αa11 αa12 . . . αa1n
αa21 αa22 . . . αa2n

...
...

...
αam1 αam2 . . . αamn











2.4 Multiplication of Matrices

Two matricesA(m×n) andB(n×p) are compatible for multiplication if the number of columns

of A are similar to the number of rows ofB. Matrix multiplication satisfies the following

16



properties

3a A(B+C) = AB+AC

3b (A+B)C = AC+BC

3c (AB)C = A(BC)

3d In general AB 6= BA

2.5 Transpose of a matrix

The transpose of a matrixA is obtained by interchanging its rows and columns. The transpose

is denoted byAT . The operation of a transpose satisfies the following properties.

4a (A+B)T = AT +BT

4b (AT )T = A

4c (AB)T = BTAT

2.6 Trace of a matrix

The sum of the diagonal elements of a square matrix is known asthe trace. The trace of an

(n× n) square matrix,

TraceA =

n
∑

i=1

aii

A number of the properties of matrices listed above can be proved using index algebra. We

illustrate these manipulations with some examples which the reader should get acquainted with.

Example: Matrix vector multiplication

Ax = b →
n

∑

j=1

aij xj = bi i = 1 . . .m

whereA is an(m× n) matrix andx is (n× 1) andb has dimenions(m× 1).

Example: Matrix multiplication

A(m× p)B(p× n) = C(m× n) →
p

∑

k=1

aik bkj = cij i = 1 . . .m, j = 1 . . . n

17



Example: To show that(AB)T = BTAT . Let cTij be the element of(AB)T

cij =

n
∑

k=1

aikbkj

cTij =

n
∑

k=1

ajkbki

Let dik be the element ofBTAT . We need to show thatdij = cTij

dik =
n

∑

j=1

bjiakj

dij =

n
∑

k=1

bkiajk

=

n
∑

k=1

ajk bki = cTij

The second line in the algebra above is obtained by interchanging the indexk with j. This

example illustrate manipulations with indices that the reader should be acquainted with.

Example: To show that, Trace(AB) = Trace(BA)

Trace(AB) =
m
∑

i=1

n
∑

k=1

aikbki

Trace(BA) =
n

∑

i=1

m
∑

k=1

bikaki

=

m
∑

i=1

n
∑

k=1

bkiaik

= Trace(AB)

We have assumed thatA is an(m × n) matrix andB is an(n×m) matrix. In the second line

of the above equation, the indices have been exchanged and the upper limits in the summation

have been consistently altered.

2.7 Symmetric and Hermitian Matrices

The matrixA, is said to be symmetric if

A = AT . (2.1)
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We note that the above notion of symmetry is restricted to real matrices. If the matrix has

complex elements then we defineA∗ as the matrix obtained by taking the complex conjugate

of AT . Hence

A∗ = A
T ≡ AT

Note that the operation of taking the transpose and complex conjugation commute.

A matrix is said to be Hermitian if

A = A∗ (2.2)

The above definition includes real matrices as well. In the case of real matrices Eq. 2.2 is

equivalent to Eq. 2.1.

Example:

A =

(

1 i
i 2

)

A∗ =

(

1 −i
−i 2

)

Example:

A =

(

i 1− i
1 + i 0

)

A∗ =

(

−i 1− i
1 + i 0

)

Example:

A =

(

1 1− i
1 + i 0

)

A∗ =

(

1 1− i
1 + i 0

)

Example:

A =

(

i i
i i

)

A∗ = −
(

i i
i i

)

Only the matrix in the 3rd example is Hermitian. Clearly a matrix with complex elements on

the diagonal cannot be Hermitian. The last example is an example of a skew Hermitian matrix

whereA = -A∗

Example: To show that the product of two symmetric matrices need not besymmetric. LetA

andB be two symmetric matrices.

(AB)T = BTAT = BA 6= AB

This is an example of a proof which did not involve the use of indices.
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2.8 Inverse

The inverse ofA denoted byA−1 is such that

AA−1 = A−1A = I

where the identity matrixI is a diagonal matrix with 1’s on the diagonal.

Example

A =

(

a11 a12
a21 a22

)

A−1 =
1

|A|

(

a22 −a12
−a21 a11

)

where|A| = a11a22−a21a12 is the determinant of the matrixA. We can generalize the definition

of the inverse by using the adjoint or adjugate of a matrix.

2.9 Determinants, Cofactors and Adjoints

The minor|Mij | of an elementaij in the matrixA is the determinant of an(n − 1) × (n − 1)

matrix formed by omitting theith row and thejth column. The cofactor of the elementaij,

Aij = (−1)i+j|Mij |

The determinant of ann× n matrix expressed as an expansion in terms of the cofactors is

|A| =

n
∑

j=1

a1jA1j

=
n

∑

j=1

a1j(−1)1+j|M1j |

The adjoint of a matrix, denoted as adjA, is the transpose of the cofactor matrix whose elements

are made up ofAij (Eq. 2.9). This definition should not be confused with the adjoint operator

whose definition we will encounter later in the text. The inverse of a matrix can be expressed

using the definition of the adjoint by noting that

A adjA = |A|I
(adjA)A = |A|I
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which implies that

A−1 =
1

|A|adjA

Example

A =





1 2 −1
0 3 2
1 −1 1



 , adjA =





5 −1 7
2 2 −2
−3 3 3



 , A−1 =
1

12
adjA

2.10 Echelon forms, rank and determinants

The echelon form for any matrixA is such that the number of zeroes preceding the first non-

zero element in every row increases row by row (starting fromthe 1st row). The echelon forms

can be obtained by performing elementary row operations on the matrix. Some examples of

row reduce echelon forms are given below,

(

1 1
0 2

)





1 1 0 2
0 0 0 0
0 0 0 0













2 1 5 2
0 1 2 3
0 0 5 1
0 0 0 0









(2.3)

Clearly if the number of zeroes preceding the first non-zero element is the same in thek and

k + 1 rows, the first non-zero element in thek + 1 row can be made zero by elementary row

operations. Once the echelon forms are obtained it is easy todeduce the rank of the matrix. The

rank r of a matrixA is the number of rows containing non-zero elements in the rowreduced

echelon form. Using the above definition, the rank of the matrices given above are 2, 1 and

3 respectively. From the definition of the rank it is easy to see thatr ≤ min(m,n), r 6= 0

(unless all the elements in the matrix are identically zero). A similar definition of the rank can

be generated using column operations. The row rank is equal to the column rank or equivalently

the maximum number of linearly independent rows is equal to the maximum number of linearly

independent columns in a matrix. In subsequent use of the rank, we will use the definition

based on the row rank as this will provide a convenient methodfor obtaining solutions of linear

systems of equations. An additional definition of the rank isbased on the determinant. The rank

is the order of the largest non-zero determinant in the matrix. If the rank of a matrix isk, then

there is at least one determinant of orderk that is nonzero. All determinants of orderk+1 must

vanish.
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Some examples of obtaining the ranks of matrices using the echelon forms are given below,

Example: (3× 3) matrix, withr = 3.




1 2 −1
0 3 2
1 0 1





R3 −R1

−→





1 2 −1
0 3 2
0 −2 2





3R3 + 2R2

−→





1 2 −1
0 3 2
0 0 10



 (2.4)

Example: (3× 3) matrix, withr = 2.




1 2 −1
2 3 2
1 1 3





R2 − 2R1

−→
R3 − R1





1 2 −1
0 −1 4
0 −1 4





R3 − R2

−→





1 2 −1
0 −1 4
0 0 0



 (2.5)

The rank of the above matrix can be obtained by column operations,




1 2 −1
2 3 2
1 1 3





C2 − C1

−→
C3 − 3C1





1 1 −4
2 1 −4
1 0 0





C3 + 4C2

−→





1 1 0
2 1 0
1 0 0



 (2.6)

The above example illustrates that the rank can be determined by either the row or column

reduced echelon forms. This is a consequence of the propertythat the order of the smallest non-

zero determinant of a matrix is unchanged by elementary row or column operations as carried

out above (show this). Some elementary properties of determinants can be understood from the

above examples. For a square matrix (n × n) the determinant is non-zero if and only ifr = n.

Adding a multiple of one row to another leaves the determinant unchanged. Thus in Eq. 2.4

above, the determinant of the matrix is 10, row operationsR3 − R1 leaves the determinant

unchanged, however the last row operation3R3 + 2R2 changes the determinant to 30, sinceR3

is multiplied by 3. The last property can easily be proved with the help of cofactor expansions.

To show that row operations,αR1 + βR2 leaves the determinant of ann× n matrix multiplied

by α,

|A| =

n
∑

j=1

(αa1j + βa2j)A1j

=

n
∑

j=1

αa1jA1j +

n
∑

j=1

βa2jA1j

= α

n
∑

j=1

a1jA1j

= α|A|
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Since the first row of the matrix is a multiple of the second row(rank = 0), the second term in

the second line above is identically zero. Ifα = 1 then the determinant is unchanged.

PROBLEMS

1. Consider the matrix

A =





1 2 −1
1 3 5
2 1 −1





(a) FindAT, A−1, A2, det(A) and det(A5). Use the adjoints to find the inverse.

(b) Find the solution toAx = b whereb = (−1, 1, 3)T

2. Consider the matrix

A =





1 2 −1
1 3 2
1 1 −4





Find the solutions toAx = b whereb = (1, 2, 0)T

3. A skew symmetric matrix is such that

AT = −A

(a) Show that a skew symmetric matrix is square.

(b) What are the diagonal elements of a skew symmetric matrix?

(c) If A is an (n× n) matrix then show that(A−AT) is skew symmetric.

(d) Show that any square matrix can be decomposed into a sum ofsymmetric and skew

symmetric matrices.

(e) Show that a Hermitian matrix can be written as the sum of a real symmetric ma-

trix and an imaginary skew symmetric matrix. Check this property with a suitable

example.

4. Show that(AB)T = BTAT .

5. Using the definition of cofactors and adjoints show that

A(adjA) = (adjA)A = |A|I.
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6. If A andB are two noncommuting Hermitian matrices such that

AB−BA = iC,

prove thatC is Hermitian.

7. The sum of the diagonal elements in a square matrix is knownas the trace. Show that

trace(AB−BA) = 0

8. If A andB are Hermitian matrices, show that(AB + BA) andi(AB − BA) are also

Hermitian.

9. If C is non-Hermitian, show thatC+C∗ andi(C−C∗) are Hermitian.

10. A real matrix is said to be orthogonal ifA−1 = AT . Show that the product of two

orthogonal matrices is orthogonal. Further, show that det(A) = ±1. Note: If A is

complex andA−1 = A∗ thenA is said to be unitary.

11. Orthogonal matrices arise in co-ordinate transformations. Consider a point(x, y) in the

X − Y plane. If theX − Y plane is rotated counter-clockwise by an angleφ then the

point (x, y) is transformed to the point(x′, y′) in theX ′ − Y ′ co-ordinate system. The

rotation operation can be represented by a matrix equation

Ax = x′

or
(

cosφ sinφ
−sinφ cosφ

)(

x
y

)

=

(

x′

y′

)

In 3 dimensions, rotation about thez axis by an angleφ is represented by

B =





cosφ sinφ 0
−sinφ cosφ 0

0 0 1





Verify thatA andB are orthogonal matrices.
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Chapter 3

Vector or Linear Spaces

The vector or linear space is the simplest of the abstract spaces that we will encounter. A

vector spaceX is a collection of vectors that can be combined by addition and each vector

can be multiplied by a scalar. The elements of a vector space satisfy the following axioms. If

u, v, w ∈ X andα andβ lie in the associated field of scalars, the elements in the vector space

satisfy the following axioms,

1. Linearity:

(1a) u+ v = v + u

(1b) u+ (v + w) = (u+ v) + w

(1c) There∃ a unique vector0 such thatu+ 0 = u ∀ u ∈ X

(1d) u+ (−u) = 0

2. Multiplication by a scalar:

(2a) α(βu) = αβu

(2b) (α+ β)u = αu+ βu

(2c) α(u+ v) = αu+ αv

In order to show that elements in a setX constitute a vector space, the elements must conform to

all the properties of the linear space listed above. The properties of a linear space simply allow

for vector addition and multiplication of the elements by a scalar. Examples of vectors spaces
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are then-dimensional vector space which consists of vectors withn real elements, also referred

to asRn. Alternately the elements that constitute the vector can becomplex. This is known

as the spaceCn. Functions can also make up a linear space. Hence the set of all continuous

functions on the interval [a,b] make up a vector space, called C[a, b]. The reader should ensure

that these examples satisfy the properties of the linear space

3.1 Linear Independence, Basis and Dimension

The notion of linear independence and dependence are important and desirable properties for a

collection of vectors. The ideas developed in this section are important while obtaining solutions

to linear equations and lay a general framework for obtaining solutions to various classes of

operators. A collection of vectorsu1,u2 . . .uk are said to be linearly independent if the only

solution to

α1u1 + α2u2 . . . αnun = 0 (3.1)

is the trivial solution i.e.αi = 0 for i = 1 . . . n. Eq. 3.1 represents a linear combination of

vectors. If there exists some values ofαi, not all zero, such that Eq. 3.1 is satisfied then the set

of vectors are linearly dependent. In other words for the setto be linearly dependent, non trivial

solutions exist for Eq. 3.1. We illustrate the notion of linear independence by relating them to

solutions of homogeneous linear equations. Ifui consists of a collection of vectors inRn then ,

u1 =











u11
u21
...
un1











u2 =











u12
u22
...
un2











. . .un =











u1n
u2n

...
unn











whereuij is the ith element of the vectoruj then Eq. 3.1 can be recast as a collection of

homogeneous linear equations which can be represented as

Aα = 0 (3.2)

where

A(n× n) =











u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
...

un1 un2 . . . unn











and α =











α1

α2
...
αn











26



Hence in order to examine whether the set of vectors given in Eq. 3.1 is linearly independent

we can equivalently seek solutions of the set of linear algebraic equations Eq. 3.2. If Eq. 3.2

has nontrivial solutions (αi 6= 0 for any i) then the set of vectors is linearly dependent. If the

only solution is the trivial solution (αi = 0 for all i) then the set is linearly independent. We

illustrate this with some examples

Example 1: Consider the set of vectors

u1 =





1
2
1



 , u2 =





1
−2
1



 , u3 =





0
1
1





Recasting them into a set of algebraic equations of the form Eq. 3.2,

Aα =





1 1 0
2 −2 1
1 1 1









α1

α2

α3



 = 0

Using row operations, it can be shown that the solution to theabove equation is only the trivial

solution. The determinant ofA is non zero since the rank = 3. Hence the set of vectors are

linearly independent.

Example 2: Consider the set of vectors

u1 =





1
2
1



 , u2 =





−1
0
1



 , u3 =





0
1
1





Recasting them into a set of algebraic equations of the form Eq. 3.2, it can be shown that the

non trivial solution is,

α = c





1
1
−2





wherec is an arbitrary constant. Hence the set of vectors are linearly dependent. From the last

example we can see that if any two vectors in a set are linearlydependent then the entire set is

linearly dependent. We can generalize this observation.

Theorem: If a subset of vectors in a set of vectors are linearly dependent then the entire set is

linearly dependent.

