
Chapter 1

Dimensional Analysis and

Correlations

In order to design unit operations in chemical engineering processes, it is neces-
sary to obtain the relationship between the average transfer rates (mass, heat,
momentum) and the applied forces that are used to drive the transport (con-
centration difference, temperature difference, velocity difference). Dimensional
analysis is a very powerful tool that enables us to simplify this relationship
and express it in a compact manner, through the use of dimensionless groups
and correlations between these groups. A deeper understanding is obtained by
interpreting the dimensionless groups as the ratio of fluxes and driving forces,
or as the ratio of two driving forces. The magnitude of dimensionless groups
enable us to differentiate between the dominant and the negligible forces in a
transport process.

In this chapter, we first discuss dimensions and units, and obtain dimen-
sionless groups of importance in transport processes using dimensional analysis.
Dimensionless groups are then interpreted on the basis of either the flux-force
ratio, or as the balance between two driving forces that they represent. The
concept of mass, momentum and energy diffusion is then discussed, and the
respective diffusivities are derived. Correlations between dimensionless groups
for some important transport processes involving heat, mass and momentum
transfer are then introduced. Some of these correlations, which are derived
by more exact calculations in the reminder of the book, are introduced here.
Some physical insight is provided into the nature of the correlations in different
transport (diffusive, convective) and flow (laminar,turbulent) regimes.

1.1 Units

All physical quantities are expressed in two parts. The first is a unit, which
indicates the basis for the measurement of the quantity, and the second is the
number of units. A physical quantity cannot be completely specified without
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2 CHAPTER 1. DIMENSIONAL ANALYSIS AND CORRELATIONS

indicating what the unit is. For example, one cannot say that the length of
a box is 3 or the weight of an object is 2. It is also necessary to specify the
units being adopted, that is feet or meters (in the case of length) and pounds
or kilograms (in the case of weight). Though it is necessary to have only one
unit for a quantity, for historical reasons there are often many different units
adopted for the same quantity, for example foot and meters for length or pounds
and kilograms for weight. These are often a hindrance, since it is necessary
to convert from one application to another in practical applications. In our
treatment of transport phenomena, we will restrict attention to the SI system
of units (meters, kilograms, seconds) where it is necessary to specify units. To
the extent possible, we will work with dimensionless groups, whose value is
independent of the units used.

1.1.1 Fundamental and derived units

Units can also be divided into two categories — fundamental units and derived
units. For example,

1. Length, which is expressed in feet or meters, can be considered a funda-
mental unit. Similarly, time, which is expressed in seconds or hours, is
also a fundamental unit.

2. In contrast, velocity, which is expressed as the length moved per unit time,
is a derived quantity, because its unit is the ratio of the units of length
and time.

3. Similarly, density, which is the mass per unit volume, is a derived quantity,
since it is expressed in terms of the ratio of mass and volume.

4. Volume is also a derived quantity, since it is expressed in terms of the
length.

1.1.2 SI units

It turns out that all units for all physical quantities can be expressed in terms
of a set of six fundamental units. By international convention, the standard
system of units is the SI system, in which the fundamental measures and units
are,

1. Mass(M) with unit kilogram.

2. Length(L) with unit meter.

3. Time(T ) with unit second.

4. Temperature(Υ) with unit Kelvin.

5. Current with unit ampere.

6. Light intensity with unit candela.
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Quantity Dimension Unit (SI)
Mass M kilogram (kg)
Length L meter (m)
Time T second (s)
Temperature Υ K
Velocity LT −1 (m/s)
Acceleration LT −2 (m/s2)
Force MLT −2 (kg m/s2)
Energy ML2T −2 (kg m2/s2) (Newton)
Work ML2T −2 (kg m2/s2) (Newton)
Heat ML2T −2 (kg m2/s2) (Newton)
Pressure ML−1T −2 (kg/m/s2) (Pascal)
Stress ML−1T −2 (kg/m/s2) (Pascal)
Elasticity ML−1T −2 (kg/m/s2) (Pascal)
Viscosity ML−1T −1 (kg/m/s) (Poise)
Diffusivity L2T −1 (m2 s−1)
Thermal conductivity MLT −3Υ−1 (kg m s−3 K−1

conductivity
Specific heat L2T −2Υ−1 (m2 s−2 K−1 (J/kg/K)
heat

Table 1.1: Dimensions and units of some commonly used quantities in transport
processes.

In the present course, we will only analyse quantities with the mass M, length
L, time T and temperature Υ dimensions. All other physical quantities can
be expressed in terms of these fundamental quantities. Some of the important
quantities encountered in chemical engineering applications and their units in
the SI systems are given in the following table 1.1.

The derived units of all other quantities are determined from relations that
define these quantities. For example

1. The unit of Force is determined from Newton’s third law, which states
that force on an object is mass times acceleration F = ma. Therefore, the
unit of force (Newton) is the unit of mass times M (kg) times the unit of
acceleration LT −2 (m/s2).

2. Pressure is the force acting per unit area of the surface. The unit of
force is MLT −2, and the unit of area is L2, and so the unit of pressure is
ML−1T −2.

3. The density is the mass of a unit volume of the material, so the density
has dimensions of mass per unit volume, ML−3.

4. Concentration is the mass of solute per unit volume of solution, so it
also has dimensions of mass per unit volume, ML−3.
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5. The mass flux j is the mass transported across a surface per unit area
per unit time, with dimensions of ML−2T −1.

6. The diffusion coefficient is the proportionality constant in Fick’s law
for diffusion. If we take a solution of thickness L, and the difference in the
concentration on the two ends is ∆c, then the mass flux is given by,

j = D
∆c

L
(1.1)

where ∆c is the concentration difference across a distance ∆x. The mass
flux has units of ML−2T −1, and the the concentration gradient has di-
mensions of ML−4, and therefore, the diffusion coefficient has dimensions
of L2T −1.

7. The heat flux q is the energy transferred per unit area per unit time. The
unit of energy is ML2T −2, and so the unit of energy flux is MT −3.

8. Specific heat: The change in thermal energy ∆E is related to the change
in temperature of an object ∆T as follows

∆E = mC∆T (1.2)

In the above equation, ∆E has dimensions of energy ML2T −2, mass has
dimension M and temperature has dimension Υ. Therefore, the specific
heat has dimension L2T −2Υ−1, or units (m2/s2/K).

9. The thermal conductivity is obtained from Fouriers law for heat con-
duction. If we consider a slab of material of thickness L subjected to a
temperature difference ∆T , the heat flux is given by,

q = −k
∆T

L
(1.3)

and has dimensions of MLT −3Υ−1.

10. The stress has dimensions of force per unit area, ML−1T −2.

11. Viscosity: The unit of viscosity can be determined from Newton’s law for
viscosity for a fluid between two plates separated by a distance L having
a relative velocity V as in figure 1.1.2.

τ = µV/L (1.4)

In the above equation, τ is the shear stress on the plates, and has di-
mensions of force per unit area ML−1T −2, the velocity has dimensions
of LT −1 and distance between the plates has dimensions of L. Therefore,
the viscosity has dimensions of τL/V , which is ML−1T −1.
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Figure 1.1: The fluid flow between two plates separated by a distance L moving
with velocity (±V/2) in the tangential direction.

1.2 Dimensional analysis

The first step in dimensional analysis is to identify the transport properties
(fluid velocity, heat flux, mass flux, etc.) and the material properties (viscosity,
thermal conductivity, specific heat, density, etc.) which are relevant to the
problem, and list out all these quantities along with their dimensions. In general,
if a problem contains n dynamical and material parameters, and these contain
m fundamental dimensions, then there are n − m independent dimensionless
groups. This important principle is called the Buckingham Pi Theorem.

The choice of the independent dimensionless groups is subjective. For ex-
ample, if Φ is a dimensionless group, then Φ2, Φ−3/2, etc. are also dimensionless
group. Therefore, in assembling a dimensionless group, the power of one of the
important variables can be decided arbitrarily, and all other dependencies are
determined in terms of this one. In addition, if Φ and Ψ are two dimensionless
groups, then the product Φ× Ψ is also a dimensionless group. Though there is
some arbitrariness in assembling the dimensionless groups, the number of such
independent dimensionless groups is still n − m, if n is the total number of
dimensional quantities in the problem and m is the number of dimensions.

