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Chapter 1

Introduction to matrix, differential and
iIntegral equations

Matrix, differential and integral equations arise out ofdets developed to describe various
physical situations. A few examples of these equationsahae in the analysis of engineer-
ing problems are illustrated in this Chapter. Since the ®us mainly concerned with linear
systems we will conclude this Chapter with a formal defimtod linear operators.

1.1 Matrix Equations

Consider the following collection of linear equations, alihtan be compactly written in matrix

vector notation as

Ax =D (1.1)
where,
ai; Q2 ... Qip T b
Alnxn) = CLl21 CL.QQ o a?n . .I:Q b by
an1 a,;g o a;m xn by,

We are interested in finding given the matrixA and vectob. The matrix equation represents
a collection of linear algebraic equations which arisesajunhodels developed to describe a
wide variety of physical situations. These include cheinieactions, staged processes such
as distillation and gas absorption, electrical networkd aarmal mode vibrational analysis
of molecules. Matrix equations also arise during numesgcdlitions of differential equations
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using finite difference, finite volume and finite element noelh as well as in the numerical
solution of integral equations using quadrature methods.

1.2 Differential Equations

Reaction-Diffusion Equation

Consider the first order reaction,A B, occurring in the inner surface of a cylindrical
catalyst pellet of radiug and lengthZ as shown in Fig. 1]1. Performing a mass balance on a

z=0 z=1L

Figure 1.1: Schematic of catalyst pellet of radijignd lengthl

differential element of thicknesA~ for species A,

0C4
ot

TR2Az = TR — j. i a.TR? — k1 Ca2r RAZ (1.2)

wherej. is the mass flux of the species A alds the first order reaction rate constant. Dividing
Eq.[1.2 withr R?Az and using Ficks law,

. oC
Jz = —DABa—A (1.3)
z
Eq.[1.2 reduces to
0C 4 02Cy
5 = DAB—aZ2 — 10y (1.4)

wherea; = 2k;/R. Eq.[1.4 is the unsteady state reaction diffusion equatibose solution
yields the concentratio's(z, t). We further note that EQ. 1.4 is a partial differential edprat
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whose complete formulation requires one initial condit{®) and two boundary conditions
(BCs) to be specified. The initial condition is

Ca(z,t=0)=0 (1.5)
The boundary conditions are
Ca(z,t) = Cyo at z=0 (1.6)
and
dCa _ 0 a z2=1L (1.7)
dz

Eq.[1.7 assumes that the face of the pore-atL is non-reactive.
Question: Modify the boundary condition for a reactive peral atz = L.

Eq.[1.4 is an example of a partial differential equation (PBiEce the dependent vari-
able,C4(x,t) depends on more than one independent varighle. At steady state, the equa-
tion reduces to the following ordinary differential equeti ODE),

d*Ca

D
AB™ 3

— ;04 =0 (1.8)

Eq.[1.8 along with the boundary conditionszat= 0 andz = L constitute what is commonly
referred to as a 2 point boundary value problem (BVP) sineebttundary conditions at two
ends of the pore are required to complete the problem spatadfic

Unsteady State Heat Conduction Equation

Consider a three dimensional solid objeéetheated with an internal sourpér, y, ) as
shown in Fig[ 1.R. The unsteady state heat conduction emuisti

oT
PCr gy =V RV +p(2,y,2) (1.9)

wherep is the density(), is the specific heat capacity akdhe thermal conductivity, which
can in general be a function of the spatial co-ordinates.sbh&ion of Eq[1.D with appropriate
initial and boundary conditions yield the temperatilier, v, z, t). EQ.[1.9 is an example of a
partial differential equation that arises in conductioatheansfer. Unlike the two-point BVP
discussed earlier the boundary condition for the heat emuetspecified on the entire boundary
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n-kV7l =hT —-Tx)onT
r

Figure 1.2: Heat conduction in a 3D objedt denotes the domain ardthe surface of the
object. At the surface heat is lost by convectifns the heat transfer coefficient.

I as illustrated in Figl_1]2. If the heat transfer coefficieniridependent of the spatial co-
ordinates Ed. 119, reduces to

oT

C —

Pora

At steady state, in the absence of the source term,y, z), the heat conduction equation

= kV2T + p(z,y, 2) (1.10)

reduces to the Laplace equation,
VT =0 (1.11)

Note: The gradient operator in Cartesian co-ordinatesfiae®as,

oT oT oT
VT = exa + eya—y + eza (112)

and the Laplacian is
0*T N 0T N 0T
oxr?  0y?> 022

V2T = (1.13)

The Schrodinger Wave Equation

The wave equation forms the cornerstone of quantum mechatfti@rises in the de-
scription of atomic particle positions and quantizatiorenérgy levels. The time independent

Schrodinger wave equation is
2

V2, +(E, - V)¥, =0 (1.14)

81im
whereh is Planck’s constanty: is the particle masd/ is the potential energy field in which

the particle is located.E,, are the corresponding energy levels of the particle @&pcr) is
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the wavefunction which is a function of the spatial co-oed@s. The probability of locating a
particle in a volume elemenl is ¥ (r)U*(r) dr, where¥*(r), denotes the complex conjugate
of U(r).

1.3 Integral equations

Many physical situations naturally give rise to integrali@gons. Integral equations can some-
times be derived from differential equations. Integralsaapns can be broadly classified into
Volterra and Fredholm type equations. The Volterra integgaation of the first kind is,

| ket as = sio) (1.15)
wherek(z,y) is the kernel of the operatof(x) is usually some known function andy) the
solution we seek lies in the integrand. The kernel of the atpels related to the physics of the
problem that results in the integral equation. A charastierfeature of the Volterra equation is
that the upper limit of the integral is not a fixed quantity.

The Fredholm integral equation of the first kind is,

b
| Mewuwdy= 1) (1.16)

The main difference between thea\/olterra equation[ Eqlarthhe Fredholm integral equation,
Eq.[1.16 is that the limits of the integral in the Fredholm a&tipn are fixed. Broadly speaking
the Volterra type integral equations are related to initelue problems (IVPS) giving rise to
the variable upper limit in the integral of Hq. 1115 and thedfrolm type equations are related
to boundary value problems (BVPs). The final point to notéhat integral equations do not
require the specification of any additional initial and/oubdary conditions. These conditions
are built into the integral equations themselves.

One final classification that is important is that both thegnal equations given above
were referred to as first kind equations. The general form\@igerra integral equations of the
second kind is

|t wuty) dy-+ aute) = £ (1.17)
0
whereq is an arbitrary scalar quantity, and the second kind Fredlegjuation is,
b
[ Mgty + aute) = f(o) (1.18)
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In the second kind equations the unknow(n) appears both inside and outside the integrand.

Example: The relationship between an IVP and \Volterra operators eaitlistrated with a
simple example. Consider the following IVP,

d
d_ltL +aou=0 u(t =0) = ug (1.19)

wherea and/3 are constants. Integrating Eqg. 1.19 and using the 10, E§.caf be transformed
into the following Volterra integral equation of the secd<ad,

/t au(y) dy + u(t) = ug (1.20)
0

The integral equation has a simple kernel and satisfies e tonditions of EqL_1.19. Further
the solution to Ed. 1.19 isy(t) = ug exp(—at). Naturally this is also a solution to its equivalent
integral equation, E@._1.20.

1.4 Linear Operators

Our primary concern as engineers is to obtain solutions eodifierent classes of equations
presented above. Presented with an equation the natursli@quene poses is whether the
equation is solvable or not. This is the problem of existeri€¢he problem is not solvable,
one has to revisit the model assumptions and the underhyiygigal processes that govern
the equation. If the problem is solvable, we inquire if thuson is unique. These questions
of existence and uniqueness form a general theme in this. bdoist of us are familiar with
these ideas with the solution of linear equations of the fgiven in Eq[5.5P. Can we now
generalize these ideas to a more general class of equaongRXample under what conditions
can one examine the existence and uniqueness conditiokgfdr.4 or EqL_1.15? A unifying
theory that integrates all the above questions about existand uniqueness is the theory of
linear operators, which will form an underlying and unifgitheme for the course. The theory
is general and as long as the operator is linear it will beiagple. A class of linear operators
which will require a somewhat more specialized treatmeatpartial differential equations.
Before we proceed further, let us formally define a linearafue.

Consider the generic equation
Lu=f (1.21)
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whereL is the operator; is the solution we seek anfdis usually specfied as part of the problem
definition. In the matrix equatioh = A, v = x andf = b L is said to be a linear operator or
linear transformation if it satisfies the following propest
L(au) = alu ue XVa
Lu+v) = Lu+Lv u,v € X

whereX is a linear space on which the operatoacts. We will return to a formal definition of
linear spaces which contain both vectors and functions latthe text. L can also be looked
upon as a mapping of elementsininto itself, L : X — X anda lies in the associated complex
scalar field of the operatoi[1]. We note that both properiest be satisfied for the operator to
be linear. Further one property does not imply the otherithfee of the above two properties

are not satisfied the operator is said to be nonlinear. Batabove requirements of a linear
operator can be integrated into a single property,

L(au + pv) = aLu+ SLv u,ve X Va,p (1.22)
Example 1: The identity operator maps elementsXninto itself.
Tu=u Yu e X (1.23)
To show thatl is linear, we note that

Ilau+ Bv) = olu+ plv

= au+ pfv

Example 2: The (n x n) matrix A is a linear transformation since

Alau+ pv) = Zaij(ozuj—i—ﬁvj) i=1...n
j=1

== aZaijuj—i—ﬁZaijvj 1=1...n
i=1 j=1
= aAu+ [fAv

Example 3: The reaction diffusion equation, where the operator
0 0%u

U
Lu = E —DAB@—FOQU (124)
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0 0?
L(au+ pv) = w — DABW + ai(au + Bv)
ou d%u ov o*v
= O‘(E_DABw"i_alU)_'_ﬁ(E_DAB@_'_OCIU)
= alu+ fLv

Hence the differential operator is linear. Since the operatolves both the differential equa-
tion and its associated initial and boundary conditions, Ith and BCs must also satisfy the
linearity property for the differential equation to be d#died as linear. This can easily be veri-

fied for the reaction diffusion equation diffusion, [£q.|1.4.

The linearity property of differential operators, has am@ortant consequence from the
viewpoint of obtaining solutions. It simply means thati&ndv are solutions of the differential
equation, thenv = au + fv is also a valid solution. This idea, technically called granci-
ple of superpositionis used widely in the solution of of both ordinary and partdferential
equations. A familiar example is the solution of the linedfiedential equation

d*u 9
@—muzo

The solution to the above equatiar(x) = ¢;e™* + c;e”™*. Since the differential equation is
linear, not only are;; = €™ andu, = e~ independent solutions, = c;u; + cus IS also a
valid solution. The constants andc, are obtained by using the appropriate boundary or initial
conditions. The principle of superposion has the followtogsequence for linear operators. If

n

u = E C;Uj

=1
then,

n n
Lu=1L E CU; = E c; Lu;
i=1 i=1
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Example 4: \olterra Integral equation (Ef._1.115).
Lo+ p0) = [ ble.plauts) + o] dy
— [ Heautdy+ [ ke)poty) dy
0 0

~ a / Kz, y)uly) dy + B / k(, y)o(y) dy
0 0
= alLu+ SLv

Example 5: To show that if an operator satisfies the propérty + v) = Lu + Lo, it need not
satisfy L(cu) = aLu. ConsiderL to be the operation of complex conjugationzlandw are
two complex numbers theh(z + w) = Lz + Lw. Clearly L(az) # aLz if a is a complex

scalar.

Example 6: To show that if an operator satisfies the propérty + v) = Lu + Lo, it need not
satisfy L(au) = aLu. Consider the operation of mapping the componeéntsi2]z, of a 2d
vector into a point;

<{E1) B T+ x93 T1T9 >0

2 0 otherwise

Assuming a real field of scalars, and vectors: = (1,—1) andv = (1,1), L(u +v) = 0

whereasLu + Lv = 1.

Before we conclude, we briefly discuss the classificationsqufations into homoge-
neous and inhomogeneous. In the generic equatior, Ed. He2dquation is homogeneous if
the right hand sidef = 0. HenceAx = 0 is an example of a homogeneous set of linear
equations. In the case of differential equatignepresents the term containing only the inde-
pendent variables anfl represents the operator acting on the dependent varialdecdthe
reaction-diffusion equation, Eg. 1.4 and the Schrodinggre equation, EQ. 1.14 are examples
of homogeneous differential equations. The unsteady btsde equation, E@. 1.9 is inhomo-
geneous due to the presence of the source i€nmy, z,t) and the integral equations given
in Eqs.[1.1b and E@._1.116 are both inhomogeneous integratiegs. In the case of differen-
tial equations the ICs and BCs can also be classified as haraoge and inhomogeneous in a
similar manner. This classification is important, as we sabn see that determining the solu-
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tions to the homogeneous problem forms the first step in gtgdite existence and uniqueness
conditions for the inhomogeneous problem.

1.5 Summary

In this Chapter we have introduced some simple examplesraduskinds of equations that
commonly arise in engineering and sciences. Starting wdlrimequations, the basic differ-
ence between ODEs and PDEs should be clear from the examplenped above. ODESs can
further be classified into IVP’s where all the conditions specified as an initial condition at
timet = 0 and BVP’s where the differential equation is accompanietddyyndary conditions.
The classification presented in here is preliminary. PDEshmfurther classified into vari-
ous categories and these will be discussed later in the $athe examples and a preliminary
classification of integral equations was also introducetedral equations are more specialized
and do not arise as often in the description of physical gmislas do differential equations.
Sometimes integral equations have an equivalent repedgemnts a differential equation as we
encountered with the IVP problem. In many cases this eqeriva is not feasible and the inte-
gral equation has to be solved directly. Linearity is an inigoat concept and its consequence,
the principle of superposition, used routinely for solviimgar operators should be recognized.

Finally the notion of homogeneous and inhomogeneous emsashould be firmly understood.
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PROBLEMS

1. If L is a linear operator show that is also a linear operator. Note théat = LL and so
on. Use the method of mathematical induction for your proof.

2. Using the properties of a linear operatbfy + v) = Lu + Lv and L(au) = aL(u),
identify which of the following operators are linear.

(a) )
d“u e du
Lu:@Jr(e —|—JI2)£+JJU

(b)

dc 0 oc
Lc—a—a—x<D(0)%)—kC

whereD(c) is a concentration dependent diffusion coefficient arnsl the reaction
rate constant. Rework this problem withas a function only of.

(c)
_ u(y)
Lu= | —L—dy = f(x
0/\/ax—ﬁy y=Jl@)
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Differentiate the above \olterra integral equation usimg tules for differentiation
under an integral sign. Is the resulting operator stilldirie The process of differ-
entiation converts the first kind Volterra integral equatio that of the second kind,
where the unkown appears both inside the integral as well as outside. Nogs1d

g are arbitrary scalars.

3. Using the properties of linear operators, determine whbicthe following operators are

linear

(a) The divergence operator,
Lu=V-a(x,y,z)Vu

(b) The curl operator,
Lu=V xu

(c) The Fredholm integral operator

Lu= /b e u(z)dr + u*(y)

a

4. In the following equations of the generic forba = f, identify the operator and deter-

mine if the operator is linear or not.