Proof: Consider a set ofn vectors where the firstm vectors are linearly dependent.
m
∑

i=1

αiui +
n

∑

i=m+1

αiui = 0 (3.3)
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Since the first sum containing vectors fromi = 1 to m forms a linearly dependent set, this

implies that there are values ofαi for which,

m
∑

i=1

αiui = 0

Further since the second sum containing terms fromi = m + 1 to n are linearly independent

αi = 0 for i = m + 1 to n. Hence there will always exist non trivial values ofαi such that

Eq. 3.3 is satisfied and the set is linearly dependent.

3.2 Basis

Linearly independent vectors have a number of useful properties. An important property con-

cerns using a linearly independent set of vectors to represent other vectors. We will see later

that these ideas can be extended to represent functions as well. If a vector x lies in a finite

dimensional spaceX then we would like to representx in a collection of suitable vectors which

we will call a basis for the spaceX. A finite collection of vectorsφi is said to form a basis

for the finite dimensional spaceX if each vector inX can be represented uniquely as a linear

combination of the basis vectors.

x =

n
∑

i=1

αiφi = 0 ∀ x ∈ X (3.4)

The term unique in the definition implies that for a given basis setφi andx theαi values are

uniquely determined Let us illustrate these ideas with somesimple examples of basis sets.

Example 3: The vectors

φ1 =





1
0
0



 φ2 =





0
1
0



 φ3 =





0
0
1





form a basis for vectors inR3, which implies that any vector inR3 can be represented uniquely

using a linear combination of the above vectors. Ifa, b andc, represent the components of an

arbitrary vector inR3 then

α1φ1 + α2φ2 + α3φ3 =





a
b
c




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implies that the coefficients of the expansion are uniquely determined asα1 = a, α2 = b and

α3 = c.

Example 4: The vectors given in Example 1 also constitute a basis for vectors inR3 since the

determinant of the resulting matrix formed from the column vectors is non zero.

From the above examples it is clear that for ann-dimensional vector space any set ofn

linearly independent vectors form a suitable basis for the space. In seeking a suitable basis, the

representation is complete when the coefficients of the expansion given in Eq. 3.4 are obtained.

Clearly some basis sets simplify the determination of thesecoefficients and the basis in Example

3 was one example of a convenient basis, referred to as the orthonormal basis set. Thus, vectors

in a basis are linearly independent and in ann dimensional vector space any set ofn linearly

independent vectors form a basis for the space

Dimension of a basis: The linear spaceX is n dimensional if it possesses a set ofn linearly

independent vectors, but everyn + 1th set is linearly dependent. Equivalently, the number of

vectors in a basis is its dimension.

Example 5: The set of polynomials of degree< n constitute a basis for ann dimensional linear

space of polynomials of degree< n. The basis set is

φ1 = 1 , φ2 = x , . . . , φn = xn−1

3.3 Linear independence of functions

We next extend the concepts of linear independence for functions. Consider the set of functions,

f1(x), f2(x), f3(x) . . . fn(x) which are differentiablen − 1 times on the interval[a, b]. The

functions are linearly independent on[a, b] if

α1f1(x) + α2f2(x) + α3f3(x) + . . . αnfn(x) = 0 ∀ x ∈ [a, b] (3.5)
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implies thatαi = 0, i = 1 . . . n. Differentiating Eq. 3.5n−1 times, a set of equations involving

the derivatives of the functions can be generated.

α1f1(x) + α2f2(x) + α3f3(x) + . . . αnfn(x) = 0

α1f
′
1(x) + α2f

′
2(x) + α3f

′
3(x) + . . . αnf

′
n(x) = 0

. . . . . . . . .

α1f
(n−1)
1 (x) + α2f

(n−1)
2 (x) + α3f

(n−1)
3 (x) + . . . αnf

(n−1)
n (x) = 0

Eq. 3.6 represents a set of homogeneous equations and the Wronskian is the determinant formed

by the functions,

|W (f1(x), f2(x), f3(x) . . . fn(x)| =

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) f3(x) . . . fn(x)
f ′
1(x) f ′

2(x) f ′
3(x) . . . f ′

n(x)
. . . . . . . . . . . . . . .

f
(n−1)
1 (x) f

(n−1)
2 (x) f

(n−1)
3 (x) . . . f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

(3.6)

For Eq. 3.5 to have only the trivial solution,|W | 6= 0 ∀ x ∈ [a, b]. In this case the set of

functionsf1(x), f2(x) . . . fn(x) is said to be linearly independent. However if the Wronskian

vanishes for some or allx ∈ [a, b] it does not necessarily imply that the set is linearly dependent.

Thus|W | 6= 0 ∀ x ∈ [a, b] is only asufficient conditionfor the linear independence of the set

of functions.

Example: f1(x) = sinh x, f2(x) = cosh x,

|W (f1(x), f2(x))| =
∣

∣

∣

∣

sinh x cosh x
cosh x sinh x

∣

∣

∣

∣

= 1 6= 0 (3.7)

Thussinh x andcosh x constitute a linearly independent set of functions.

Example: Consider the polynomials,f1(x) = 1, f2(x) = x andf3(x) = x2

|W (f1(x), f2(x), f3(x))| =

∣

∣

∣

∣

∣

∣

1 x x2

0 1 2x
0 0 2

∣

∣

∣

∣

∣

∣

= 2 6= 0 (3.8)

Thus the set of polynomials constitute a linearly independent set of functions. This can be

extended a set ofnth degree polynomials.

Example: f1(x) = x2, f2(x) = 2x2,

|W (f1(x), f2(x))| =
∣

∣

∣

∣

x2 2x2

2x 4x

∣

∣

∣

∣

= 0 (3.9)
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and the set is linearly dependent.

Example: f1(x) = x, f2(x) = x2, x ∈ [0, 1]

α1x+ α2x
2 = 0

For x(α1 + α2x) = 0 for all x ∈ [0, 1], α1 = α2 = 0. Thus the set is linearly independent.

Upon examining the Wronskian,

|W (f1(x), f2(x))| =
∣

∣

∣

∣

x x2

1 2x

∣

∣

∣

∣

= x2 (3.10)

W vanishes forx = 0. This is an example where the vanishing of the Wronskian for apar-

ticular value ofx does not imply that the set is linearly dependent. Clearly this set is linearly

independent.

Example: f1(x) = x2, f2(x) = x|x|, x ∈ [−1, 1]

α1x+ α2x|x| = 0

α1 = −α2|x|/x. For−1 < x < 0, α1 = α2. For0 < x < 0, α1 = −α2 and atx = 0, α1, α2

are arbitrary. Thus the only way in whichα1x+α2x|x| = 0 can be identically zero∀ x is when

α1 = α2 = 0. Hencef1(x) = x2, f2(x) = x|x|, x ∈ [−1, 1] consitute a linearly independent

set. The Wronskian for this case is,

|W (f1(x), f2(x))| =
∣

∣

∣

∣

x2 x|x|
2x |x|+ xh(x)

∣

∣

∣

∣

= x2 whereh(x) =
d|x|
dx

=

{

1 0 < x < 1
−1 −1 < x < 0

In this caseW = −x2|x|+ x3h(x) = 0 ∀ x. This is another example were the vanishing of the

Wronskian does not imply that the set is linearly dependent.

3.4 Solution of linear equations

One of our primary goals lies in seeking solutions to the general class of linear equations of the

form,

Ax = b (3.11)

whereA is in general anm × n matrix. While discussing issues relating to the solutions of

Eq. 3.11 we will make use of the the null space and range space of A which will also use the

ideas of basis sets introduced in this Chapter.
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The existence or solvability condition for a set of linear algebraic equations of the form

in Eq. 3.11 can be stated as follows.Ax = b is solvable if the rank ofA is equal to the rank

of the augmented matrixA|b. The augmented matrix is obtained by adding an extra column

vectorb to the matrixA. We illustrate the solvability conditions with reference to the examples

of the echelon matrices given in the previous Chapter. Consider the following row reduced

forms for the augmented matrices,

(

1 1 | 3
0 2 | 0

)





1 1 0 2 | 2
0 0 0 0 | 1
0 0 0 0 | 0













2 1 5 2 | 1
0 1 2 3 | 2
0 0 5 1 | 1
0 0 0 0 | 0









(3.12)

The first and third augmented matrices satisfy the rank criterion and are hence solvable. Once

the equations are solvable we inquire into the condition of uniqueness. To answer this we first

examine the solutions to the homogeneous problem

Ax = 0 (3.13)

and define the null space ofA denoted asN (A). N (A) consists of all vectorsx that satisfy

the homogeneous equation, Eq. 3.13. We illustrate how the null space can be obtained for the

following set of algebraic equations,

− x1 + x3 + 2x4 = 0

−x1 + x2 − x4 = 0

−x2 + x3 + 3x4 = 0

x1 − 2x2 + x3 + 4x4 = 0 (3.14)

Using a series of row operations the matrix can be reduced as follows,

A =









−1 0 1 2
−1 1 0 −1
0 −1 1 3
1 −2 1 4









→









−1 0 1 2
0 1 −1 −3
0 0 0 0
0 0 0 0









(3.15)

resulting in the following two linear equations

x1 − x3 − 2x4 = 0

x2 − x3 − 3x4 = 0
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If x3 = α1 andx4 = α2 the solution vectorx can be written in two basis vectors as follows.

x = α1









1
1
1
0









+ α2









2
3
0
1









We make a few observations. As a check on the solution procedure we should ensure thatx

given above satisfies the original set of equations. The rankof the matrix in the above example

is 2 which is equal to the number of linearly independent equations. Since the number of

unknowns is 4 the dimension ofN (A) is 4 - 2 = 2. The dimension ofN (A) is simply the

number of linearly independent vectors in the basis used to represent the solution spacex. This

result is easily generalizable. For a generalm × n matrix whose rank isr the dimension of

N (A) is n− r. Note thatn is the number of unknowns in the set of equations andn− r which

is the number of arbitrary ways in which the unknowns can be specified yields the dimension

of the basis. Clearly there is no unique way of choosing the unknowns and hence the basis

for N (A) is not unique. However the dimension ofN (A) is fixed. N (A) is empty when,

n = r then the only solution to the homogeneous problem is the trivial solution. This leads to

an important result.

Theorem: If Ax = 0 has only the trivial solution, thenAx = b has a unique solution.

Proof: Let the inhomogeneous equationAx = b, have two solutionsu andv. Then

Au = b

Av = b

Subtracting the two equations

Aw = 0 (3.16)

wherew = u−v. SinceAx = 0 has only the trivial solutionw = 0 andu = v. HenceAx = b

has a unique solution. The above proof is always true if the matrix is square. The proof is true

for anym × n matrix, provided the inhomogeneous equationAx = b is solvable. Example 6

in this section illustrates this situation. Later we will see that a similar proof can be used for

some linear differential and integral operators. If the matrix is square and the inverse exists

(determinant ofA 6= 0 or equivalently rank,r = n), thenAx = b has a unique solution which

is x = A−1b. Further the solution exists for any vectorb. The last statement is equivalent to
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noting that for a general nonsingular matrixn × n whose rank =n, the rank of the augmented

matrix must also equaln and is consistent with our solvability conditions based on the notion

of the rank.

Earlier we saw that a basis could be defined for the null space of A. Using the solvability

condition based on rank equivalence, we can define an additional space relevant to understand-

ing the solutions to linear equations as the range space ofA also denoted asR(A). R(A)

consists of all vectors such thatAx = b is solvable. We illustrate this with a simple example.

Consider the augmented matrix whereb1 andb2 represent elements of vectorb.
(

2 3 | b1
6 9 | b2

)

→
(

2 3 | b1
0 0 | 3b1 − b2

)

(3.17)

The second matrix is obtained by elementary row operations.The solvability condition requires

that3b1 − b2 = 0 resulting in the following basis forR(A),

b = α

(

1
3

)

(3.18)

whereα is an arbitrary scalar. In the above example, dim[R(A)] = 1 ≡ r. Using the definition

of R(A), the solvability condition is equivalent to stating thatAx = b is solvable ifb lies in

R(A).

To complete the solution scenario for the linear equations we need to discuss the situa-

tion when the homogeneous equation,Ax = 0 has non-trivial solutions i.e whenN (A) is not

empty.

Theorem: If Ax = 0 has non-trivial solutions thenAx = b may or may not be solvable. If it

is solvable then it has an infinity of solutions.

If A has non-trivial solutions then the rank,r < n for an× n square matrix and for an

(m × n) matrix, r < n for bothm < n andm > n. If the homogeneous problem has non-

trivial solutions thenAx = b is solvable if and only if the rank of the matrix equals the rank

of the augmented matrix. If this solvability condition is satisfied, then a solution exists, and the

system has an infinity of solutions. The infinity of solutionsis due to the non trivial solutions

of the homogeneous problem and hence can be related toN (A). The solution toAx = b can

in general be split into two parts in the following manner,

x =
k

∑

i=1

αiφi + xp. (3.19)
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The first term on the right hand side represents part of the solution that lies inN (A) whose

dimension (without loss of generality) is assumed to bek, andφi form the basis forN (A). xp

is a particular solution toAx = b. To show thatx given in Eq. 3.19 is a general solution, we

operate onx with A. Hence

Ax = A(
k

∑

i=1

αiφi) + Axp

= (

k
∑

i=1

αiAφi) + Axp

= b

We note that sinceφi forms the basis forN (A), Aφi = 0. The infinity of solutions is due to

solutions inN (A) sinceαi are arbitrary scalars. If the only solution toAx = 0 is the trivial

solution thenN (A) is empty and the solution is unique. In this casex = xp assuming that

the solvability condition is satisfied. The existence and uniqueness conditions forAx = b

discussed above are summarized in Figure 3.1.

Non−trivial
solution

Trivial
solution

Trivial

solution

Unique
solution

solutions solutions solutions solution

No No UniqueInfinity of

Ax = b

n× n m× n

Ax = 0 Ax = 0

m× nn× n

r(A) 6= r(A|b) r(A) = r(A|b)

Figure 3.1: Illustration of the various solution scenariosthat are encountered while solving
linear equations.

We end this section on solutions to linear equations with a geometric interpretation of
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the different solution scenarios discussed above.

3.4.1 Geometrical Interpretation

Consider the following set of linear algebraic equations with two unkowns

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

(3.20)

Solutions to the above equations can be analyzed by plottingx2 vsx1 on a two dimensional plot

as shown in the Figures below. We assume thata11/a12 > 0 anda22/a21 > 0. Hence both lines

in the above equations will have negative slopes.

Case 1: The determinant,a11a22 − a21a12 is non-zero. HenceAx = 0 has the trivial solution.

This is illustrated in Fig. 3.2, where the solutions toAx = 0 is only the trivial solution indicated

by the intersection of the two lines at the origin. In this situation both lines have different slopes.

Further, Eq. 3.20 has a unique solution for any vectorb lying in the plane.

Trivial Solution

Unique Solution

x1

x2

Ax = 0

Ax = b

Figure 3.2: Solution of linear equations illustrating a unique solution. The dashed lines repre-
sent solutions toAx = 0.

Case 2:The determinant,a11a22 − a21a12 is zero. This implies that both lines have the same

slopes (Fig. 3.3). HenceAx = 0 has an infinity of solutions indicated by the dashed line that
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passes through the origin. If the solvability criterion (rank condition) is satisfied then the so-

lution to Ax = b consists of all points on a line having the same slope with interceptb1/a12

Infinite Solutions

Infinite Solutions

x1

x2

Ax = 0

Ax = b

Figure 3.3: Solution of linear equations illustrating an infinity of solutions. The dashed line
represents the solutions toAx = 0.