1.2.1 Sphere falling in a fluid

Consider the example of a sphere falling in a tank containing the fluid1.2.1.
The equation of motion for the sphere velocity in the vertical direction can be
written as,

m
dU

dt
= mg − FD (1.5)

where m and U are the mass and velocity of the sphere, g is the acceleration
due to gravity and FD is the drag force. When the sphere attains its terminal
velocity, the drag force is exactly balanced by the gravitational force. Our task
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U

Figure 1.2: A sphere falling in a tank containing a liquid.

is to obtain an expression for the drag force as a function of the sphere velocity
and the fluid properties.

The motion of the sphere disturbs the fluid around it, and causes fluid flow.
This fluid flow results in friction, and this frictional drag exerts a force on the
sphere. Since the frictional resistance to flow is due to viscous stresses, it is
expected that the viscosity µ will be important in determining the frictional
force. In addition, the force is expected to depend on the velocity of the sphere
U , since a higher speed would result in a larger force. The length scales that
could affect the flow are the width of the tank L and the radius of the sphere
R. The density of the fluid ρ could also be important, since a higher force is
required for accelerating a fluid with a higher density.

It is important to note that the mass of the sphere or its density should not
be relevant determining the flow, once the sphere velocity is specified. This is
because the fluid velocity around the sphere, which results in the frictional force,
is determined by the velocity with which the sphere is moving, and the mass or
density of the sphere does not affect the fluid velocity. Similarly, the acceleration
due to gravity determines the gravitational force on the sphere, but does not
directly affect the fluid velocity around the sphere, once the sphere velocity is
specified. Therefore, it is necessary to apply some judgement at the start of
dimensional analysis to distinguish the material and dynamical properties that
influence in the desired quantity. It is essential to ensure that no irrelevant
quantity is included in the analysis.

Now that all the relevant dimensional quantities for the drag force have been
determined, it is necessary to examine which are the important ones. This is a
skill, and can be developed only by practice. In this particular case, let us look
at the length scales that are likely to be important. If the width and height of
the container are large compared to the radius of the sphere, it is likely that
only the radius of the sphere is a relevant length scale. On the other hand, if
the sphere is very close to one of the walls of the container, say within a few
radii, then the distance from the wall as well as the radius of the sphere could be
important. For definiteness, let us proceed with the assumption that only the
radius of the sphere is important in this case. This results in a set of important
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variables

1. Radius of sphere R

2. Velocity of sphere U

3. Viscosity of fluid µ

4. Density of fluid ρ

So an equation for the force has to have the form

F = F (ρ, R, U, µ) (1.6)

The dimensions of the quantities on the two sides are

F → MLT
−2 (1.7)

ρ → ML
−3 (1.8)

R → L (1.9)

U → LT
−1 (1.10)

µ → ML
−1

T
−1 (1.11)

Since there are five dimensional quantities and three dimensions involved in the
above relationship, there are two dimensionless groups. One of these groups has
to involve the force, while the other is a combination of the sphere diameter,
velocity, and fluid properties (density and viscosity).

Let us construct the first dimensionless group, which we call a scaled force
ΦFV , as a combination of the force, viscosity, velocity and

ΦFV = FµaU bRc (1.12)

where a, b and c are the desired indices which render ΦFV dimensionless. The
dimensions of the left and right sides of the equation are

M
0
L

0
T

0 = (MLT
−2)(ML

−1
T

−1)a(LT −1)b
L

c (1.13)

For the dimensions on two sides to be equal, we require that

M : a + 1 = 0 (1.14)

L : −a + b + c + 1 = 0 (1.15)

T : −a − b − 2 = 0 (1.16)

These equations can be solved simultaneously, to obtain a = −1, b = −1, c = −1.
Thus, the first dimensionless group is,

ΦF =
F

µRU
(1.17)
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The second dimensionless group, which we call Re, is a combination of the
density, diameter, sphere velocity and viscosity. We write this as,

Re = ρUaRbµc (1.18)

In defining the dimensionless group, the exponent of any one of the quantities
can be set equal to 1 without loss of generality. In equation ??, we have chosen
to set the exponent of the density equal to 1, to bring it in accordance with
the conventional definition of the Reynolds number defined a little later. The
dimensions of the quantities on the right side of equation ?? are,

(ML
−3)(LT −1)a

L
b(ML

−1
T

−1)c (1.19)

For dimensional consistency, we have three relations

M : 1 + c = 0 (1.20)

L : −3 + a + b − c = 0 (1.21)

T : −a − c = 0 (1.22)

These equations can be solved to obtain a = 1, b = 1 and c = −1. Therefore,
the dimensionless number Ψ is

Re = (ρUR/µ) (1.23)

The relation between force and velocity can also be written in this case as

ΦFV = F/(µRU) = G(Re) (1.24)

where G is a function of the dimensionless group Re = (ρUR/µ).
In equation ??, the force has been non-dimensionalised by the ‘viscous

force scale’ (µRU). Instead of using the viscosity, radius and velocity do non-
dimensionalise the force, we could have chosen to use the density, radius and
velocity instead. This would have lead to the dimensionless group ΦFI =
(F/(ρU2R2)), where (ρU2R2), the ‘inertial force scale’, is a suitable combina-
tion of density, velocity and radius with dimensions of force. It is easily verified
that the dimensionless forces scaled in these two different ways are related by,

ΦFV = ReΦFI (1.25)

The Reynolds number is then a ratio of the inertial and viscous force scales,
Re = (ρU2R2)/(µRU). That is why the Reynolds number is often referred to
as the balance between the viscous and inertial forces.

Further simplifications can be made in some limiting cases. When the group
(ρUR/µ) is very small, the fluid flow is dominated by viscous effects, the drag
force should not determine on the inertial force scale. Therefore, the drag force
has the form ΦFV = Constant, or

FD = ConstantµUR (1.26)
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Quantity Symbol Dimension Modified dimension
Mass flux (mass/area/time) j ML−2T −1 MsL

−2T −1

Diffusion coefficient D L2T −1

Concentration difference ∆c ML−3 MsL
3

Particle diameter D L

Particle velocity U LT −1

Density of fluid ρ ML−3

Viscosity of fluid µ ML−1T −1

Table 1.2: Relevant quantities and their dimensions for the mass transfer to a
particle.

The limitation of dimensional analysis is that the value of the constant cannot
be determined, and more detailed calculations in chapter ?? reveal that the
exact value of the constant is 6π. This leads to Stokes drag law for the force on
a sphere in the limit of small Reynolds number, FD = 6πµRU .

The Reynolds number can be physically interpreted as the ratio of inertial
and viscous forces, or as the ratio of convection and diffusion. The latter in-
terpretation is more useful, since it has analogies in mass and heat transfer
processes. As we shall see in detail in the next chapter, the diffusion coefficient
for momentum, is the ‘kinematic viscosity’, ν = (µ/ρ), where ρ is the mass den-
sity. It is easy to verify that the kinematic viscosity has the same dimensions
as the mass diffusion coefficient, L2T −1. The Reynolds number can be written
as Re = (UR/ν), which is the ratio of convective transport of momentum (due
to the fluid velocity) and diffusive transport due to momentum diffusivity.

This type of analysis could be extended to more complicated problems. For
example, if the particle falling is not a sphere but a more complicated object,
such as a spheroid, then there are two length scales, the major and minor axes
of the spheroid, R1 and R2. In this case, the number of variables increases to 6,
and there are three dimensional groups. One of these could be assumed to be
the ratio of the lengths (aspect ratio) (R1/R2).

1.2.2 Mass transfer to a suspended particle:

Consider a stirred tank reactor for heterogeneous catalysis, shown in figure ??,
where the reactants and products are in solution and the catalyst is in the
form of solid particles. The dissolved reactant R diffuses to the surface of the
suspended catalyst particle, reacts at the surface and the product diffuses back
into the fluid. It is necessary to determine the average flux of the reactant to
the surface, given the difference in concentration ∆c = (c∞ − cs), where c∞ is
the concentration in the bulk and cs is the surface concentration. There is also
relative motion of characteristic velocity U between the catalyst particle and
the fluid, due to stirring.

The different dimensional quantities of relevance are, The choice of dimen-
sional quantities requires further discussion. It is clear that the average mass
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flux depends on the bulk concentration and the diffusion coefficient, and the
particle diameter. However, it is also necessary to include the fluid density,
viscosity and the particle velocity relative to the fluid for the following reason.
When the particle moves relative to the fluid, the flow pattern generated alters
the distribution of the solute around the particles, and thereby modifies the
diffusion flux at the particle surface. The flow pattern, in turn, depends on the
fluid viscosity and density and the flow velocity, and therefore, the average mass
flux could also depend on these.