(a) Heat equation with spatially dependent thermal condiyct

ou

(b) Thenth order ordinary differential equation

o0"u " u
aoaxn + alaxn_l + -t ay = f(IL')

(c) The 3D wave equation:

= 2V

a?
(d) Integral equation:

xT

/e(:”_y)dy W 4 u(x) = f(x)

0

12



(e) The Integro-differential equation,

¢
d t—t/
u—/e = u(t) dt’
0

==
() The Korteweg -de Vries (KDV) equation used in the studyvater waves

@ + cua—u + @ =0
ot or 0z
(g) Which of the above equations given in parts (a) - (f) anmbgeneous.
5. Check the following transforms for linearity

(a) The Laplace transform

(b) The Fourier transform
_ _ ]' T eiwt
1= L0 = = | s

6. Using the following dimensionless variables,
u=Cy(2)/Cao,x =2/L

the dimensionless form of the steady state differentiahiqn (Eq[1.8) is,

%—&u:o O<z<l1 (1.25)
where¢? = 2k L? /D 45 R, andL is the pore length ang is the radius of the pore. Obtain
analytical solutions for both the dead end pore and theiveaehd pore. Qualitatively
sketch your solution for the dimensionless concentratiéor small and large values of

the parametep®. Physically interpret these two conditions.
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Chapter 2

Properties of Matrices

In this section we review some basic properties of matricesA be am x n matrix,

a1y a12 N AT

21 29 ... QA9pn
A(m xn)=

Am1 Am2 .. Qmnp

wherem is the number of rows and the number of columnsa,; will the 4, j element in the

matrix. A column vectok is ann x 1 matrix,

x1
Z2
x(n x 1) =

Ty

Matrices arise frequently in engineering applications@aassume a variety of forms, some of
which are illustrated below. Many of these forms arise dyriamerical solution of differential
equations and recognizing the form of the matrix is impdrtanile choosing the appropriate

solution technique.

2.1 Equality of matrices

Two matricesA andB are said to be equal to each otheuwif = b;;. Only matrices of similar

order can be considered to be equal.

15



N N

(a) Diagonal (b) Tridiagonal (c) Banded

AVAN &

(d) Block diagonal (e) Lower triangular (f) Dense

Figure 2.1: Various classifications of commonly occurringtrites. The solid lines and filled
regions represent non zero elements. Sparse matricesh@ehycontain a sparse distribution
of non-zero elements in the matrix.

2.2 Addition of matrices

Matrices are compatible for addition only if the correspiagchumbers of rows and columns
are similar. Matrix addition is both associative and comativé

la. (A+B)+C=A+(B+C) Associative
b A+B=B+A Commutative

2.3 Scalar multiplication

When a matrix is multiplied by a scalarall the elements of the matrix are multiplied

(670551 g ... QQip

(670531 gy ... OQaop
aA(m xn) =

Ay A2 ... OQyp

2.4 Multiplication of Matrices

Two matricesA (mxn) andB(nxp) are compatible for multiplication if the number of columns
of A are similar to the number of rows @&. Matrix multiplication satisfies the following

16



properties

3a. A(B+C)=AB+AC
3b (A+B)C=AC+BC
3c  (AB)C = A(BC)

3d  Ingeneral AB # BA

2.5 Transpose of a matrix

The transpose of a matriX is obtained by interchanging its rows and columns. The pass

is denoted byA”. The operation of a transpose satisfies the following ptogser
40 (A+B)T=AT +B”
b (AT =A
4c  (AB)T =BTAT

2.6 Trace of a matrix

The sum of the diagonal elements of a square matrix is knowheasrace. The trace of an
(n x m) square matrix,
TraceA = » _ a;;

i=1
A number of the properties of matrices listed above can begoraising index algebra. We

illustrate these manipulations with some examples whielr¢lader should get acquainted with.
Example: Matrix vector multiplication
AX:b%Za'ijxj:bi 1=1...m
j=1
whereA is an(m x n) matrix andx is (n x 1) andb has dimeniongm x 1).

Example: Matrix multiplication

P
A(mXp)B(an):C(mxn)%Zaikbkj:cij i=1...m, j=1...n
k=1

17



Example: To show tha{ AB)” = B"A”. Letc]; be the element ofAB)”
Cij = Z ik
k=1
ch = D aib
k=1
Let d;, be the element dB” A”. We need to show that; = ¢,
dip = Z bjiak;
j=1
dij = Z brian,
k=1
= > _auby =]
k=1

The second line in the algebra above is obtained by integihgrthe indexk with j. This
example illustrate manipulations with indices that thedexashould be acquainted with.

Example: To show that, TracéAB) = Trace(BA)
Trace(AB) = Z Z ik
Trace(BA) = Z Z bik i

We have assumed that is an(m x n) matrix andB is an(n x m) matrix. In the second line
of the above equation, the indices have been exchanged angbfier limits in the summation
have been consistently altered.

2.7 Symmetric and Hermitian Matrices
The matrixA, is said to be symmetric if
A=AT (2.1)

18



We note that the above notion of symmetry is restricted tb mestrices. If the matrix has
complex elements then we defide" as the matrix obtained by taking the complex conjugate

of AT. Hence
T [

A*=A =AT

Note that the operation of taking the transpose and complepjigation commute.

A matrix is said to be Hermitian if

A=A (2.2)

The above definition includes real matrices as well. In theeaaf real matrices EQ. 2.2 is
equivalent to Ed. 2]1.

Example:
SE IO
Example:
A:<1—ZHL 18Z) A*:<1jl—zi 181)
Example:
A=) A=l )
Example:

Only the matrix in the 3rd example is Hermitian. Clearly a nxatvith complex elements on
the diagonal cannot be Hermitian. The last example is an pbeaai a skew Hermitian matrix
whereA =-A*

Example: To show that the product of two symmetric matrices need nalybemetric. LetA
andB be two symmetric matrices.

(AB)" = B"A” = BA # AB
This is an example of a proof which did not involve the use dfdes.
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2.8 Inverse

The inverse ofA denoted byA ! is such that
AATT=ATA=1

where the identity matrix is a diagonal matrix with 1’s on the diagonal.

Example

A — air a2 Al — L Q22 —ai12
a1 Qoo |A| \—a21 an
where|A | = ajjas2—asa12 is the determinant of the matrix. We can generalize the definition
of the inverse by using the adjoint or adjugate of a matrix.

2.9 Determinants, Cofactors and Adjoints

The minor| ;| of an element;; in the matrixA is the determinant of ath — 1) x (n — 1)
matrix formed by omitting the’" row and thej” column. The cofactor of the element,

Ay = (=1 | My

The determinant of an x n matrix expressed as an expansion in terms of the cofactors is

Al = ) Ay,
j=1
= > ay(—1)"| My,
j=1

The adjoint of a matrix, denoted as &djis the transpose of the cofactor matrix whose elements
are made up of};; (Eq.[2.9). This definition should not be confused with theoadjoperator
whose definition we will encounter later in the text. The m®eeof a matrix can be expressed
using the definition of the adjoint by noting that

AadiA = |A|I
(adjA) A = |A[I

20



which implies that

A™' = —adA
KN
Example
1 2 -1 5 —1 7 1
A=(0 3 2], adA=|2 2 -2/, A‘lzﬁade
1 -1 1 -3 3 3

2.10 Echelon forms, rank and determinants

The echelon form for any matriA is such that the number of zeroes preceding the first non-
zero element in every row increases row by row (starting ftieenlst row). The echelon forms
can be obtained by performing elementary row operationdhemtatrix. Some examples of
row reduce echelon forms are given below,

110 2
((1) ;) 0000
0 00O

Clearly if the number of zeroes preceding the first non-zéement is the same in theand

Tt DN Ot
=W N

(2.3)

S O O NN
OO = =

0 0

k + 1 rows, the first non-zero element in the+ 1 row can be made zero by elementary row
operations. Once the echelon forms are obtained it is eagytioce the rank of the matrix. The
rank r of a matrix A is the number of rows containing non-zero elements in theremuced
echelon form. Using the above definition, the rank of the ioasrgiven above are 2, 1 and
3 respectively. From the definition of the rank it is easy te daatr < min(m,n), r # 0
(unless all the elements in the matrix are identically zefogimilar definition of the rank can
be generated using column operations. The row rank is egtiatcolumn rank or equivalently
the maximum number of linearly independent rows is equdiéanaximum number of linearly
independent columns in a matrix. In subsequent use of the @@ will use the definition
based on the row rank as this will provide a convenient metbodbtaining solutions of linear
systems of equations. An additional definition of the rartbased on the determinant. The rank
is the order of the largest non-zero determinant in the malfrthe rank of a matrix ig, then
there is at least one determinant of oréléhat is nonzero. All determinants of ordes- 1 must

vanish.
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Some examples of obtaining the ranks of matrices using thelec forms are given below,

Example: 8 x 3) matrix, withr = 3.

1 2 -1 1 2 -1 1 2 -1
03 2 R3;R1 0 3 2 3R3:>2R2 03 2 (2.4)
1 0 1 0 -2 2 0 0 10
Example: 8 x 3) matrix, withr = 2.
1 2 -1 Ry —2R, (1 2 -1 R. — R 1 2 -1
2 3 2 — 0 —1 4 3_> 2 -1 4 (2.5)
1 1 3 R; — Ry 0 —1 4 0 0 O
The rank of the above matrix can be obtained by column oersiti
1 2 -1 Cy—C 1 1 —4 110
2 3 2 — (21 -4 03:102 2 10 (2.6)
11 3 C3—3C; \1 0 O 100

The above example illustrates that the rank can be detednigesither the row or column
reduced echelon forms. This is a consequence of the prapeaittthe order of the smallest non-
zero determinant of a matrix is unchanged by elementary moeolumn operations as carried
out above (show this). Some elementary properties of détamts can be understood from the
above examples. For a square matrix{ n) the determinant is non-zero if and onlyrit= n.
Adding a multiple of one row to another leaves the deterntinachanged. Thus in EQ. 2.4
above, the determinant of the matrix is 10, row operatiBys— R; leaves the determinant
unchanged, however the last row operatiéiy + 2R, changes the determinant to 30, sirfte

is multiplied by 3. The last property can easily be provechilite help of cofactor expansions.
To show that row operations,R; + R, leaves the determinant of anx n matrix multiplied
by «,

n

Al = D (aay; + Bag) Ay
j=1
= aayjAs; + Z Bag;Avj
1 j=1

Jj=

n
= « Z CLUAU
j=1

= alA]
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Since the first row of the matrix is a multiple of the second foank = 0), the second term in
the second line above is identically zeroalt= 1 then the determinant is unchanged.

PROBLEMS

1. Consider the matrix
1 2 -1
A=1|1 3 5
21 -1
(@) FindA™T, A1, A2 defA) and detA®). Use the adjoints to find the inverse.

(b) Find the solution tAx = b whereb = (-1, 1,3)T

2. Consider the matrix

3. A skew symmetric matrix is such that
AT =—A
(@) Show that a skew symmetric matrix is square.
(b) What are the diagonal elements of a skew symmetric matrix

(c) If Alisan @ x n) matrix then show thatA — AT) is skew symmetric.

(d) Show that any square matrix can be decomposed into a saymohetric and skew

symmetric matrices.

(e) Show that a Hermitian matrix can be written as the sum @&ah symmetric ma-
trix and an imaginary skew symmetric matrix. Check this gty with a suitable

example.
4. Show tha{AB)T = BT AT,
5. Using the definition of cofactors and adjoints show that
A(adjA) = (adjA)A = |A|L
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10.

11.

If A andB are two noncommuting Hermitian matrices such that
AB — BA =iC,
prove thatC is Hermitian.

The sum of the diagonal elements in a square matrix is krasithe trace. Show that
trac§AB —BA) =0

If A andB are Hermitian matrices, show theAB + BA) andi(AB — BA) are also

Hermitian.

If C is non-Hermitian, show thaf + C* andi(C — C*) are Hermitian.

A real matrix is said to be orthogonal X~! = A”. Show that the product of two
orthogonal matrices is orthogonal. Further, show thatAlet= +1. Note: If A is
complex andA~! = A* thenA is said to be unitary.

Orthogonal matrices arise in co-ordinate transforomati Consider a poiritz, y) in the
X — Y plane. If theX — Y plane is rotated counter-clockwise by an anglthen the
point (x,y) is transformed to the poirite’, v') in the X’ — Y’ co-ordinate system. The

rotation operation can be represented by a matrix equation

Ax =x

(Som cam) (1) = (0)

In 3 dimensions, rotation about theaxis by an angle is represented by

or

cosp) sing 0
B=| —sing cosp 0
0 0 1

Verify that A andB are orthogonal matrices.
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Chapter 3

Vector or Linear Spaces

The vector or linear space is the simplest of the abstraatespthat we will encounter. A
vector spaceX is a collection of vectors that can be combined by additioth @ach vector
can be multiplied by a scalar. The elements of a vector spatesfysthe following axioms. If
u,v,w € X anda andg lie in the associated field of scalars, the elements in thiowvepace
satisfy the following axioms,

1. Linearity:

ut+v=v+u

)

1) u+(v+w)=(ut+v)+w
) Thered aunique vectod suchthatt +0=u Yue X
)

u+ (—u)=0

(2a)  a(fu) = afu
(2b) (a+ B)u=au—+ Pu
(2¢)  a(utv)=oau+av

In order to show that elements in a sétonstitute a vector space, the elements must conform to
all the properties of the linear space listed above. Thegat@s of a linear space simply allow
for vector addition and multiplication of the elements bycalar. Examples of vectors spaces
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are then-dimensional vector space which consists of vectors witkal elements, also referred
to asR”. Alternately the elements that constitute the vector candmplex. This is known
as the spac€”. Functions can also make up a linear space. Hence the sdtaoindihuous
functions on the interval [a,b] make up a vector space, d&lle, b]. The reader should ensure
that these examples satisfy the properties of the linearespa

3.1 Linear Independence, Basis and Dimension

The notion of linear independence and dependence are iamp@mnd desirable properties for a
collection of vectors. The ideas developed in this secttemraportant while obtaining solutions

to linear equations and lay a general framework for obtgirsiolutions to various classes of
operators. A collection of vectons;, u, . .. u, are said to be linearly independent if the only
solution to

aju; + asuy ..., = 0 (31)

is the trivial solution i.e.c; = 0 for: = 1...n. EQq.[3.1 represents a linear combination of
vectors. If there exists some valuesogf not all zero, such that EQ. 3.1 is satisfied then the set
of vectors are linearly dependent. In other words for thésbe linearly dependent, non trivial
solutions exist for Ed. 311. We illustrate the notion of lméndependence by relating them to
solutions of homogeneous linear equationsy;l€onsists of a collection of vectors R™ then ,

U1 U12 U1n

U21 U22 Uon
u; = Uz = . U, =

Un1 Un2 Upn

wherewu;; is theith element of the vecton; then Eq[3.]l can be recast as a collection of
homogeneous linear equations which can be represented as

Aa=0 (3.2)
where
Uy U2 ... Ulp (03]
U21 U292 ... U9y (6)
A(nxn)= ) _ _ and o =
Up1 Up2 ... Upp (67
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Hence in order to examine whether the set of vectors givergifBE is linearly independent
we can equivalently seek solutions of the set of linear aljetequations Eq. 3.2. If EQ._3.2
has nontrivial solutionsa; # 0 for any:) then the set of vectors is linearly dependent. If the
only solution is the trivial solution«; = 0 for all 7) then the set is linearly independent. We
illustrate this with some examples

Example 1 Consider the set of vectors

1 1 0
u; = 2 , Ug = -2 , U3z = 1
1 1 1
Recasting them into a set of algebraic equations of the fayif8E,
1 1 0 (03]
Aa =2 =2 1] | =0

1 1 1 Q3
Using row operations, it can be shown that the solution tatheve equation is only the trivial
solution. The determinant ok is non zero since the rank = 3. Hence the set of vectors are

linearly independent.

Example 2 Consider the set of vectors

1 -1 0
u; = 2 , Ug = 0 , Uz = 1
1 1 1

Recasting them into a set of algebraic equations of the fogqniBE., it can be shown that the

non trivial solution is,

wherec is an arbitrary constant. Hence the set of vectors are Indapendent. From the last
example we can see that if any two vectors in a set are lindapgndent then the entire set is
linearly dependent. We can generalize this observation.

Theorem: If a subset of vectors in a set of vectors are linearly depatthen the entire set is
linearly dependent.

Proof: Consider a set af vectors where the first, vectors are linearly dependent.

=1

i=m+1
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Since the first sum containing vectors fram= 1 to m forms a linearly dependent set, this
implies that there are values af for which,

m
E ;U = 0
i=1

Further since the second sum containing terms ficmm + 1 to n are linearly independent
a; = 0 fori = m + 1 ton. Hence there will always exist non trivial values @f such that

Eq.[3.3 is satisfied and the set is linearly dependent.

