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The transport of particles/droplets dispersed in turbulent flows is of crucial importance to a wide range

of natural and engineering processes. In this theoretical and numerical study, we focus on the transport of

heavy particles in an incompressible gas flow and exploit a Full Lagrangian method to measure the statistical

properties of the particle segregation. While doing so, we are able to analyse some particular features of

this ongoing process, and in particular to study the statistics of singularities in the particle concentration

field and the recently observed Random Uncorrelated Motion (RUM): the velocity of particles with large

inertia brought into close proximity may be strongly decorrelated not only with the flow but one with

another.

In our recent work (IJzermans et al, 2009 and 2010), we have studied the segregation of heavy particles in

turbulence by calculating the rate-of-compression of the particle phase in a kinematic simulation. Particles

are advected by Stokes drag in a flow field composed of 200 random Fourier modes. The volume occupied

by the particles centred around a position x at time t is denoted by J = det(Jij), where Jij = ∂xix0/∂xo,j

, where x0 denotes the initial position of the particle. The particle-averaged compressibility, ζ = d <

ln|J | >= dt, gives a measure for the change of the total volume occupied by the particle phase. Numerical

results showed that the particleaveraged rate-of-compression decreases continuously if the value of the

Stokes number (the dimensionless particle relaxation time) is below a threshold value, Stcr, indicating

that the segregation of these particles continues indefinitely. We find that the probability density function

of ln|J |, the compression, tends to a Gaussian distribution for St ∼ 1 when t → ∞. We believe the

explanation for Gaussianity is similar to that for the occurrence of a Gaussian distribution of displacement

(Taylor, 1922), with ζ ′(t), the fluctuating value of ζ(t) about its mean. However, we find that that such

PDF shows a significant skewness towards negative compression (segregation), i.e. singularities in the flow

are likely to play a significant role in determining the statistics of the segregation in these long term limit

By counting events for which |J(t)| = 0, we can calculate the distribution of singularities over a

fixed interval of time respectively for a set of St numbers. As shown in Figure 1 for St = 1, excluding the

influence of an initial transient when no singularities are observed, the histogram that represents the discrete

probability distribution is well approximated by a Poisson distribution that describes the probability of the
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occurrence of an event (singularity) in a specified time span [0; ∆t] as ∼ λ∆t = Λ; λ is the rate constant

for the occurrence of singularities. The Poisson process implies that starting from some initial fully mixed

equilibrium distribution, the decay in the number of particles that have not experienced a singularity is

∼ exp(−λt).

Figure 1: Comparison between theory and experimental data.

Finally, we discuss our work in relation to that of Falkovich & Pumir, 2007 and Wilkinson et al, 2007

and conclude that the occurrence of singularities is related to the formation of caustics and sling effect

respectively, since it corresponds to the folding of the particle velocity field in phase space. We believe

that RUM and singularities are intrinsically related and we are currently working to find a suitable way to

demonstrate such theory from a mathematical and numerical point of view.
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