In table 1.3, there are seven dimensional quantities and three dimensions.
On this basis, we would expect that there are four dimensionless groups. How-
ever, a further simplification can be made by distinguishing between the mass
dimension in the mass transport (which involves the solute mass) and that in
the flow dynamics (which involves the mass of the total fluid). The flux and
the diffusion coefficient contain the mass of the solute, whereas the mass of the
fluid (solute plus solvent) appears in the density and fluid viscosity. If the so-
lute concentration does not affect the fluid density and viscosity, we can make
a distinction between the mass dimension for the solute, Ms, from the mass
dimension for the fluid, M. In the modified dimensions shown in table 1.3, the
mass flux and the diffusion coefficient depend on the solute mass Ms, while
the density and viscosity depend on the fluid mass M. There are now four
dimensions, M, Ms, L and T , and therefore there are only three dimensionless
groups.

The first dimensionless group can be constructed by non-dimensionalising
the flux by the diffusion coefficient, the concentration difference and the particle
diameter,

Φj = j(∆c)a
D

bDc (1.27)

The indices a, b and c are determined from dimensional consistency to provide
the dimensionless flux, called the Sherwood number,

Sh =
jD

D∆c
(1.28)

Two other dimensionless groups can be defined. One of the dimensionless num-
bers if the Reynolds number, Re = (ρUD/µ), which is the ratio of fluid inertia
and viscosity. The second dimensionless group can be defined in two ways.
One possible definition is the Schmidt number, Sc = (µ/ρD), which is the di-
mensionless combination of the diffusivity, viscosity and density. The alternate
dimensionless group is the Peclet number, Pe = (UD/D), constructed from the
flow velocity, diameter and the mass diffusivity. If we use the Reynolds and
Schmidt numbers, the dimensionless flux can be expressed as,

Φj = Function(Re, Sc) (1.29)

1.3 Heat transfer in a pipe

This is a slightly more complicated problem. A fluid is flowing through a pipe,
which is heated from outside. The temperature of the wall of the pipe is higher
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Quantity Symbol Dimension
Heat flux q HT −1L−2

Diameter of pipe D L

Length of pipe l L

Average fluid velocity U LT −1

Density of fluid ρ ML−3

Viscosity of fluid µ ML−1T −1

Specific heat of fluid cp HM−1Υ−1

Thermal conductivity k HL−1T −1Υ−1

Temperature difference ∆T Υ

Table 1.3: Relevant quantities and their dimensions for the heat transfer to a
fluid flowing in a pipe.

than the average temperature of the fluid by a constant value ∆T . The change
in temperature of the fluid is due to the heat transfer from the walls, and not
due to frictional heating generated by the flow. One would like to predict the
rate of transfer of heat, per unit area of the wall of the pipe, so that the length
of pipe required for the heat exchanger can be designed.

The first step is to collect the set of variables on which the heat flux q can
depend. This can depend on the thermal properties of the fluid, the conductivity
k and the specific heat cp, the difference in temperature between the fluid and
the wall ∆T , the flow properties of the fluid, the density ρ and viscosity µ, and
the average fluid velocity U , and the diameter of the pipe D, and length of pipe
L. The fundamental dimensionless groups that we can classify these into are
M, L, T and temperature Υ.

There are nine dimensionless groups and four dimensions in table 1.3, ap-
parently necesitating five dimensionless groups. However, a further reduction is
possible when there is no interconversion between heat energy (which is being
transferred) and mechanical energy (which is driving the flow). In this case,
it is possible to consider heat energy as a dimension H which is different from
mechanical energy. There are now five dimensions, H, M, L, T and Υ, and a
total of nine dimensional quantities in table 1.3. Therefore, there are only four
dimensionless groups.

Of the dimensionless groups, the easiest one to is the ratio (L/D) of the
length and diameter of the pipe. The dimensionless group containing q is the
‘dependent’ dimensionless group, which contains the dependent variable which
has to be determined as a function of all the other ‘independent’ variables in
the problem. For the independent variable q, the relation is of the form

qDakb∆T cµdρe = Dimensionless (1.30)

In dimensional form, the equation for these become

HL
−2

T
−1(L)a(HL

−1
T

−1Υ−1)b(Υ)c(ML
−1

T
−1)d(ML

−3)e = H
0
M

0
L

0
T

0Υ0

(1.31)
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The five equations required for the consistency of the above dimensional rela-
tionship are

H : b = −1 (1.32)

M : d + e = 0 (1.33)

L : a − b − d − 3e = 2 (1.34)

T : −b − d = 1 (1.35)

Υ : −b + c = 0 (1.36)

The above relations can easily be solved to obtain a = 1, b = −1, c = −1, d = 0
and e = 0. Using these, the dimensionless group is

Nu =
qD

k∆T
(1.37)

Of the two other dimensionless groups, one can easily be identified as the
Reynolds number, Re = (ρUD/µ), which is the ratio of inertia and viscosity
for this case. The second dimensionless group contains the specific heat cp,
which has not been employed so far. Since cp contains both the thermal energy
and mass dimensions, the dimensionless group has to contain the thermal con-
ductivity k, as well as the (viscosity µ or density ρ). The dimensionless group
constructed with the specific heat, viscosity and conductivity is the Prandtl
number,

Pr =
cpµ

k
(1.38)

Therefore, the general expression for the average heat flux can be written as,

qD

k∆T
= Φ

(

L

D
,
ρUD

µ
,
cpµ

k

)

(1.39)

Dimensional analysis has certainly simplified the problem, since it is much
easier to deal with relationships between four dimensionless groups rather than
with nine dimensional variables. However, it is not possible to obtain further
simplification using dimensional analysis. There are two possible ways to fur-
ther simplify the problem. One is to do further analytical calculations which
incorporate the details of the heat and mass transfer processes. The other is
to do experiments and obtain empirical correlations between the parameters.
In the latter case, it is sufficient to consider the variation in the heat flux for
variations in the dimensionless groups alone, and it is not necessary to examine
variations in individual parameters.

1.4 Dimensionless groups

Dimensionless groups can be classified into three broad categories, the dimen-
sionless fluxes, the ratios of convection and diffusion, and the ratios of different
types of diffusion. Before proceeding to define dimensionless groups, we first
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define the diffusion coefficients for mass, momentum and energy, in order to
provide a definite basis for the discussion. The molecular origins of diffusion
will be discussed in the next chapter; here, we restrict ourselves to the macro-
scopic definition.

1.4.1 Mass, momentum and energy diffusivities:

The fundamental constitutive relations in transport processes are the Fick’s
law for mass diffusion, Fourier’s law for heat conduction and Newton’s law for
viscosity. The respective diffusion coefficients can be defined as follows.

1. When there is a concentration difference maintained across a slab of fluid,
as shown in figure 1.4.1, there is transfer of mass from the surface at
higher concentration to the surface at lower concentration. As shown in
figure 1.4.1 the mass flux (mass per unit area per unit time) is inversely
proportional to the length and directly proportional to the difference in
concentration or temperature across the material. If a concentration dif-
ference ∆c is maintained between two ends of a slab of length l, the mass
flux j per unit area, which has units of (mass / area / time), is given by
Fick’s law,

jc = −D
∆c

l
(1.40)

Here, the negative sign indicates that mass is transferred from the region
of higher concentration to the region of lower concentration.

2. For the transport of heat, the heat flux is related to the temperature dif-
ference by Fick’s law. For a slab of material of length l with a temperature
difference ∆T across the material, (figure ??), the heat flux q is given by
Fourier’s law,

q = −k
∆T

l
(1.41)

where k is the thermal conductivity, and the negative sign indicates that
heat is transferred from the region of higher to the region of lower tem-
perature.

3. The Newton’s law of viscosity relates the shear stress τ (force per unit area
at the wall) to the strain rate (change in velocity per unit length across
the flow) for the simple shear flow of a fluid as shown in figure 1.1.2.