Case 3:The determinant,a11a22 − a21a12 is zero. This implies that both lines have the same

slopes. Hence as in Case 2,Ax = 0 has an infinity of solutions indicated by the dashed line

that passes through the origin. If the solvability criterion (rank condition) is not satisfied then

Ax = b does not have a solution as illustrated in Fig. 3.4.

Example 6:

Let us examine the solvability conditions for the set of linear equations,

x1 + 2x2 = b1

2x1 + 4x2 = b2

x1 = b3 (3.21)

It is easy to see that the only solution to the homogeneous equationAx = 0 is the trivial solu-

tion. HenceN (A) is empty. The range spaceA consists of,

b = α1





1
2
0



 + α2





0
0
1




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Infinite Solutions

No Solutions

x1

x2

Ax = 0

Ax = b

Figure 3.4: Solution of linear equations illustrating no solutions. The dashed line represents the
solutions toAx = 0.

Hence2b1 = b2 andb3 is arbitrary. The solutions are,

x1 = b3, x2 =
b1 − b3

2
≡ b2 − 2b3

4

This is an illustrative example, as it is a situation of anm × n system where the null space is

empty. If theb lies in the range, then the system of equations has a unique solution. Figure 3.5

graphically illustrates some possible solution scenarios.

3.5 Summary

Starting from the definitions of the linear or vector space, we introduced the concept of linear

independence and subsequently notions of basis sets and dimensions of basis. The idea of rep-

resenting vectors or functions in a suitable basis has far reaching consequences in functional

analysis and solutions of differential equations. In this Chapter we saw how a basis could be

used to construct the null space and range space of a matrix and connect the dimensions of these

spaces to the now familiar definition of the rank of the matrix. The theorems on solutions of

linear systems completes the discussion on existence and uniqueness for this class of inhomo-

geneous equations which can be represented asAx = b. The starting point for the analysis was

to investigate the solutions of the homogeneous system. Figure 3.1 schematically illustrates the
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Unique Solution

Unique Solution

x1

x2

(b1 = b2 = 0)

x1 = b3

(b3 < b1)

x2 = −x1/2 + b1/2

x2 = −x1/2

Figure 3.5: Solution of linear equations illustrating two possible solution scenarios for the set
of linear equations given in Example 6. In one case,b3 < b1 and in the second caseb1 = b2 = 0.
In both cases the solutions are points obtained with the intersection by the vertical linex1 = b3.

various scenarios

Since we are interested in existence and uniqueness conditions for ordinary differential

equations, we have to abandon the notions of ranks and determinants that form the basic tools

to analyse a linear system of equations. We begin to develop amore complete theory of linear

operators in the next Chapter by introducing the inner product space and the adjoint operator.

Once we are equipped with this formalism to study linear differential equations later in the

book, we will first revisit the theorems developed in this Chapter to understand the generality

and utility of these tools and ideas.
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PROBLEMS

1. Which of the following column vectors can be used to construct a basis for the three

dimensional vector spaceR3.





1
0
−1



 ,





1
1
2



 ,





2
1
1



 ,





1
3
2



 ,





1
−1
−1





Once you have picked an appropriate basis set, show that any vector inR3 can be uniquely

represented using this basis. In other words show that the vectors you have chosen form

a valid basis forR3.

2. Consider the spaceX consisting of all polynomials,f(x), a ≤ x ≤ b, with real coeffi-

cients and degree not exceedingn.

(a) Show thatX is a real linear (vector) space.

(b) What is the dimension of this space ?

(c) Define a suitable basis for this space of polynomials.

(d) Show that your basis does constitute a linearly independent set of vectors.

3. Consider the following functions

φn = (1− t)n−1

for n = 1 to 4.

(a) Do these form a linearly independent set ?

(b) What is the dimension of the vector space they span ?

(c) Using these functions construct a basis to represent thepolynomial3t3−2t2+6t−5.

Find the coefficients of the expansion.

4. Show that the presence of a zero vector in a set of linearly independent vectors makes the

set of vectors linearly dependent.
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5. Consider the following matrix

A =





1 −1 2
2 1 6
1 2 4





(a) ReduceA to its echelon form.

(b) What is the rank ofA?

(c) What is the dimension of the null space,N (A) of A? Find a basis forN (A).

(d) What is the dimension of the range space,R(A) of A? Find a basis forR(A).

(e) Using your answer from part (f) identify which of the following vectorsb will yield

a solution toAx = b




3
2
−1









1
−1
−2









6
5
12





(f) Find the solutions toAx = b for those vectorsb in part (g) for which solutions are

feasible. Note that your solutions consist of a vector that belongs to the null space

of A and a vector that satisfiesAx = b.

6. Consider the following set of linear algebraic equations

x1 + 2x2 + x3 + 2x4 − 3x5 = 2

3x1 + 6x2 + 4x3 − x4 − 2x5 = −1

4x1 + 8x2 + 5x3 + x4 − x5 = 1

−2x1 − 4x2 − 3x3 + 3x4 − 5x5 = 3

(a) Reduce to echelon form.

(b) Find the basis for null space ofA.

(c) Find the basis for the range ofA.

(d) Construct the complete solution to the set of equations.
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(e) Does the system have a unique solution? If not, how many solutions does the system

possess?

7. Consider the following matrix

A =









1 −1 2
2 1 2
4 −1 9
2 1 1









(a) What is the rank ofA?

(b) What is the dimension of the null space(N (A)) of A?

(c) What is the dimension of the range space(R(A)) of A? Find a basis forR(A).

(d) Next consider the transpose of the matrixA. Find a basis for the null space ofAT .

(e) Construct a vector space such that the vectors in the space are orthogonal to the null

space ofAT . What is the dimension of this vector space ? Compare this orthogonal

vector space withR(A). Can you draw any conclusions.

(f) Find the solutions toAx = b for

b =









3
0
0
2









Does the system have a unique solution and why? Illustrate your solution graph-

ically. Note: This problem is connected with the general Fredholms Alternative

theorems to be introduced in the Chapter 4, Sec 4.5

8. Determine the ranks, dimensions and suitable basis for both the(N (A)) and(R(A)) for

the following sets of linear algebraic equations. If the right hand side vectorb is given,

obtain a particular solution to the set of equations.

(a)

x1 − x2 + 3x3 + 2x4 = b1

3x1 + x2 − x3 + x4 = b2

−x1 − 3x2 + 7x3 + 3x4 = b3
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(b)

x1 + 2x2 − x3 + x5 = b1

3x1 + 2x2 + x4 = b2

x1 − 2x2 + 2x3 + x4 − 2x5 = b3

(c)

5x1 + 10x2 + x3 − 2x4 = 6

−x1 + x2 − 2x3 + x4 = 0

2x1 + 3x2 + x3 − x4 = 2

6x1 + 9x2 + 3x3 − 3x4 = 6

(d)

x1 + x2 − x3 = b1

−2x1 − x2 + x3 = b2

x+ 2x2 − 2x3 = b3
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Chapter 4

Inner Products, Orthogonality and the
Adjoint Operator

While defining the linear space or vector space we were primarily concerned with elements

or vectors that conform to the rules of addition and scalar multiplication. These are algebraic

properties. The simplicity of the linear space was sufficient to introduce ideas such as linear

independence and basis sets in a finite dimensional setting.We observe that notions of distance,

length and angles between the elements of the space, which reflect geometric properties were

not discussed.

In this chapter we define the inner product space which provides the necessary frame-

work to introduce geometric properties. The primary motivation for this is to lay the grounds

for discussing orthogonality and its relationship to representation of vectors or functions in a

suitable basis set. In this Chapter the Gram-Schmidt orthogonalization process and its relation-

ship to well known orthogonal polynomials, such as the Legendre and Hermite polynomials

will be developed. The inner product space allows us to introduce the Schwarz and triangular

inequalities. We end this chapter with the definition of the adjoint operator and its utility in

studying issues of uniqueness and existence of non-homogeneous linear equations,

Ax = b (4.1)
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4.1 Inner Product Spaces

The inner product space consists of a linear spaceX on which the inner product, denoted by

< ·, · > is defined, where the dots represent any two elements in the space. Ifu, v andw are

contained inX, andα is an arbitrary scalar contained with the scalar field associated withX,

then the inner product satisfies the following axioms

1. Linearity:

< u+ v, w >=< u,w > + < v,w >

and

< αu, v >= α < u, v >

2. Symmetry

< u, v >= < v, u >

3. Positive Definiteness

< u, u > > 0 when u 6= 0

4.

< u, αv >= α < u, v >

In the above definitions the overbar is used to denote the complex conjugate. Note that the inner

product always results in a scalar quantity.

The inner product inherently contains the definition of the length or norm, denoted by

‖ · ‖. The norm ofu is related to its inner product in the following manner

‖u‖2 =< u, u > (4.2)

Example 1

Consider two vectorsu andv in ann-dimensional vector space. The inner product,

< u,v > = u1v1 + u2v2 + . . . unvn (4.3)

=
n

∑

i

uivi (4.4)

46



The norm of the vectoru,

‖u‖ =
√
< u, u > =

√

√

√

√

n
∑

i=1

uiui

The use of the complex conjugate while defining the inner product is consistent with our notion

of the length of a vector in the complex plane. Consider the point with co-ordinates(1, i) in the

complex plane denoted by the vector

u =

(

1
i

)

(4.5)

If one were to use the definition of the inner product in the absence of the complex conjugate

then it would imply that a non-zero vector has a zero length! Using the definition of the inner

product given in Eq. 4.4, the norm of the vector given in Eq. 4.5, ‖u‖ =
√
2.

Question: Show that the inner product as given in Eq. 4.4 satisfies the axioms of the inner

product space. Thus the vectors of then-dimensional vector space form an inner product space.

Example 2

Consider two functionsf(x) andg(x) which belong to the space of continuous functions with

x ∈ [a, b]. The inner product between the two functions,

< f(x), g(x) >=

∫ b

a

f(x)g(x) dx

The square of the norm,

‖f(x)‖2 =

∫ b

a

f(x)f(x) dx

=

∫ b

a

|f(x)|2 dx (4.6)

If f(x) = x andg(x) = e−ix then

< f(x), g(x) >=

∫ b

a

xeix dx

Further

< g(x), f(x) >=

∫ b

a

e−ixx dx

and it is easily seen that< f(x), g(x) > = < g(x), f(x) >, thereby satisfying the symmetry

property.
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In the above examples it is easy to show that the definitions ofthe inner product sat-

isfy the axioms of the inner product space. One might naturally inquire, if there are alternate

definitions of the inner product. Indeed, other definitions do exist and we will encounter some

of them later in the book. However, as long as the definition ofthe inner product satisfies the

axioms of the inner product space it is a valid candidate.

4.2 Orthogonality

Two vectorsu andv are said to be orthogonal if their inner product is identically zero,

< u,v >=
n

∑

i

uivi = 0

Similarly two functionsf(x) andg(x) are orthogonal on the intervalx ∈ [a, b] if

< f(x), g(x) >=

∫ b

a

f(x)g(x), dx = 0

The collection of vectorsu1,u2 . . . ,un are said to form an orthogonal set if

< ui,uj >= 0 if i 6= j

and the set is said to be orthonormal if

< ui,uj >= δij =

{

0 i 6= j
1 i = j

(4.7)

The norm of each vector in an orthonormal set is unity. Hence an orthonormal set is obtained

from an orthogonal set by dividing each vector by its length or norm.

Example 3

Consider the vectors

u1 =





a
0
0



 , u2 =





0
b
0



 , u3 =





0
0
c





These form an orthogonal set, since< ui,uj >= 0 wheni 6= j. The corresponding orthonormal

set obtained by dividing each of the above vectors,ui by its norm,‖ui‖, is the familiar set of

unit vectors which constitute a basis inR3

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1




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Example 4

The set of functions,u1(x) = sin πx, u2(x) = sin 2πx, . . . un(x) = sinnπx form an orthogonal

set in the interval0 ≤ x ≤ 1. Hence

< un(x), um(x) >=

∫ 1

0

sinnπx sinmπxdx =

{

0 m 6= n
1/2 m = n

The corresponding orthonormal set,
{

vn(x) =
√
2 sinnπx

}

.

4.3 Orthogonality and Basis Sets

Perhaps the most elegant and useful property of an orthonormal set is the utility as a basis to rep-

resent other vectors or functions. Consider representing avectorx in a finite dimensional space

using a suitable basis,{φi}. We will first assume that the basis does not form an orthogonal set

and is simply a linearly independent set. Letx be a vector in the complex plane,Cn.

x =

N
∑

i=1

αiφi (4.8)

To find the coefficientsαi in the expansion, take the inner product of Eq. 4.8 withφj. This

yields

< x, φj >=

N
∑

i=1

< αiφi, φj > j = 1 . . .N (4.9)

The procedure of taking inner products generates a set ofN linear algebraic equations which

can compactly be written in matrix vector notation as,

Aα = b

whereα is the vector of unknown coefficients in the expansion, Eq. 4.8 and

aij = < φj, φi >≡ < φi, φj >

bi = < x, φi >

If the basis forms an orthonormal set as defined in Eq. 4.7 thenthe solution is greatly simplified.

The matrixA reduces to the Identity matrix and the solution, which are the coefficients in the

expansion (Eq. 4.8)

αi =< x, φi > i = 1 . . . N
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The above procedure of obtaining the coefficients is similarin function space as well, with

the appropriate definition of the inner product. We observe that if we had a basis that was

not orthogonal then the procedure results in obtaining a solution to a set of linear algebraic

equations. In the case of functions the elements of the resulting coefficient matrix,A consist

of integrals that have to be evaluated. We illustrate the above procedure with examples in both

vector and function spaces.

Example 5

Consider vectors inR2.

x = α1φ1 + α2φ2 (4.10)

where

x =

(

1
2

)

, φ1 =

(

2
1

)

, φ2 =

(

1
1

)

The resulting set of linear equations can be solved using standard methods. However, in what

follows we utilize inner products as illustrated in Sec. 4.3to obtain coefficients in the expansion

given in Eq. 4.10. Taking the inner product of the expansion,with φ1 andφ2 respectively, the

coefficients in the expansion are obtained by solving the following linear equations,

5α1 + 3α2 = 4

3α1 + 2α2 = 3

whose solution yieldsα1 = −1 andα2 = 3. If we use the following orthogonal basis

φ1 =

(

−1
1

)

, φ2 =

(

1
1

)

then

α1 =
< x, φ1 >

< φ1, φ1 >
= 1/2

α2 =
< x, φ2 >

< φ2, φ2 >
= 3/2

Finally, if we use the corresponding orthonormal basis, obtained by normalizing the orthogonal

set above,

φ1 =
1√
2

(

−1
1

)

, φ2 =
1√
2

(

1
1

)
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and the coefficients are

α1 = < x, φ1 >= 1/
√
2

α2 = < x, φ2 >= 3/
√
2

The above example illustrates the simplification in the analysis obtained by using an orthonor-

mal basis set, over a basis that is simply linearly independent or even orthogonal.