3.2 Basis

Linearly independent vectors have a number of useful ptigserAn important property con-
cerns using a linearly independent set of vectors to reptegber vectors. We will see later
that these ideas can be extended to represent functionsllasifage vector x lies in a finite
dimensional spac& then we would like to represestin a collection of suitable vectors which
we will call a basis for the spac&. A finite collection of vectorsy; is said to form a basis
for the finite dimensional spack if each vector inX can be represented uniquely as a linear
combination of the basis vectors.

x=> a¢;=0 V xeX (3.4)
=1
The term unique in the definition implies that for a given basmatp, andx the «; values are
uniquely determined Let us illustrate these ideas with ssim@le examples of basis sets.

Example 3 The vectors

0

o= |1]| ¢3=
0

¢1 =

o O =
_— o O

form a basis for vectors iR?, which implies that any vector iR? can be represented uniquely
using a linear combination of the above vectorsa,lb andc, represent the components of an

arbitrary vector inR? then
a

a1 + ey +agps = | b
c
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implies that the coefficients of the expansion are uniquelguined as, = a, as = b and
a3 = C.

Example 4 The vectors given in Example 1 also constitute a basis fotove inR? since the
determinant of the resulting matrix formed from the colunecters is non zero.

From the above examples it is clear that forradimensional vector space any setof
linearly independent vectors form a suitable basis for gaes. In seeking a suitable basis, the
representation is complete when the coefficients of theresipa given in Ed._314 are obtained.
Clearly some basis sets simplify the determination of titegéficients and the basis in Example
3 was one example of a convenient basis, referred to as thenammal basis set. Thus, vectors
in a basis are linearly independent and inradimensional vector space any setrofinearly

independent vectors form a basis for the space

Dimension of a basis The linear space is n dimensional if it possesses a setrofinearly
independent vectors, but evenyt+ 1th set is linearly dependent. Equivalently, the number of

vectors in a basis is its dimension.

Example 5: The set of polynomials of degreen constitute a basis for andimensional linear

space of polynomials of degreen. The basis set is

¢1:17¢2:x7"'7¢n:xn_1

3.3 Linear independence of functions

We next extend the concepts of linear independence forifursctConsider the set of functions,
fi(z), fo(z), f3(x) ... fu(z) which are differentiablex — 1 times on the intervala,b]. The
functions are linearly independent gn ] if

ag f1(x) + asfo(x) + asfs(z) + ... anfu(x) =0 YV € [a,b] (3.5)
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implies thatoy; = 0,7 = 1...n. Differentiating EqL.3.5 — 1 times, a set of equations involving
the derivatives of the functions can be generated.

ag f1(x) + agfo(x) + asfs(z) + .. anfulx) = 0
o fi(2) + o fy() + s f(2) + - anfi() = O

ar fUV (@) + anfSV (@) + as £V (@) 4 an f Y () = 0

Eq.[3.6 represents a set of homogeneous equations and tinskMnois the determinant formed
by the functions,

fi(x) fa() fa(x) o (@)

W (@), fala), fole) . fulw) = | T ) Bl o) g g

e @) BT B )
For Eq.[3.5 to have only the trivial solutiofiy/| # 0 Vz € [a,b]. In this case the set of
functions f1(z), f2(x) ... f.(z) is said to be linearly independent. However if the Wronskian
vanishes for some or all € [a, b] it does not necessarily imply that the set is linearly depend
Thus|W| #0 Vaz € [a,b] is only asufficient conditiorfor the linear independence of the set
of functions.

Example: fi(z) = sinhz, fo(x) = coshz,

sinhz coshxz
coshx sinhz

(W (f1(2), f2(2))] = =1#0 (3.7)

Thussinh 2 andcosh = constitute a linearly independent set of functions.

Example: Consider the polynomialg; (z) = 1, fo(z) = x and f3(z) = z*

.T2

2z
2

— 240 (3.8)

1
(W (fi(x), fa(2), f3(2))] = 8

o~ 8

Thus the set of polynomials constitute a linearly indepehdet of functions. This can be

extended a set of'" degree polynomials.

Example: fi(z) = 22, fo(x) = 222,

2 222

2v  Ax =0 (3.9)

(W (f1(2), fa())] =
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and the set is linearly dependent.

Example: fi(z) =z, fo(z) = 2%, 2 € [0,1]
a1+ anr? =0

Forz(a; + apx) = O forallxz € [0,1], &y = as = 0. Thus the set is linearly independent.
Upon examining the Wronskian,

.I'.Z’2

2
1 og| =7 (3.10)

(W (f1(2), f2(2))] =

W vanishes forr = 0. This is an example where the vanishing of the Wronskian fpara
ticular value ofr does not imply that the set is linearly dependent. Cleaily sbt is linearly
independent.

Example: fi(z) = 22, fo(x) = z|z|, 2 € [-1,1]
a1 + asx|z| =0

a; = —aplz|/x. For—1 <z < 0,a; = ay. For0 < x < 0,1 = —az and atr = 0, oy, o
are arbitrary. Thus the only way in whieh = + a»z|z| = 0 can be identically zerg x is when
a1 = ay = 0. Hencef,(z) = 22, fo(x) = z|z|, z € [—1,1] consitute a linearly independent
set. The Wronskian for this case is,

o fa

W (@), LD =50 1+ eha)

d|x| 1 O<zx<l
_ 2 =—— =
= z° whereh(z) = dr {_1 1<z <0

In this caséV = —x?|z| + 23h(x) = 0V x. This is another example were the vanishing of the
Wronskian does not imply that the set is linearly dependent.

3.4 Solution of linear equations

One of our primary goals lies in seeking solutions to the garetass of linear equations of the
form,
Ax=Db (3.11)

where A is in general anm x n matrix. While discussing issues relating to the solutiohs o
Eq.[3.11 we will make use of the the null space and range sfadevehich will also use the
ideas of basis sets introduced in this Chapter.
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The existence or solvability condition for a set of lineagediraic equations of the form
in Eq.[3.11 can be stated as followAx = b is solvable if the rank ofA is equal to the rank
of the augmented matriA |b. The augmented matrix is obtained by adding an extra column
vectorb to the matrixA. We illustrate the solvability conditions with referencethe examples
of the echelon matrices given in the previous Chapter. Genghe following row reduced
forms for the augmented matrices,

11| 3 L1022 giggié
00001 (3.12)

0210 00000 005 1|1

000010

The first and third augmented matrices satisfy the rankrawiteand are hence solvable. Once
the equations are solvable we inquire into the conditionnidjueness. To answer this we first
examine the solutions to the homogeneous problem

Ax =0 (3.13)

and define the null space & denoted asV(A). N (A) consists of all vectors that satisfy
the homogeneous equation, Eg. 3.13. We illustrate how thespace can be obtained for the
following set of algebraic equations,

— T+ 23 + 21’4 =0
—X1 + To — Ty = 0
—To + X3 + 31’4 =0
r1 — 21’2 + 3+ 4.7}4 =0 (314)
Using a series of row operations the matrix can be reduceallas/s,
-1 0 1 2 -1 0 1 2
-1 1 0 -1 0 1 -1 =3
A=lo 11 370 0 0 o (3.15)
1 -2 1 4 0O 0 0 O

resulting in the following two linear equations

.1'1—1'3—21'4 =0

$2—1’3—3$4 = 0
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If x5 = oy andx, = «, the solution vectok can be written in two basis vectors as follows.

+ Qo

O ==
= O W N

We make a few observations. As a check on the solution proeesde should ensure that
given above satisfies the original set of equations. The oatike matrix in the above example
is 2 which is equal to the number of linearly independent &qoa. Since the number of
unknowns is 4 the dimension of (A) is 4 - 2 = 2. The dimension ok (A) is simply the
number of linearly independent vectors in the basis useéresent the solution spakeThis
result is easily generalizable. For a generalk n matrix whose rank is the dimension of
N (A)isn — r. Note that: is the number of unknowns in the set of equations:andr which

is the number of arbitrary ways in which the unknowns can lezifipd yields the dimension
of the basis. Clearly there is no unique way of choosing tHenawns and hence the basis
for N'(A) is not unique. However the dimension &f(A) is fixed. AV(A) is empty when,
n = r then the only solution to the homogeneous problem is thatsolution. This leads to
an important result.

Theorem: If Ax = 0 has only the trivial solution, theAx = b has a unique solution.

Proof: Let the inhomogeneous equatidx = b, have two solutionst andv. Then

Au = b
Av = b
Subtracting the two equations
Aw =0 (3.16)

wherew = u—v. SinceAx = 0 has only the trivial solutioww = 0 andu = v. HenceAx = b
has a unique solution. The above proof is always true if th&gixia square. The proof is true
for anym x n matrix, provided the inhomogeneous equatior = b is solvable. Example 6
in this section illustrates this situation. Later we wilesthat a similar proof can be used for
some linear differential and integral operators. If the nmats square and the inverse exists
(determinant ofA. # 0 or equivalently ranky = n), thenAx = b has a unigue solution which
isx = A~'b. Further the solution exists for any vector The last statement is equivalent to
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noting that for a general nonsingular matrixx n whose rank =, the rank of the augmented
matrix must also equal and is consistent with our solvability conditions based l@notion
of the rank.

Earlier we saw that a basis could be defined for the null spide tJsing the solvability
condition based on rank equivalence, we can define an additspace relevant to understand-
ing the solutions to linear equations as the range spack also denoted a® (A). R(A)
consists of all vectors such thaAtx = b is solvable. We illustrate this with a simple example.
Consider the augmented matrix whéfeandb, represent elements of vector

<6 9 | bg) _>(0 0 | 3b1—b2) (317

The second matrix is obtained by elementary row operatidhs.solvability condition requires
that3b; — b, = 0 resulting in the following basis foR (A ),

b=a @) (3.18)

where« is an arbitrary scalar. In the above example, d&pA)] = 1 = r. Using the definition
of R(A), the solvability condition is equivalent to stating thak = b is solvable ifb lies in
R(A).

To complete the solution scenario for the linear equatioas@ed to discuss the situa-
tion when the homogeneous equatida = 0 has non-trivial solutions i.e whelR'(A) is not
empty.

Theorem: If Ax = 0 has non-trivial solutions theAx = b may or may not be solvable. If it

is solvable then it has an infinity of solutions.

If A has non-trivial solutions then the rank< n for an x n square matrix and for an
(m x n) matrix, < n for bothm < n andm > n. If the homogeneous problem has non-
trivial solutions thenAx = b is solvable if and only if the rank of the matrix equals thekran
of the augmented matrix. If this solvability condition idiséied, then a solution exists, and the
system has an infinity of solutions. The infinity of solutioeglue to the non trivial solutions
of the homogeneous problem and hence can be relat&d #). The solution tcAx = b can
in general be split into two parts in the following manner,

k
X = Z ;0 + X, (3.19)
i=1
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The first term on the right hand side represents part of thatisal that lies in\/(A) whose
dimension (without loss of generality) is assumed td:band¢; form the basis foV'(A). x,,
is a particular solution t?A\x = b. To show that given in Eq[3.1P is a general solution, we

operate orx with A. Hence

k
Ax = A(Zaigb,—)—l—Axp

k

= O aiAg) + Ax,
=1

= b

We note that since; forms the basis folV(A), A¢; = 0. The infinity of solutions is due to
solutions inN(A) sinceq; are arbitrary scalars. If the only solution fox = 0 is the trivial
solution thenN'(A) is empty and the solution is unique. In this case- x, assuming that
the solvability condition is satisfied. The existence andjueness conditions foAx = b
discussed above are summarized in Figure 3.1.

Ax=Db

nNXnN mxn

Trivial Non-trivial Trivia_1|

solution solution solution

e /\ /\

solution Infinity of Unique
solutlons solutlons solutlons solution

r(A) #r(Alb)  r(A)=r(Ab)

Figure 3.1: lllustration of the various solution scenaribat are encountered while solving
linear equations.

We end this section on solutions to linear equations withagaric interpretation of
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the different solution scenarios discussed above.

3.4.1 Geometrical Interpretation

Consider the following set of linear algebraic equationthwiivo unkowns

1171 + ajprs = by
a1 %1 + agrs = by

(3.20)

Solutions to the above equations can be analyzed by platting z; on a two dimensional plot
as shown in the Figures below. We assume ihata;> > 0 andass /as; > 0. Hence both lines
in the above equations will have negative slopes.

Case 1 The determinaniz;;ass — as1a;2 1S Non-zero. HencA x = 0 has the trivial solution.
This isillustrated in Fid. 3]2, where the solutionsAa = 0 is only the trivial solution indicated
by the intersection of the two lines at the origin. In thisiation both lines have different slopes.
Further, EqL.3.20 has a unique solution for any vebttying in the plane.

X2

Unique Solutlon
/ Ax =

. . x1
Trivial Solution

Ax=0

Figure 3.2: Solution of linear equations illustrating ague solution. The dashed lines repre-
sent solutions tAx = 0

Case 2:The determinantg a2 — asia;o IS zero. This implies that both lines have the same
slopes (Figl_313). HencAx = 0 has an infinity of solutions indicated by the dashed line that
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passes through the origin. If the solvability criterionnfacondition) is satisfied then the so-
lution to Ax = b consists of all points on a line having the same slope witbra@ptb; /a,»

X2
Infinite Solutions
Ax=Db
T
Infinite Solutions J )
Ax=0

Figure 3.3: Solution of linear equations illustrating afinity of solutions. The dashed line
represents the solutions fox = 0.

Case 3:The determinanty ;a2 — asia;o IS zero. This implies that both lines have the same
slopes. Hence as in Case &2x = 0 has an infinity of solutions indicated by the dashed line
that passes through the origin. If the solvability critaripank condition) is not satisfied then
Ax = b does not have a solution as illustrated in Figl] 3.4.

Example 6

Let us examine the solvability conditions for the set of éinequations,

T+ 2.752 = bl
21’1 + 41’2 = bg

It is easy to see that the only solution to the homogeneoustiemuA x = 0 is the trivial solu-
tion. HenceN (A) is empty. The range spadeconsists of,

1 0
b:Oél 2 “+ Qi 0
0 1
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X2

No Solutions
x=Db

T

Infinite Solutions
Ax=0

Figure 3.4: Solution of linear equations illustrating néusions. The dashed line represents the
solutions toAx = 0.

Hence2b, = by, andb; is arbitrary. The solutions are,

2 4

by —by by —2bs

Ty = 537 X2

This is an illustrative example, as it is a situation ofranx n system where the null space is
empty. If theb lies in the range, then the system of equations has a unidutéoso Figure 3.5
graphically illustrates some possible solution scenarios

3.5 Summary

Starting from the definitions of the linear or vector space,imtroduced the concept of linear
independence and subsequently notions of basis sets aedslons of basis. The idea of rep-
resenting vectors or functions in a suitable basis has fhiag consequences in functional
analysis and solutions of differential equations. In thisa@ter we saw how a basis could be
used to construct the null space and range space of a matircosmmect the dimensions of these
spaces to the now familiar definition of the rank of the matihe theorems on solutions of
linear systems completes the discussion on existence aqdamness for this class of inhomo-
geneous equations which can be representédkas: b. The starting point for the analysis was

to investigate the solutions of the homogeneous systeruréfi§il schematically illustrates the
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X2

.I‘lzbg

/7 Unique Solution (b3 < by)
/—xQ =—11/2+b/2
T

Unigue Solution

(bi=b=0) | N e

Figure 3.5: Solution of linear equations illustrating twasgible solution scenarios for the set
of linear equations given in Example 6. In one cases b; and in the second case= b, = 0.
In both cases the solutions are points obtained with thesattion by the vertical line; = bs.

various scenarios

Since we are interested in existence and uniqueness amslftr ordinary differential
equations, we have to abandon the notions of ranks and daterts that form the basic tools
to analyse a linear system of equations. We begin to developra complete theory of linear
operators in the next Chapter by introducing the inner pcbdpace and the adjoint operator.
Once we are equipped with this formalism to study linearedéhtial equations later in the
book, we will first revisit the theorems developed in this fiea to understand the generality

and utility of these tools and ideas.
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PROBLEMS

1. Which of the following column vectors can be used to cartéta basis for the three

dimensional vector spadg3.

1 1 2 1 1
0 9 1 9 1 Y 3 ? _1
—1 2 1 2 —1

Once you have picked an appropriate basis set, show thaeatyninR 3 can be uniquely
represented using this basis. In other words show that tttengeyou have chosen form

a valid basis folR3.