τxy = µ
∆ux

l
(1.42)

It should be noted that there is no negative sign in the above Newton’s
law 1.42, in contrast to Fick’s law and Fourier’s law. This is due to the
difference in convention with regard to the definition of stress in fluid me-
chanics, and the definition of fluxes in transport phenomena. The shear
stress τxy in Newton’s law is defined as the force per unit area at a surface
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L

T1 T2

A

in the x direction whose outward unit normal is in the y direction. In
contrast, the fluxes are defined as positive if they are directed into the
volume. Therefore, the shear stress is actually the negative of the mo-
mentum flux. If the stress is defined to the the force per unit area acting
at a surface whose inward unit normal is in the x direction; this would
introduce a negative sign in equation 1.42. However, it is conventional
in fluid mechanics to define the stress with reference to the outward unit
normal to the surface. As we will see later in this course, this difference in
convention will not affect the balance equations that are finally obtained
for the rate of change of momentum.

In this course, we will adopt the convention of defining the stress τxy as the
force per unit area in the x direction acting along a surface whose outward
unit normal is in the y direction, and use equation 1.42 for Newton’s law
of viscosity.

The diffusion coefficients are the proportionality constants in the relationship
between the flux of a quantity (mass, heat, momentum) and the driving force.
The flux of a quantity (mass, heat, momentum) is the amount of that quantity
transferred per unit area per unit time. The driving force for a quantity (mass,
heat, momentum) is the gradient (change per unit distance) in the density
(quantity per unit volume) of that quantity. So the transport equations can be
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written in the general form,





Transport of quantity
per unit area
per unit time



 =

(

Diffusion
coefficient

)

×





Change in density (per unit volume)
of the quantity

acrossthematerial





Thickness of material

(1.43)
From dimensional analysis of the above equation, it is easy to see that the
diffusion coefficients of all quantities have dimensiions of L2T −1 These diffu-
sion coefficients are defined from Fick’s law, Fourier’s law and Newton’s law as
follows.

1. From Fick’s law, the diffusion coefficient D is the ratio of mass flux (mass
transported per unit area per unit time) and the gradient in the concen-
tration (mass per unit volume). Therefore, the diffusivity of mass is just
the diffusion coefficient D.

2. It is possible to define a diffusion coefficient for heat transfer as follows.
The difference in temperature ∆T can be expressed in terms of the differ-
ence in the specific energy between the two sides as ∆T = (∆E/ρcv) where
∆E is the specific energy (per unit volume). With this, the equation for
the heat flux can be written as

je =
k

ρcv

∆E

l
(1.44)

It is obvious that the above equation has the same form as the mass flux
equation, with a thermal diffusivity DH = (k/ρcp) which has units of
L2T −1.

3. The ‘momentum diffusivity’ is the relation between the flux of momen-
tum (rate of transport of momentum per unit area per unit time) and
the difference in the momentum density (momentum per unit volume).
Consider the layer of fluid shown in figure 1.1.2. Since the momentum
of a parcel of fluid is the mass of that parcel multiplied by its velocity,
the momentum density is the product of the mass density ρ and velocity
ux. Therefore, the equation for the flux 1.43, expressed in terms of the
momentum density, is

τxy = ν
∆(ρux)

l
(1.45)

where ν is the momentum diffusivity. It is clear, by comparing 1.42 and
1.45, that for an incompressible fluid with constant density (which we shall
be concerned with in this course), the momentum diffusivity ν = (µ/ρ).
The momentum diffusivity ν, which has dimensions L2T −1, is also referred
to as the ‘kinematic viscosity’.

The dimensionless numbers which are ratios of diffusivities are
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Expression Ratio

Reynolds number ρUL
µ

Momentum convection
Momentum diffusion

Prandtl number ν
DH

Momentum diffusion
Thermal diffusion

Schmidt number ν
D

Momentum diffusion
Mass diffusion

Peclet number Ul
DH

Heat convection
Heat diffusion

Table 1.4: Dimensionless numbers as ratio of forces.

1. the Prandtl number Pr = (ν/DH) = (cpµ/k), the ratio of momentum and
thermal diffusivity, and

2. the Schmidt number Sc = (µ/ρD) = (ν/D), the ratio of the momentum
and mass diffusivity.

1.4.2 Ratio of convection and diffusion:

Convective transport takes place due to the mean flow of a fluid, even in the
absence of a concentration difference. For example, if a fluid with concentration
c travels with velocity U in a pipe, the total amount of mass transported per
unit time is (cUAp), where Ap is the cross-sectional area of the tube. Therefore,
the flux (mass transported by the fluid, per unit area perpendicular to the flow
per unit time), is (cU). Consequently, the ratio between the rate of transport
due to convective and diffusive effects is (Ul/Diffusivity), where l is the length
scale across which there is a change in the density of this quantity.

The dimensionless numbers which are ratios of convective and diffusive trans-
port rates (table 1.4.2) are,

1. the Reynolds number, Re = (ρUl/µ) = (Ul/ν), the ratio of momentum
convection and diffusion,

2. the Peclet number for mass transfer Pe = (Ul/D), the ratio of mass con-
vection and diffusion, and

3. the Peclet number for heat transfer, Pe = (Ul/DH) = (ρCpUl/k).
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1.4.3 Dimensionless numbers in natural convection

In natural convection, the driving force for convection is the body force caused
by a variation in the density of the fluid, which is in turn caused by variation in
temperature. In contrast to natural convection, the characteristic flow velocity
is not known a priori, but has to be determined from the driving force due to
the density difference. If we assume there is a balance between the driving force
and the viscous stresses in the fluid, dimensional analysis can be used to infer
that the characteristic velocity should scale as Uc ∝ (fD2/µ), where f is the
driving force for convection per unit volume of fluid, D is the diameter of the
body or the characteristic length, and µ is the viscosity.

The driving force for convection, per unit volume of the fluid, is proportional
to the product of the density variation ∆ρ and the acceleration due to gravity g.
The density variation is is proportional to ρβ∆T , where ∆T is the variation in
temperature and β is the coefficient of thermal expansion. Therefore, the force
per unit area is proportional to ρgβ∆T . With this, the characteristic velocity for
the flow is Uc ∝ (ρD2gβδT/µ). The ‘Grashof number’ is the Reynolds number
based upon this convection velocity,

Gr =
ρUcD

µ
=

ρ2D3gβ∆T

µ2
(1.46)

In defining the Grashof number, we used the momentum diffusivity and the
body force to obtain the characteristic velocity scale. An alternative definition is
the Rayleigh number, where the thermal diffusivity (k/ρCp) is used to determine
the characteristic velocity. The characteristic velocity is then given by Uc ∝

(fD2ρCp/k), where f = ρβ∆T is the driving force for convection per unit
volume of fluid. The Reynolds number based on this convection velocity and
momentum diffusivity is the Rayleigh number,

Ra =
ρ2CpD

3gβ∆T

µk
(1.47)

The ‘Rayleigh-Benard’ instability of a fluid layer heated from below occurs when
the Rayleigh number increases beyond a critical value.

1.4.4 Other dimensionless groups:

There are two important dimensionless groups involving surface tension, which
are the Weber number and the Capillary number. The Weber number is the
ratio of inertial and surface tension forces,

We =
ρU2L

γ
(1.48)

while the capillary number is the ratio of viscous and surface tension forces,

Ca =
µU

γ
(1.49)
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In problems involving free interfaces, if the Reynolds number is low, inertial
forces are negligible compared to viscous forces, and the Capillary number has
to be determined in order to assess the ratio of viscous and surface tension forces.
At high Reynolds number, it is appropriate to determine the Weber number in
order to examine the ratio of inertial and surface tension forces. In addition to
the Weber and Capillary numbers, the Bond number is a dimensionless group
appropriate for situations where a free interface is under the influence of a grav-
itational field. This dimensionless group is defined as the ratio of gravitational
and surface tension forces,

Bo =
ρgL2

γ
(1.50)

1.4.5 Dimensionless groups involving gravity

The ratio of inertial and gravitational forces is given by the Froud number,

Fr =
U2

gL
(1.51)

where U is the velocity, and g is the acceleration due to gravity, and L is the
characteristic length. In applications involving rotation of fluids, the Froud
number is also the ratio of centrifugal and gravitational forces.