Example 6

Expansion in basis sets is of central importance in functional approximation using Fourier se-

ries. Consider representing a function,f(x) for 0 ≤ x ≤ in an infinitesin series which was

shown to form an orthogonal set in Example 4 above.

f(x) =
∞
∑

n=1

an sinnπx

Taking inner products withsinmπx,

< f(x), sinmπx >=
∞
∑

n=1

an < sinnπx, sinmπx >

Replacing the inner product with integrals,

∫ 1

0

f(x) sinmπxdx =

∞
∑

n=1

an

∫ 1

0

sinnπx, sinmπxdx m = 1 . . . n

Using the orthogonality property of the functions,sinnπx, n = 1 . . .∞ given in Example 4

above, the expression for the coefficient reduces to,

an = 2

∫ 1

0

f(x) sinnπx dx

The above expression is obtained by noting that for everym in the previous equation, only

themth term in the expansion survives. We will encounter similar expansions while solving

PDEs with the separation of variables technique. The representation of functions in a series

expansion of orthonormal sets forms the key foundation for solving PDEs and the central ideas

of functional representation presented in this Chapter should be mastered at this point.
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4.4 Gram-Schmidt Orthogonalization

The Gram-Schmidt (GS) orthogonalization provides a systematic method of constructing an

orthogonal set from a linearly independent set of vectors. Given a set ofn linearly independent

vectors{ui} the GS process can be used to construct,{vi}, the orthogonal set. Let{xi} denote

the corresponding orthonormal set.

v1 = u1 and x1 =
v1

‖v1‖

Construct the next vectorv2 as a linear combination ofu2 andx1,

v2 = u2 − α1x1

such that the orthogonality condition< v2,x1 >= 0 is satisfied. Taking inner products of the

above equation withx1, α1 =< u2,x1 >. Hence

v2 = u2− < u2,x1 > x1 and x2 =
v2

‖v2‖

Proceeding in a similar manner

v3 = u3 − α2x2 − α3x1

Settingv3 orthogonal to thex2 andx1, i.e. < v3,x2 >= 0 and< v3,x1 >= 0 results in

α2 =< u3,x2 > andα3 =< u3,x1 >. Hence

v3 = u3− < u3,x2 > x2− < u3,x1 > x1 and x3 =
v3

‖v3‖

Continuing in this manner,

vn = un− < un,xn−1 > xn−1− < un,xn−2 > xn−2 . . . ,− < un,x1 > x1

and

xn =
xn

‖xn‖
It is easy to show that< vn,vm >= 0 for m < n. Hence the set{vi}, is an orthogonal

set and{xi} is an orthonormal set. We note that the above procedure does not depend on the

initial ordering of the set of linearly independent vectors, {ui}. However, each ordering will
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result in a different set of orthonormal vectors. Hence for agiven vector space there are a large

number of orthonormal sets. It is easy to visualize this in two dimensions, where two orthogonal

vectors in the plane can be rotated by by an arbitrary angle togenerate an infinite combination

of orthogonal vectors. We illustrate the GS procedure with some examples.

Example 7: Consider the set of linearly independent vectors inR2.

u1 =

(

1
0

)

, u2 =

(

i
1

)

Using the GS procedure outlined above,

x1 =
v1

‖v1‖
=

(

1
0

)

We next constructv2

v2 = u2− < u2,x1 > x1 =

(

i
1

)

− i

(

1
0

)

=

(

0
1

)

≡ x2

However if we reorder the initial set of two vectors, such that

u1 =

(

i
1

)

, u2 =

(

1
0

)

then the resulting orthonormal set is

x1 =
1√
2

(

i
1

)

, x2 =
1√
2

(

1
i

)

This example illustrates the non-uniqueness in the orthogonal set obtained using the GS proce-

dure.

The Schwarz Inequality

Consider the definition of the dot product of two vectors,

u · v = ‖u‖‖v‖ cos θ

whereθ is the angle between the two vectors and is defined in terms of the dot product and the

norms of the two vectors. Using the inner product notation

< u,v > = ‖u‖‖v‖ cos θ
| < u,v > | = ‖u‖‖v‖| cos θ|
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Since0 ≤ | cos θ| ≤ 1

| < u,v > | ≤ ‖u‖‖v‖

This is known as the Schwarz inequality. We present a more general derivation below

0 ≤ < u+ αv,u+ αv >

= < u,u+ αv > + < αv,u+ αv >

= < u,u > + < u, αv > + < αv,u > + < αv, αv >

= ‖u‖2 + α < u,v > +α < v,u > +αα‖v‖2 (4.11)

Since the inner product andα are in general complex scalars, let

< u,v >= | < u,v > |eiθ and α = reiθ (4.12)

wherer is the modulus andθ the phase of the complex quantity. Substituting, Eqs. 4.12 into

Eq. 4.11,

0 ≤ ‖u‖2 + 2r| < u,v > |+ r2‖v‖2 ≡ f(r) (4.13)

f(r) in Eq. 4.13 is a quadratic, inr. Sincef(r) ≥ 0, the discriminant∆ ≤ 0. When,f(r) = 0,

the quadratic has two real roots andf(r) > 0 corresponds to the situation of two imaginary

roots. Hence

b2 − 4ac ≤ 0 → 4| < u,v > |2 − 4‖u‖2‖v‖2 ≤ 0

and

| < u,v > | ≤ ‖u‖‖v‖

which is the Schwarz inequality. There are alternate ways toderive the Schwarz inequality and

one such variant is illustrated below.

0 ≤ < u− αv,u− αv >

= ‖u‖2 − α < u,v > −α < v,u > +αα‖v‖2 (4.14)

Substituting

α =
< u,v >

< v,v >
=
< u,v >

‖v‖2
in Eq. 4.14, we get

0 ≤ ‖u‖2 − | < u,v > |2
‖v‖2
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which yields the Schwarz inequality.

The Triangular Inequality

We illustrate how the Schwarz inequality can be used to provethe triangular inequality,

‖u+ v‖ ≤ ‖u‖+ ‖v‖

‖u+ v‖2 = < u+ v,u+ v >

= < u,u > + < v,u > + < u,v > + < v,v >

= ‖u‖2 +< u,v >+ < u,v > +‖v‖2

= ‖u‖2 + 2Re < u,v > +‖v‖2

≤ ‖u‖2 + 2| < u,v > |+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 (Using the Schwartz Inequality)

= (‖u‖|+ ‖v‖)2

which yields the triangular inequality,

‖u+ v‖ ≤ ‖u‖+ ‖v‖
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4.5 The Adjoint Operator

Consider the operatorL on an inner product space X.L∗ is said to be the adjoint ofL if it

satisfies the following identity,

< Lu, v >=< u,L∗v > ∀ u, v ∈ X (4.15)

The above identity provides a formal route to identifying the adjoint operatorL∗. If L = L∗ then

the operator is said to be self-adjoint. The above definitionof the adjoint operator is general,

and can be used to identify the adjoints for matrix, differential and integral operators without

loss of generality. Further,X represents a vector space ifL is a matrix or a function space if

L is either a differential or integral operator. This definition should not be confused with the

adjugate or adjoint of a matrix discussed earlier in connection with finding the inverse of the

matrix. We illustrate the procedure for finding the adjoint operator starting with matrices.

Example: Let L be then× n matrix,A andu andv representn dimensional vectors.

< Au,v > =
∑

i

∑

j

aijuj v
∗
i

=
∑

i

∑

j

uj aijv
∗
i

=
∑

i

∑

j

ui ajiv
∗
j

=
∑

i

ui
∑

j

ajiv
∗
j

= < u,
∑

j

a∗jivj >

= < u,A∗v >

From the last two lines of the above manipulations, it shouldbe clear that the adjoint operator

A∗ is simply the Hermitian transpose ofA. It the matrix is real symmetric or Hermitian then

A = A∗. Hence symmetric or Hermitian matrices belong to a class of self-adjoint operators

that we are already familiar with. In Example 1, we interchanged indices on the 3rd line of the

derivation. The reader should be familiar with this index manipulation and derive the definition

of the adjoint for ann×m matrix as an exercise.

Example 2: Let A be matrix with real elements,
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A =

(

a11 a12
a21 a22

)

u =

(

u1
u2

)

v =

(

v1
v2

)

then,

< Au,v > =
∑

i

∑

j

aijuj vi ≡ (a11u1 + a12u2)v1 + (a21u1 + a22u2)v2

=
∑

i

∑

j

ui ajivj ≡ u1(a11v1 + a21v2) + u2(a12v1 + a22v2)

= < u,A∗v >

where the adjoint,

A∗ =

(

a11 a21
a12 a22

)

Example 3: Let us consider a specific matrix with complex elements,

A =

(

i 0
i 1

)

then,

< Au,v > = iu1v
∗
1 + (iu1 + u2)v

∗
2

= iu1v
∗
1 + iu1v

∗
2 + u2v

∗
2

= < u,A∗v >

In this exampleA 6= A∗ and hence the matrix is not self-adjoint.< Au,v >=< u,A∗v >

by definition (Eq. 4.15). HoweverA 6= A∗. Hence, Eq. 4.15 only provides a prescription for

identifying the adjoint operator.

4.6 Adjoints for Differential Operators

Consider the differential operator,

Lu =
d2u

dx2
+ αu(x) = 0 0 ≤ x ≤ 1
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with the boundary conditions,u′(0) = 0 andu′(1) = 0. The prime denotes differentiation with

respect tox. In order to obtain the adjoint operatorL∗, we proceed in the following manner.

< Lu, v > =

∫ 1

0

[
d2u

dx2
+ αu(x)]v(x) dx

=

∫ 1

0

d2u

dx2
v(x) dx+

∫ 1

0

αu(x)v(x) dx

= [vu′ − v′u]10 +

∫ 1

0

u
d2v

dx2
dx+

∫ 1

0

αu(x)v(x) dx

The last line is obtained by integrating the term containingu′′(x) terms twice by parts. The last

step in obtaining the adjoint operator requires incorporating the boundary conditions onu(x).

If B(u, v) represents the boundary terms, then

B(u, v) = [vu′ − v′u]10

= [v(1)u′(1)− v′(1)u(1)− v(0)u′(0) + v′(0)u(0)]

= [−v′(1)u(1) + v′(0)u′(0)] since u′(0) = 0, u′(1) = 0

The boundary conditions onv(x) are chosen such thatB(u, v) vanishes. This results inv′(0) =

0 andv′(1) = 0 and

< Lu, v > =

∫ 1

0

u(x)[
d2v

dx2
+ αv(x)] dx

= < u,L∗v >

Hence the adjoint operator

L∗v =
d2v

dx2
+ αv(x) = 0 0 ≤ x ≤ 1

with the boundary conditions,v′(0) = 0 andv′(1) = 0. The above prescription formally defines

the adjoint operator. Note that bothL andL∗ are defined along with their boundary conditions.

The boundary conditions forL∗ were obtained with the requirement that the boundary func-

tionalB(u, v) = 0. Further,L = L∗, and the differential operator is said to be self-adjoint.

In the case of differential equations,L = L∗ only when the boundary conditions forL and the

adjoint operatorL∗ are identical. This is the case with the example above.
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4.7 Existence and Uniqueness forAx = b Revisited

We return to the question of existence and uniqueness for linear operators in a more general

setting. These theorems are also referred to as the Fredholms alternative theorems and provide

a prescription for analyzing the existence and uniqueness conditions for all linear operators. Let

us consider the existence and uniqueness conditions for thematrix equation and introduce the

concept of the adjoint operator to tackle the existence and uniqueness condition. Consider the

matrix equation,

Au = b

1. We first analyze the homogeneous problem,

Au = 0.

If Au = 0 has only the trivial solution, thenAu = b has a unique solution. IfA is ann × n

matrix then this is true for any vectorb. However for an × m matrixAu = b has a unique

solution only when the system is solvable. We have examined the proof of the above statements

in detail in the previous Chapter.

2. The second part of the theorem concerns the conditions forthe solvability (or existence

condition) ofAu = b. If Au = 0 has non-trivial solutions we have seen earlier thatAu = b,

can have no solution or have an infinity of solutions. In orderto determine the conditions for

solvability, we examine the homogeneous adjoint problem,

A∗v = 0 (4.16)

whereA∗ is the adjoint ofA. The theorem states thatAu = b has a solution if and only if

< b,v >= 0 ∀v s.t.A∗v = 0 (4.17)

The above condition provides the solvability or existence condition for the inhomogeneous

problem. The statement in Eq. 4.17 is equivalent to stating that the rhs vectorb is orthogonal to

the null space of the adjoint operator,A∗ sincev satisfies, Eq. 4.16. To show that whenu is a

solution toAu = b then< b,v >= 0, wherev satisfiesA∗v = 0.

Proof: Since

Au = b
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it follows that,

< Au,v >=< b,v > (4.18)

Now

< Au,v >=< u,A∗v >= 0 (4.19)

Hence

< b,v >= 0

To complete the proof we need to show that, if< b,v >= 0 then< Au = b > has a solution,

i.e, b lies in the range of the operator. We do not pursue this here. The theorem can be used

to verify the solvability condition whenA is nonsingular. WhenA is nonsingular then the

only solution toA∗v = 0 is the trivial solution. Hence< b,v >= 0 for anyb andAx = b

is therefore solvable for allb. Although we have proved the alternative theorems developed

above usingA as the linear operator, the theorems are true for linear operator in general. We

will use these alternative theorems to study the existence and uniqueness conditions for some

differential operators later in the text.

Example 4: In this example we use the solvability condition of the alternative theorem to

identify the range space for the set of linear equations,

x1 + x2 + x3 = b1

2x1 − x2 + x3 = b2

x1 − 2x2 = b3

We first identify the null space vectors forA∗ using elementary row operations

A∗ =





1 2 1
1 −1 −2
1 1 0



 →





1 2 1
0 1 1
0 0 0





The basis for the null space ofA∗,

v = α





1
−1
1




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The solvability condition states thatAx = b is solvable if and only if< b,v >= 0. This

results inb1 − b2 + b3 = 0 which yields the following basis for the range space ofA,

b = α





−1
0
1



 + β





1
1
0





The range space vectors can also be obtained using the rank equivalence criterion. The reader

should obtain and compare the range space vectors using the rank criterion.

We end this Chapter with by using the Fredholms alternative theorem to prove the fol-

lowing theorem concerning the dimensions ofN (A) andR(A).

Theorem: For a generalm× n matrixA

dimN (A) + dimR(A) = n (4.20)

where dimN (A) = n− r and the dimR(A) = r

Case 1: Letm = n. The dimension ofN (A) = n− r. Since the rank ofA∗ is the same as the

rank ofA, the dimension ofN (A∗) = n − r. In order to determine the dimension ofR(A)

we utilize the solvability condition based on the Fredholmsalternative theorem.Ax = b is

solvable if and only if

< b,vi >= 0 i = 1, 2, . . . n− r (4.21)

wherevi ∈ N (A∗) i.e. A∗vi = 0. Sinceb is a column vector withn unknowns, Eq. 4.21

providesn−r equations.r unknowns can be chosen independently, resulting in dimR(A) = r.

Hence Eq. 4.20 is true.

Case 2: LetA be anm×n matrix of rankr. The dimension ofN (A) = n−r. Since the rank of

A∗ is the same as the rank ofA andA∗ is ann×m matrix, the dimension ofN (A∗) = m− r.

Solvability conditions results in,

< b,vi >= 0 i = 1, 2, . . .m− r

wherevi ∈ N (A∗) i.e. A∗vi = 0. Sinceb is a column vector withm unknowns, Eq. 4.7

providesm− r equations.r equations can be chosen independently resulting in dimR(A) = r.

