
Chapter 2

Diffusion

Transport of mass, heat and momentum takes place by two mechanisms, con-

vection and diffusion. Convection is the process by which material or heat is
transported due to the mean motion of the carrier fluid. Diffusion is the pro-
cess by which material is transported by the random thermal motion of the
molecules within the fluid, even in the absence of any mean flow. The random
thermal motion takes place on the microscopic length scale in the fluid, which
is the molecular size in a liquid, and the mean free path in a gas. Examples of
convection and diffusion are as follows.

1. A mixed flow reactor with an impeller, in which a reaction catalysed by
a solid catalyst takes place, as shown in figure 2.1. The pipes at the inlet
and outlet of a reactor transport material by convection into and out of the
reactor. Within the reactor, transport takes place by convection due to the
motion of the impeller, and the flow patterns generated therein. However,
if we closely examine the surface of a catalyst, the fluid flow takes place
tangential to the catalyst surface, and there is no flow perpendicular to
the surface of the catalyst. Therefore, the transport of the reactant from
the fluid to the solid surface, and the transport of product from the solid
surface to the fluid, can take place only by diffusion.

2. A shell-and-tube heat exchanger, in which a hot fluid flows through the
tube and a cold fluid flows on the shell side. The heat is transported into
the exchanger by convection by the fluid at the inlet of the tube side,
and by convection by the fluid at the outlet of the shell side. However,
the transport from the shell side to the tube side cannot take place by
convection. This is because the fluid flow is tangential to the wall of the
tube, and there is no convective transport perpendicular to the wall of the
tube. The transport across the tube wall takes place due to diffusion in
the fluids and due to conduction in the wall of the tube.

3. Fluid flowing through a pipe which is pumped using a pump at the inlet.
The action of the pump results in a pressure gradient down the tube, with a
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higher pressure at the inlet and a lower pressure at the outlet. The net flux
of momentum (momentum transported per unit area per unit time) into
the tube is the product of the pressure difference and the average velocity
of the fluid. (There is a contribution to the flux due to the force exerted
by the fluid velocity at the interface, but this contribution is equal at the
inlet and outlet, and so there is no net flux due to this). The transport of
momentum at the inlet is due to convection, and is absent when there is
no fluid flow. The total rate of input of momentum into the tube due to
the pump is balanced by the viscous (frictional) force exerted by the walls
of the tube on the fluid. This frictional transfer at the wall cannot take
place by convection, since there is no fluid flow perpendicular to the walls
of the tube. Therefore, this takes place by the diffusion of momentum.

It is evident that the convection is directional, and takes place only along the
direction of flow. However, the random velocity fluctuations of the molecules
which cause diffusion are isotropic, and have no preferred direction. Therefore,
diffusion takes place in the direction in which there is a gradient in the concen-
tration, temperature or mean velocity. Transport takes place by a combination
of convection and diffusion in the bulk flow, but can take place only diffusion at
bounding surfaces, since there is no mean flow perpendicular to the surface. The
mechanisms of mass, momentum and thermal diffusion are discussed in further
detail in the following sections.

2.1 Mass diffusion

2.1.1 Mass diffusion in gases

It is easiest to understand the concept for a gas mixture in two bulbs separated
by a tube. One of the bulbs contains the pure solvent A, while the other
contains a mixture of A and a small amount of the solute B. It will be assumed,
for simplicity, that A and B have equal molecular mass and diameter, and the
initial pressures and temperatures in the two bulbs are equal. When the stop
cork between the two is opened, there is no net transfer of mass between the two
bulbs, since the pressures and temperatures are equal. However, there will be a
transfer of the solute B from one bulb to the other until the concentrations in the
two bulbs are equal. Consider a surface across which there is a variation in the
concentration, as shown in figure 2.4. There is a constant transport of molecules
across this surface due to the thermal motion of the molecules. The flux of
molecules at the surface is defined as the number of molecules passing across the
surface per unit area per unit time. If the solute concentration and temperature
are constant, the total flux of molecules passing downward across the surface is
equal to the flux passing through in the upward direction. However, if there is a
variation of concentration across the surface as shown in figure 2.4, then there is
a net transport of solute molecules in the direction in which the concentration
decreases, that is, in the downward direction. This is because the molecules
that travel downward through the surface are transported from a distance of
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Figure 2.1: Convection and diffusion in a stirred reactor with catalyst pellets.
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about one mean free path above the surface, where the concentration is higher,
whereas the molecules which travel upward are transported from a distance of
about one mean free path below the surface, where the concentration is lower.
The net flux of molecules, which is the net number of molecules transported
downward through the surface per unit area per unit time, can be estimated as
follows.