2. Consider the spac¥ consisting of all polynomialsf(z),a < x < b, with real coeffi-
cients and degree not exceeding
(a) Show thatX is a real linear (vector) space.
(b) What is the dimension of this space ?
(c) Define a suitable basis for this space of polynomials.

(d) Show that your basis does constitute a linearly indepetskt of vectors.
3. Consider the following functions
On = (1= )"
forn =1to4.

(a) Do these form a linearly independent set ?
(b) What is the dimension of the vector space they span ?
(c) Using these functions construct a basis to represempictlyaomial3t® —2t2 +6t — 5.

Find the coefficients of the expansion.

4. Show that the presence of a zero vector in a set of lineadiggendent vectors makes the

set of vectors linearly dependent.
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5. Consider the following matrix

I
— N
o = |
—
=~ O DN
SN—

(a) ReduceA to its echelon form.

(b) What is the rank oA ?

(c) What is the dimension of the null spagé(A) of A? Find a basis faV' (A).
(d) What is the dimension of the range spakR¢A) of A? Find a basis foR(A).

(e) Using your answer from part (f) identify which of the f@mNing vectorsb will yield

)

(f) Find the solutions tAAx = b for those vectord in part (g) for which solutions are

a solutiontoAx =b

feasible. Note that your solutions consist of a vector tleddtgs to the null space
of A and a vector that satisfigsx = b.

6. Consider the following set of linear algebraic equations

T, + 209+ 234+ 214 — 35 = 2
3x1 +6x9 +4x3 — 24 — 205 = —1

41+ 8xy+dxs+ x4 — 25 = 1

—2x1 —4x9 — 3x3+ 324 — D5 = 3

(a) Reduce to echelon form.

(b) Find the basis for null space @f.

(c) Find the basis for the range 4f.

(d) Construct the complete solution to the set of equations.
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(e) Does the system have a unique solution? If not, how mayigos does the system
possess?

7. Consider the following matrix

DN = DN =
|~
—_

— O N DN

(a) What is the rank oA.?

(b) What is the dimension of the null spaC¥(A)) of A?

(c) What is the dimension of the range sp&aB¢ A)) of A? Find a basis foR(A).
(d) Next consider the transpose of the matkix Find a basis for the null space Af’.

(e) Construct a vector space such that the vectors in the spa®rthogonal to the null
space ofA”. What is the dimension of this vector space ? Compare thi®ganal
vector space witlR (A ). Can you draw any conclusions.

() Find the solutions ttAx = b for

N O O W

Does the system have a unique solution and why? lllustrate solution graph-
ically. Note: This problem is connected with the general Fredholitsriative
theorems to be introduced in the Chapter 4, Sec 4.5

8. Determine the ranks, dimensions and suitable basis fartbe(N(A)) and(R(A)) for
the following sets of linear algebraic equations. If thehtiand side vectadb is given,
obtain a particular solution to the set of equations.

(@)

$1—$2+3I3+2$4 = bl
31’14‘3)2-1’34‘3)4 = bg

—T1 — 31’2 + 71’3 + 31’4 = bg
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(b)

Ty + 2209 — T3 + T5
3?171 —|—2LL’2 + x4

T, — 229 + 223 + x4 — 275

(©)

5x1 + 10z9 + 23 — 224
—T1 + Lo — 2?173 + x4
21’1 + 31’2 + X3 — T4

6?171 + 91’2 + 31’3 — 31’4

(d)

1+ Ty — T3 =
—21’1—1’2+ZL’3 =

I+2$2—2I3 =

43
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Chapter 4

Inner Products, Orthogonality and the
Adjoint Operator

While defining the linear space or vector space we were piiyneoncerned with elements

or vectors that conform to the rules of addition and scalaltiplication. These are algebraic

properties. The simplicity of the linear space was suffictenintroduce ideas such as linear
independence and basis sets in a finite dimensional setWlag@bserve that notions of distance,
length and angles between the elements of the space, whiebt rgeometric properties were
not discussed.

In this chapter we define the inner product space which pesvile necessary frame-
work to introduce geometric properties. The primary mdiorafor this is to lay the grounds
for discussing orthogonality and its relationship to reergation of vectors or functions in a
suitable basis set. In this Chapter the Gram-Schmidt odhaligzation process and its relation-
ship to well known orthogonal polynomials, such as the Legerand Hermite polynomials
will be developed. The inner product space allows us to thtoe the Schwarz and triangular
inequalities. We end this chapter with the definition of tldgoant operator and its utility in

studying issues of uniqueness and existence of non-horeogsiiinear equations,

Ax=b (4.1)



4.1 Inner Product Spaces

The inner product space consists of a linear spgaan which the inner product, denoted by
< -,- > is defined, where the dots represent any two elements in deespfu, v andw are
contained inX, anda is an arbitrary scalar contained with the scalar field asgediwith X,
then the inner product satisfies the following axioms

1. Linearity:
<u4v,w>=<u,w >+ <v,w >
and
<au,v>=a < u,v >
2. Symmetry

<u,v>=<0v,u>
3. Positive Definiteness

<u,u> > 0 when u+#0

<u,av >=a < Uu,v >

In the above definitions the overbar is used to denote the lexepnjugate. Note that the inner

product always results in a scalar quantity.

The inner product inherently contains the definition of taegth or norm, denoted by
| - [|. The norm ofu is related to its inner product in the following manner

ull* =< u,u > (4.2)

Example 1

Consider two vectora andv in ann-dimensional vector space. The inner product,

<W, V> = W+ UTE A+ U Ty (4.3)

= Z UV (4.4)
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The norm of the vecton,
n
Il =v<mas =Y ww
i=1

The use of the complex conjugate while defining the inner pcos consistent with our notion
of the length of a vector in the complex plane. Consider thetpuith co-ordinateg1, ¢) in the

u— C) (4.5)

If one were to use the definition of the inner product in theealos of the complex conjugate

complex plane denoted by the vector

then it would imply that a non-zero vector has a zero lengtking the definition of the inner
product given in Ed. 414, the norm of the vector given in[Eg, fu|| = v/2.

Question: Show that the inner product as given in [Egl 4.4sfia8 the axioms of the inner
product space. Thus the vectors of thdimensional vector space form an inner product space.

Example 2

Consider two functiong(x) andg(x) which belong to the space of continuous functions with
x € [a,b]. The inner product between the two functions,

b
< (@), 9(a) >= [ floigdo
The square of the norm,
b -
@I = [ 7w ds
S ALCIRE (4.6)

If f(z) =2 andg(x) = e then

Further

and it is easily seen that f(z),g(x) > = < g(x), f(z) >, thereby satisfying the symmetry
property.
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In the above examples it is easy to show that the definitiortheinner product sat-
isfy the axioms of the inner product space. One might ndfunadjuire, if there are alternate
definitions of the inner product. Indeed, other definitionsedaist and we will encounter some
of them later in the book. However, as long as the definitiothefinner product satisfies the
axioms of the inner product space it is a valid candidate.

4.2 Orthogonality

Two vectorsu andv are said to be orthogonal if their inner product is identycaéro,
<u,v>= Zuiv_i: 0
Similarly two functionsf(z) andg(z) are orthogonal on the intervale [a, b] if

b —_—
< f(@).9(a) >= [ f(@glo).dz =0
The collection of vectorsi;, u, . . ., u,, are said to form an orthogonal set if
<w,u;>=0 if i#j

and the set is said to be orthonormal if

0 i7] 4.7)

< uj, Uj >:5ij:{ 1 'L:]

The norm of each vector in an orthonormal set is unity. Hemcerthonormal set is obtained
from an orthogonal set by dividing each vector by its lengtham.

Example 3
Consider the vectors
a 0 0
u=(0),up=(0],uz= |0
0 0 c

These form an orthogonal set, sincay;, u; >= 0 when: # j. The corresponding orthonormal
set obtained by dividing each of the above vectogsyy its norm,

u;||, is the familiar set of
unit vectors which constitute a basis®y

1 0 0
e = 0 , €2 = 1 , €3 = 0
0 0 1



Example 4

The set of functionsy, () = sin 7z, us(z) = sin 27z, . . . u,(z) = sin nmx form an orthogonal
setin the intervad < x < 1. Hence

0 m#mn

1
< Uy (), U () >= /0 sinnrz sinmrr dr = { 1/2 m=n

The corresponding orthonormal sét;, (z) = v2sinnrz}.

4.3 Orthogonality and Basis Sets

Perhaps the most elegant and useful property of an orthaiseis the utility as a basis to rep-
resent other vectors or functions. Consider representiggtorx in a finite dimensional space
using a suitable basi$¢p, }. We will first assume that the basis does not form an orthdgmta

and is simply a linearly independent set. kdbe a vector in the complex plang:.
N
=1
To find the coefficientsy; in the expansion, take the inner product of Eql 4.8 with This
yields
N
<x,¢j>zz<a,—¢,—,¢j> j=1...N (49)
=1

The procedure of taking inner products generates a sst lafear algebraic equations which
can compactly be written in matrix vector notation as,

Aa=Db
whereq is the vector of unknown coefficients in the expansion [E8 ahd

a; = <05, ¢ >= < ¢, 05 >
by = <X,¢; >

If the basis forms an orthonormal set as defined i Eq. 4.7ttieesolution is greatly simplified.
The matrixA reduces to the Identity matrix and the solution, which asedbefficients in the

expansion (Ed.418)
Oéi:<X,¢i> i=1...N
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The above procedure of obtaining the coefficients is sinmilaiunction space as well, with
the appropriate definition of the inner product. We obsehat if we had a basis that was
not orthogonal then the procedure results in obtaining atisol to a set of linear algebraic
equations. In the case of functions the elements of thetnegudoefficient matrix,A consist
of integrals that have to be evaluated. We illustrate thevalppocedure with examples in both
vector and function spaces.

Example 5

Consider vectors ifR>.
X = 101 + Q202 (4.10)

<) a-() - ()

The resulting set of linear equations can be solved usinglatd methods. However, in what

where

follows we utilize inner products as illustrated in Secl#.8btain coefficients in the expansion
given in Eq[4.1D. Taking the inner product of the expansiaith ¢, and¢, respectively, the
coefficients in the expansion are obtained by solving tHewiohg linear equations,

50(1"‘30[2 = 4
30(1—}—20[2 = 3

whose solution yields; = —1 anday = 3. If we use the following orthogonal basis
a-(2) a=()
then

Finally, if we use the corresponding orthonormal basisaimietd by normalizing the orthogonal

a5 w5l

50
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and the coefficients are

o = <X7¢1>:1/\/§
Oy = <X,¢2>:3/\/§

The above example illustrates the simplification in the ysialobtained by using an orthonor-
mal basis set, over a basis that is simply linearly indepeholeeven orthogonal.

Example 6

Expansion in basis sets is of central importance in funeli@approximation using Fourier se-
ries. Consider representing a functigf{) for 0 < = < in an infinitesin series which was
shown to form an orthogonal set in Example 4 above.

o0
flz) = Z a, sinnmwx
n=1

Taking inner products within mmrz,

o
< f(z),sinmmrx >= E a, < sinnmx,sinmmr >

n=1

Replacing the inner product with integrals,

1 o0 1
/ f(z)sinmrx de = E an/ sinnwx, sin mrx dr m=1...n
0 0
n=1

Using the orthogonality property of the functionsy nrz, n = 1...00 given in Example 4
above, the expression for the coefficient reduces to,

1
an = 2/ f(z)sinnrx dx
0

The above expression is obtained by noting that for everyn the previous equation, only
the m'* term in the expansion survives. We will encounter similgsamsions while solving
PDEs with the separation of variables technique. The reptaton of functions in a series
expansion of orthonormal sets forms the key foundationdbrisg PDEs and the central ideas
of functional representation presented in this Chapteulshize mastered at this point.
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4.4 Gram-Schmidt Orthogonalization

The Gram-Schmidt (GS) orthogonalization provides a syatenmethod of constructing an
orthogonal set from a linearly independent set of vectorgeia set of: linearly independent
vectors{u; } the GS process can be used to construect}, the orthogonal set. Ldtx;} denote
the corresponding orthonormal set.

Vi

Vi =11 and X1 = ||V ||
1

Construct the next vector, as a linear combination af, andx,
Vo = U2 — (X4

such that the orthogonality conditien v,, x; >= 0 is satisfied. Taking inner products of the
above equation witl;, a; =< uy, x; >. Hence

Vo

[l

Vo = U— < Ug,X1 > Xg and Xo =
Proceeding in a similar manner
V3 = U3 — (aXo — (3X

Settingvs orthogonal to thex, andxy, i.e. < v3,x, >= 0 and< vs,x; >= 0 results in

g =< U3, X > andOég =< us,X; >. Hence

V3
Vy =U3— < U3,X2 > Xo— < U3,X1 > X3 and XS:W
V3
Continuing in this manner,
Vyp =Up— < Up,Xpo1 > Xpo1— < Uy, Xp—2 > Xp9...,— < Uy, X1 > X1
and
Xn
X, = ——
1% |

It is easy to show that v,,v,, >= 0 for m < n. Hence the sefv;}, is an orthogonal
set and{x;} is an orthonormal set. We note that the above procedure duetepend on the

initial ordering of the set of linearly independent vectdfs;}. However, each ordering will
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result in a different set of orthonormal vectors. Hence fgiven vector space there are a large
number of orthonormal sets. Itis easy to visualize this io thivnensions, where two orthogonal
vectors in the plane can be rotated by by an arbitrary anglenerate an infinite combination
of orthogonal vectors. We illustrate the GS procedure wotihha examples.

Example 7: Consider the set of linearly independent vector&in

o} ()

Using the GS procedure outlined above,

(0
[vaf[  \O
We next construct,

l (1 0\ _
Vo = U— < Ug,X] > X1 = 1 —1 0 = 1 = Xo

However if we reorder the initial set of two vectors, suchttha

i) e )

then the resulting orthonormal set is

- 50) = 50)

This example illustrates the non-uniqueness in the orthalgget obtained using the GS proce-

X1

dure.
The Schwarz Inequality

Consider the definition of the dot product of two vectors,
u-v = |[ul|||v| cosd

whered is the angle between the two vectors and is defined in termeealdt product and the

norms of the two vectors. Using the inner product notation

<u,v>

[ul[{lv{} cos 8

| <wv>] = [ull[[v]]cosf]
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Since0 < |cosf| < 1

| <wv>[<ufv]

This is known as the Schwarz inequality. We present a morergéderivation below

0

IN

<u-+av,u+av >
= <uy,ut+av>+<av,utav>
= <uy,u>+<u,av>+<av,u>+ < av,av >

= |u*+a@<uv>+a<v,u>+aalv|? (4.11)
Since the inner product andare in general complex scalars, let
<u,v>=|<uv>|e? and a=re? (4.12)

wherer is the modulus and the phase of the complex quantity. Substituting, Egs.|41@ i
Eq.[4.11,

0 < |lull*+2r| <u,v > | +72|v|* = f(r) (4.13)
f(r)in Eq.[4.13 is a quadratic, in Sincef(r) > 0, the discriminant\ < 0. When,f(r) = 0,
the quadratic has two real roots aiir) > 0 corresponds to the situation of two imaginary

roots. Hence
0> —dac <0 — 4l <u,v> [P —4ulf’|v]*<0

and

| <w,v>[<ufv]

which is the Schwarz inequality. There are alternate waygetive the Schwarz inequality and
one such variant is illustrated below.

0 < <u—av,u—av>

= [u*-a<u,v>-a<v,u>+aa|v|? (4.14)
Substituting
fo SWV>_ <uv>
C<v,v> |v)?
in Eq.[4.14, we get
< > |2
0< [Jul? - %
vl
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which yields the Schwarz inequality.
The Triangular Inequality

We illustrate how the Schwarz inequality can be used to ptioeériangular inequality,

[u+ vl < flufl+]iv]

lu+v]* = <u+v,ut+v>

= <yg,u>+<v,u>+<u,v>+<Vv,v>

[u? +<wv>+ <u,v> +|v]?