1.5 Mass and heat transfer correlations:

1.5.1 Dimensionless fluxes:

In mass and heat transfer, non-dimensional fluxes are obtained by scaling the
average flux by ((Diffusion coefficient) × (concentration/ temperature differ-
ence) / (Characteristic length)). The dimensionless group for mass transfer is
the ‘Sherwood number’,

Sh =
j

(Dδc/L)
(1.52)

The above dimensionless number was derived using dimensional analysis for the
mass transfer to a catalyst particle in section ??. The ratio of the flux and
the concentration difference, j/∆c, is called the ‘mass transfer coefficient’ km.
Therefore, the Sherwood number is also written as

Sh =
kmL

D
(1.53)

Analogous to the Sherwood number, the Nusselt number is a dimensionless
heat flux,

Nu =
q

(DH∆e)/L
(1.54)
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where DH is the thermal diffusivity, and ∆e is the difference in the energy
density for a characteristic length l. Since DH = (k/ρCp) and e = ρCpT , the
Nusselt number becomes,

Nu =
q

(k∆T/L)
(1.55)

This is what we had derived earlier using dimensionless analysis for heat transfer
in a heat exchanger in section ??. The ratio (q/∆T ) is also referred to as the
‘heat transfer coefficinet’ h, and the Nusselt number is written as

Nu = (hL/k) (1.56)

It is important to note that heat and mass transfer coefficients, h and km,
are not material properties. They do depend on the system geometry and
flow conditions, and can be calculated only after solving the specific transport
problem. Therefore, they are derived quantities, on par with the Nusselt and
Sherwood numbers. The calculation or experimentation required to obtain these
is identical to that for the Nusselt and Sherwood numbers. Therefore, in this
course, we shall work in terms of the Nusselt and Sherwood numbers alone, and
will avoid the confusion generated by introducing the heat and mass transfer
coefficients. In case a the heat and mass transfer coefficients are necessary, they
can be calculated from the Nusselt and Sherwood numbers using equations ??
and ??.

The length and velocity in dimensionless numbers for commonly encountered
configurations are defined as follows.

1. For the flow past suspended particles, the velocity U is the difference
between the particle velocity and the free-stream fluid velocity, and the
length is usually the particle diameter D (for spehrical particles) or char-
acteristic dimension.

2. For the flow past a flat plate, the length is the total length of the plate,
while the velocity is the constant free-stream velocity far from the plate.
The average fluxes are defined per unit surface area of the plate.

3. For the flow in tubes and channels, the length is the tube diameter or
channel width, while the velocity is the average flow velocity through the
tube/channel. The average fluxes are defined per unit surface area of the
tube/channel.

1.5.2 Correlations

Based on the driving force for the fluid velocity, heat transfer applications can be
classified as forced convection and natural convection heat transfer. In natural
convection heat transfer, the flow velocity is driven by the buoyancy forces due
to the density variations generated by heating, and so the flow velocity depends
on the temperature variations in the fluid. In this case, the Nusselt number is a
function of the Grashof and Schmidt numbers, defined in equations ?? and ??.
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Natural convection mass transfer, where flow is driven by density differences
due to concentration variations, is comparitively rare, though correlations sim-
ilar to those for heat transfer can be derived. In forced convection heat/mass
transfer, the flow velocity is generated by external means, and is independent
of temperature/concentration variations in the fluid to a good approximation,
though changes in viscosity due to temperature variations are often incorpo-
rated. Empirical correlations for forced convection heat/mass transfer usually
relate the dimensionless fluxes (Nusselt and Sherwood number) the Reynolds
number (ratio of convection and momentum diffusion) and the Schmidt number
(ratio of momentum and mass diffusion).

Forced convection heat/mass transfer

Correlations for forced convection heat transfer can be classified into three broad
categories.

1. Low Peclet number, diffusion dominated. Convective effects are ne-
glected in the first approximation, and so the fluxes are independent of
the flow velocity. If the fluxes are independent of the flow velocity and the
fluid flow properties (density and viscosity), the Nusselt and Sherwood
numbers do not depend on the Peclet or Reynolds numbers, and are con-
stants from dimensional analysis. (It might be useful to refer back to the
relations between dimensionless groups, equations ?? and ??, to appreci-
ate this). For the specific case of the heat/mass transfer from a sphere, it
is shown later in chapter ?? that the Nusselt and Sherwood numbers are
equal to 2 when convection is completely neglected.

When the correction to the transport rated due to convection are consid-
ered in the limit of low Peclet number, it is shown in chapter ?? that the
correlations for the Nusselt and Sherwood numbers for the flow around
objects are of the form,

Nu = Nu0 + (1/2)Nu2

0
Pe + . . . (1.57)

where Nu0 is the constant value of the Nusselt number when flow is ne-
glected, and the term proportional to Pe in the above equation is the first
correction due to convective effects.

In the case of flow through tubes and channels, convection is necessarily
important in order to transport heat/mass along the length of the tube.
Therefore, the diffusion-dominated regime is not of interest.

2. High Peclet number. Naively, we might expect that the transport rates are
independent of the diffusivities in the limit of high Peclet numbers, because
convective effects dominate. However, an important concept which we
will emphasise in this course is that even when the Peclet number is large,
diffusion cannot be neglected. This is convective transport takes place only
in the direction of fluid flow. At the surface of suspended particles or pipe
walls, fluid flows in the direction tangential to the surface. Transport of
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mass/heat across the surface cannot take place due to convection, because
there is no fluid flow across the surface. Therefore, transport across the
surface has to take place only due to molecular diffusion, and consequently
diffusivity cannot be neglected even at high Peclet number.

The transport rates at high Peclet number also depend on the fluid flow
characteristics. There are two distinct fluid flow regimes, in pipes and
channels, the laminar flow regime with smooth streamlines at relatively
low Reynolds number, and the turbulent flow regime with large veloc-
ity fluctuations at relatively high Reynolds number. In a pipe flow, the
transition between the two regimes takes place at a Reynolds number of
about 2100. In the flow past a flat plate, the Reynolds number is defined
as Re = (ρUL/µ) based on the free-stream velocity U and the length of
the plate L. In this case, the transition from laminar to turbulent flow
takes place at a Reynolds number of about 5× 105. For the flow around a
spherical particle, the flow is laminar when the Reynolds number based on
the free-stream velocity and particle diameter is less than about 10. The
laminar flow is characterised by smooth and axisymmetric streamlines all
around the particle. When the Reynolds number increases beyond about
10, there is separation of the streamlines from the rear of the object, and
formation of a wake at the rear.

(a) Laminar flow: The laminar flow regime is characterised by smooth
streamlines, and transport across these streamlines takes place only
due to molecular diffusion. Therefore, the transport rates will de-
pend only on the flow velocity and the molecular diffusion coeffi-
cient. The Sherwood and Nusselt numbers can be expressed in terms
of the Peclet number alone, though they are often written in terms
of the Reynolds and Prandtl/Schmidt numbers. For the heat/mass
transfer to a spherical particle, we shall see in chapter ?? that the
Nusselt/Sherwood numbers depend on the one-third power of the
Peclet number,

(Nu, Sh) = 1.240Pe1/3 = 1.240Re1/3(Pr,Sc)
1/3

(1.58)

The above correlation is valid for a spherical particle, for which the
no-slip boundary condition (fluid velocity at the surface is equal to
the surface velocity) is applied at the surface. For particles of other
shapes, the Nusselt and Sherwood numbers are still proportional to
the one-third power of the Peclet number, but the constant is different
from that in equation ??.

In the case of transfer to a spherical bubble, for which there could
be tangential flow at the surface but the shear stress at the surface
is zero, it is shown in chapter ?? that the Nusselt/Sherwood number
are proportional to the square root of the Peclet number,

(Nu, Sh) = ...Pe1/2 = ...Re1/2(Pr,Sc)1/2 (1.59)
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The Nusselt and Sherwood numbers are proportional to the square
root of the Peclet number for non-spherical bubbles as well, but the
constant in the correlation is different from that in equation ??.

Similar correlations can be derived for the Nusselt and Sherwood
numbers for the flow past a flat plate. For the laminar flow past a
solid surface with a no-slip boundary condition at the surface at high
Peclet number, the heat/mass transfer is confined to a thin ‘boundary
layer’ adjacent to the surface. It is shown, in chapter ??, that the
correlation for the Nusselt/Sherwood numbers are, At high Reynolds
number, the correlations depend on the relative

(Nu, Sh) = 1.332Pe1/3 = 1.332Re1/3(Pr,Sc)1/3 (1.60)

where Pe = (γ̇L2/D), where γ̇ is the strain rate (dux/dy in figure ??).
For transport to a falling liquid film from the gas phase, we show in
chapter ?? that the Nusselt/Sherwood numbers are,

(Nu, Sh) = ...Pe1/2 = ...Re1/2(Pr,Sc)
1/2

(1.61)

where the Peclet number Pe = (UL/D), where U is the velocity
at the surface of the liquid film. As we discuss in chapter ??, this
correlation is valid only when the penetration of heat/solute into the
film is much smaller than the height of the film H .