In figure 2.4 molecules are transported across the surface from above to
below because a fraction of the molecules above the surface have a velocity in the
downward direction. The mass flux across the surface (mass transported per unit
area per unit time) is proportional to the concentration (number of molecules
per unit volume times the molecular mass), since a larger concentration will
result in a larger number of molecules traveling across the surface. The mass
flux is also proportional to the root-mean-square of the fluctuating velocity of
the molecules, since a higher fluctuating velocity will result in more molecules
traveling across the surface. On this basis, we would expect the expression for
the mass flux to be given by,

Z = Azcvrms (2.1)

where vrms is the root-mean-square speed and c is the concentration. More
exact calculations reveal that the factor Az is 1

4
, but we shall not be concerned

with these numerical factors at this stage.
The important point to note is that the molecules reaching the surface in

figure 2.4 have arrived had their last collision, on average, a distance (2λ/3)
above the plane, where the mean free path, λ, is

λ =
1√

2πd2n
(2.2)

The total flux of molecules is
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1
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(2.3)

where c0 is the concentration at the surface z = 0, and (cs − a2λ(dc/dz)|z=0)
is the average concentration of the molecules traveling downward through the
surface. The constant a2 is a constant of O(1), since the molecules that travel
downward are transported from a location which is of the order of one mean
free path λ above the surface. This constant can be evaluated exactly using
kinetic theory of gases, but this is not necessary since we are only interested
in obtaining the order of magnitude of the diffusion coefficient. In equation
2.3, a Taylor series expansion has been used for the average concentration of
the molecules that are transported through the surface, and this expansion has
been truncated at the second term. This is a good approximation if the mean
free path, λ, is small compared to the length over which the concentration varies.

The flux of molecules in the upward direction is

jz+ =
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(2.4)
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Figure 2.4: Mass diffusion due to concentration gradient in a gas.

since the molecules are transported from a distance of the order of one mean
free path below the surface z = 0. The total flux of molecules is given by

jz = jz+ − jz−

=
1
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(2.5)

where D, the diffusion coefficient, has dimensions of L2T −1. The root mean
square velocity of the molecules in a gas can be estimated as

vrms =

√

3kT

m
(2.6)

where T is the absolute temperature, k is the Boltzmann constant and m is the
mass of the molecule. The ‘mean’ velocity is defined slightly differently, as the
average of the magnitude of the velocity of all the particles. This turns out to
be,

vmean =

√

8kT

πm
(2.7)

A more exact expression for the diffusion coefficient is obtained using the kinetic
theory of gases, which provides the value of a, but the functional dependence of
the flux on the temperature, molecular diameter and the concentration gradient
is captured by the simple explanation leading to equation 2.5. For a mixture
of two components, with masses m1 and m2 and diameters d1 and d2, exact
expressions for the diffusion coefficient can be obtained using methods from the
kinetic theory of gases. For spherical molecules, the coefficient of diffusion is

D12 =
3

8nd2
12

(

kT (m1 + m2)

2πm1m2

)1/2

(2.8)

where d12 = (d1 +d2)/2. The coefficient of ‘self diffusion’, which is the diffusion
or a molecule in a gas composed of molecules of the same type, can be obtained
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by setting d1 = d2 = d and m1 = m2 = m in equation 2.8,

D11 =
3

8nd2

(

kT

πm

)1/2

(2.9)

The diffusion coefficient can be estimated if we know, approximately, the root
mean square velocity of the molecules, and the mean free path. Let us consider
the specific example of hydrogen gas at room temperature. The mass of one
mole (6.023×1023 molecules) is 2 gm (2×10−3 kg), and therefore the mass of one
molecule is 3.32× 10−27 kg. The Boltzmann constant k = 1.38× 10−23 J/K. At
a temperature of 398 K,

√

kT/m ∼ 1.286 × 103 m/s. Oxygen has a molecular
mass of 32 gm per mole, which is 16 times that of hydrogen. Therefore, we
would expect the root mean square velocity in oxygen to be four times less than
hydrogen, which is 321 m/s. The speed of sound in nitrogen is slightly higher,
because it has a molecular mass (28 gm per mole) slightly less than oxygen.
Our calculations show that the molecular velocity is close to the speed of sound
(about 1290 m/s in hydrogen, and about 330 m/s in air), as expected.