Hence Eq. 4.20 is true. The proof for Case 2, is valid for bothm < n orm > n. In either case

rank,r ≤ min(m,n)
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Problems

1. Solvability Conditions

Use the Fredholm’s alternative theorem to determine the solvability conditions (existence)

for the following sets of linear equations, by checking if the right hand side vectorb is

orthogonal to the null space ofA∗. If the system is solvable, comment on the uniqueness

of the solution.

x1 − x2 + 2x3 = 3

2x1 + x2 + 6x3 = 2

x2 + 2x2 + 4x3 = −1

x1 + 2x2 + x3 + 2x4 − 3x5 = 2

3x1 + 6x2 + 4x3 − x4 + 2x5 = −1

4x1 + 8x2 + 5x3 + x4 − x5 = 1

−2x1 − 4x2 − 3x3 + 3x4 − 5x5 = 3

x1 − x2 + 3x3 + 2x4 = 2

3x1 + x2 − x3 + x4 = −3

−x1 − 3x2 + 7x3 + 3x4 = 7

2. Gram Schmidt Orthogonalization

Find the eigenvalues and eigenvectors of

A =





2 −1 0
−1 2 −1
0 −1 2



 .

(a) Show that the eigenvectors form a linearly independent set.

(b) Using the Gramd-Schmidt process construct an orthonormal set of eigenvectors.

3. Gram Schmidt Orthogonalization

Consider the following set of 5 vectors




1
0
2



 ,





1
1
1



 ,





3
−1
4



 ,





1
−1
0



 ,





0
2
1




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(a) Using the above vectors construct a subset containing the maximum number of lin-

early independent vectors.

(b) Using the set obtained in part (a) above construct an orthonormal set of vectors using

Gram-Schmidt orthogonalization.

4. Orthonormal Functions

Show that the following functions

φn(x) = exp(2πi nx) n = 0,±1,±2 . . . , 0 ≤ x ≤ 1

wherei =
√
−1 form an orthonormal set.

5. Fourier Series Representation of Functions

Consider a piecewise continuous functionf(x) defined on the interval[−c, c] with period

2c. The function can be represented as

f(x) =
a0
2

+
∞
∑

n=1

(

ancos
nπx

c
+ bnsin

nπx

c

)

(a) Determine expressions for the coefficientsan andbn.

(b) Simplify the series expansions for odd functionsf(x) and even functionsf(x).

(c) For a function

f(x) =

{

−π/2 −π < x < 0
π/2 0 < x < π

andf(0) = 0, evaluate the Fourier series representation.

(d) If SM(x) is the value of the series withM terms in the summation, then plotSM(x)

for the series obtained in part (c) for different values ofM . What can you conclude

about the series representation forf(x) ?

(e) It can be shown that

lim
M→∞

SM

( π

2M

)

=

∫ π

0

sinx

x
dx

Use this result to check your limiting value of the summationthat you compute.
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6. Fourier Series Solutions

The Fourier series solution to the temperatureT (x, t) in a time dependent 1D heat con-

duction problem is

T (x, t) =
∞
∑

n=1

anexp(−αn2π2t/c2)sin
nπx

c

whereα is the thermal diffusivity.

(a) Using the initial conditionT (x, t = 0) = f(x) obtain an expression for the coeffi-

cientsan in the expansion.

(b) You will need to evaluate the following integral

∫ c

0

sin
nπx

c
sin

mπx

c
dx

for n = m andn 6= m.

(c) If the initial conditionf(x) = x, carry out the integrations and obtain an expression

for the coefficientsan in the expansion

7. Fourier Series Solutions

The Fourier series solution to the temperatureT (x, y, t) in a time dependent 2D heat

conduction problem on a rectangle with sides of lengtha andb can be expressed as

T (x, y, t) =
∞
∑

n=1

∞
∑

m=1

anmexp[−(n2π2/a2 +m2π2/b2)t]sin
nπx

a
sin

mπy

b

(a) Using the initial conditionT (x, y, t = 0) = f(x, y) obtain a general expression

for the coefficientsanm in the expansion. You will need to evaluate the following

integral
∫ a

0

sin
nπx

a
sin

mπx

a
dx

for n = m andn 6= m.

(b) If the initial conditionf(x) = xy, carry out the integrations and obtain an expression

for the coefficientsanm in the expansion
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8. Orthogonal Functions

Consider the following ode
d2un
dx2

+ λ2nun = 0

with the boundary conditionsu′n(x = 0) = un(x = 1) = 0.

(a) Obtain the general solution to this equation.

(b) Obtain non-trivial solutions of the formu1(λ1x), u2(λ2x) . . . un(λnx) for the above

boundary conditions. What are the values ofλn?

(c) Verify that the solutionsu1(x), u2(x) . . . form an orthogonal set. Construct an or-

thonormal set of functions.

(d) Evaluate the following integrals
∫ 1

0

sinnπx sinmπx dx

∫ 1

0

cosnπx cosmπx dx

for n,m = 0, 1 . . .. While evaluating the integrals you will have to treat the cases

n 6= m andn = m separately.

Note: The above ode arises while solving partial differential equations with the separation

of variables method where the functionsun(x) are known as the eigenfunctions andλn

are the eigenvalues.

9. Gram-Schmidt Orthogonalization

Consider the functions

φn(x) = exp(−x/2)xn 0 ≤ x ≤ ∞

(a) Using Gram-Schmidt orthogonalization construct an orthonormal basisψn(x) for n

= 0, 1 and 2.

(b) Show that the orthonormal basis forms a linearly independent set.

10. Series Expansions

Consider the following expansion in a basis

f(x) =
∞
∑

n=1

anφn(x)
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(a) If the weighted inner product,

〈φnφm〉w(x) =

∫ b

a

φn(x)φm(x)w(x) = δnm

obtain an expression for the coefficientsan.

(b) Consider now the finite series representation off(x)

f(x) ≈
M
∑

n=1

cnφn(x).

Obtain the coefficientscn by minimizing the least square error

∫ b

a

[

f(x)−
M
∑

n=1

cnφn(x)

]2

w(x)dx.

(c) Comment on the value of the coefficientsan andcn.

11. Prove the following:

(a)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ (4.22)

(b)

‖x+ y‖2 = ‖x‖2 + ‖y‖2 (4.23)

(c)
∣

∣‖x‖ − ‖y‖
∣

∣ ≤ ‖x− y‖ (4.24)

Give a geometric interpretation for a) and b)

12. Consider the Bessel’s inequality

M
∑

i=1

| < ei,x > | ≤ ‖x‖2 (4.25)

whereei denote the orthonormal basis in the M-dimensional vector space. If, N denotes

the dimension of vector space into whichx can be decomposed show that the equality

sign holds ifM = N . What is the condition under which inequality sign holds ?
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13. Consider the Schwartz inequality

| < x,y > | ≤ ‖x‖‖y‖ (4.26)

For non-zero||x|| and||y|| show that the equality holds if and only ifx andy are linearly

dependent. Interpret this geometrically.

14. Use the inner product to verify the following identities

(a)

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (4.27)

(b)

‖z− x‖2 + ‖z− y‖2 = 1

2
‖x− y‖2 + 2‖z− 1

2
(x+ y)‖2 (4.28)
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Chapter 5

Eigenvalues and Eigenvectors

Definition: A complex numberλ is an eigenvalue ofA if there exists a non-zero vectorx called

the eigenvector such that

Ax = λx (5.1)

Eq. 5.1 can be rewritten as

(A− λI)x = 0 (5.2)

From Eq. 5.2, eigenvectorsx belong to the null space of(A − λI) andλ’s are scalars which

result in a zero determinant for,A − λI. The null space ofA − λI is also referred to as the

eigenspace corresponding to the eigenvalueλ. The eigenvectors corresponding to a particular

eigenvalue form a basis for the eigenspace. In this Chapter our primary focus will be to answer

the following questions. Given ann×n matrixA, can we always obtainn linearly independent

eigenvectors? Under what conditions do these eigenvectorsform an orthonormal set? Can these

eigenvectors be used to solve nonhomogeneous problems of the kindAx = b and initial value

problems of the following form,
dx

dt
= Ax+ b(t)

Given ann × n matrix,A the eigenvaluesλi’s i = 1 . . . n, are obtained by solving the

characteristic equation

|A− λI| ≡ f(λ) = 0 (5.3)

The algebraic multiplicityfor a given eigenvalueλi is the number of times the rootλi is re-

peated. Thegeometric multiplicity of λi is the dimension of the vector space spanned by the
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eigenvectors corresponding to the eigenvalueλi. Equivalently the geometric multiplicity cor-

responding toλi is nothing but the dimension of the null space ofA − λiI. The geometric

multiplicity cannot exceed the algebraic multiplicity. Wewill see that it is desirable to have

matrices where the geometric multiplicity is equivalent tothe algebraic multiplicity.

Given a matrixA and its corresponding eigenvalues we are interested in the properties of

the eigenvectors. If the eigenvectors are to be used as a basis set, they would have to be linearly

independent. Further, as we saw in the last Chapter it would be desirable to form a basis with

an orthogonal set. Theorem 1, is concerned with the linear dependence of eigenvectors and

Theorem 2, addresses the issue of orthogonality between eigenvectors.

Theorem 1: Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof: Let the matrixA have eigenvalues,λi, i = 1, . . . n. Hence

Axi = λixi i = 1 . . . , n (5.4)

If the eigenvectors form a linearly independent set, then the only solution to

n
∑

i

cixi = 0 (5.5)

is whenci’s are identically zero. Premultiplying Eq. 5.5 sequentially by A, we can generate the

following set of linearn algebraic equations,

n
∑

i

cixi = 0

n
∑

i

ciλixi = 0

n
∑

i

ciλ
2
ixi = 0

...
n

∑

i

ciλ
n−1
i xi = 0

(5.6)
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which can be written in matrix vector notation as,










1 1 . . . 1
λ1 λ2 . . . λn
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n





















c1x1

c2x2
...

cnxn











= 0 (5.7)

Since the eigenvalues are distinct the above matrix is non-singular and the determinant is

nonzero. The above matrix is also known as the Vandermonde matrix and it can be shown

that the determinant is
n
∏

i,j=1

(λj − λi) 6= 0 (j 6= i)

Since Eq. 5.7 represents a set of homogeneous equations, theonly solution is the trivial solution.

Further sincexi are the eigenvectors they are non-zero by definition andci’s are identically zero.

Theorem 2: If L is a self-adjoint operator, i.e.L = L∗, then the eigenvalues and eigenvectors

of L satisfy the following properties.

1. The eigenvalues ofL are real.

2. Eigenvectors corresponding to distinct eigenvalues areorthogonal.

Proof 1:

Lu = λu

Taking inner products withu

< Lu, u >= λ < u, u > (5.8)

Using the definition of the adjoint operator

< Lu, u > = < u,L∗u >

= < u,Lu > (SinceL = L∗)

= λ < u, u >

(5.9)

From Eqs. 5.8 and 5.9,λ = λ. This is only possible whenλ is real.

Proof 2: Let

Lu = λuu and Lv = λvv (5.10)

71



Taking inner products of the first equation in Eq. 5.10 withv,

< Lu, v >= λu < u, v > (5.11)

Using the definition of the adjoint operator,

< Lu, v > = < u,L∗v >

= λv < u, v >

= λv < u, v > (Sinceλ is real)

(5.12)

Equating Eq. 5.11 with Eq. 5.12 we get,

(λu − λv) < u, v >= 0 (5.13)

Sinceλu 6= λv andu andv are non-zero by definition, Eq. 5.13 implies that< u, v >= 0, i.eu

is orthogonal tov.

Although we are presently occupied with matrix operators, the above proof is valid for

self-adjoint operators in general. The proof also illustrates the utility of using innner prod-

ucts in proving the theorem. We illustrate the implicationsof Theorem 1 and Theorem 2 with

some examples. We first consider some illustrative examplesfor nonsymmetric matrices. As

an exercise, the reader should obtain the eigenvalues and eigenvectors for the examples given

below.

Example 1: Nonsymmetric matrix, distinct eigenvalues

A =

(

1 1
4 1

) (

λ1 = 3
λ2 = −1

)

x(1) = α

(

1
2

)

and x(2) = β

(

−1
2

)

The superscripti on the eigenvector corresponds toith eigenvalue.

Example 2: Nonsymmetric matrix, multiple eigenvalues

A =

(

3 1
−1 1

) (

λ1 = 2
λ2 = 2

)

x(1) = α

(

1
−1

)

The first example illustrates that when a nonsymmetric matrix has distinct eigenvalues,

it is possible to obtain two distinct eigenvectors. By Theorem 1, these eigenvectors are linearly
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independent. The second example illustrates a situation where a nonsymmetric matrix with

multiple eigenvalues has only one eigenvector. This is an example where the geometric multi-

plicity is less than the algebraic multiplicity. For a givenλi with multiplicity m, this situation

occurs for non-symmetric matrices when dimN (A − λI) < m. This is symptomatic of situ-

ations where the algebraic multiplicty is greater than unity for nonsymmetric matrices. In the

next two examples we will consider Hermitian matrices.

Example 3: Symmetric matrix, distinct eigenvalues

A =

(

1 2
2 1

) (

λ1 = 3
λ2 = −1

)

x(1) = α

(

1
1

)

and x(2) = β

(

1
−1

)

The eigenvectors are not only linearly independent, but arealso orthogonal by Theorem 2. The

orthonormal set is obtained by dividing each eigenvector byits norm. The orthonormal set is,

x(1) =
1√
2

(

1
1

)

and x(2) =
1√
2

(

1
−1

)

Example 4: Symmetric matrix with multiple eigenvalues

A =

(

2 0
0 2

) (

λ1 = 2
λ2 = 2

)

x(1) = α

(

1
0

)

and x(2) = β

(

0
1

)

In this example the matrix has one eigenvalue of multiplicity 2. However unlike the situation in

Example 2, here we are able to obtain two distinct eigenvectors which constitute an orthonormal

set. We can state the following theorem for Hermitian matrices.

Theorem: A Hermitian matrix of ordern hasn linearly independent eigenvectors and these

form an orthonormal set.

Consider a Hermitian matrix with distinct eigenvalues. From Theorem 2, it is clear

that the eigenvectors corresponding to distinct eigenvalues are orthogonal and the eigenvectors

form an orthonormal set. If the matrix has multiple eigenvalues then the orthornormal set is

constructed by using Gram-Schmidt orthogonalization. Consider ann × n Hermitian matrix

with k distinct eigenvalues,λ1, λ2, . . . λk. Let the multiplicity of thek + 1th eigenvalueλk+1

bem. For the firstk set of distinct eigenvalues there arek eigenvectors which constitute an

orthogonal set (Theorem 2, part 2). Each of thesek eigenvectors are orthogonal to the remaining

m eigenvectors corresponding the eigenvalueλk+1 which has multiplicitym (Theorem 2, part

2). The missing piece is the orthogonality between them eigenvectors corresponding to the
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repeated eigenvalueλk+1. Since these are eigenvectors that belong to the same eigenvalue,

Theorem 2, does not apply. However we can use Gram-Schmidt orthogonalization to construct

an orthonormal set of thesem eigenvectors. With this the construction is complete and we

have a set ofn orthonormal eigenvectors. We note that the Gram-Schmidt orthogonalization

is essentially a process of taking linear combinations of vectors and we need to shown that the

new vectors are still eigenvectors having the same eigenvalue. The following Lemma concerns

this point.