For a laminar flow in pipes with Reynolds number less than 2100,
the correlation for the Sherwood number

Sh = 1.86Pe1/3(D/L)1/3 = 1.86Re1/3Pr1/3(D/L)1/3 (1.62)

This correlation is valid for relatively short pipes with (L/D) less
than about 10, and for (RePr(D/L)) > 10. As we shall see in chap-
ter ??, the restriction on (D/L) comes about from the requirement
that the ‘penetration depth’ for heat/mass transport from or to the
wall should be smaller than the pipe diameter for this correlation
to be valid. For longer pipes, the temperature/concentration gets
equalised across the cross-section of the pipe, resulting in a decrease
in the transport rates. In the correlation for the Nusselt number,
a correction factor due to the variation of viscosity in the pipe is
usually added.

Nu = 1.86Re1/3Pr1/3(D/L)1/3(µ/µw)0.14 (1.63)

where µw is the viscosity at the wall temperature and µ is the vis-
cosity at the average fluid temperature in the pipe.

(b) Turbulent flow: In turbulent flows, there are large velocity fluctu-
ations, and there is significant cross-stream motion of fluids in the
form of correlated parcels of fluids called eddies. Cross-stream trans-
port in turbulent flow stakes place primarily by turbulent eddies, and
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so the transport rates are much higher than those in laminar flows.
However, the fluctuations decrease as the surface of a particle or the
wall of the tube is approached, because the fluid cannot penetrate
the solid surface. Therefore, transport very close to the surface takes
place by molecular diffusion. Due to the combination of eddy dif-
fusion and molecular diffusion, the Nusselt and Sherwood numbers
depend on both the Peclet and the Reynolds numbers in turbulent
flow.

For the turbulent flow through a pipe, the ‘Sider-Tate’ correlation is
commonly used for the Nusselt Sherwood numbers,

Nu = 0.026Re0.8Pr1/3(µ/µw)0.14 (1.64)

The equivalent correlation for the Sherwood number, without the
viscosity correction, is,

Sh = 0.026Re0.8Sc1/3 (1.65)

Natural convection heat transfer

Here, convection takes place due to unstable density variations in a gravita-
tional field, and these density variations are caused by temperature variations.
The appropriate dimensionless groups are the Prandtl number and the Grashof
number (ρ2D3β∆T/µ2), discussed in section ??, which is the Reynolds number
based on the convection velocity. The flow due to natural convection is lami-
nar when the product (GrPr) is less than about 109, whereas the flow becomes
turbulent for (GrPr) > 109.

Empirical correlations are available for the convection due a single heated
sphere in a large body of fluid,

Nu = 2 + 0.59(GrPr)1/4 (1.66)

to a long heated cylinder in an infinite fluid for GrPr > 104,

Nu = 0.518(GrPr)1/4 (1.67)

for vertical plates suspended in air for 104 < GrPr < 109,

Nu = 0.59(GrPr)1/4 (1.68)

These correlations cannot be used for GrPr > 109, because the flow becomes
turbulent.

In chapter ??, we shall derive expressions for the Nusselt number in the
natural convection due to a heated object. There are two regimes depending on
the Prandtl number, which is the ratio of momentum and thermal diffusivity.
Momentum diffusion is slow compared to thermal diffusion in the limit Pr ≪ 1,
and so the fluid flow is confined to a thinner region when compared to the
temperature disturbance. In this case, the Nusselt number is given by,

Nu ∝ Pr1/2Gr1/4 (1.69)
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At high Prandtl number, momentum diffusion is fast compared to thermal diffu-
sion. Due to this the spatial extent of the temperature disturbance is comparable
to that of the momentum disturbance, and the Nusselt number is,

Nu ∝ Pr1/4Gr1/4 (1.70)

These scaling relationships hold for particles suspended in a fluid (where the
length scale is the particle size), for long horizontal tubes (where the length scale
is the tube diameter) and for vertical plates (where the length scale is the plate
height) In all cases, the proportionality constant depends on the detailed shape
of the object. All of these correlations are applicable only for (GrPr) < 109 in
the laminar regime.

A simpler situation is the heat (or mass) transfer from an infinite flat plate.
The configuration is as shown in figure ??. The plate is of infinite extent in
the z plane (perpendicular to the direction of flow), and has length L in the
x direction. The fluid flow is in the x direction. There is a no-slip boundary
condition for the fluid velocity field at the surface of the plate. The temperature
in the fluid far from the plate is T∞, while that at the surface of the plate is T0.
In the equivalent mass transfer problem, the concentration far from the plate is
c∞, while the concentration at the surface of the plate is c0.

Since the plate is of infinite extent in the z direction, it is appropriate to
define the heat transfer rate per unit length in the z direction per unit time.
The Nusselt number in this case is (qL/k(T0 − T∞)), since L is the appropri-
ate length scale, while the Sherwood number for the case of mass transfer is
(jL/k(c0 − c∞)). The Reynolds number is (ρUL/µ), while the Prandtl and
Schmidt numbers are (cpµ/k) and (µ/ρD) respectively. When the Reynolds
number is small, the correlations are, magnitudes or the Reynolds number and
the Prandtl or Schmidt numbers. When the flow is in the laminar regime and the
Prandtl and Schmidt numbers are small (momentum diffusion is slow compared
to mass and heat diffusion), the correlations are,

Nu = 1.128Re1/2Pr1/2 (1.71)

Sh = 1.128Re1/2Sc1/2 (1.72)

At high Reynolds number for a laminar flow, when the Prandtl and Schmidt
numbers are large (momentum diffusion is fast compared to mass and heat
diffusion), the correlations are,

Nu = 0.667Re1/2Pr1/3 (1.73)

Sh = 0.667Re1/2Sc1/3 (1.74)

1.6 Correlations for momentum transfer

1.6.1 Non-dimensional flux:

The non-dimensional flux in mass/heat transfer were obtained by dividing the
flux by the diffusive scales, (D∆c/L) and (DH∆e/L) respectively. Analogously,
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the non-dimensional momentum flux would be defined by scaling the shear stress
by (νU/L), where ν is the kinematic viscosity. However, conventionally, the
non-dimensional fluxes have been defined by scaling the momentum flux by
the inertial (convective) scale, using the density and the velocity of the fluid.
Using dimensional analysis, it is easy to see that the non-dimensional stress
(momentum flux) has to be scaled by (ρU2) in order to obtain a dimensionless
flux. Different variations of this scaled stress are defined for the flow in channels
and tubes and for the flow around particles.

For the flow around suspended particles, the ‘drag coefficient’ cD is defined
as,

cD =
FD/Ap

(ρU2/2)
(1.75)

where FD is the drag force, Ap is the projected area of the object perpendicular
to the flow, and (ρU2/2) is the kinetic energy of the undisturbed flow per unit
volume. To within a numerical constant, the drag coefficient is equivalent to
scaling the force by the inertial scale (ρU2R2) in section ??. In section ??,
we had followed the heat/mass transfer convention of scaling the force by the
diffusive (viscous) force scale, to obtain (FD/(µUD)); it is easy to see that the
latter is equal to RecD, the Reynolds number times the drag coefficient.

The drag coefficient for the flow past a flat plate is defined in a similar man-
ner. For a plate of length L along the flow direction and width W perpendicular
to the flow direction, the average stress is the total force exerted by the fluid
divided by the area of the plate (LW ), where L is the length and W is the width
of the plate. The drag coefficient is then defined as the ratio of the stress and
(ρU2/2), where U is the fluid velocity far from the plate,

cD =
(FD/LW )

(ρU2/2)
(1.76)

For flow through channels and pipes, the scaled momentum flux is expressed
in terms of the ‘friction factor’. The friction factor is usually defined in terms
of the pressure difference across the pipe required for driving the fluid flow, and
so we briefly discuss the relation between the pressure difference and the wall
shear stress before returning to the definition of the friction factor. The force on
the fluid due to the shear stress at the surface is exactly balanced by the force
due to the difference in pressure at the two ends of the pipe, and therefore,

τwLlp = (−∆p)Acs (1.77)

where lp is the perimeter of the coudiut, and Acs is the cross-sectional area, and
τw is the wall shear stress. From equation 1.77, the shear stress is given by,

τw =
−∆p

L

Acs

lp
=

−∆p

L
rH (1.78)

where rH , the hydraulic diameter, is the ratio of the cross-sectional area and
the wetted perimeter. Note that for a pipe of circular cross section, rH =
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(D/4), where D is the pipe diameter. It is conventinal to define the ‘equivalent
diameter’ D = 4rH , so that the equivalent diameter and pipe diameter are equal
for a pipe of circular cross section. Thus, the wall shear stress can be written
in terms of the equivalent diameter as,

τw =
−∆p

L

D

4
(1.79)

The friction factor is then written with momentum flux in the numerator, and
the product of the difference in momentum density between the wall and center
of the pipe (ρU) and the convective scale (UD) (instead of the momentum
diffusivity) in the denominator

f =
2τw

ρU2
=

∆p

L

D

2ρU2
(1.80)

The factor of 2 in the numerator on the right side of the above equation is a
convention adopted in literature.