= ||u||2 +2Re <u,v > —|—||V||2

< ulP+2f <uyv > |+ v
< lal* 4 2)lal||v] + [Iv]? (Using the Schwartz Inequality
= ([lull[+[Iv)*

which yields the triangular inequality,

[u+ vl < flufl+]iv]
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4.5 The Adjoint Operator

Consider the operatdt on an inner product space X.* is said to be the adjoint dk if it
satisfies the following identity,

< Lu,v >=< u,L*v > VuveX (4.15)

The above identity provides a formal route to identifying #djoint operatoL*. If L = L* then
the operator is said to be self-adjoint. The above definitibthe adjoint operator is general,
and can be used to identify the adjoints for matrix, diffél@rand integral operators without
loss of generality. FurtherfX represents a vector spacdifis a matrix or a function space if
L is either a differential or integral operator. This defimitishould not be confused with the
adjugate or adjoint of a matrix discussed earlier in conorawith finding the inverse of the
matrix. We illustrate the procedure for finding the adjoipemator starting with matrices.

Example: Let L be then x n matrix, A andu andv represent: dimensional vectors.
< Al,l,V > = ZZ CLUU]"U:
i
= DD ]
i

From the last two lines of the above manipulations, it shdnddtlear that the adjoint operator
A~ is simply the Hermitian transpose &f. It the matrix is real symmetric or Hermitian then
A = A*. Hence symmetric or Hermitian matrices belong to a claslbfagljoint operators

that we are already familiar with. In Example 1, we interalchindices on the 3rd line of the
derivation. The reader should be familiar with this indexnipalation and derive the definition

of the adjoint for am x m matrix as an exercise.

Example 2: Let A be matrix with real elements,
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(@11 A2 (U1 (U
A= u= vV =
Q21 A22 U2 (%

< Au, V> = E E QU5 U = (a11u1 -+ a12u2)vl —+ (CL21U1 + CLQQUQ)UQ
i g

then,

= E E Uy CLjZ"Uj = U (au’Ul + 0@1’02) + UQ(alg’Ul + CLQQ’UQ)
i

= <u,A'v>

where the adjoint,
AF — <011 a21>
Q12 A22

Example 3: Let us consider a specific matrix with complex elements,

then,

<Au,v> = du] + (iug + u2)v;
= Uy + U105 + UV

= <u,A'v>

In this exampleA # A* and hence the matrix is not self-adjoint. Au, v >=< u, A*v >
by definition (Eq[4.15). HoweveA # A*. Hence, Eq._4.15 only provides a prescription for
identifying the adjoint operator.

4.6 Adjoints for Differential Operators

Consider the differential operator,
d*u
Lu:d—xz%—au(x)zo 0<z<1
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with the boundary conditions,(0) = 0 and’(1) = 0. The prime denotes differentiation with
respect tac. In order to obtain the adjoint operatbt, we proceed in the following manner.

< Lu,v> = /0 [M + au(z)|v(z) dx

dz?

1 d2u 1
= / d—ﬂv(x) dzr + / au(z)v(z) dz
0 0
= [vu/ —v'ulj + /1 u v dx + /1 au(z)v(z) dx
’ o da? 0

The last line is obtained by integrating the term containifig:) terms twice by parts. The last
step in obtaining the adjoint operator requires incorpogathe boundary conditions an(z).
If B(u,v) represents the boundary terms, then

B(u,v) = [vu —v'u];
= [wMu'(1) = ' (Du(l) = v(0)u'(0) + v'(0)u(0)]
= [0 (1)u(l) +2'(0)u'(0)] since  4/(0)=0,4'(1)=0

The boundary conditions ar(z) are chosen such that(u, v) vanishes. This results ir(0) =
0 andv’(1) =0 and

< Lu,v > = /o u(x)[d%—i-ow(x)] dx

Hence the adjoint operator

. d*v
L'v=— 4+ av(z) =0 0<z<1
dx?

with the boundary conditions;(0) = 0 andv’(1) = 0. The above prescription formally defines
the adjoint operator. Note that bathandL* are defined along with their boundary conditions.
The boundary conditions fdL* were obtained with the requirement that the boundary func-
tional B(u,v) = 0. Further, L = L*, and the differential operator is said to be self-adjoint.
In the case of differential equatioris,= L* only when the boundary conditions farand the
adjoint operatolL* are identical. This is the case with the example above.
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4.7 Existence and Uniqueness foAx = b Revisited

We return to the question of existence and uniqueness fealinoperators in a more general
setting. These theorems are also referred to as the Fredladtiennative theorems and provide
a prescription for analyzing the existence and uniquer@sditons for all linear operators. Let
us consider the existence and uniqueness conditions fon#itkex equation and introduce the
concept of the adjoint operator to tackle the existence amgueness condition. Consider the
matrix equation,

Au=b>b

1. We first analyze the homogeneous problem,
Au=0.

If Au = 0 has only the trivial solution, theAu = b has a unique solution. A is ann x n
matrix then this is true for any vectdr. However for an x m matrix Au = b has a unique
solution only when the system is solvable. We have examimegtoof of the above statements
in detail in the previous Chapter.

2. The second part of the theorem concerns the conditionthésolvability (or existence
condition) of Au = b. If Au = 0 has non-trivial solutions we have seen earlier that= b,
can have no solution or have an infinity of solutions. In ordedetermine the conditions for
solvability, we examine the homogeneous adjoint problem,

A'v =0 (4.16)
whereA* is the adjoint ofA. The theorem states thAtu = b has a solution if and only if
<b,v>=0 Vvst. A*v=0 (4.17)

The above condition provides the solvability or existenoadition for the inhomogeneous
problem. The statement in Eq. 4117 is equivalent to statingthe rhs vectdb is orthogonal to
the null space of the adjoint operatd; sincev satisfies, Ed. 4.16. To show that wheris a
solution toAu = b then< b, v >= 0, wherev satisfiesA*v = 0.

Proof: Since
Au=>b
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it follows that,

< Au,v>=<b,v> (4.18)
Now
< Au,v>=<u,A'v >=0 (4.19)
Hence
<b,v>=0

To complete the proof we need to show thak:ib, v >= 0 then< Au = b > has a solution,
i.e, b lies in the range of the operator. We do not pursue this hehe. theorem can be used
to verify the solvability condition whem\ is nonsingular. Wher\ is nonsingular then the
only solution toA*v = 0 is the trivial solution. Hence: b,v >= 0 for anyb andAx = b

is therefore solvable for abb. Although we have proved the alternative theorems develope
above usingA as the linear operator, the theorems are true for linearatqemn general. We
will use these alternative theorems to study the existendeuaiqueness conditions for some
differential operators later in the text.

Example 4 In this example we use the solvability condition of the iadtgive theorem to
identify the range space for the set of linear equations,

1+ X9 + r3 = bl
2.7}1 —Totx3 = bg
xry — 21’2 = bg

We first identify the null space vectors fa&* using elementary row operations

1 2 1 1 21
A*Y =11 -1 =2 — 011
1 1 0 00 0
The basis for the null space af*,
1
v =a«af -1
1



The solvability condition states th&x = b is solvable if and only if< b,v >= 0. This
results inb; — by + b3 = 0 which yields the following basis for the range space\of

-1 1
b=af| 0| +48|1
1 0

The range space vectors can also be obtained using the raivalegce criterion. The reader
should obtain and compare the range space vectors usingrtkeniterion.

We end this Chapter with by using the Fredholms alternatieeitem to prove the fol-
lowing theorem concerning the dimensions\6fA) andRR(A).

Theorem: For a generain x n matrix A
dimN(A) +dimR(A) =n (4.20)

where dimNV (A) = n —r and the dinfiR(A) = r
Case 1: Letn = n. The dimension of\V'(A) = n — r. Since the rank oA* is the same as the
rank of A, the dimension of\V'(A*) = n — r. In order to determine the dimensionBf A)
we utilize the solvability condition based on the Fredhohiternative theoremAx = b is
solvable if and only if

<b,v;>=0 1=1,2,...n—r (4.21)

wherev; € N(A*)i.e. A*v; = 0. Sinceb is a column vector witm unknowns, Eql_4.21
providesn — r equationsr unknowns can be chosen independently, resulting irftlita) = 7.
Hence Eql_4.20 is true.

Case 2: LefA be anm x n matrix of rankr. The dimension oV (A) =n —r. Since the rank of
A* is the same as the rank AfandA* is ann x m matrix, the dimension ol (A*) = m —r.
Solvability conditions results in,

<b,v;>=0 i=12...m—r

wherev; € N(A*)i.e. A*v; = 0. Sinceb is a column vector withn unknowns, Eq_417
providesm — r equationsr equations can be chosen independently resulting irkdif) = r.
Hence EqL4.20 is true. The proof for Case 2, is valid for botk: n or m > n. In either case

rank,r < min(m,n)
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Problems

1. Solvability Conditions
Use the Fredholm’s alternative theorem to determine thebdity conditions (existence)
for the following sets of linear equations, by checking i tlight hand side vectds is
orthogonal to the null space @f*. If the system is solvable, comment on the uniqueness
of the solution.
T1—T9+2x3 = 3
2z + 19 + 623 = 2
To+ 2209+ 413 = —1

1+ 209+ a3+ 214 — 35 = 2
3x1 +6x9 +4x3 — 24 + 205 = —1

41+ 8xy+dx3+ 24 — x5 = 1

—2x1 —4x9 — 3x3+3x4 — Dy = 3

$1—$2+3I3+2$4 = 2
31’1+JJ2—JI3+JJ4 = -3

—T1 —31’2 —|—7[L’3+3[L’4 = 7

2. Gram Schmidt Orthogonalization

Find the eigenvalues and eigenvectors of
A=1-1 2 -1

(a) Show that the eigenvectors form a linearly independemnt s

(b) Using the Gramd-Schmidt process construct an orthoalsat of eigenvectors.

3. Gram Schmidt Orthogonalization

Consider the following set of 5 vectors

1 1 3 1 0
o, 1], -1],|-1], ]2
2 1 4 0 1
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(a) Using the above vectors construct a subset containexgndximum number of lin-
early independent vectors.

(b) Using the set obtained in part (a) above construct amodimal set of vectors using

Gram-Schmidt orthogonalization.

. Orthonormal Functions
Show that the following functions

¢n(z) = exp(2minx) n=0,%1,£2..., 0<z<l1
where:; = +/—1 form an orthonormal set.

. Fourier Series Representation of Functions

Consider a piecewise continuous functifix) defined on the interval-c, | with period
2¢. The function can be represented as

ao > nmwx . nTx
r)=—+ (ancos— + bnsm—)
f@) =< ; ; -

(a) Determine expressions for the coefficiemisandb,,.
(b) Simplify the series expansions for odd functigiis) and even functiong(x).

(c) For afunction

f(x):{ /2 —m<x<0

/2 O<z<m

andf(0) = 0, evaluate the Fourier series representation.

(d) If Sy () is the value of the series with/ terms in the summation, then pl6f,(z)
for the series obtained in part (c) for different values\6f What can you conclude
about the series representation fdr) ?

) T T sinx
Jm S (537) = / : 0

Use this result to check your limiting value of the summatiwet you compute.

(e) It can be shown that

63



6. Fourier Series Solutions
The Fourier series solution to the temperatiife, t) in a time dependent 1D heat con-
duction problem is

T(z,t) = Zanexp(—an%zt/cz)sm@
n=1 ¢
whereq is the thermal diffusivity.

(@) Using the initial conditior’’(x,t = 0) = f(x) obtain an expression for the coeffi-
cientsa,, in the expansion.

(b) You will need to evaluate the following integral

¢ nmx . mTx
Sin—— sin dx
0

c c
for n = m andn # m.

(c) Ifthe initial conditionf(z) = z, carry out the integrations and obtain an expression
for the coefficients:,, in the expansion

7. Fourier Series Solutions
The Fourier series solution to the temperatilife;, y,¢) in a time dependent 2D heat
conduction problem on a rectangle with sides of lengmdb can be expressed as

T(x,y,t) = - (22,2 22b2t.n7rx,m7ry
(z,y,1) ZZ@ exp[—(n“m*/a” +m"n*/ )]sm—a sin—

n=1m=1

(@) Using the initial conditiol'(z,y,t = 0) = f(z,y) obtain a general expression
for the coefficientss,,, in the expansion. You will need to evaluate the following
integral

¢ nmx . mnx
sin—— Sin dx
0 a a

forn = m andn # m.

(b) If the initial conditionf(x) = zy, carry out the integrations and obtain an expression
for the coefficientsi,,,, in the expansion
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8. Orthogonal Functions
Consider the following ode
d2
dx

=+ A, =0
with the boundary conditions),(z = 0) = u,(z = 1) = 0.

(a) Obtain the general solution to this equation.

(b) Obtain non-trivial solutions of the formm (A z), us(Aex) . . . u, (A, x) for the above
boundary conditions. What are the values\g?

(c) Verify that the solutions:;(x), us(z) . .. form an orthogonal set. Construct an or-

thonormal set of functions.

(d) Evaluate the following integrals

1 1
/ sinnmwx sinmmx dx / CcoSNTIL coSmmx dx
0 0

forn,m = 0,1.... While evaluating the integrals you will have to treat thees

n # m andn = m separately.

Note: The above ode arises while solving partial differrggquations with the separation
of variables method where the functions(x) are known as the eigenfunctions akg

are the eigenvalues.
9. Gram-Schmidt Orthogonalization
Consider the functions
oOn(x) = exp(—x/2)2" 0<z <00

(a) Using Gram-Schmidt orthogonalization construct ahawbrmal basig, (z) for n
=0,1and?2.

(b) Show that the orthonormal basis forms a linearly indejean set.

10. Series Expansions
Consider the following expansion in a basis

Z n o (2

n=1
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(a) If the weighted inner product,

(Gnom) / () ()0(2) = G

obtain an expression for the coefficients

(b) Consider now the finite series representatiorf (of)

M
~ Y Catu(@)
n=1

Obtain the coefficients, by minimizing the least square error

b M 2
/ [f(x)—chcbn(x)] w(a)da

(c) Comment on the value of the coefficientsandc,,.

11. Prove the following:

()
I+l < lix]] + [lyll

(b)
e+ y I = Ix[* + Iyl

(©)
[l = lIyll] < lIx =

Give a geometric interpretation for a) and b)

12. Consider the Bessel's inequality

M
Yo l<enx>| < x|
i=1

(4.22)

(4.23)

(4.24)

(4.25)

wheree; denote the orthonormal basis in the M-dimensional vectacsplf, N denotes
the dimension of vector space into whighcan be decomposed show that the equality

sign holds ifAM/ = N. What is the condition under which inequality sign holds ?
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13. Consider the Schwartz inequality

| <xy > [<|xlyll (4.26)

For non-zerq|x|| and||y|| show that the equality holds if and onlysfandy are linearly

dependent. Interpret this geometrically.

14. Use the inner product to verify the following identities

(@)
B+ y [ + [l — ylI* = 2l + lly[I*) (4.27)

(b)

1 1
IW—MF+W—YW=§W—yw+ﬂﬁ—§@+ymz (4.28)

67



68



Chapter 5

Eigenvalues and Eigenvectors

Definition: A complex numben is an eigenvalue oA if there exists a non-zero vectercalled
the eigenvector such that
Ax = )x (5.1)

Eq.[5.1 can be rewritten as
(A= ADx =0 (5.2)

From Eq[5.R2, eigenvectoss belong to the null space ¢fA — A\I) and \'s are scalars which
result in a zero determinant faA — A\I. The null space oA — \I is also referred to as the
eigenspace corresponding to the eigenvalu@he eigenvectors corresponding to a particular
eigenvalue form a basis for the eigenspace. In this Chaptguranary focus will be to answer
the following questions. Given anx n matrix A, can we always obtain linearly independent
eigenvectors? Under what conditions do these eigenvecionsan orthonormal set? Can these
eigenvectors be used to solve nonhomogeneous problems kifithA x = b and initial value
problems of the following form,

dx

—=A b
o x + b(t)

Given ann x n matrix, A the eigenvaluesg;'si = 1...n, are obtained by solving the
characteristic equation
A —M|=f(A)=0 (5.3)

The algebraic multiplicityfor a given eigenvalue,; is the number of times the roox; is re-
peated. Thgeometric multiplicity of ), is the dimension of the vector space spanned by the
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eigenvectors corresponding to the eigenvalueEquivalently the geometric multiplicity cor-
responding to\; is nothing but the dimension of the null space&df— \;,I. The geometric

multiplicity cannot exceed the algebraic multiplicity. Wall see that it is desirable to have
matrices where the geometric multiplicity is equivalenttte algebraic multiplicity.