The mean free path of a molecule is the distance travelled between successive
collisions. This can be estimated as follows. Consider a molecule in a gas
traveling between two successive collisions as shown in figure ??. As it travels,
the molecule sweeps out a cylindrical volume of radius equal to its diameter
along the path, and volume πd2L, where d is the molecular diameter and L
is the length of the path traveled by the molecule. The molecule will collide
with a second molecule if the center of the second molecule is located within the
cylinder. The total number of second molecules within this volume is (πd2L)×n,
where n is the number density of the gas molecules (number per unit volume).
The length L after which a molecule encounters another molecule will vary from
collision to collision, but on average, a collision will take place when the number
is second molecules in the volume swept by the first molecule is approximately
1. This gives us (nπd2λ) ∼ 1, where λ is the mean free path (average distance
between collisions). A more detailed calculation, carried out on the basis of the
kinetic theory of gases, yields λ = (

√
2πnd2)−1.

The number of gas molecules per unit volume, from the ideal gas law, is
n ∼ (p/kT ), where p is the pressure. For a gas at STP, p = 1.013×105N/m2, T =
300K and k = 1.3087×10−23J/K, and the number of molecules per unit volume
is 2.5× 1025m−3. The diameter of a hydrogen molecule is 1.372× 10−10m, and
therefore the mean free path of a hydrogen molecule at STP is approximately
5× 10−7m, or 0.5 microns. The diameter of larger molecules is also of the same
order, though somewhat larger; for example, the diameter of a nitrogen molecule
is 3.8 × 10−10m, and that of oxygen is 3.7 × 10−10m. Therefore, the mean free
paths are correspondingly lower, about 6 × 10−8m.

The diffusion coefficient can be estimated as the product of the mean free
path and the vrms, is estimated as a constant times 6×10−4m2/s for hydrogen,
and about 2 × 10−5m2/s for nitrogen and oxygen. These are, approximately
in agreement with values reported in literature; for small molecules H2 and
He, Cussler reports the diffusion coefficient to be 1.132 × 10−4m2/s, while for
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large molecules such as nitrogen and oxygen the diffusion coefficient is about
10 times less, at 1.81 × 10−5m2/s. These vary from the diffusion coefficient
predicted by equation 2.8 are in agreement with those reported in experiments
to within about 2 %. The value 10−5m2/s can be considered a typical diffusion
coefficient for commonly encountered gases.

It is useful to examine the assumptions that were used to derive the expres-
sion for the diffusion coefficient in 2.5.

1. The first assumption was that the mean free path is small compared to
the length scale for diffusion, which is the distance between the two bulbs
in this case, so that the expression for the concentration above the surface
in 2.4 can be truncated at the first term. The truncation of the Taylor
series expansion for the concentration in equation 2.4, which is valid if
the length scale of the flow is large compared to the mean free path, is
applicable for all applications at STP except those in microfluidics where
the channel and tube sizes are of the order of microns.

2.1.2 Mass diffusion in liquids

The estimate of the diffusion coefficient for liquids calculated in a similar manner
is not accurate. Since the mean molecular velocity in liquids and gases are about
equal at the same temperature, whereas the mean free path is of the order of
one molecular diameter, it would be expected that the diffusion coefficients in
liquids is only about ten times less than that in gases. However, the diffusion
coefficients of small molecules in liquids are about four orders of magnitude
lower than that in gases. For example, the diffusion coefficient of nitrogen in
water is 1.88×10−9m2/s, while that of hydrogen in water is 4.5×10−9m2/s. The
diffusion coefficient of larger molecules, such as polymers, in water is smaller
still. The diffusion coefficient of heamoglobin in water is 6.9 × 10−11m2/s.