The friction factor is also used for the flow through packed columns, where
the fluid flows in in the gaps between densely packed particles. Here, the friction
factor is defined as,

f =
∆p

L

Dp

2ρU2
0

(1.81)

where Dp is the particle diameter, and U0 is the ‘superficial velocity’, which
is the average velocity of the fluid if it were to flow through a column of the
same diameter with no particles. Note that the friction factor is now defined in
terms of the particle diameter and not the column diameter. This is a natural
definition because most of the drag force on the fluid is exerted by the particles,
and not by the walls of the column. The Reynolds number is also defined based
on the superficial velocity and the particle diameter, Re = (ρU0Dp/µ).

1.6.2 Correlations

In the limit of low Reynolds number, and the stress is purely viscous, and
the pressure drop per unit length in a pipe should be independent of the fluid
density. From dimensional analysis, the pressure drop per unit length can be
written as,

∆p

∆L
=

2cµU

D2
(1.82)

where c is a constant of O(1). The friction factor is then given by,

f =
cµ

ρUD
=

c

Re
(1.83)

Thus, the friction factor is proportional to the inverse of the Reynolds number
in the limit of low Reynolds number. The constant c is equal to 16 for a pipe
of circular cross section.
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When the Reynolds number exceeds 2100 in a pipe flow, there is a transition
from laminar to turbulent flow, and the friction factor is much larger than that
for a laminar flow due to the efficient cross-stream transport of momentum by
cross-stream eddies. The friction factor is usually expressed graphically in the
form of a Moody diagram, which shows the log of the friction factor versus the
log of the Reynolds number. Plotted this way, the friction factor curve is a line
with slope −1 in the laminar regime. There is a transition to a turbulent flow at
a Reynolds number of 2100, indicated by a discontinuous change in the friction
factor. The friction factor is also affected by wall roughness in the turbulent
regime, as shown in the Moody plot.

The motion of a spherical particle in a fluid was analysed using dimensional
analysis in section ??. The drag coefficient defined in equation ?? is the drag
force divided by (ρU2(πR2)/2) which is, to within a multiplicative constant, the
drag force scaled by an inertial scale. As discussed in section ??, the drag force
is proportional to (µRU) in the limit of low Reynolds number, and therefore
the drag coefficient is proportional to the inverse of the Reynolds number. For
the flow past a spherical particle, it is shown in chapter ?? that the drag force
is exactly equal to (6πµRU), and therefore the drag coefficient is given by,

cD =
24

Re
(1.84)

For particles of other shapes, the drag coefficient is proportional to the inverse
of the Reynolds number, but the constant of proportionality depends on the
shape of the object.

In the limit of high Reynolds number, the drag force depends on the shape of
the object. For ‘bluff bodies’ such as spherical particles, we shall see in chapter
?? that an important flow characteristic is the separation of the streamlines from
the surface of the object at the rear, and the formation of wake. The pressure in
the wake at the rear is small compared to the upstream hemisphere at the front.
The drag force, called ‘form drag’, is primarily due to the difference in pressure
between the upstream and downstream sides. This is in contrast to the ‘wall
drag’ in the pipe flow (which we just discussed) which is due to wall friction.
Since the upstream pressure due to the fluid impact on bluff bodies is inertial,
the pressure scales as ρU2, and the drag coefficient approaches a constant in the
high Reynolds number limit.

In slender bodies such as airfoils, the shape of the object is designed to shift
the boundary layer separation to the rear end of the object, and to reduce form
drag. Due to this, there is either no wake or a small wake region at the rear, and
the drag coefficient is significantly lower. In the limiting case of the flow past a
thin flat plate, we shall see in chapter ?? that the drag coefficient decreases as
the inverse square root of the Reynolds number in the high Reynolds number
limit,

cD = ...Re−1/2 (1.85)

where Re = (ρUL/µ) is the Reynolds number based on the length of the plate
and the free stream fluid velocity far from the plate.
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Next, we determine the relation between friction factor and Reynolds number
in packed beds. The flow through a packed bed can be analysed by approximat-
ing the interstices between the particles in the bed as tubes of effective diameter
R and length equal to the column length L. For a laminar flow, the relation
between the pressure drop and the avearge velocity of the fluid through the
tubes U is,

∆p

L
= (1.86)

1.7 Scale up

In designing new processes, it is not sufficient to study the the process on the
laboratory scale, but to also study the exact industrial set up on a small scale
before building a larger scale industrial apparatus. Dimensional analysis plays
a very important role in industrial scale up. Scaling up cannot be done by
multiplying all parameters by a given factor, but the dimensionless groups have
to be kept a constant while scaling up. This will be illustrated using the example
of a stirred tank reactor. In this, the fluid is stirred using an impeller of a certain
shape, and the impeller is to be designed so that optimum mixing is achieved
for minimum power. For a given impeller shape, it is necessary to estimate the
power consumption for stirring at a given frequency f . The power consumption
will, in general, depend on the shape and dimension of the impeller, as well as the
vessel, as well as other details such as baffles, etc. If we keep the relative ratios
of the lengths of the impeller, vessel, baffles, etc. a constant, then there is only
one length scale in the problem, which we will consider the impeller diameter D.
In addition, the power can also depend on the density of the fluid, ρ, the fluid
viscosity µ, and the frequency of rotation f . An additional dependence arises on
the acceleration due to gravity g. This is because sometimes during stirring, the
interface of the fluid raises at the edges and lowers in the middle. This upward
motion due to centrifugal forces is balanced by a downward force due to gravity,
and so gravity could also be an important factor. This is because it is important
to ensure that the dimensions of the interface (curvature, extent of depression
at the center) are also in the same proportion as the impeller diameter. When
considering the interface, the surface tension (normally denoted by the symbol γ)
is also a relevant parameter. the surface tension has dimensions of force/length
of energy/area, i. e. MT −2. The relevant parameters with their dimensional
dependences are shown in table 1.7

The dimensionless variables derived above have the following physical inter-
pretations. The ‘power number’ (P/f3D5ρ) is the dimensionless group which
involves the dependent variable, the power, which has to be determined as a
function of all the other independent variables. This gives the ratio of the
power required to the work done by centrifugal forces. On the right side, the
‘Reynolds number’ (ρD2f/µ) is the ratio of centrifugal forces and viscous forces,
or the ratio of convection and diffusion. The dimensionless group (f2D/g) is
the Froude number, which gives the ratio of centrifugal and gravitational forces.
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Parameter Dimension
Power (P ) ML2T −3

Frequency (f) T −1

Diameter (D) L

Density (ρ) ML−3

Viscosity (µ) ML−1T −1

Gravity (g) LT −2

Surface tension (γ) MT −2

Table 1.5: Relevant quantaties and their dimensions for the calculation of the
power required for the impeller in a reactor.

The dimensionless group (ρf2D3/γ) is the Weber number, which is the ratio of
centrifugal and surface tension forces.