Given a matrixA and its corresponding eigenvalues we are interested irrtipepies of
the eigenvectors. If the eigenvectors are to be used asadmsthey would have to be linearly
independent. Further, as we saw in the last Chapter it woalldesirable to form a basis with
an orthogonal set. Theorem 1, is concerned with the linepent#ence of eigenvectors and
Theorem 2, addresses the issue of orthogonality betweenwgtors.

Theorem 1 Eigenvectors corresponding to distinct eigenvaluesiaeatly independent.

Proof: Let the matrixA have eigenvalues,;,, i = 1,...n. Hence

If the eigenvectors form a linearly independent set, therothly solution to

is whenc;'s are identically zero. Premultiplying Elq. 5.5 sequetibly A, we can generate the
following set of lineam algebraic equations,

n

Z CiX; = 0

7
n

Zci)\ixi =0
ici)\?xi =0

n

Z CZ‘)\?_IXZ' =0

i

(5.6)
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which can be written in matrix vector notation as,

1 1 ce 1 C1X1
A A D ¥ C9X
L A N R (5.7)
DUEEIED kD CnXp

Since the eigenvalues are distinct the above matrix is nayukr and the determinant is
nonzero. The above matrix is also known as the Vandermondexnaad it can be shown
that the determinant is

n

[Tou=2#0  (G#9)

i,j=1
Since Eq5.J7 represents a set of homogeneous equations|ytswlution is the trivial solution.
Further since; are the eigenvectors they are non-zero by definitioncgdadre identically zero.

Theorem 2 If L is a self-adjoint operator, i.d. = L*, then the eigenvalues and eigenvectors
of L satisfy the following properties.

1. The eigenvalues di are real.
2. Eigenvectors corresponding to distinct eigenvaluesdhmgonal.
Proof 1:
Lu = \u

Taking inner products with

< Lu,u >= X <u,u> (5.8)

Using the definition of the adjoint operator

< Lu,u> = <u,L'u>

= <u,Lu> (SinceLL = L*)

= A< u,u >
(5.9)
From Egs[ 5.8 and 5.9, = \. This is only possible when is real.
Proof 2: Let
Lu = \u and Lv=M\yv (5.10)
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Taking inner products of the first equation in Eq. %.10 with
< Lu,v >= A\, < u,v > (5.11)

Using the definition of the adjoint operator,

<Lu,v> = <u,L*v>
= A\ <u,v>
= A <u,v> (Since\ is real)
(5.12)
Equating Eq.5.71 with E@. 5.112 we get,
A —Ay) <u,v>=0 (5.13)

Since)\, # A\, andu andv are non-zero by definition, EQ. 5113 implies that:, v >= 0, i.eu

is orthogonal ta.

Although we are presently occupied with matrix operatdrs,dbove proof is valid for
self-adjoint operators in general. The proof also illustsathe utility of using innner prod-
ucts in proving the theorem. We illustrate the implicatiohdheorem 1 and Theorem 2 with
some examples. We first consider some illustrative exanfplasonsymmetric matrices. As
an exercise, the reader should obtain the eigenvalues gadveictors for the examples given
below.

Example 1 Nonsymmetric matrix, distinct eigenvalues

s () (T 8) xea(l) waxoes(;

The superscripton the eigenvector correspondsitio eigenvalue.

Example 2 Nonsymmetric matrix, multiple eigenvalues

A“<—1 1) (Az = 2) S |

The first example illustrates that when a nonsymmetric métas distinct eigenvalues,

it is possible to obtain two distinct eigenvectors. By Thegorl, these eigenvectors are linearly
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independent. The second example illustrates a situati@ravd nonsymmetric matrix with
multiple eigenvalues has only one eigenvector. This is @amgte where the geometric multi-
plicity is less than the algebraic multiplicity. For a givénwith multiplicity m, this situation
occurs for non-symmetric matrices when dii{A — A1) < m. This is symptomatic of situ-
ations where the algebraic multiplicty is greater thanyfot nonsymmetric matrices. In the
next two examples we will consider Hermitian matrices.

Example 3 Symmetric matrix, distinct eigenvalues

A—(2 1) <>\2 _ _1) X —a(l) and x¥ =0 1

The eigenvectors are not only linearly independent, buas@ orthogonal by Theorem 2. The
orthonormal set is obtained by dividing each eigenvectatdgorm. The orthonormal set is,

1 1 1 1
n . - 2 _ -
x _ﬂ(l) and x ‘ﬂ(—l)

Example 4 Symmetric matrix with multiple eigenvalues

A—<O 2) (>\2 _ 2) X —a(o) and x¥ =p 1

In this example the matrix has one eigenvalue of multipfi2it However unlike the situation in
Example 2, here we are able to obtain two distinct eigenveetbich constitute an orthonormal
set. We can state the following theorem for Hermitian ma#ric

Theorem: A Hermitian matrix of ordem hasn linearly independent eigenvectors and these

form an orthonormal set.

Consider a Hermitian matrix with distinct eigenvalues. ardheorem 2, it is clear
that the eigenvectors corresponding to distinct eigemgadue orthogonal and the eigenvectors
form an orthonormal set. If the matrix has multiple eigeneal then the orthornormal set is
constructed by using Gram-Schmidt orthogonalization. Ser ann x n Hermitian matrix
with £ distinct eigenvalues);, Xs, ... \;. Let the multiplicity of thek + 1th eigenvalue\;.
be m. For the firstk set of distinct eigenvalues there dresigenvectors which constitute an
orthogonal set (Theorem 2, part 2). Each of thes@genvectors are orthogonal to the remaining
m eigenvectors corresponding the eigenvalye; which has multiplicitym (Theorem 2, part
2). The missing piece is the orthogonality betweenheigenvectors corresponding to the
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repeated eigenvalug,, ;. Since these are eigenvectors that belong to the same algenv
Theorem 2, does not apply. However we can use Gram-Schntidigwnalization to construct
an orthonormal set of these eigenvectors. With this the construction is complete and we
have a set ofi orthonormal eigenvectors. We note that the Gram-Schmitibgonalization

is essentially a process of taking linear combinations ofars and we need to shown that the
new vectors are still eigenvectors having the same eigeavdlhe following Lemma concerns
this point.

Lemma: Letxy, x5 ...x,, bem eigenvectors corresponding the eigenvaluélence
Ax; = \x; 1=1,...m

The eigenvalue of the eigenvector constructed by takireglicombinations of thex eigenvec-
tors is also\.

Proof: Lety be the eigenvector obtained by taking a linear combinatfon eigenvectors,

m
y = E ;X
i=1

Now

Ay = A(i a;X;)
i=1
= zm:OéiAXi
=1
= zm:Oéi)\Xi
=1
= Aiaixi
i=1

= \y
(5.14)

Hencey is an eigenvector with eigenvalue We note that this proof is true for linear combina-
tions which involve any subset of the eigenvectors.

Finally we state (without proof) that given a Hermitian nigtthe algebraic multiplicity
always equals the geometric multiplicity. This impliesttfa an eigenvalue with mulitplicity

74



dimA (A — \I) =m

Hence for a Hermitian matrix we are ensured of finding all tlgemvectors regardless of the
mulitplicities in the eigenvalues. This concludes the pfoo Theorem 3.

5.1 Eigenvectors as Basis Sets

Consider the matrix equation
Au=b (5.15)

We will assume that the matrix posesssesigenvectors. Further let us assume that the determi-
nant of A is non-zero i.e\; # 0 fori...n. Let

u= i CiX; (5.16)

Substitute Ed. 5.16 into EQ. 515,

Ai CGX; = b

ZCiAXi = b

K3
n

Z Ci)\ixi = b
Taking inner products witlx;
ZCZ‘<)\Z‘XZ',X]'> = <b,Xj> ]:17’L
(5.17)
The above manipulations results in a set.dihear algebraic equations which can be compactly
represented as
Mc =f

where the elements &1, m;; =< \;x;,x; > andf; =< b, x; >. A solution of Eq[5.11, yields

the coefficients in the expansion. If the eigenvectors fonnodhonormal set, as would be the
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case ifA were Hermitian then the coefficients can be obtained amalyyi

< b7 X; >
CGG=——F"—
Ai
and the solution can be expressed as,
n b ;

=1

The above method is general and can also be used when the=d&t We leave this as an
exercise. The above solution illustrates the utilility lo€ teigenvectors as a basis while seeking
solutions to matrix equations. In the absence of an orthoabset of eigenvectors, obtaining
the coefficients involves solving a set of linear equatidhthe eigenvectors form an orthonor-
mal set, as is the case with a Hermitian matixthen the solution is greatly simplified.

5.2 Similarity Transforms

Very often equations involving matrices can be convenyeinlated using suitable transforma-
tions. Clearly a transformation that preserves the eigamgeof the matrix will preserve the
underlying physics of the problem. One such transformasidhe similarity transform. In this
section we introduce the similarity transform and illusgris utility for matrix diagonalization,
matrix algebras and solutions of IVPs.

Definition: If there exists a non-singular matiX such that
P 'AP=B

then,B is said to be similar ta\. Similar matrices have the same eigenvalues.

Theorem: Similar matrices have the same eigenvalue® 1 AP = B thenA is similar toB
and bothA andB have the same eigenvalue.
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Proof: Let the eigenvalue oA be ).
B = P 'AP
BP' = P'A
BP 'x = P 'Ax
= P 'xx
= AP 'x
(5.19)
If P~'x =y, the the last line of the above equation implies,
By = \y

Hence) is an eigenvalue dB with eigenvectoP !x.

5.2.1 Diagonalization ofA

If a matrix A hasn linearly independent eigenvectors, then
P AP =A

P is a nonsingular matrix whose columns are made up of the eégsors of A and A is a
diagonal matrix with\’s on the diagonal.
A0 ... 0
0 X O0... O
A=10 0 X3... O
00 .. A
We next show that the matriR made up of the eigenvectors, reducedo a diagonal matrix
under a similirity transformation. LeAx; = \;x; i=1,...n
AP = Alxy,Xg,...,X,]
= [Ax,Axy,..., AX,]
= [Aix1, AoXo, . .., AuXy)
= PA
(5.20)
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In general a square matrix can be reduced to a diagonal matand only if it possesses
linearly independent eigenvectors. This is always posgidyl Hermitian matrices.

5.2.2 Using similarity transforms

Similarity transforms can be used to perform matrix algslma convenienent manner as illus-
trated below,

1. Powers of Matrices

P'AP = A
A = PAP!
A" = (PAP7YH)(PAPY) .. (PAP™Y)
= PA"P!
(5.21)

2. Inverse

A7l = (PAPTH)T!
= (PAT'PT)
(5.22)

3. Matrix polynomials

f(A) = aA™ +a,A™ . a,l
(Using A" = PA"P )
= aPA"P '+, PA"'P 4. q,, PP}
= PapA™ + ;A" + . +a, )P
= Pf(AP!
(5.23)
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In all the above manipulations, the algebra is reduced todgaiowers of the diagonal
matrix A. To complete the solution, one also requires a knowledgB df Under certain
conditionsP ! is easily deduced fro®. We discuss this next.

5.3 Unitary and orthogonal matrices

Definition: P is said to be a unitary matrix if,
PP =PP" =1,

which implies thaP~! = P*. As defined earlieP* is the complex conjugate transposeraf
If P consists of real elements then,

P’P = PPT =1,
which implies thatP~! = P?. ThenP is said to be orthogonal. Further, if
P*P = PP*

then the matrixP is said to be normal. Normal matrices provides a broadessifieation
for matrices which includes both unitary and orthogonalrives. Other examples of normal
matrices are, Hermitian, skew Hermitian and diagonal roasri

Theorem: If A is a Hermitian matrix then the matriR whose columns are made up of the
eigenvectors oA is a unitary matrix.

Proof: SinceP is made up of the eigenvectors Af

P= [Xl,Xg,X3...Xn]

Then
XJ{Xl XJ{XQ cey X];Xn
X;Xl X;XQ cey X;Xn
PP = (5.24)
xIx; xIxy ..., xIx,
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We have introduced some new notation for clarity. In the ebequationsxj represents the
complex conjugate transpose of the column vegtoHence,

1
X
xi= |’ then x| = (71,77,...,7)
T,
Noting, that the matrix elements in Eq. 5.24 are inner prtalbetween the eigenvectors which
form an orthonormal setA = A*).

T e o~
X, X; =< X;,X; >= (51‘]'

Hence

PP=1I

In a similar manner one can show tHaP* = 1. Therefore,P is unitary. The proof for
orthogonal matrices follows along similar lines, vv)tb replaced withx?".

Example 5: Consider the non-symmetric matrix from Example 1. Usingtthelinearly inde-
pendent eigenvectors to construct matPix

(1 —1 L4 12 1 ap (30
P_(2 2), P _Z(—Q 1) and P AP_<O _1)

Note that the order in which the eigenvalues appear in thgodial matrix is dependent on how
the eigenvectors are ordered in the makix

Example 6: Consider the symmetric matrix from Example 3.

(1 41 L1101 ao (30
P (P ) e L () e par (20

If P is constructed using the orthonormal eigenvectorA dlfien,

(I B L (N 1R
p=(iva o) e p= (U0 )

HereP~! = PT andP is orthogonal.
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5.4 Jordan Forms

In this section we are concerned withvar n matrices that do not posesdinearly independent
eigenvectors. This was the situation in Example 2 aboveA Hoes not possess linearly
independent eigenvectors then there exists a non-singatirx P such that,

P'AP =1

whereJ the Jordan matrix has the following structure,

J, 0 ... 0
0 Jy 0... O
J=10 0 Js... O

0 O R S
wherelJ; are the Jordan blocks which havs on the diagonal antis on the first superdiagonal.
A typical form for a @ x 3) Jordan block is illustrated below,

A1 0
00 A

J is also referred to as the Jordan canonical form.

If an n x n matrix A hask linearly independent eigenvectors then the maRixs
constructed using thegeeigenvectors as well as the remaininingk generalized eigenvectors.
Before we embark on determining generalized eigenvectergpend some time on the structure
of the Jordan forms themselves.

5.4.1 Structure of the Jordan Block

The structure of the Jordan block is best illustrated usorgesexamples. Consider(a x 3)
matrix with multiplicity m = 3. We can then have three different situations depending ®n th

number of linearly independent eigenvectors.
Case 1 1 eigenvector and 2 generalized eigenvectors and the Jordtiximas 1 Jordan block.

A1 0
J=10 X 1
0 0 A
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Case 2 2 eigenvectors and 1 generalized eigenvectors and thardanatrix has 2 Jordan
blocks. The two forms of the Jordan matrix are,

A

10 A
J=10 A 0 or J=10
0 0 A 0

O > O
> = O

Case 3 3 eigenvectors and 0 generalized eigenvectors. This caseggsdo the diagonal form

A and can be interpreted as having 3 Jordan blocks.

J:

o O >
S > O
> O O

In the above illustrations, the Jordan block is identifiec g@artitioned matrix. We can
make the following statement relating the number of Jordanks to the number of linearly
independent eigenvectors. The number of Jordan blocksiddihdan canonical formh cor-
respond to the number of linearly independent eigenvectoitse matrixA. Further from the
the examples above, the numberléf on the super-diagonal is equivalent to the number of

generalized eigenvectors used to construct the marix,

5.4.2 Generalized Eigenvectors

In this section we illustrate the procedure for finding gatieed eigenvectors for a matrix with
deficient eigenvectors. Consider for exampl& & (3) matrix with eigenvalue\ having multi-
plicity 3 and 1 eigenvectax. In this case we would like to obtain 2 generalized eigerorsct
q: andq,. The situation corresponds to Case 1, above with the Jordénixrhaving two 1's on
the off-diagonal.