Lemma: Let x1,x2 . . .xm bem eigenvectors corresponding the eigenvalueλ. Hence

Axi = λxi i = 1, . . .m

The eigenvalue of the eigenvector constructed by taking linear combinations of them eigenvec-

tors is alsoλ.

Proof: Lety be the eigenvector obtained by taking a linear combination of m eigenvectors,

y =

m
∑

i=1

αixi

Now

Ay = A(
m
∑

i=1

αixi)

=

m
∑

i=1

αiAxi

=
m
∑

i=1

αiλxi

= λ

m
∑

i=1

αixi

= λy

(5.14)

Hencey is an eigenvector with eigenvalueλ. We note that this proof is true for linear combina-

tions which involve any subset of them eigenvectors.

Finally we state (without proof) that given a Hermitian matrix, the algebraic multiplicity

always equals the geometric multiplicity. This implies that for an eigenvalue with mulitplicity
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m,

dimN (A− λiI) = m

Hence for a Hermitian matrix we are ensured of finding all the eigenvectors regardless of the

mulitplicities in the eigenvalues. This concludes the proof for Theorem 3.

5.1 Eigenvectors as Basis Sets

Consider the matrix equation

Au = b (5.15)

We will assume that the matrix posessesn eigenvectors. Further let us assume that the determi-

nant ofA is non-zero i.eλi 6= 0 for i . . . n. Let

u =

n
∑

i

cixi (5.16)

Substitute Eq. 5.16 into Eq. 5.15,

A

n
∑

i

cixi = b

n
∑

i

ciAxi = b

n
∑

i

ciλixi = b

Taking inner products withxj

n
∑

i

ci < λixi,xj > = < b,xj > j = 1 . . . n

(5.17)

The above manipulations results in a set ofn linear algebraic equations which can be compactly

represented as

Mc = f

where the elements ofM,mij =< λjxj ,xi > andfi =< b,xi >. A solution of Eq. 5.1, yields

the coefficients in the expansion. If the eigenvectors form an orthonormal set, as would be the
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case ifA were Hermitian then the coefficients can be obtained analytically,

ci =
< b,xi >

λi

and the solution can be expressed as,

u =

n
∑

i=1

< b,xi >

λi
xi (5.18)

The above method is general and can also be used when the detA= 0. We leave this as an

exercise. The above solution illustrates the utilility of the eigenvectors as a basis while seeking

solutions to matrix equations. In the absence of an orthonormal set of eigenvectors, obtaining

the coefficients involves solving a set of linear equations.If the eigenvectors form an orthonor-

mal set, as is the case with a Hermitian matrixA, then the solution is greatly simplified.

5.2 Similarity Transforms

Very often equations involving matrices can be conveniently treated using suitable transforma-

tions. Clearly a transformation that preserves the eigenvalues of the matrix will preserve the

underlying physics of the problem. One such transformationis the similarity transform. In this

section we introduce the similarity transform and illustrate its utility for matrix diagonalization,

matrix algebras and solutions of IVPs.

Definition: If there exists a non-singular matrixP such that

P−1AP = B

then,B is said to be similar toA. Similar matrices have the same eigenvalues.

Theorem: Similar matrices have the same eigenvalues. IfP−1AP = B thenA is similar toB

and bothA andB have the same eigenvalue.
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Proof: Let the eigenvalue ofA beλ.

B = P−1AP

BP−1 = P−1A

BP−1x = P−1Ax

= P−1λx

= λP−1x

(5.19)

If P−1x = y, the the last line of the above equation implies,

By = λy

Henceλ is an eigenvalue ofB with eigenvectorP−1x.

5.2.1 Diagonalization ofA

If a matrixA hasn linearly independent eigenvectors, then

P−1AP = Λ

P is a nonsingular matrix whose columns are made up of the eigenvectors ofA andΛ is a

diagonal matrix withλ’s on the diagonal.

Λ =















λ1 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

0 0 . . . λn















We next show that the matrixP made up of the eigenvectors, reducesA to a diagonal matrix

under a similirity transformation. LetAxi = λixi i = 1, . . . n

AP = A[x1,x2, . . . ,xn]

= [Ax1,Ax2, . . . ,Axn]

= [λ1x1, λ2x2, . . . , λnxn]

= PΛ

(5.20)
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In general a square matrix can be reduced to a diagonal matrixif and only if it possessesn

linearly independent eigenvectors. This is always possible for Hermitian matrices.

5.2.2 Using similarity transforms

Similarity transforms can be used to perform matrix algebras in a convenienent manner as illus-

trated below,

1. Powers of Matrices

P−1AP = Λ

A = PΛP−1

An = (PΛP−1) (PΛP−1) . . . (PΛP−1)

= PΛnP−1

(5.21)

2. Inverse

A−1 = (PΛP−1)−1

= (PΛ−1P−1)

(5.22)

3. Matrix polynomials

f(A) = a0A
m + a1A

m−1 . . . amI

(Using,An = PΛnP−1)

= a0PΛmP−1 + a1PΛm−1P−1 + . . . amPP−1

= P(a0Λ
m + a1Λ

m−1 + . . . ,+amI)P
−1

= Pf(λ)P−1

(5.23)
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In all the above manipulations, the algebra is reduced to taking powers of the diagonal

matrix Λ. To complete the solution, one also requires a knowledge ofP−1. Under certain

conditionsP−1 is easily deduced fromP. We discuss this next.

5.3 Unitary and orthogonal matrices

Definition: P is said to be a unitary matrix if,

P∗P = PP∗ = I,

which implies thatP−1 = P∗. As defined earlier,P∗ is the complex conjugate transpose ofP.

If P consists of real elements then,

PTP = PPT = I,

which implies thatP−1 = PT . ThenP is said to be orthogonal. Further, if

P∗P = PP∗

then the matrixP is said to be normal. Normal matrices provides a broader classification

for matrices which includes both unitary and orthogonal matrices. Other examples of normal

matrices are, Hermitian, skew Hermitian and diagonal matrices.

Theorem: If A is a Hermitian matrix then the matrixP whose columns are made up of the

eigenvectors ofA is a unitary matrix.

Proof: SinceP is made up of the eigenvectors ofA,

P = [x1,x2,x3 . . .xn]

Then

P∗P =























x
†
1x1 x

†
1x2 . . . , x

†
1xn

x
†
2x1 x

†
2x2 . . . , x

†
2xn

...
... . . . ,

...

x†
nx1 x†

nx2 . . . , x†
nxn























(5.24)
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We have introduced some new notation for clarity. In the above equations,x†
i represents the

complex conjugate transpose of the column vectorxi. Hence,

xi =











x1
x2
...
xn











then x
†
i =

(

x1, x1, . . . , xn
)

Noting, that the matrix elements in Eq. 5.24 are inner products between the eigenvectors which

form an orthonormal set (A = A∗).

x
†
ixj =< xi,xj >= δij

Hence

P∗P = I

In a similar manner one can show thatPP∗ = I. Therefore,P is unitary. The proof for

orthogonal matrices follows along similar lines, withx†
i replaced withxT

i .

Example 5: Consider the non-symmetric matrix from Example 1. Using thetwo linearly inde-

pendent eigenvectors to construct matrixP,

P =

(

1 −1
2 2

)

, P−1 =
1

4

(

2 1
−2 1

)

and P−1AP =

(

3 0
0 −1

)

Note that the order in which the eigenvalues appear in the diagonal matrix is dependent on how

the eigenvectors are ordered in the matrixP.

Example 6: Consider the symmetric matrix from Example 3.

P =

(

1 −1
1 1

)

, P−1 =
1

2

(

1 1
−1 1

)

and P−1AP =

(

3 0
0 −1

)

If P is constructed using the orthonormal eigenvectors ofA then,

P =

(

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

)

and P−1 =

(

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)

HereP−1 = PT andP is orthogonal.
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5.4 Jordan Forms

In this section we are concerned with ann×nmatrices that do not posessn linearly independent

eigenvectors. This was the situation in Example 2 above. IfA does not possessn linearly

independent eigenvectors then there exists a non-singularmatirxP such that,

P−1AP = J

whereJ the Jordan matrix has the following structure,

J =















J1 0 . . . 0
0 J2 0 . . . 0
0 0 J3 . . . 0
...

...
...

0 0 . . . Jn















whereJi are the Jordan blocks which haveλ’s on the diagonal and1’s on the first superdiagonal.

A typical form for a (3× 3) Jordan block is illustrated below,

Ji =





λ 1 0
0 λ 1
0 0 λ





J is also referred to as the Jordan canonical form.

If an n × n matrix A hask linearly independent eigenvectors then the matrixP is

constructed using thesek eigenvectors as well as the remaininingn−k generalized eigenvectors.

Before we embark on determining generalized eigenvectors we spend some time on the structure

of the Jordan forms themselves.

5.4.1 Structure of the Jordan Block

The structure of the Jordan block is best illustrated using some examples. Consider a(3 × 3)

matrix with multiplicitym = 3. We can then have three different situations depending on the

number of linearly independent eigenvectors.

Case 1: 1 eigenvector and 2 generalized eigenvectors and the Jordan matrix has 1 Jordan block.

J =





λ 1 0
0 λ 1
0 0 λ




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Case 2: 2 eigenvectors and 1 generalized eigenvectors and the Jordan matrix has 2 Jordan

blocks. The two forms of the Jordan matrix are,

J =





λ 1 0
0 λ 0
0 0 λ



 or J =





λ 0 0
0 λ 1
0 0 λ





Case 3: 3 eigenvectors and 0 generalized eigenvectors. This case reduces to the diagonal form

Λ and can be interpreted as having 3 Jordan blocks.

J =





λ 0 0
0 λ 0
0 0 λ





In the above illustrations, the Jordan block is identified asa partitioned matrix. We can

make the following statement relating the number of Jordan blocks to the number of linearly

independent eigenvectors. The number of Jordan blocks in the Jordan canonical formJ cor-

respond to the number of linearly independent eigenvectorsof the matrixA. Further from the

the examples above, the number of1’s on the super-diagonal is equivalent to the number of

generalized eigenvectors used to construct the matrix,P.

5.4.2 Generalized Eigenvectors

In this section we illustrate the procedure for finding generalized eigenvectors for a matrix with

deficient eigenvectors. Consider for example a (3 × 3) matrix with eigenvalueλ having multi-

plicity 3 and 1 eigenvectorx. In this case we would like to obtain 2 generalized eigenvectors,

q1 andq2. The situation corresponds to Case 1, above with the Jordan matrix having two 1’s on

the off-diagonal.

P = [x,q1,q2]

AP = [λx,Aq1,Aq2]

PJ = [x,q1,q2]





λ 1 0
0 λ 1
0 0 λ





= [λx,x+ λq1,q1 + λq2]
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EquatingAP = PJ, in the above equations we obtain the following equations for the general-

ized eigenvectorsq1 andq2,

(A− λI)q1 = x and (A− λI)q2 = q1

We make the following observations. Unlike eigenvectors which are obtained as solutions to

a homogeneous problem, generalized eigenvectors are obtained as solutions to inhomogeneous

equations as given above. We consider the generalized eigenvector corresponding to situation

in Case 2 given above. In this case the matrixP is constructed by using only one generalized

eigenvector. Using the same procedure as above,

P = [x1,x2,q1]

AP = [λx1,Ax2,Aq1]

PJ = [x1,x2,q1]





λ 0 0
0 λ 1
0 0 λ





= [λx1, λx2,x2 + λq1]

EquatingAP = PJ, in the above equations we obtain the following equations for the general-

ized eigenvectorq1,

(A− λI)q1 = x2

In the above example there are a number of different variations to obtain the generalized eigen-

vector.P can be constructed by interchanging the vectorsx1 andx2. In this case the equation

for the generalized eigenvector reduces to,

(A− λI)q1 = x1

Additionaly theP matrix can be constructed by taking linear combinations ofx1 andx2. If

u = αx1 + βx2, then

P = [x1,u,q1]
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Working through the same procedure as outlined above, the equation for the generalized eigen-

vector is

(A− λI)q1 = u = αx1 + βx2.

Clearly the above procedure illustrates that the generalized eigenvector can be constructed in

many ways and is hence non-unique. Regardless of the manner in which the generalized eigen-

vector is obtained, the structure of the Jordan matrix is unaltered. Since the generalized eigen-

vector must be obtained by solving an inhomogeneous equation the issue of solvability must be

confronted. The last example illustrates the number of waysin which the right hand side vector

can be chosen to meet the solvability criterion or equivalently arrive at an system of equations

that yields a solution.

Question: In the last example where the matrix has two eigenvectors, derive the equations for

the generalized eigenvector assuming

J =





λ 1 0
0 λ 0
0 0 λ





5.5 Initial Value Problems

Consider the linear IVP of the following form

dx

dt
= Ax+ b(t) (5.25)

with initial condition,x(t = 0) = x0. In Eq 5.25, each element ofx andb are functions of time

and the matrixA consists of constant coefficients. Hence

x =











x1(t)
x2(t)

...
xn(t)











and b =











b1(t)
b2(t)

...
bn(t)











Such systems of IVPs occur in staged processes, batch reactors, process control and vibration

analysis. We will solve the above equation using the similarity transform technique introduced

in the previous section.
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We first consider the situation where,A hasn linearly independent eigenvectors. In this

caseA is diagonalizable. Premultiplying Eq. 5.25 byP−1

d(P−1x)

dt
= P−1Ax+P−1b(t)

d(P−1x)

dt
= P−1APP−1x+P−1b(t)

In the last line above we have insertedPP−1 afterA. If P−1x = y andP−1b(t) = g(t) then

the above system can be rewritten as,

dy

dt
= Λy + g(t) (5.26)

with the following IC,y(t = 0) ≡ y0 = P−1x0. Using the integrating factore−Λt, Eq 5.26 can

be rewritten as,
d

dt
(e−Λty) = e−Λtg(t) (5.27)

whose general solution is

e−Λty(t) =

∫ t

0

e−Λτg(τ) dτ + c (5.28)

Using the initial conditiony0 = P−1x0, Eq. 5.28 reduces to,

y(t) =

∫ t

0

eΛ(t−τ)g(τ) dτ + eΛty0 (5.29)

The solution can be expressed in a more compact form as

x = Py = P[eΛty0 + f(t)] where f(t) =











∫ t

0
eλ1(t−τ) g1(τ) dτ

∫ t

0
eλ2(t−τ) g2(τ) dτ

...
∫ t

0
eλn(t−τ) gn(τ) dτ











In order to obtain the solution we need to obtain an expression for eΛt. This can be obtained in

the following manner. ExpandingeΛt in a Taylor series,

eΛt = I+ Λt +
(Λt)2

2!
+

(Λt)3

3!
+ . . . ,

SubstitutingΛ in the above expression and collecting terms,

eΛt =











∑∞
n=0

(λ1t)n

n!
0 . . . 0

0
∑∞

n=0
(λ2t)n

n!
0 0

...
...

...
0 0 . . .

∑∞
n=0

(λnt)n

n!











=











eλ1t 0 . . . 0
0 eλ2t 0 0
...

...
...