Equation 2.5 cannot be used for an accurate prediction of the diffusion coef-
ficients in liquids because ‘cooperative motion’ is necessary for the diffusion of
molecules within a liquid. The molecules in a liquid are closely packed, and so
the translation of one molecules requires the cooperative motion of many other
molecules. This is in contrast to a gas, where the molecules translate freely
between successive collisions. An estimate for the diffusion coefficient can be
obtained using the Stokes-Einstein equation for the diffusivity,

D =
kT

3πµd
(2.10)

where d is the diameter of the molecule that is diffusing, and µ is the viscosity
of the suspending fluid. This formula is strictly applicable only for colloidal
particles in a fluid when the particle diameter is large compared to the diameter
of the fluid, but is also used as a model equation for predicting the diffusivity
of small molecules in a liquid. For nitrogen in water of viscosity 10−3kg/m/s,
this gives D = 1.15 × 10−9m2/s, whereas for hydrogen in water the diffusivity
is D = 3 × 10−9m2/s. Though the order of magnitude of this prediction is in
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Figure 2.5: The requirement for cooperative motion for the diffusion of mass in
a liquid.

agreement with the experimentally measured diffusion coefficinet, the numerical
values are not exact. This is because the formula is strictly applicable only for
large colloidal particles in a fluid, and not for small molecules.

The diffusion coefficients in liquids and gases increase with temperature. In
gases, the diffusion coefficient increases proportional to T 1/2, due to an increase
in the root mean square velocity. Equation 2.10 indicates that the diffusion
coefficient increases proportional to T if the viscosity is a constant, due to
an increase in the energy of the fluctuations. However, the viscosity of liquids
decreases with temperature, and so the diffusion coefficient increases faster than
T with an increase in the temperature.

2.1.3 Diffusion in multicomponent systems

So far, we have restricted attention to the diffusion of a solute in a solvent, and
assumed that the solute concentration is small compared to that of the solvent.
In this case, the motion of the solute does not cause a movement in the center
of mass, and so there is no convective motion. However, when the solute and
solvent concentrations are comparable, as well as in multicomponent systems,
the motion of the solute could result in the motion of the center of mass. In this
case, the constituents in the mixture have mean motion, which is the motion of
the center of mass, as well as diffusive motion, which is motion relative to the
center of mass.

2.2 Momentum diffusion

The stress τxz is defined as the force per unit area exerted in the x direction
at the surface with unit normal in the z direction due to a variation in the
x component of the velocity with the z coordinate. The stress can also be
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considered as a momentum flux (transfer of momentum per unit area per unit
time), since both have units of ML−1T −2, though the stress as defined here
is actually the negative of the flux of momentum for reasons explained a little
later.

The flux of momentum at a surface can be estimated using arguments similar
to that for mass diffusion. When there is a gradient in the tangential fluid
velocity near a surface, the transport of momentum takes place because the
molecules traveling downward through the surface travel from a distance of
the order of one mean free path above the surface, where the mean velocity is
higher, and the flux of streamwise momentum downward through the surface is
the product of (the number of molecules traveling through the surface per unit
area per unit time) and the (average momentum of the molecules).

jm
z− = (am

1 nvrms)

(

m

(

vx|z=0
+ am

2 λ
dvx

dz

∣

∣

∣

∣

z=0
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(2.11)

where am
1 and am

2 are O(1) numbers. In a similar, the flux of streamwise mo-
mentum upward through the surface is

jm
z+ = (am

1 nvrms)

(

m

(

vx|z=0
− am

3 λ
dvx

dz

∣

∣

∣

∣

z=0

))

(2.12)

The total flux of momentum through the surface is the sum of these two con-
tributions,

jm = −2amnvrms)mλ
dvx

dz

∣

∣

∣

∣

z=0

(2.13)

The shear stress τxz is defined as the force per area, in the x direction, acting
at a surface whose unit normal is in the +z direction. The flux jm, as defined,
is the flux of streamwise (x) momentum upward through the surface, whose
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outward unit normal is in the downward (−z) direction. Therefore, the stress
is the negative of the rate of transfer of momentum,

τxz = 2amnmvrmsλ
dvx

dz

= µ
dvx

dz
(2.14)

where µ is the ‘coefficient of viscosity’ is 2amnmvrms. The ‘momentum diffusiv-
ity’ can be obtained by recasting the right side of the above expression in terms
of the gradient in the momentum density, (nmvx).