P = [qulqu]
AP = [\x,Aq;,Aqy]
A1 0
PJ = [xqi,q) [0 X 1
0 0 X

= [Ax,x+ Aq1,q1 + Aqa]
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EquatingAP = PJ, in the above equations we obtain the following equationsife general-
ized eigenvectorg; andqs,

(A —M)q; =x and (A—-X)g:=q

We make the following observations. Unlike eigenvectorscitare obtained as solutions to
a homogeneous problem, generalized eigenvectors areebttas solutions to inhomogeneous
eguations as given above. We consider the generalizedveigten corresponding to situation
in Case 2 given above. In this case the maRiis constructed by using only one generalized

eigenvector. Using the same procedure as above,

P = [le X9, ql]
AP = [)\Xl, AXQ, Aql]
A0 O
PJ = [Xl, X9, ql] 0 X 1
0 0 A

= [Ax1, A\X2, X2 + AqQ1]

EquatingAP = PJ, in the above equations we obtain the following equationgife general-
ized eigenvectoq,
(A = ADq; =xz

In the above example there are a number of different varatio obtain the generalized eigen-
vector. P can be constructed by interchanging the vecigrandx,. In this case the equation
for the generalized eigenvector reduces to,

(A - )\I)Oh =X

Additionaly theP matrix can be constructed by taking linear combinations0andx,. If

u=ax;+ 5X2, then

P = [leuv ql]
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Working through the same procedure as outlined above, tatieq for the generalized eigen-
vector is

(A — )\I)ql =u=axy+ BXQ.

Clearly the above procedure illustrates that the genealegenvector can be constructed in
many ways and is hence non-unique. Regardless of the manwhich the generalized eigen-
vector is obtained, the structure of the Jordan matrix idtared. Since the generalized eigen-
vector must be obtained by solving an inhomogeneous equitgissue of solvability must be
confronted. The last example illustrates the number of wayghich the right hand side vector
can be chosen to meet the solvability criterion or equivijearrive at an system of equations
that yields a solution.

Question: In the last example where the matrix has two eggovs, derive the equations for
the generalized eigenvector assuming

J=

o O >
S > =
> O O

5.5 Initial Value Problems

Consider the linear IVP of the following form

fl—’t‘ ~ Ax +b(t) (5.25)

with initial condition,x(t = 0) = x,. In Eq[5.25, each element &fandb are functions of time
and the matrixA consists of constant coefficients. Hence

Such systems of IVPs occur in staged processes, batch rggatocess control and vibration
analysis. We will solve the above equation using the sintyiaransform technique introduced
in the previous section.
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We first consider the situation wher&,hasn linearly independent eigenvectors. In this
caseA is diagonalizable. Premultiplying Eq. 5125 By !

—1
% = P 'Ax+P 7 'b(?)

—1
Lpdt X} _ p-1APP~x + P~'b(1)

In the last line above we have insertB® ! after A. If P~'x = y andP~'b(t) = g(t) then
the above system can be rewritten as,

dy = Ay + g(t) (5.26)

with the following IC,y(t = 0) = y, = P~'x,. Using the integrating factar¢, Eq[5.26 can

be rewritten as,

e y) = e g) 527)
whose general solution is
e My(t) = /t e Mg(r)dr +c (5.28)
Using the initial conditiony, = P~!x, Eq.0@8 reduces to,
y(t) = /0 t M g(r) dr + eMyo (5.29)

The solution can be expressed in a more compact form as

Jiy ) gy(7)
Jo €277 ga(7) dr

\‘

x = Py = PleMy, + f(t)] where f(t) =
fot M=) g (1) dr
In order to obtain the solution we need to obtain an expradsioe’!. This can be obtained in

the following manner. Expanding' in a Taylor series,
(At)* | (At)°

M =T+ At + TR TRRRAERE
SubstitutingA in the above expression and collecting terms,
ZZOZO(A;—?” 0 0 M0 ...0
A 0 S, et g 0 I
0 0 L.y, L 0 0 ...
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If A is not diagonalizable then the above solution proceduranmesrunaltered. Howevey is
replaced withJ. In this case we need to obtain an expressioretar Consider the following

example. If
A1 0
J=10 X 1], (5.30)
0 0 A

thenJ = A + S, whereA is the diagonal matrix anfl is a matrix containing the off-diagonal
terms. Then

A0 O 010
et = eMeSt where A=[0 X 0 and S=(0 0 1
0 0 X 0 0 0

wheree? is evaluated as illustrated above. In order to evaludtave proceed in a similar
manner and carry out a Taylor expansion,

(St)*

St
e =14+ St+ 5T

T (5.31)

Due to the structure of matri&, the number of terms that are retained in the Taylor expansio
is only 3 as the powers & greater than 2 are identically zero. The reader should ctiesk
Collecting terms in the expansion given in Eg. .31 we obtain

1t /2 Mot Do
St=1(0 1 ¢ and ’'=1[ 0 M tet
00 1 0 0 e

The above procedure can be generalized fofrarx n) Jordan matrix of the form given in
Eq.[5.30 and,

M teM L, %e)‘t
At =2 A\
e']t _ 0 e ey me t
0 0 , :
0 O e

5.6 Eigenvalues and Solutions of Linear Equations

While solving linear equationsAx = b it is important to understand the sensitivity of the
solution to small changes in the coefficients of the ma#kior the elements in the vectdr.
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The sensitivity usually arises from round-off error duregiumerical solution such as Gauss
elimination. A measure of the sensitivity to small pertdityas is known as the condition
number of the matrix. Hence a matrix whose solutions areitbem$o small changes in the
coefficients is said to be poorly conditioned. We will useaapts of matrix and vector norms
to quantify these concepts and connect this issue of sahstt the eigenvalues of the matrix.

Normed SpaceThe norm is simply the notion of length that we have encoeatevhile dis-
cussing inner product spaces. More formally,| is said to be a norm on a linear spake
x,y € X if it satisfies the following properties,

(@) x>0
(i1) Ix+y| <I|xIl+ |yl Triangular Inequality
(@ii)  |lex]|| = |a|[x]]

)

(1w x|l =0 If and only ifx =0

Some examples of commonly encountered norms are

The 2 norm
n 1/2
[x[[2 = [Z \xilzl
=1
The p norm
n 1/p
%[, = [Z IxiP] , 1<p<o
i=1
Theoo norm

[%[loc = maz |z
1<i<n

The norm incorporates the definition of a distance functiometric,d(z, y)

d(z,y) = [z = yll

If 2 = (x1,22) andy = (y1, y2), then

d(z,y) = /(21— 11)? + (22 — 2)?
which is the familiar example of the distanceR?.
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Matrix Norms : || A|| is a matrix norm for a matriA if it satisfies the following properties of
a normed space,

) Al >0

) |[A+B| <|A|+|B|  Triangular Inequality
(#1)  [laAll = |al[|A]l

) ||Al=0 IfandonlyifA =0

Further
[ABI < [[A[l[[B]]

The matrix norm is compatible with a vector norm if

[Ax] < [[A]lIx]

Examples of commonly encountered matrix norms are giveoviel

The 1 norm, or the maximum column sum,
n 1/2
|Al1 = max [Z Ia,-j|]
1<j<n Li=1
Theoo norm or the maximum row sum,
n 1/2
[Allo = max [Z Ia,-j|]
1<i<n 7j=1

The spectral norm,
Al = [p(A*A))/?

wherep(A) is the spectral radius oA defined as the maximum eigenvalue &f If A is
Hermitian,A* = A and
||AH2 = ‘)‘ma:v|

If Ax = A\x then any norm ofA is an upper bound on the eigenvalues.
Alllx]l = llAx]l = [[Ax]| < [|A[][x]
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and
Al < [|A]]

Errors and Perturbation
Consider the linear equation,
Ax=D (5.32)

If 6b is a small pertubation to the vectbrthen letox be the corresponding pertubation to the
solution vectox and
A(x+0x)=b+db (5.33)

The problem lies in determing a bound on the perturbatiohéasblution vectok. Expanding,
Eq.[5.33 and noting thatx = b,

Adx = 6b (5.34)
and
5x = A"'6b (5.35)
From Eq[5.34
[0b]| = [JAdx|| < [|A][[|ox]] (5.36)
and from Eq[5.35,
lox|| = [[A~ ab]| < JAT"][|ob]| (5.37)
FromAx=Db
bl = [[Ax[| < [[A[l]x]| (5.38)
Combining Eqd. 5.37 arid 538
lox[[[[bl] < [[A[[[[AT[[|ob][Ix] (5.39)
If ||b]| # 0then Eq[5.39 reduces to,
[0x| _1,(|[ob|
—— < [JA[|AT |5 (5.40)
= [AI[[A™] bl

The condition numbet(A) is defined as
K(A) = [|A[[[|A7Y (5.41)
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and Eq[5.42 is,

10| 19Dl
— < k(A)——r (5.42)
x|l bl
If the 2 or spectral norm is used and the matrix is symmetnient
)\maz
K(A) = |‘)\ : ‘| (5.43)

Eq.[5.42 indicates that if the condition number is large thieall perturbations in the vectbr
can amplify the errors in the solution vector Matrices that are nearly singular (i.e with one
eigenvalue close to zero) are clearly poorly conditionelder€é are many numerical methods
developed to improve the conditioning of matrices. Clearigcision related conditioning can
be alleviated to some extent by using higher precision camguWhile deriving the bounds
as given in Ed.5.42 we assumed that the errors occurredmttigivectob. We next consider,
the situation where the error occurs in the matrix.

5.6.1 Positive Definite Matrices
A matrix is A is said to be positive definite if
<Ax,x> >0 for x#0

If A is symmetric thenA is said to besymmetric positive definit€SPD). To show that the
eigenvalues of a positive definite matrix are always pasitiv

<AX,X>= )\ <x,x>= \x|* >0

Hence all\’s are positive. As a consequence, the determinant of aip®siéfinite matrix is
non-zero. IfA is singular, therd a nonzero vectok such thatAx = 0, which implies that
< Ax,x>= 0.

Spectral RadiusThe spectral radiug(A ) of a matrixA is the maximum value of the modulus
of its eigenvalues.

p(A) = maz [\

)

There are several localization theorems which yield infation on the bounds for the eigenval-
ues. The most important theorem is the Gerschgorin’s theore
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Gerschgorin’s Theorem: Let A be a generah x n matrix whose eigenvalues can be either
real or complex. If

n

ri = Z |aij\ z:l,n

j=1,j#i
is the sum of the off-diagonal elements in tierow. LetD; be the disk in the complex plane
of radiusr; and centered at;;,

Di={z:|z—ay| <r} i=1,...,n
Gerschogorin’s theorem, states that all eigenvalues ¢ in the union of diskD;. Thus
N EDIUDyUDs...UD, 1=1,...,n

Proof Consider any\ with corresponding eigenvectar The eigen equatioAx = A\x can be
expressed as,
(A — ay)x; Z a;j%; 1=1,...n (5.44)
J=L1j#i
wherez; is the j* component in the eigenvectar Let z;, be the component with the largest
absolute value in the vectar. Then|z;|/|z;| < 1for j = 1,...n. Eq.[5.44 fori = k can be

expressed as,

X,
— Qi) Z Qj x; (5.45)

Taking moduli on both sides,

n n

x,
Aeagl< Y M%g S Jagl =y

J=1,j#k j=1,j#k
ThusA\ is contained in the dis®,, centered at,. A similar procedure follows for all tha’s.
Hence the eigenvalues lie in the union of the didRsft =1,...n

5.6.2 Convergence of Iterative Methods

The spectral radius of a matrix is useful while analyzingvavgence of iterative processes. We
will show that sequence of vectors generated by the itergtiocess,

Xk+1 = AXk k= 0, Ce (546)
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will tend to zero if and only ifp(A) < 1. x¢ is an arbitrary initial vector. Further ff(A) > 1
then the sequence will diverge. The convergence of theitiiector can be analyzed by
expanding in a basis made up of eigenvectes} of A.

n
Xg = Z o; u;
=1
n n
X1 = AXO = ZO&Z‘ Aui = ZO&Z‘ )\iui
i= =1

i=1
n n
X9 = AX1 = Z (67 )\iALlZ' = Z (073 )\?uz
i=1 i=1
. : n
X = Z a; )\fﬂui
i=1

Sincep(A) < 1, the powers of\; tend to zero ag — oo and

lim x, =0
k—o00

Alternately the iterative process can be analyzed by exaithe powers of the matriA.
Thus,

X1 = AXO
X9 = AXl = A2X0
x, = APFxg

If A can be diagonalized using similarity transforms, then
AF =PIAMP
whereA is the diagonal matrix with eigenvalues on the diagonal, and

lim A* =0 since lim AF =0 if p(A)<1

k—o0 k—o0

and

lim x, =0
k—o0
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We leave it as an exersize to show that the limiting vegfowill converge to zero when,
AP =P 1JP
wherelJ is the Jordan canonical form, i.e.,

lim J* =0 if p(A) <1

k—o0
We illustrate the application of these ideas with the analgéconvergence properties
of iterative methods such as the Jacobi and Gauss-Seidabdsetised for solutions of lin-
ear equations which results in large sparse matrices. Ve#lybautline the procedure for the
solution toAx = b using these methods.

Jacobi’'s Method Consider the solution tAx = b using the Jacobi’s method. Rewrite

A=D-B (5.47)
where
a0 0 0 a A1n
D— 0 ayn O 0 B_ _ CL'21 0 Aoy,
0 O Ann, a;Ll An2 Qnn

Substituting A = D — B into Ax = b,
Dx=Bx+b
This can be solved iteratively using the following numergzheme,
X1 =D '(Bxy+b) k=1,... (5.48)
and the solution is the limiting vector as— oc.

The Gauss Seidel Method his is an improvement over the Jacobi’s method as it usdatibst

updated components of the vector during each iteratione Her
A=—-(L+U)+D (5.49)

whereD is the diagonal matrix as defined above &nid a lower triangular matrix antJ is the
upper triangular matrix as shown below,

0 0 ce 0 0 aig ... A1p
L a1 0 0 U — Lo :
0 0 e Qp—1n
an1 Qpn—1 0 0 0 0
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Substituting, EJ. 5.49 intdx = b and rearranging,
Xk+1 = (D—L)_I(ka+b) ]{7:1,

Convergence of these iterative methods can be analyzee ifolllowing manner. We
illustrate the analysis with the Jacobi’s method. kgbe the exact solution tAx = b. Then,
Eq5.48 is

xo = D7}(Bxy + b) (5.50)

Note thatx, is also referred to as a fixed point of the mapping. Fixed gomll be discussed
in Chapter??. Subtracting Ed. 5.48 froin 5.50,

by.i1 = Hb, (5.51)

whereb, ; is the error vectorg, —x;,; atiteratek+1 andH = D~ 'B. Eq.[5.51 is of the same
form as Eq[5.46 and will tend to zero ag: — oo when the spectral radiug(H) < 1. The
conditions for thep(H) < 1 can be obtained by examining the spectral radii of the Gesah
discs. The matrix,

0 aja/an  ais/an - ain/an
H-D-'B—_ a21{022 0 23/ a2 2 a2n{a22 (5.52)
anl/arm an2/arm cee an—l,l/arm O

Since the radiir; of the Gerschgorin discs are the sum of the off-diagonal eteeofH,

n

r = 7| R (5.53)
g 12
Forp(H) < 1,
ri= ) | R B (5.54)
s 1%
which yields the following condition,
|aii| > Z |aij| (555)
j=1,j#i

Matrices which satisfy the condition given by Eq. 5.55 arfemed to asstrictly diagonally
dominant matricesvhich will result in converged solutions to the Jacobi methegardless of

94



the initial vectorx, used in the iteration. Clearly a good guess of the startictpvevill reduce
the number of iterations required to obtain the solution.teNibat the result only comments
on whether the iteration will converge or not. This is annuastive illustration of the utility of
the Gerschgorin’s theorem. The convergence criterioni®iGauss-Seidel method is left as an
exercize.