0 0 . . . eλnt










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If A is not diagonalizable then the above solution procedure remains unaltered. HoweverΛ is

replaced withJ. In this case we need to obtain an expression foreJt. Consider the following

example. If

J =





λ 1 0
0 λ 1
0 0 λ



 , (5.30)

thenJ = Λ + S, whereΛ is the diagonal matrix andS is a matrix containing the off-diagonal

terms. Then

eJt = eΛteSt where Λ =





λ 0 0
0 λ 0
0 0 λ



 and S =





0 1 0
0 0 1
0 0 0





whereeΛt is evaluated as illustrated above. In order to evaluateeSt we proceed in a similar

manner and carry out a Taylor expansion,

eSt = I+ St +
(St)2

2!
+ . . . , (5.31)

Due to the structure of matrixS, the number of terms that are retained in the Taylor expansion

is only 3 as the powers ofS greater than 2 are identically zero. The reader should checkthis.

Collecting terms in the expansion given in Eq. 5.31 we obtain

eSt =





1 t t2/2
0 1 t
0 0 1



 and eJt =





eλt teλt t2

2
eλt

0 eλt teλt

0 0 eλt





The above procedure can be generalized for an(n × n) Jordan matrix of the form given in

Eq. 5.30 and,

eJt =











eλt teλt . . . , tn−1

(n−1)!
eλt

0 eλt . . . , tn−2

(n−2)!
eλt

0 0 . . . ,
...

0 0 eλt











.

5.6 Eigenvalues and Solutions of Linear Equations

While solving linear equations,Ax = b it is important to understand the sensitivity of the

solution to small changes in the coefficients of the matrixA or the elements in the vectorb.
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The sensitivity usually arises from round-off error duringa numerical solution such as Gauss

elimination. A measure of the sensitivity to small perturbations is known as the condition

number of the matrix. Hence a matrix whose solutions are sensitive to small changes in the

coefficients is said to be poorly conditioned. We will use concepts of matrix and vector norms

to quantify these concepts and connect this issue of sensitivity to the eigenvalues of the matrix.

Normed SpaceThe norm is simply the notion of length that we have encountered while dis-

cussing inner product spaces. More formally,‖x‖ is said to be a norm on a linear spaceX,

x,y ∈ X if it satisfies the following properties,

(i) ‖x‖ > 0

(ii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ Triangular Inequality

(iii) ‖αx‖ = |α‖|x‖
(iv) ‖x‖ = 0 If and only ifx = 0

Some examples of commonly encountered norms are

The 2 norm

‖x‖2 =
[

n
∑

i=1

|xi|2
]1/2

The p norm

‖x‖p =
[

n
∑

i=1

|xi|2
]1/p

, 1 ≤ p <∞

The∞ norm

‖x‖∞ = max
1≤i≤n

|xi|

The norm incorporates the definition of a distance function or metric,d(x, y)

d(x, y) = ‖x− y‖

If x = (x1, x2) andy = (y1, y2), then

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

which is the familiar example of the distance inR2.

87



Matrix Norms : ‖A‖ is a matrix norm for a matrixA if it satisfies the following properties of

a normed space,

(i) ‖A‖ > 0

(ii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ Triangular Inequality

(iii) ‖αA‖ = |α‖|A‖
(iv) ‖A‖ = 0 If and only ifA = 0

Further

‖AB‖ ≤ ‖A‖‖B‖

The matrix norm is compatible with a vector norm if

‖Ax‖ ≤ ‖A‖‖x‖

Examples of commonly encountered matrix norms are given below,

The 1 norm, or the maximum column sum,

‖A‖1 = max
1≤j≤n

[

n
∑

i=1

|aij |
]1/2

The∞ norm or the maximum row sum,

‖A‖∞ = max
1≤i≤n

[

n
∑

j=1

|aij|
]1/2

The spectral norm,

‖A‖2 = [ρ(A∗A)]1/2

whereρ(A) is the spectral radius ofA defined as the maximum eigenvalue ofA. If A is

Hermitian,A∗ = A and

‖A‖2 = |λmax|

If Ax = λx then any norm ofA is an upper bound on the eigenvalues.

|λ‖|x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖
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and

|λ| ≤ ‖A‖

Errors and Perturbation

Consider the linear equation,

Ax = b (5.32)

If δb is a small pertubation to the vectorb then letδx be the corresponding pertubation to the

solution vectorx and

A(x+ δx) = b+ δb (5.33)

The problem lies in determing a bound on the perturbation to the solution vectorx. Expanding,

Eq. 5.33 and noting thatAx = b,

Aδx = δb (5.34)

and

δx = A−1δb (5.35)

From Eq. 5.34

‖δb‖ = ‖Aδx‖ ≤ ‖A‖‖δx‖ (5.36)

and from Eq. 5.35,

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖ (5.37)

FromAx = b

‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ (5.38)

Combining Eqs. 5.37 and 5.38

‖δx‖‖b‖ ≤ ‖A‖‖A−1‖‖δb‖‖x‖ (5.39)

If ‖b‖ 6= 0 then Eq. 5.39 reduces to,

‖δx‖
‖x‖ ≤ ‖A‖‖A−1‖‖δb‖‖b‖ (5.40)

The condition numberκ(A) is defined as

κ(A) = ‖A‖‖A−1‖ (5.41)
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and Eq. 5.42 is,
‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖ (5.42)

If the 2 or spectral norm is used and the matrix is symmetric, then

κ(A) =
|λmax|
|λmin|

(5.43)

Eq. 5.42 indicates that if the condition number is large thensmall perturbations in the vectorb

can amplify the errors in the solution vectorx. Matrices that are nearly singular (i.e with one

eigenvalue close to zero) are clearly poorly conditioned. There are many numerical methods

developed to improve the conditioning of matrices. Clearlyprecision related conditioning can

be alleviated to some extent by using higher precision computing. While deriving the bounds

as given in Eq. 5.42 we assumed that the errors occurred only in the vectorb. We next consider,

the situation where the error occurs in the matrix.

5.6.1 Positive Definite Matrices

A matrix isA is said to be positive definite if

< Ax,x > > 0 for x 6= 0

If A is symmetric thenA is said to besymmetric positive definite(SPD). To show that the

eigenvalues of a positive definite matrix are always positive;

< Ax,x >= λ < x,x >= λ‖x‖2 > 0

Hence allλ’s are positive. As a consequence, the determinant of a positive definite matrix is

non-zero. IfA is singular, then∃ a nonzero vectorx such thatAx = 0, which implies that

< Ax,x >= 0.

Spectral RadiusThe spectral radius,ρ(A) of a matrixA is the maximum value of the modulus

of its eigenvalues.

ρ(A) = max
i

|λi|

There are several localization theorems which yield information on the bounds for the eigenval-

ues. The most important theorem is the Gerschgorin’s theorem.
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Gerschgorin’s Theorem: Let A be a generaln × n matrix whose eigenvalues can be either

real or complex. If

ri =
n

∑

j=1,j 6=i

|aij| i = 1 . . . , n

is the sum of the off-diagonal elements in theith row. LetDi be the disk in the complex plane

of radiusri and centered ataii,

Di = {z : |z − aii| ≤ ri} i = 1, . . . , n

Gerschogorin’s theorem, states that all eigenvalues ofA lie in the union of disksDi. Thus

λi ∈ D1 ∪ D2 ∪ D3 . . . ∪ Dn i = 1, . . . , n

Proof Consider anyλ with corresponding eigenvectorx. The eigen equationAx = λx can be

expressed as,

(λ− aii)xi =
n

∑

j=1,j 6=i

aijxj for i = 1, . . . n (5.44)

wherexj is the jth component in the eigenvectorx. Let xk be the component with the largest

absolute value in the vectorx. Then|xj|/|xk| ≤ 1 for j = 1, . . . n. Eq. 5.44 fori = k can be

expressed as,

(λ− akk) =

n
∑

j=1,j 6=k

akj
xj
xk

(5.45)

Taking moduli on both sides,

|λ− akk| ≤
n

∑

j=1,j 6=k

|akj|
|xj|
|xk|

≤
n

∑

j=1,j 6=k

|akj| = rk

Thusλ is contained in the diskDk centered atakk. A similar procedure follows for all theλ’s.

Hence the eigenvalues lie in the union of the disks,Dk k = 1, . . . n

5.6.2 Convergence of Iterative Methods

The spectral radius of a matrix is useful while analyzing convergence of iterative processes. We

will show that sequence of vectors generated by the iterative process,

xk+1 = Axk k = 0, . . . (5.46)
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will tend to zero if and only if,ρ(A) < 1. x0 is an arbitrary initial vector. Further ifρ(A) > 1

then the sequence will diverge. The convergence of the limiting vector can be analyzed by

expanding in a basis made up of eigenvectors,{ui} of A.

x0 =

n
∑

i=1

αi ui

x1 = Ax0 =
n

∑

i=1

αi Aui =
n

∑

i=1

αi λiui

x2 = Ax1 =

n
∑

i=1

αi λiAui =

n
∑

i=1

αi λ
2
iui

...
...

xk =

n
∑

i=1

αi λ
k+1
i ui

Sinceρ(A) < 1, the powers ofλi tend to zero ask → ∞ and

lim
k→∞

xk = 0

Alternately the iterative process can be analyzed by examining the powers of the matrixA.

Thus,

x1 = Ax0

x2 = Ax1 = A2x0

...
...

xk = Akx0

If A can be diagonalized using similarity transforms, then

Ak = P−1ΛkP

whereΛ is the diagonal matrix with eigenvalues on the diagonal, and

lim
k→∞

Ak = 0 since lim
k→∞

Λk = 0 if ρ(A) < 1

and

lim
k→∞

xk = 0
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We leave it as an exersize to show that the limiting vectorxk will converge to zero when,

Ak = P−1JkP

whereJ is the Jordan canonical form, i.e.,

lim
k→∞

Jk = 0 if ρ(A) < 1

We illustrate the application of these ideas with the analysis of convergence properties

of iterative methods such as the Jacobi and Gauss-Seidel methods used for solutions of lin-

ear equations which results in large sparse matrices. We briefly outline the procedure for the

solution toAx = b using these methods.

Jacobi’s Method Consider the solution toAx = b using the Jacobi’s method. Rewrite

A = D−B (5.47)

where

D =











a11 0 . . . 0
0 a22 0 0
...

...
. . .

...
0 0 . . . ann











B = −











0 a12 . . . a1n
a21 0 . . . a2n
...

...
. . .

...
an1 an2 . . . ann











Substituting,A = D−B intoAx = b,

Dx = Bx+ b

This can be solved iteratively using the following numerical scheme,

xk+1 = D−1(Bxk + b) k = 1, . . . (5.48)

and the solution is the limiting vector ask → ∞.

The Gauss Seidel MethodThis is an improvement over the Jacobi’s method as it uses thelatest

updated components of the vector during each iteration. Here

A = −(L +U) +D (5.49)

whereD is the diagonal matrix as defined above andL is a lower triangular matrix andU is the

upper triangular matrix as shown below,

L = −











0 0 . . . 0
a21 0 . . . 0
...

...
. . .

...
an1 . . . an,n−1 0











U = −











0 a12 . . . a1n
...

...
. . .

...
0 0 . . . an−1,n

0 0 . . . 0










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Substituting, Eq. 5.49 intoAx = b and rearranging,

xk+1 = (D− L)−1(Uxk + b) k = 1, . . .

Convergence of these iterative methods can be analyzed in the following manner. We

illustrate the analysis with the Jacobi’s method. Letx0 be the exact solution toAx = b. Then,

Eq 5.48 is

x0 = D−1(Bx0 + b) (5.50)

Note thatx0 is also referred to as a fixed point of the mapping. Fixed points will be discussed

in Chapter??. Subtracting Eq. 5.48 from 5.50,

bk+1 = Hbk (5.51)

wherebk+1 is the error vector,x0−xk+1 at iteratek+1 andH = D−1B. Eq. 5.51 is of the same

form as Eq. 5.46 andb will tend to zero ask → ∞ when the spectral radius,ρ(H) < 1. The

conditions for theρ(H) < 1 can be obtained by examining the spectral radii of the Gerschgorin

discs. The matrix,

H = D−1B = −











0 a12/a11 a13/a11 . . . a1n/a11
a21/a22 0 a23/a22 . . . a2n/a22

...
...

. . .
...

...
an1/ann an2/ann . . . an−1,1/ann 0











(5.52)

Since the radii,ri of the Gerschgorin discs are the sum of the off-diagonal elements ofH,

ri =
n

∑

j=1,j 6=i

|aij|
|aii|

i = 1 . . . n (5.53)

Forρ(H) < 1,

ri =
n

∑

j=1,j 6=i

|aij|
|aii|

< 1 i = 1 . . . n (5.54)

which yields the following condition,

|aii| >
n

∑

j=1,j 6=i

|aij | (5.55)

Matrices which satisfy the condition given by Eq. 5.55 are referred to asstrictly diagonally

dominant matriceswhich will result in converged solutions to the Jacobi method, regardless of
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the initial vectorx0 used in the iteration. Clearly a good guess of the starting vector will reduce

the number of iterations required to obtain the solution. Note that the result only comments

on whether the iteration will converge or not. This is an instructive illustration of the utility of

the Gerschgorin’s theorem. The convergence criterion for the Gauss-Seidel method is left as an

exercize.

5.7 Summary

The main goal of this Chapter was to analyze the eigenvalue-eigenvector problem for a ma-

trix. Once the eigenvalues are obtained, the main problem reduces to finding the eigenvectors

and understanding the properties between the eigenvectorsthemselves. Theorem 2 provides

the foundation for constructing orthogonal sets of eigenvectors for Hermitian matrices. The

theorem was discussed with relevance to matrices, however the generality of the theorem for

differential and intergral operators has far reaching consequences, laying the foundation for ob-

taining orthogonal eigenfunctions for differential operators and developing a theory of Fourier

series. These connections will be drawn in later Chapters. We also discussed the significance of

using the eigenvectors as a basis set and illustrated its utility in solvingAx = b. In the last part

of this Chapter we discussed similarity transforms and its utility in working with functions of

matrices as well as solutions of linear initial value problems. In this context we introduced the

Jordan canonical form and described a new set of vectors called generalized eigenvectors. The

reader should realize that geneneralized eigenvectors arerequired for non-symmetric matrices

where only a partial set of eigenvectors can be found.
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PROBLEMS

1. Skew-Symmetric Matrix

A matrix A is said to be skew symmetric or skew self-adjoint ifA = −A∗. Show that

the eigenvalues are imaginary (or zero) and that eigenvectors corresponding to distinct

eigenvectors are orthogonal.

2. Normal Matrices

If AA∗ = A∗A, thenA is said to be normal.

(a) Show that for any complex numberα,

||Ax− αx|| = ||A∗x− α∗x||

(b) If z is an eigenvector ofA with eigenvalueλ show that it is also an eigenvector of

A∗. What is the corresponding eigenvalue ofA∗ ?

(c) Letλ = µ + iν be an eigenvalue ofA with eigenvectorz. First show thatA can be

decomposed in the following manner,

A = AR + iAI ,

whereAR = A∗
R andAI = A∗

I . Next show thatz is an eigenvector ofAR and

AI with eigenvaluesµ andν respectively.

3. Consider a(4 × 4) matrix with one multiple eigenvalue. Write out the possibleJordan

canonical forms.

4. Symmetric Matrix

Consider the following matrix

A =





7 −16 −8
−16 7 8
−8 8 −5





(a) Find the eigenvalues and eigenvectors ofA?

(b) Find a solution toAx = b whereb = {1, 2, 1} by expandingx in the normalized

eigenvectors ofA.
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5. Consider the following matrix

A =





4 0 1
2 3 2
1 0 4





(a) Find the eigenvalues and eigenvectors of A?