τxz = 2amvrmsλ
d(nmvx)

dz

= ν
d(nmvx)

dz
(2.15)

where ν = (µ/ρ) is the ‘kinematic viscosity’ or the ‘momentum diffusivity’.
The expression for µ in 2.14 contains an unknown coefficient, am, which can

be determined using a more detailed calculation based upon the kinetic theory
of gases. The viscosity for a dilute gas consisting of spherical molecules is

µ =
5

16d2

(

mkT

π

)1/2

ν =
5

16nd2

(

kT

πm

)1/2

(2.16)

It is evident from equations 2.8 and 2.16 that the self diffusivity D11 and the
kinematic viscosity ν are proportional to each other, and the Schmidt number
Sc = (D11/ν) = (6/5) for monoatomic gases of spherical molecules. In real
gases, the Schmidt number varies between 1.32 and 1.4 for most polyatomic
gases, but has a lower value between 1.25 and 1.3 for monoatomic gases. This
discrepancy is because the actual pair potential between the gas molecules is
not the hard sphere potential, but resembles the Lennard-Jones 6-12 potential
which has an attractive component. Values between 1.32 and 1.36 are obtained
for gases which interact by the Lennard-Jones potential. However, in all cases,
the momentum and mass diffusivity in gases are of the same order of magni-
tude. The momentum diffusivity also increases with temperature, because the
root mean square velocity increases as

√
T , whereas the mean free path is in-

dependent of temperature and depends only on the density. The momentum
diffusivity decreases as the density is increased, because the mean free path
decreases.

The momentum diffusivity for liquids turns out to be much higher than the
mass diffusivity of liquids, because the transport of momentum does not require
the physical motion of individual molecules, and is therefore not restricted by
the collective rearrengement required for the translation of a molecule. Conse-
quently, the momentum diffusivity in liquids is only about one order of mag-
nitude smaller than the mass diffusivity; for example, the kinematic viscosity
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of water is 1 × 10−6m2 s−1 at 20oC and atmospheric pressure, whereas that
for air is 1.5 × 10−5m2 s−1 under the same conditions. Therefore, the Schmidt
number for liquids of small molecules is about 103. The momentum diffusivity
in liquids also decreases with an increase in temperature, in contrast to gases
where it increases with an increase in pressure. This is due to the difference in
the structure of gases and liquids. Since the molecules in a liquid are densely
packed, neighbouring molecules are located at the position corresponding to the
potential energy minimum of the central molecule. In this case, the relative
motion of the molecules is an activated process which has an energy barrier,
and transport across this barrier is easier as the temperature is increased. This
results in a lower stress requirement for a given strain rate, and consequently a
lower kinematic viscosity.

Whereas the above simple calculation of the transport coefficients assumes
the molecules are spherical, a more detailed calculation incorporates the poten-
tial energy of interaction of the molecules. The simplest form of the potential
that can be used for spherical molecules is the Lennard-Jones potential, which
has two parameters, the characteristic diameter σ and the energy scale ǫ. The
potential has the form,

φ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(2.17)

where r is the distance between the molecules, and ǫ is the lowest energy. The
transport coefficients are then given by,

µ =
2

3π3/2

√

mkT

Ωµσ2
(2.18)

where the correction factor Ω is a slowly varying function of (kT/ǫ).

2.3 Thermal diffusion

Thermal diffusion is the process of transfer of energy due to the random motion
of molecules when there is a variation in the temperature in the system. In a
gas, thermal diffusion takes place due to the physical motion of molecules across
a surface in the gas when there is a temperature variation across the surface. In
this case, the energy density e is defined as the average energy per unit volume,
in a manner analogous to the concentration, which is the mass of solute per
unit volume. Consider a surface at z = 0 across which there is a variation in
the temperature, and therefore a variation in e. The flux of energy, which is the
rate of transfer of energy per unit area downward throug the surface, analogous
to equation 2.6, is given by

je
z− = ae

1vrms

(

e0 + ae
2λ

de

dz

)

(2.19)
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where ae
1 and ae

2 are O(1) numbers. The average rate of transport of energy per
unit area upward through the surface, analogous to equation 2.3, is

je
z+ = ae

1vrms

(

e0 − ae
2λ

de

dz

)

(2.20)

Using these, the total energy flux is

je
z = −2aevrmsλ

de

dz

= −De de

dz
(2.21)

where De is the ‘thermal diffusivity’, which has dimensions of L2T−1. The
thermal conductivity is obtained by expressing the energy in terms of the tem-
perature, e = mnCvT , where Cv is the specific heat at constant volume, defined
as the energy per unit mass, to obtain

je
z = −K

dT

dz
(2.22)

where
K = 2aevrmsλmnCv (2.23)