5.7 Summary

The main goal of this Chapter was to analyze the eigenvalyexeector problem for a ma-
trix. Once the eigenvalues are obtained, the main problemces to finding the eigenvectors
and understanding the properties between the eigenvdatiemsselves. Theorem 2 provides
the foundation for constructing orthogonal sets of eigetovs for Hermitian matrices. The
theorem was discussed with relevance to matrices, howkeegdnerality of the theorem for
differential and intergral operators has far reaching eqaences, laying the foundation for ob-
taining orthogonal eigenfunctions for differential opera and developing a theory of Fourier
series. These connections will be drawn in later Chapteesalb discussed the significance of
using the eigenvectors as a basis set and illustratedlity utisolving Ax = b. In the last part
of this Chapter we discussed similarity transforms andtitgyuin working with functions of
matrices as well as solutions of linear initial value praobde In this context we introduced the
Jordan canonical form and described a new set of vectoredcgéneralized eigenvectors. The
reader should realize that geneneralized eigenvectorequered for non-symmetric matrices
where only a partial set of eigenvectors can be found.
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PROBLEMS

1. Skew-Symmetric Matrix
A matrix A is said to be skew symmetric or skew self-adjoinAif= —A*. Show that
the eigenvalues are imaginary (or zero) and that eigensgectwresponding to distinct
eigenvectors are orthogonal.

2. Normal Matrices
If AA*=A*A, thenA is said to be normal.

(a) Show that for any complex numbey
|AX — ax|| = [[A"x — a"X]|

(b) If z is an eigenvector oA with eigenvalue\ show that it is also an eigenvector of
A*. What is the corresponding eigenvaluefof ?

(c) Let\ = u + iv be an eigenvalue oA with eigenvectoe. First show thatA can be
decomposed in the following manner,

A=Ap+iAg

whereArp = A*p andA; = A*;. Next show that is an eigenvector oA z and
A ; with eigenvalueg: andv respectively.

3. Consider g4 x 4) matrix with one multiple eigenvalue. Write out the possibtedan
canonical forms.

4. Symmetric Matrix

Consider the following matrix

7 —-16 -8
A=1-16 7 8
-8 8 =5

(a) Find the eigenvalues and eigenvectors af

(b) Find a solution tAAx = b whereb = {1, 2, 1} by expandingk in the normalized
eigenvectors of\.
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5. Consider the following matrix

A=

— N

1
2
4

S W O

(a) Find the eigenvalues and eigenvectors of A?

(b) Find a solutiontdAx = b whereb = {0, —2, 3} by expanding in the eigenvectors
of A.

6. Solvability Conditions

Consider the non-homogeneous equation
(A — Al)u = b, (5.56)

whereA is a square matrix of dimension Let

n

u=> c¢; (5.57)

j=1

wherec;’s are the coefficients of the expansion a are the eigenvectors .

(@) If A is self adjoint and\ in Eq.[5.56 is not an eigenvalue &f, then obtain an ex-
pression for the coefficients in the expansion. What are the solvability conditions
for Eq.[5.56 (Fredholms Alternative Theorem)?

(b) Re-work part a) for the case wheans a particular eigenvalue of. Note how the

solvability conditions are connected to the eigenfunctiohA.

(c) If A is a non self adjoint matrix with n linearly independent engectors then the

solution results in
Mc =Tf.

Write out the components of the matid and vectof

7. IVP

Using similarity transforms solve the system

dx_

X _ A
aw
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with initial conditionsx(t = 0) = {1, 1, 1} where

5 =3 =2
A=|8 -5 -4

-4 3 3

8. Let

(a) Find the eigenvalues and eigenvectordof
(b) Do the eigenvectors form an orthogonal set ?
(c) Using similarity transforms obtain the solution to

du
— =A b
a ~ont

whereb = {1, 1} andu(t = 0) = {0, 0}.

(d) How does your solution behave @aends toco ?

9. Skew Symmetric System
Using similarity transforms solve the system

dx
—=A b(t
pr x + b(t)

with initial conditionsx(t = 0) = {1/+/2,1/v/2, 1} where

—i i 0 V2t
A(i —i 0),b(t)(\/§t)
0 0 —i exp(—t)

Comment on the asymptotic stability of the system.

10. Consider the initial value problem

d*u du
U 5 u= et
prE + 7 +6bu=c¢e

with initial condition,u(t = 0) =4/(t =0) =1

(5.58)



(a) Reduce the above ode to a set of first order linear diffedeequations and represent
them in matrix vector form,
du

= Au +b(t) (5.59)

Write out the components for the matixand vectorsy, b(¢) and initial condition
u(t = 0). Obtain the solution to Eg. 5.59 using similarity transfatmns.

(b) The above solution can also be solved using the correlspgrGreens function,
g(t,€), for the second order differential operator given in Eq.85.9Jsing the
Green’s functions the solution to Hq. 5.58 can be expressed a

u(t) = crui(t) + caua(t) +/ g(t, e 4d¢ (5.60)

o

where the Green’s functiof(t, {) = exp[2(§ —t)] — exp[3(§ —t)]. ui(t) andusy(t)
are two linearly independent solutions to the homogenetigehtial equation,

d*u du
— — = 5.61
i + 5dt +6u=0 ( )

Using Eq[5.6D find the solution(t) for initial condition,u(t = 0) = v/(t = 0) = 1,
i.e finduy(t), us(t) and the constants andc,. You will have to evaluate the integral
in Eq.[5.60 to obtain the complete solution.

11. Consider the following non-symmetric matrix with reakficients,

ainl a2
a21  A22
(a) Derive the conditions on the coefficients, when the matrix has two similar eigen-

values.

(b) In this situation show that the matrix can possess onky @genvector. Derive a
general expression for the eigenvectom terms ofa;;

(c) Write out the equation that will be used to obtain the geliwed eigenvector.
Write out the form for the Jordan matrix.

(d) Show that when the matrix has two similar eigenvaluegireeralized eigenvector
can always be obtained (i.e the solvability criterion avesgis satisfied).
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12.

13.

(e) Using similarity transforms obtain a solution to thddwling initial value problem,

dri/dt = 3xi+ 9
dl’g/dt = —X1+ X9

for the initial conditionsr; = 1,t = 0 andzy, = 1,¢ = 0. Is the system asymptoti-

cally stable. Why?

(H Qualitatively sketch your solutions.

IVPs
Consider the Initial Value Problem:;

d®x N d*x n dx N ()
— — — +agr =
a T Mg Ty T

with initial conditionsz(0) = 2/(0) = 2”(0) = 0. Reduce this to a system of first order
equations of the form
du

M _ Au+b
a o ant

(@) If a3 = 0, what are the conditions om, anda, for the system to have a stable
solution.
(b) If ay = —4, ao = 3 and f(t) = sin(t) obtain a solution to the IVP using the

similarity transform method.

Normal Mode Analysis:Vibration of a CO, Molecule

Consider a spring and mass model of a,@®blecule as shown in the figure below. The
oxygen molecules have mass, and the carbon molecule has mass The springs
have a spring constamt and obey Hooke’s law. Using Newton’s laws and assuming

oxYGEN i1~ carsoN [l oxYGEN

— X9 —= I3

— I

that the motion is constrained along the- axis the system of equations describing the
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displacement of masses is

dzﬂfl _ ( _ )

a2 = a\xq )

d?*z

dt22 = —b(l’g — l’l) — b(l’g — 1'3)
d?*z

olt23 = —ales — 1)

wherea = k/m, andb = k/m,
(a) Assuming a solution of the form
Tn(t) = x,etVet n=123

wherei = /—1 andw is a natural frequency of oscillation of the system reduee th
set of ode’s to an eigenvalue problem of the form

Ax = wx.

(b) Find the eigenvalues.
(c) Find the corresponding eigenvectors.

(d) Noting that the components of the eigenvectors cormedpo the displacement of
the molecules, give a physical explanation for eigenvector

14. Projection Theorem Consider the matrix

where; = +/—1.

(a) Find the eigenvalues and normalized eigenvectors.of
(b) Find the projection®; andP, of A.

(c) Using the projection theorem evaluaté ande”?.
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Chapter 6

Solutions of Non-Linear Equations

Non-linear differential and algebraic equations arise wi@e variety of engineering situations
and we have seen some examples of non-linear operators pte&€R&. Numerical solutions
of non-linear differential equations result in a set of dim@ar algebraic equations. Although
there are a number of techniques available for solving nmet algebraic equations, in this
Chapter we will focus on primarily two methods, the Picard &fewton-Raphson methods.
The primary goal here is to develop a framework to analyzelm@ar equations. A large
number of excellent texts cover the variety of numericalhnds available for solving non-
linear equations. In order to formally treat non-linear &ipns and discuss their convergence,
existence and uniqueness aspects, we need to introducethie space. In many situations we

can express non-linear or linear equations in the follovimmglicit manner,
u = Lu

whereL can either be a linear or non-linear operator arns the unknown we seek. Examples

of equations that can be cast in the form of Eq. 6 are

1.
r = tanx
2.
r=2a+sinz+2
3.

u(z) = / k(e y)uly) dy
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x=Ax+Db
Fixed Points: u is said to be a fixed point of the mappihgf
u = Lu

ThusL operating on: leaves it unchanged and is a solutiorftQ:) = u— Lu = 0. The method
of successive substitution can be used to determine thepioid in the following manner,

Uprr = Lu, n=0...,

If w is a fixed point ofL then

lim u, =7
n—o0o

andw = Lu. This method of successive substitution also known as #Pgéerative method
will work only for a certain class of mappings or operatorfeneed to as contractions. As the
name implies the mapping contracts the distance betweeessive iterates and the generated
sequence in Ed. 6 tends to a limiting valuealled the fixed point under certain conditions.
Before introducing the contraction mapping theorem letarsnilly define the metric space
which provides a framework for defining distances betweemehts in a space.

Metric Space (X, d) is said to be a metric space if the distance between any twigpoandy
in X denoted byl(z, y) statisfies the following axioms More formally,

(1) d(z,y)>0,dz,y)=0=>x=y Positivity

r,z)+d(z,y)z,y,z € X Triangular Inequality

Thus the metricd(z, y) is simply a distance function and hence a scalar quantityeSexam-
ples of commonly encountered metrics are given below

If x andy are two vectors irR",



If @ = (21, 22) andy = (y1, y2), then

d(z,y) = V(21 — 11)? + (22 — y2)?

which is the familiar example of the distance7?, called the Euclidean distance. This metric
is used frequently in least squares fitting of data. Hmeetric is a more general definition of
the metric,

n

1/p
dp(x,y) = [ZI@“ —yil”] , 1<p<oo

1=1

The oo metric

doo(xvy) = max |xi - yz|
1<i<n

The co metric is useful in many engineering situations. While deiaing the uniformity of
temperature in an object the difference between the maxianaminimum temperatures is an
example ofd,,. The metric is related to the norm in the following manner,

d(z,y) = [l =yl
If f(x)andg(z) are two continuous functions ifi[a, b], then
b 1/p
i) = | [V - sra] L 1sp<o

Example: To show thdtX, d)4 is a valid metric space the distance function must satisfy

the axioms of the metric space. We illustrate this with thérimeefined above for finite sums,

n 1/]7
dp(z,y) = [Z |7 — yi\p] , 1<p<oo
=1

It is easy to see that the postivity and symmetry properfigissometric are satisfied. In order to
prove thatd,(z, y) satisfies the triangular inequality we need to use the Mirgkownequality

n 1/p n 1/p n 1/p
{z\xiiyi\p} s{ZW} +{z\yi|p}
=1 =1 =1

105

forfinite sumsp],



1/p
-
1/p
— {Z |w; — 2z + 2 — yz|p}

1/p n 1/p
{ |z; — 2] } + {Z |2 — yz|p} (using the Minkowski Inequality

i=1

IA

= d(z,2)+d(zy)

Thus,
d(z,y) < d(z,z) +d(z,y)
which is the triangular inequality.

Convergent SequencesConsider a sequende:; }. We say that the sequenée, } converges
tow, i.e.,

lim =u
k—o0

if for everye > 0,3 an N such that
dw,up) <e VYk>N

A sequence is said to diverge if it does not coverge.

Cauchy Sequenceu,, is said to be a Cauchy sequencg i > 0, 3 N such that,
d(ui,uj) <e Vi,j >N

Theorem: Ifu;, converges then it is a Cauchy sequence.

Proof: If u;, converges then

lim =w
k—o0

Using the triangular inequality
d(ui ug) < d(ug, @) + d(T, uy)
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Sinceu,, is convergentl an NV such that

d(u;,u) < and  d(w,u;) < <, i,j >N

DN
[Nl e

Thus3 N such that
d(ui,uj) <e Vi, j >N

Note that a Cauchy sequence need not be convergent. HenGaurchy sequence the distance
between two points in the sequence can get arbitrarily clékavever the limit value of the
sequence is not mentioned and it need not exist. This issasadved by invoking the concept
of a complete metric space.

Definition: A metric spacé X, d) is said to be complete if every Cauchy sequence of points
from X converges to a limit inX.

Example: LetX [0, 1) which includes the valu@and exclude$. Then the sequeneg, = 1— %

is a Cauchy sequence in the spacsince the limit of the sequence as— oo = 1 is excluded
from the space. IfX|0, 1] then the sequence is convergentXin Thus convergence is clearly
concerned with the existence of the limit points in the utyileg space.

6.0.1 Contraction Mapping or Fixed Point Theorem

Contraction Mapping: Consider the mapping'(z), such that
r = F(x)
x is a fixed point of " if zy = F(z). Let(X,d) be a metric space and: X — X. F(z)is
said to be a contraction #f a real numbek, 0 < k£ < 1 (k independent of andy) such that
d(F(z), F(y)) < kd(z,y) Vo,yeX

This situation is illustrated graphically in the Figure &) where the distance between two
pointsz andy, d(x,y) is reduced upon applying the mappiAgz) to each of the points.

Theorem: Let (X, d) be a complete metric space and#et X — X be a contraction. Theh
a unique pointz, in the X such thatey = F'(xy).

Proof: Generate a sequeneg from the mapping“(x) in the following manner,



Ty = F(ZL’l)

T, = F(r,_1)

d(wg, 1) = d(F(21), F(x)) <
d(xs,29) = d(F(x2), F(21)) < kd(29,21) < kK*d(z1, )

AT, Tm—1) = < K" Md(ay,2)

Using the triangular inequality,

d(x37$1> S d(x37x2> +d(l’2,x1>
d(wg,21) < d(z4,73) T3,71)
< d(x4,73) + d(x3, 72) + d(22, 71)

Generalizing, forn > n and using the above results,

AT, n) < d(TpmyTm—1) + A Tm1, Tm2) + ..., Ad(Tps1, Tn)
< K™ Nd(zy,x) + KM d(x,x) 4. K (), )
= K™Y+ E"2 4 k" d(zy, )
< EMETTTH 4 R 4 k4 1d(2, 7)

Sincel < k < 1,

n

T 1k

d(Tp, Tp) < K" Zk’ d(zy, ) d(zy, )

=0
where we have used the summation of the geometric series,

2H =1

Since0 < k < 1, d(zp, x,) — 0 @asm,n — oo. Thusz, is Cauchy. Further sinceX, d) is a
complete metric space,, is convergent inX. Let

To = lim z,
n—oo
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To show thatz, is a fixed point ofF' (=) we use the continuity of the mappidgz). SinceF (x)
is continuous,

ro = lim x4 = lim F(z,) = F(lim x,) = F(x)
n—oo n—oo n—oo

To show thatz, is unique: Assume that, andy, are two fixed points of'(z), i.e. zy = F(x)
andyo = F'(vo).

d(z0,yo) = d(Fzo, Fyo) < kd(xo,y0) < d(xo,Yo)
Henced(xo, yo) = 0 andzy = yo. Thus the fixed point is unique.

Some notes about fixed points.Afzq) = zo thenF?(xy) = z,. Further ifz, is a fixed
point of F? it need not be a fixed point df (z).
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(a) A (b) F(x)

S

>
X X X

Figure 6.1: Picard iterates are illustrated for differamdtionsF'(z). Convergence toward
the fixed pointz, is observed for cases (a) and (c). In these situation$ihe)| < 1.Since
|F'(x)| > 1 for case (b) the iterates diverge and the iterates oscalatend the fixed point for
case (d) wheréF’(x)| = 1. In all cases the initial guess:is
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