(b) Find a solution toAx = b whereb = {0,−2, 3} by expandingx in the eigenvectors

of A.

6. Solvability Conditions

Consider the non-homogeneous equation

(A− λI)u = b, (5.56)

whereA is a square matrix of dimensionn. Let

u =

n
∑

j=1

cjφj, (5.57)

wherecj ’s are the coefficients of the expansion andφj ’s are the eigenvectors ofA.

(a) If A is self adjoint andλ in Eq. 5.56 is not an eigenvalue ofA, then obtain an ex-

pression for the coefficientscj in the expansion. What are the solvability conditions

for Eq. 5.56 (Fredholms Alternative Theorem)?

(b) Re-work part a) for the case whenλ is a particular eigenvalue ofA. Note how the

solvability conditions are connected to the eigenfunctions ofA.

(c) If A is a non self adjoint matrix with n linearly independent eigenvectors then the

solution results in

Mc = f .

Write out the components of the matrixM and vectorf

7. IVP

Using similarity transforms solve the system

dx

dt
= Ax
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with initial conditionsx(t = 0) = {1, 1, 1} where

A =





5 −3 −2
8 −5 −4
−4 3 3





8. Let

A =

(

−2 1
−1 −2

)

(a) Find the eigenvalues and eigenvectors ofA.

(b) Do the eigenvectors form an orthogonal set ?

(c) Using similarity transforms obtain the solution to

du

dt
= Au+ b

whereb = {1, 1} andu(t = 0) = {0, 0}.

(d) How does your solution behave ast tends to∞ ?

9. Skew Symmetric System

Using similarity transforms solve the system

dx

dt
= Ax+ b(t)

with initial conditionsx(t = 0) = {1/
√
2, 1/

√
2, 1} where

A =





−i i 0
i −i 0
0 0 −i



 , b(t) =





√
2t√
2t

exp(−t)





Comment on the asymptotic stability of the system.

10. Consider the initial value problem

d2u

dt2
+ 5

du

dt
+ 6u = e−t (5.58)

with initial condition,u(t = 0) = u′(t = 0) = 1
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(a) Reduce the above ode to a set of first order linear differential equations and represent

them in matrix vector form,
du

dt
= Au+ b(t) (5.59)

Write out the components for the matrixA and vectorsu, b(t) and initial condition

u(t = 0). Obtain the solution to Eq. 5.59 using similarity transformations.

(b) The above solution can also be solved using the corresponding Greens function,

g(t, ξ), for the second order differential operator given in Eq. 5.58. Using the

Green’s functions the solution to Eq. 5.58 can be expressed as

u(t) = c1u1(t) + c2u2(t) +

∫ t

o

g(t, ξ)e−ξdξ (5.60)

where the Green’s functiong(t, ξ) = exp[2(ξ − t)]− exp[3(ξ − t)]. u1(t) andu2(t)

are two linearly independent solutions to the homogeneous differential equation,

d2u

dt2
+ 5

du

dt
+ 6u = 0 (5.61)

Using Eq. 5.60 find the solutionu(t) for initial condition,u(t = 0) = u′(t = 0) = 1,

i.e findu1(t), u2(t) and the constantsc1 andc2. You will have to evaluate the integral

in Eq. 5.60 to obtain the complete solution.

11. Consider the following non-symmetric matrix with real coefficients,

(

a11 a12
a21 a22

)

(a) Derive the conditions on the coefficientsaij , when the matrix has two similar eigen-

values.

(b) In this situation show that the matrix can possess only one eigenvector. Derive a

general expression for the eigenvector,x in terms ofaij

(c) Write out the equation that will be used to obtain the generalized eigenvector,q.

Write out the form for the Jordan matrix.

(d) Show that when the matrix has two similar eigenvalues thegeneralized eigenvector

can always be obtained (i.e the solvability criterion are always satisfied).
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(e) Using similarity transforms obtain a solution to the following initial value problem,

dx1/dt = 3x1 + x2

dx2/dt = −x1 + x2

for the initial conditionsx1 = 1, t = 0 andx2 = 1, t = 0. Is the system asymptoti-

cally stable. Why?

(f) Qualitatively sketch your solutions.

12. IVPs

Consider the Initial Value Problem;

d3x

dt3
+ a1

d2x

dt2
+ a2

dx

dt
+ a3x = f(t)

with initial conditionsx(0) = x′(0) = x′′(0) = 0. Reduce this to a system of first order

equations of the form
du

dt
= Au+ b

(a) If a3 = 0, what are the conditions ona1 anda2 for the system to have a stable

solution.

(b) If a1 = −4, a2 = 3 and f(t) = sin(t) obtain a solution to the IVP using the

similarity transform method.

13. Normal Mode Analysis:Vibration of a CO 2 Molecule

Consider a spring and mass model of a CO2 molecule as shown in the figure below. The

oxygen molecules have massmo and the carbon molecule has massmc. The springs

have a spring constantk and obey Hooke’s law. Using Newton’s laws and assuming

OXYGENOXYGEN CARBON

x1 x2 x3

that the motion is constrained along thex− axis the system of equations describing the
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displacement of masses is

d2x1
dt2

= −a(x1 − x2)

d2x2
dt2

= −b(x2 − x1)− b(x2 − x3)

d2x3
dt2

= −a(x3 − x2)

wherea = k/mo andb = k/mc

(a) Assuming a solution of the form

xn(t) = xne
i
√
ωt n = 1, 2, 3

wherei =
√
−1 andω is a natural frequency of oscillation of the system reduce the

set of ode’s to an eigenvalue problem of the form

Ax = ωx.

(b) Find the eigenvaluesω.

(c) Find the corresponding eigenvectors.

(d) Noting that the components of the eigenvectors correspond to the displacement of

the molecules, give a physical explanation for eigenvectors.

14. Projection Theorem Consider the matrix

A =

(

1 −i
i 1

)

wherei =
√
−1.

(a) Find the eigenvalues and normalized eigenvectors ofA.

(b) Find the projectionsP1 andP2 of A.

(c) Using the projection theorem evaluateA2 andeAt.
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Chapter 6

Solutions of Non-Linear Equations

Non-linear differential and algebraic equations arise in awide variety of engineering situations

and we have seen some examples of non-linear operators in Chapter ??. Numerical solutions

of non-linear differential equations result in a set of non-linear algebraic equations. Although

there are a number of techniques available for solving non-linear algebraic equations, in this

Chapter we will focus on primarily two methods, the Picard and Newton-Raphson methods.

The primary goal here is to develop a framework to analyze non-linear equations. A large

number of excellent texts cover the variety of numerical methods available for solving non-

linear equations. In order to formally treat non-linear equations and discuss their convergence,

existence and uniqueness aspects, we need to introduce the metric space. In many situations we

can express non-linear or linear equations in the followingimplicit manner,

u = Lu

whereL can either be a linear or non-linear operator andu is the unknown we seek. Examples

of equations that can be cast in the form of Eq. 6 are

1.

x = tanx

2.

x = x2 + sin x+ 2

3.

u(x) =

∫ x

0

k(x, y)u(y) dy

103



4.

x = Ax+ b

Fixed Points: u is said to be a fixed point of the mappingL if

u = Lu

ThusL operating onu leaves it unchanged and is a solution toF (u) = u−Lu = 0. The method

of successive substitution can be used to determine the fixedpoint in the following manner,

un+1 = Lun n = 0 . . . ,

If u is a fixed point ofL then

lim
n→∞

un = u

andu = Lu. This method of successive substitution also known as Picard’s iterative method

will work only for a certain class of mappings or operators referred to as contractions. As the

name implies the mapping contracts the distance between successive iterates and the generated

sequence in Eq. 6 tends to a limiting valuev called the fixed point under certain conditions.

Before introducing the contraction mapping theorem let us formally define the metric space

which provides a framework for defining distances between elements in a space.

Metric Space(X, d) is said to be a metric space if the distance between any two pointsx andy

in X denoted byd(x, y) statisfies the following axioms More formally,

(i) d(x, y) ≥ 0, d(x, y) = 0 ⇒ x = y Positivity

(ii) d(x, y) = d(y, x) Symmetry

(ii) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X Triangular Inequality

Thus the metric,d(x, y) is simply a distance function and hence a scalar quantity. Some exam-

ples of commonly encountered metrics are given below

If x andy are two vectors inRn,

d(x, y) =

[

n
∑

i=1

(xi − yi)
2

]1/2
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If x = (x1, x2) andy = (y1, y2), then

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

which is the familiar example of the distance inR2, called the Euclidean distance. This metric

is used frequently in least squares fitting of data. Thep metric is a more general definition of

the metric,

dp(x, y) =

[

n
∑

i=1

|xi − yi|p
]1/p

, 1 ≤ p <∞

The∞ metric

d∞(x, y) = max
1≤i≤n

|xi − yi|

The∞ metric is useful in many engineering situations. While determining the uniformity of

temperature in an object the difference between the maximumand minimum temperatures is an

example ofd∞. The metric is related to the norm in the following manner,

d(x, y) = ‖x− y‖

If f(x) andg(x) are two continuous functions inC[a, b], then

dp(f, g) =

[
∫ b

a

|f(x)− g(x)|p dx
]1/p

, 1 ≤ p <∞

Example: To show that(X, d)4 is a valid metric space the distance function must satisfy

the axioms of the metric space. We illustrate this with the metric defined above for finite sums,

dp(x, y) =

[

n
∑

i=1

|xi − yi|p
]1/p

, 1 ≤ p <∞

It is easy to see that the postivity and symmetry properties of the metric are satisfied. In order to

prove thatdp(x, y) satisfies the triangular inequality we need to use the Minkowski Inequality

forfinite sums[?],

{

n
∑

i=1

|xi ± yi|p
}1/p

≤
{

n
∑

i=1

|xi|p
}1/p

+

{

n
∑

i=1

|yi|p
}1/p
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Then,

d(x, y) =

{

n
∑

i=1

|xi − yi|p
}1/p

=

{

n
∑

i=1

|xi − zi + zi − yi|p
}1/p

≤
{

n
∑

i=1

|xi − zi|p
}1/p

+

{

n
∑

i=1

|zi − yi|p
}1/p

(using the Minkowski Inequality)

= d(x, z) + d(z, y)

Thus,

d(x, y) ≤ d(x, z) + d(z, y)

which is the triangular inequality.

Convergent Sequences: Consider a sequence{uk}. We say that the sequence{uk} converges

to u, i.e.,

lim
k→∞

= u

if for every ǫ > 0, ∃ anN such that

d(u, uk) ≤ ǫ ∀ k > N

A sequence is said to diverge if it does not coverge.

Cauchy Sequence: uk is said to be a Cauchy sequence if∀ ǫ > 0, ∃N such that,

d(ui, uj) ≤ ǫ ∀i, j > N

Theorem: Ifuk converges then it is a Cauchy sequence.

Proof: If uk converges then

lim
k→∞

= u

Using the triangular inequality

d(ui, uj) ≤ d(ui, u) + d(u, uj)
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Sinceuk is convergent∃ anN such that

d(ui, u) ≤
ǫ

2
and d(u, uj) ≤

ǫ

2
, i, j > N

Thus∃ N such that

d(ui, uj) ≤ ǫ ∀ i, j > N

Note that a Cauchy sequence need not be convergent. Hence in aCauchy sequence the distance

between two points in the sequence can get arbitrarily close. However the limit value of the

sequence is not mentioned and it need not exist. This issue isresolved by invoking the concept

of a complete metric space.

Definition: A metric space(X, d) is said to be complete if every Cauchy sequence of points

from X converges to a limit inX.

Example: LetX [0, 1) which includes the value0 and excludes1. Then the sequenceun = 1− 1
n

is a Cauchy sequence in the spaceX since the limit of the sequence asn→ ∞ = 1 is excluded

from the space. IfX [0, 1] then the sequence is convergent inX. Thus convergence is clearly

concerned with the existence of the limit points in the underlying space.

6.0.1 Contraction Mapping or Fixed Point Theorem

Contraction Mapping : Consider the mappingF (x), such that

x = F (x)

x0 is a fixed point ofF if x0 = F (x0). Let (X, d) be a metric space andF : X → X. F (x) is

said to be a contraction if∃ a real numberk, 0 ≤ k < 1 (k independent ofx andy) such that

d(F (x), F (y)) ≤ k d(x, y) ∀ x, y ∈ X

This situation is illustrated graphically in the Figure below, where the distance between two

pointsx andy, d(x, y) is reduced upon applying the mappingF (x) to each of the points.

Theorem: Let (X, d) be a complete metric space and letF : X → X be a contraction. Then∃
a unique pointx0 in theX such thatx0 = F (x0).

Proof: Generate a sequencexn from the mappingF (x) in the following manner,

x1 = F (x)
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x2 = F (x1)
... =

xn = F (xn−1)

We first show thatxn is a Cauchy sequence. Consider the distances,

d(x2, x1) = d(F (x1), F (x)) ≤ k d(x1, x)

d(x3, x2) = d(F (x2), F (x1)) ≤ k d(x2, x1) ≤ k2 d(x1, x)
...

d(xm, xm−1) = ≤ km−1 d(x1, x)

Using the triangular inequality,

d(x3, x1) ≤ d(x3, x2) + d(x2, x1)

d(x4, x1) ≤ d(x4, x3) + d(x3, x1)

≤ d(x4, x3) + d(x3, x2) + d(x2, x1)

Generalizing, form > n and using the above results,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + . . . , d(xn+1, xn)

≤ km−1 d(x1, x) + km−2 d(x1, x) + . . . , kn d(x1, x)

= [km−1) + km−2 + . . . , kn] d(x1, x)

≤ kn [km−n−1) + km−n−2 + . . . , k + 1]d(x1, x)

Since0 ≤ k < 1,

d(xm, xn) ≤ kn
∞
∑

i=0

ki d(x1, x) =
kn

1− k
d(x1, x)

where we have used the summation of the geometric series,

∞
∑

i=0

ki =
1

1− k

Since0 ≤ k < 1, d(xm, xn) → 0 asm,n → ∞. Thusxn is Cauchy. Further since(X, d) is a

complete metric space,xn is convergent inX. Let

x0 = lim
n→∞

xn
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To show thatx0 is a fixed point ofF (x) we use the continuity of the mappingF (x). SinceF (x)

is continuous,

x0 = lim
n→∞

xn+1 = lim
n→∞

F (xn) = F ( lim
n→∞

xn) = F (x0)

To show thatx0 is unique: Assume thatx0 andy0 are two fixed points ofF (x), i.e.x0 = F (x0)

andy0 = F (y0).

d(x0, y0) = d(Fx0, F y0) ≤ k d(x0, y0) < d(x0, y0)

Henced(x0, y0) = 0 andx0 = y0. Thus the fixed point is unique.

Some notes about fixed points. IfF (x0) = x0 thenF p(x0) = x0. Further ifx0 is a fixed

point ofF p it need not be a fixed point ofF (x).
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Figure 6.1: Picard iterates are illustrated for different functionsF (x). Convergence toward
the fixed pointx0 is observed for cases (a) and (c). In these situations the|F ′(x)| < 1.Since
|F ′(x)| > 1 for case (b) the iterates diverge and the iterates oscillatearound the fixed point for
case (d) where|F ′(x)| = 1. In all cases the initial guess isx.
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