The thermal conductivity has units of MLT−3θ−1, where θ is the dimension of
temperature. A more exact calculation can be carried out using kinetic theory
in order to remove the uncertainity in the value of ae, and the result for a
monoatomic gas of spherical molecules is

K =
5

2
Cvµ (2.24)

K =
75

64d2

(

k3T

πm

)3/2

(2.25)

In deriving the above thermal conductivity, the value Cv = (3k/2m) has been
used. The diffusivity and thermal conductivity are related by

De =
K

nmCv
=

K

ρCv
(2.26)

where ρ is the mass density.
Equation 2.25 for the thermal conductivity is in agreement with experimental

results for monoatomic gases to within 1 % at STP. Equation 2.25 is not appli-
cable for diatomic and polyatomic gases, especially for gases of polar molecules,
since there is an exchange between the translational and internal energy modes.
The ratio of the momentum and thermal diffusivity, Cpµ/K, is known as the
Prandtl number. This ratio is predicted to be (2/3) for monoatomic gases of
spherical molecules, and experimentally observed values vary between 0.66 for
unimolecular gases such as neon and argon, to a maximum of about 0.95 for
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water at boiling point at atmospheric pressure. For polyatomic molecules, there
is a transfer of energy between the translational and internal modes, and a cor-
relation of the type Pr = Cp/(Cp +1.25R) is found to provide good predictions.

It is clear that the thermal diffusivity for gases is of the same magnitude as
the mass and momentum diffusivity, because the mechanism of energy trans-
port (fluctuating motion of the gas molecules) is the same as that for mass and
momentum transport. However, in liquids, the mechanism of energy transport
could be very different from that of mass and momentum transport. Whereas
the transport of mass requires the physical transport of molecules across a sur-
face, the transport of energy does not. One mechanism is the vibrational motion
of molecules transferring energy to neighbouring molecules. A second mechnism,
in liquid metals, is the transport of energy through the electron cloud around
the metal atoms. Transport of energy due to the latter mechanism is a very
rapid process, resulting in a high thermal diffusivity. Due to this, the Prandtl
number of liquid metals is very low. For example, the Prandtl number of liq-
uid mercury is 0.015 indicating that the thermal diffusivity is about 60 times
higher than the momentum diffusivity. In contrast, large organic molecules have
Prandtl number between 102 and 104. The Prandtl number for water is about
7.
Problems:

1. Compute the mean free path and the mean molecular velocity of hydrogen
molecules (molecular diameter 2.915Å) and chlorine molecules (molecular
diameter 4.115Å) at 300 K temperature and 105 Pa pressure. What is the
ratio of the mean free path and the molecular diameter? Compute the
viscosity from kinetic theory.

2. In the kinetic theory of gases, there are two dimensionless numbers that
relate the macroscopic flow properties to the molecular properties. The
Mach number is defined as (U/c), where U is the flow velocity and c is the
speed of sound. The Knudsen number is defined as (λ/L), where λ is the
mean free path and L is the macroscopic length scale. If the speed of sound
in a gas is approximately equal to the molecular velocity, how is the ratio
of convection and diffusion in a gas (the Peclet number for concentration
and diffusion or the Reynolds number for momentum diffusion) related to
the Mach number and the Knudsen number?

3. Calculate the diffusion coefficients of hydrogen (molecular diameter 2.915Å),
methane (molecular diameter 3.822Å) and water vapour and chlorine
(molecular diameter 4.115Å) in air at 300K and 105 Pa. Use the ap-
proximate molecular diameter 3.617Å for air.

4. Estimate the mass flux in a gas with uniform density and a gradient in
temperature.

What is the mass flux when there is both a gradient in density and tem-
perature? What is the relation between the density and temperature gra-
dients when the mass flux is zero?
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5. The haemoglobin molecule has a diffusivity of 0.069×10−9 m2/s in water.
Using the Stokes-Einstein relation, estimate the diameter of this molecule.
Assume water has a viscosity of 10−3 kg/m/s.

6. Use the Stokes-Einstein relation to determine the diffusion coefficient of
hydrogen (molecular diamter 2.915Å), oxygen (molecular diameter 3.433Å)
and benzene (molecular diameter 5.270Å in water at 300K. Compare with
the measured values of 4.5×10−9, 2.1×10−9 and 1.02×10−9 m2/s respec-
tively. For which molecule would you expect the best and worst agreement
with measured values?