Since there are seven variables and three dimensions, it is possible to create
four dimensionless groups. Let us assume these four contain P , µ, g and γ
expressed in terms of the other variables. Then, the four groups are (P/f3D5ρ),
(fD2ρ/µ), (f2D/g) and (ρf2D3/γ). Therefore, the expression for the power has
to have the form

P

f3D5ρ
= Φ

(

ρD2f

µ
,
f2D

g
,
ρf2D3

γ

)

(1.87)

It is instructive to determine the order of magnitudes of the different dimension-
less groups in the problem. The density of the liquid is usually of the order or
103 kg/m3, the viscosity of a very viscous fluid such as a polymer melt could be
as high as 1 kg/m/s, and the surface tension of a liquid-gas interface is, at maxi-
mum, 0.1 kg/s2. If the frequency is of the order of 1-10 rev/s, the Froude number
(f2D/g) ≈ 0.1−10, indicating that both centrifugal and gravitational forces are
important in the present problem. The Weber number (ρf2D3/γ) ≈ 104 − 106,
which is large, indicating that the surface tension effects are small when com-
pared to inertial effects. Therefore, the effect of surface tension can be neglected
in the present application. The Reynolds number (ρD2f/µ) ≈ 103 − 104, which
is large. Therefore, it might naively be expected that viscous effects can be
neglected in comparison to inertial effects. However, as we shall see in the anal-
ysis of boundary layers, diffusion can not be neglected, because it is diffusive
transport which is responsible for the transport of mass, momentum and energy
at the bounding surfaces of the fluid. With the neglect of surface tension effects,
the relation 1.87 reduces to,

P

f3D5ρ
= Φ

(

ρD2f

µ
,
f2D

g

)

(1.88)

In a scale up, the dimensionless numbers have to be kept a constant. For
example, we are interested in designing a reactor with an impeller diameter of
1m with a revolution of 10rev/s, and the fluid in the reactor is water with density
1000kg/m3 and viscosity 10−3kg/m/s. In order to determine the performance,
we design a smaller reactor with an impeller of size 10cm. What is the fluid
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that should be used, and what is the speed at which the reactor should operate?
The speed of rotation can be determined from the consideration that the Froude
number has to be a constant. If quantities for the big reactor are denoted with
the subscript b and those for the small reactor are denoted by the subscript s,
then for the Froude number to be a constant, we require

f2

b Db

g
=

f2
s Ds

g
(1.89)

Substituting the dimensions and the frequency of the big reactor, we get the
impeller speed of the small reactor as 316rev/s. The choice of fluid to be used
in the small reactor is determined by the condition that the Reynolds number
has to be a constant.

ρbfbD
2

b

µb
=

ρsfsD
2
s

µs
(1.90)

Relating the frequency and diameters of the two reactors, we get

ρs

µs
= 31.6

ρb

µb
(1.91)

Finally since the Reynolds number and the Froude number are kept a constant
between the two configurations, the Power number is also a constant

Pb

f3

b D5

bρb
=

Ps

f3
s D5

sρs
(1.92)

Therefore, the ratio of the power required in the two configurations is

Pb

Ps
= 3160

ρb

ρs
(1.93)

From the power requirement of the small reactor, the power estimate for the
big reactor can be obtained using the above relation.

The power number is used in reactors with impellers in order to express the
power requried as a function of the frequency and the diameter of the impeller.
The power number is defined as

Po =
P

ρω3D4
(1.94)

where P is the power consumed by the impeller, ω is the frequency of rotation
and D is the impeller diameter.
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Exercises

1. The dimensionless groups for the heat flux in a heat exchanger were de-
termined assuming that there is no inter-conversion between mechanical
and thermal energy. If mechanical energy can be converted to thermal
energy, there would be one additional dimensionless group which would
be relevant for the heat flux. What is this dimensionless group, and what
is its significance?

2. The Maxwell equations in electrodynamics are,

∇.E = (ρs/ǫ0) (1.95)

∇.B = 0 (1.96)

∇×E = −
∂B

∂t
(1.97)

∇×B = µ0J + µ0ǫ0
∂E

∂t
(1.98)

where E and B are the electric and magnetic field vectors, ρs is the charge
density, ǫ0 and µ0 are the permittivity and permeability of free space, and
J is the current density. The dimensions of electric field E is (Volt/meter),
and that of charge density ρs is (Coulombs/ m3), or (Amps × s / m3),
where m is meters and s is seconds. Using the above equations, deter-
mine the dimensions of E, B, ǫ0, µ0 and J in terms the funda-
mental dimensions of mass, length, time and amperes. Note that
(∂/∂t) is the partial derivative with respect to time, ∇. and ∇× are the
divergence and curl operators with dimensions of inverse length, and

Power = Volt × Ampere (1.99)

3. Use dimensional analysis to obtain the dimensionless groups in the prob-
lem of a droplet of oil placed in a water bath placed in an electric field
between two plane electrodes separated by a distance L, and moving with
velocity U , as shown in figure 1. Assume the density of oil and water are
equal. The important dimensional parameters are,

(a) the radius of the droplet R,

(b) the distance between the electrodes L (assume they are of infinite
extent in the x − y plane),

(c) the velocity of the droplet,

(d) the viscosity of water,

(e) the viscosity of oil,

(f) the density of water/oil,

(g) the surface tension between water and oil,
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(h) the voltage difference between the two electrodes with dimension
Volts,

(i) the dielectric constant of water ǫw, with dimension (A2s4kg−1m−3),
where A is amperes, and

(j) the dielectric constant of oil ǫo, with dimension (A2s4kg−1m−3).

Note that the dimension of potential, Volt, is related to the dimension of
current, amperes, by the relation

Power = Volt × Ampere (1.100)

How many dimensionless groups are there in the above problem? Of these,
three are easily obtained as the ratio of lengths (L/R), the ratio of vis-
cosities and the ratio of dielectric constants of water and oil. The other
dimensionless groups are expressed as the ratios of stresses caused by dif-
ferent physical mechanisms. Identify the dimensionless groups, and the
physical mechanisms.

How would the problem simplify if the distance between plates is large
compared to the droplet radius?

4. It is desired to set up a spray drier for drying a solution of viscosity 0.1
kg/m/s and density 1000 kg/m3, and containing 80 % by weight of water,
into particles of diameter about 100 µm. In order to achieve this, it is
necessary to design the nozzle used for ejecting the spray, the diameter
of the spray drier and the hot air to be circulated through the drier. Use
dimensional analysis to determine the design considerations. Due to the
temperature sensitivity of the product, it is not possible to have an average
difference in temperature between the droplet and the air of more than
40oC.

This example is an instance where fluid flow is coupled with heat and mass
transfer. In the spray drier, the flow through a very small nozzle breaks
up the liquid into small drops, and the water in these drops is dried by
the heat transferred from the air as the drops move through the air. The
drops in nozzle spray driers are usually coarse, and sizes upto 100 µ m
can be achieved. For finer drops, it is necessary to use a spray disk drier,
where the spraying is done by a disk of about 1 ft in diameter rotating at
speeds as large as 1000 rev/s. In the present example, we consider a nozzle
type spray drier, since a relatively coarse size is required. The droplets
are usually ejected with high velocities, as large as 0.1 - 1 m/s, and so the
time required for drying the droplets is usually very small, of the order of
seconds.

The spraying process can be separated into two distinct steps,

(a) The ejection of the drop from the nozzle. The size of the drops, and
the velocity of the drop at the nozzle, are determined primarily by the
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nozzle geometry, fluid properties and the flow rate of fluid through
the nozzle.

(b) The subsequent drying of the drop as it passes through the air. Here,
it is necessary to ensure that the spray drier has a sufficient radius
that the drop is completely dried before it hits the wall of the drier.
Important for determining this are the velocity with which the drop
leaves the nozzle, the heat transfer rate for transporting heat from
the drop to the air, the latent heat of evaporation which determines
the heat required to dry the drop.

Use dimensional analysis to design the nozzle and the diameter of the
spray drier.

(a) What are the relevant dimensional variables which determine the
diameter of the droplet generated form the nozzle? Estimate the
dimensionless groups to determine the dominant parameters.

(b) Determine the radius of the drier to ensure that the drops are com-
pletely dried before they hit the wall. First examine heat transfer
considerations. What is the latent heat required to evaporate the
water from the droplet? What are the quantities which determine
the heat flux from the droplet? Estimate them. The latent heat of
water is 2.2×106 J/kg, and the thermal conductivity of air is 2×10−2

J/m/s/oC

(c) Examine mass transfer characteristics. What are the dimensionless
groups for mass transfer? Estimate them.

5. Example The waste water generated from a chemical process has to be
passed through activated carbon in order to remove organic matter by
adsorption. The carbon particles are, on average, 1mm in diameter. The
process of adsorption is described by a first order process, with a rate
constant 1.6 s−1. It is desired to treat 160 l/min of the waste water, and
the maximum speed of the water through the activated carbon bed is 1
mm/s, and the porosity (void fraction) of the bed is 0.45. Design the
height and the cross sectional area of the bed.


