
Chapter 3

Transport in one and two
dimensions

In this chapter, we consider transport in which there is a variation in the
mass, momentum and temperature fields in one dimension. The analysis is
considerably simplified in this case, since there is variation with respect to
only one spatial co-ordinate, in addition to variation in time for unsteady
diffusion and flow problems. However, the examples solved here illustrate
the basic principles of the solution of more complex problems in multiple
dimensions, which involve shell balances to derive differential equations for
the concentration, velocity and temperature fields, and then an integration
procedure for determining the variations in the concentration, velocity and
temperature.

3.1 Transport between flat plates:

The simplest configuration consists of two plates of infinite extent separated
by length L, as shown in figure ??. There is a flux of mass, momentum
or energy due to a difference in the concentration, velocity or temperature
between the two plates. At steady state, there is a constant flux between
the two plates in the direction perpendicular to the two plates, and the
concentration, velocity or temperature varies linearly with the distance.

One could also consider an unsteady situation, where the entire system
is at a temperature T0, and the temperature of one plate is instanteneously
changed to T1, as shown in figure ??. The equivalent situations in mass and
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2 CHAPTER 3. TRANSPORT IN ONE AND TWO DIMENSIONS

momentum transfer involves a system initially at constant concentration c0,
in which the concentration of one plate is instanteneously set equal to c1. In
momentum transfer, one could consider a system which is initially stationary,
in which the velocity of one surface is set equal to U . The temperature,
concentration or velocity is initially a step function, and then it evolves in
time and finally approaches a steady linear temperature profile in the long
time limit.

In this chapter, we will also consider situations involving periodic oscil-
lations in the temperature, concentration or velocity on one plate. In the
case of momentum transport, this involves one stationary plate and another
plate oscillating at a fixed frequency. Similar situations can be considered
for heat and mass transport. In all cases, we first derive equations for the
variation, both in position and time, of the concentration, temperature or
velocity in between the two plates. When expressed in terms of the scaled
concentration, temperature or velocity fields, these equations are identical in
form. The solution procedures for these equations under steady and unsteady
situations are then discussed.

3.2 Cartesian co-ordinates:

3.2.1 Mass transfer

Consider two flat surfaces in the x − y plane, separated by a distance L,
located at z = 0 and z = L. through which the solvent diffuses into the
fluid, as shown in figure reffig311. The temperature is c0 at the top plate,
and c1 at the bottom plate. An equation for the variation of concentration
with z and with time can be derived from the mass conservation condition,

Consider a shell of thickness ∆z in the z coordinate as shown in figure 3.1,
and of area ∆x∆y in the x−y plane. There is a transport of mass across the
surfaces of the shell due to diffusion, which results in a change in the concen-
tration in the shell. We consider the variation in the concentration within
this control volume over a time interval ∆t. Mass conservation requires that

(

Accumulation of
mass in the shell

)

=

(

Input of
mass into shell

)

−
(

Output of
mass from shell

)

+

(

Production of
mass in shell

)

(3.1)
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The accumulation of mass in a time ∆t is given by
(

Accumulation of mass
in the shell

)

= (c(x, y, z, t+∆t)−c(x, y, x, t))∆x∆y∆z (3.2)

The transport of mass takes place due to molecular diffusion only in the
z direction, because there is concentration variation only in this direction.
Therefore, we need to consider the transport across the two surfaces located
at z and z + Deltaz. The total mass entering the shell through the surface
at z in a time interval ∆t is given by the product of the mass flux, the area
of transfer ∆x∆y and the time interval ∆t,

(

Input of
mass into shell

)

= jz|z ∆t∆x∆y (3.3)

In a similar manner, the mass leaving the surface at z + ∆z is given by
(

Output of
mass from shell

)

= jz|z+∆z ∆t∆x∆y (3.4)

There could also be a rate of production (or consumption) of mass in the
shell due to a chemical reaction. This term is positive if c is the concen-
tration of a species produced in the reaction, while it is negative if c is the
concentration of a species consumed in the reaction. The mass produced in
the volume ∆x∆y∆z within the time ∆t is S∆x∆y∆z∆t, where S is the rate
of production of mass per unit volume per unit time. This rate of reaction is
a function of the concentrations of the reacting species and the temperature,
which are functions of position and time, and so S could depend on position
and time. However, since we are considering variations only in the z direction
and time, the production rate is assumed to be a function of z and t.

(

Production of
mass in shell

)

= S(z, t)∆x∆y∆z∆t (3.5)

Substituting equations 3.2, 3.3 3.4 and 3.5 into equation 3.1, and dividing
by ∆x∆y∆z∆t, we obtain

c(x, y, z, t + ∆t) − c(x, y.z, t)

∆t
=

1

∆z

(

jz|z − jz|z+∆z

)

+ S(z, t) (3.6)

The above equation is a ‘difference’ equation, since it relates the difference
in the concentration at two different locations and times. This difference
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equation can be converted into a differential equation by taking the limit
∆t → 0 and ∆z → 0.

∂c

∂t
= −∂jz

∂z
+ S (3.7)

Using the Fick’s law for diffusion,

jz = −D
∂c

∂z
(3.8)

the concentration diffusion equation 3.7 becomes,

∂c

∂t
=

∂

∂z

(

D
∂c

∂z

)

+ S (3.9)

The above equation is a ‘partial differential equation’, since it contains deriva-
tives with respect to two independent variables, z and t. (This is in contrast
to an ‘ordinary differential equation’, which contains derivatives with respect
to only one independent variable).

If the diffusion coefficient is a constant (a good approximation in most
cases of practical interest), the differential equation 3.9 reduces to

∂c

∂t
= D

∂2c

∂z2
+ S (3.10)

3.2.2 Heat transfer:

The equivalent heat transfer problem involves two plates of temperature T0

at z = L, and temperature T1 at z = 0. A shell of of thickness ∆z in the z
coordinate, and of area ∆x∆y in the x − y plane, as shown in figure 3.1, is
considered. The energy conservation condition is

(

Accumulation of energy
in the shell

)

=

(

Input of
energy into shell

)

−
(

Output of
energy from shell

)

+

(

Production
energy in shell

(3.11)
The accumulation of mass in a time ∆t is given by

(

Accumulation of energy
in the shell

)

= (ρCp(T (x, y, z, t+∆t)−T (x, y, x, t)))∆x∆y∆z

(3.12)
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The total heat entering the shell through the surface at z in a time interval
∆t is given by the product of the heat flux, the area of transfer ∆x∆y and
the time interval ∆t,

(

Input of
heat into shell

)

= qz|z ∆x∆y∆t (3.13)

In a similar manner, the heat leaving the surface at z + ∆z is given by
(

Output of
heat from shell

)

= qz|z+∆z ∆x∆y∆t (3.14)

The production (or consumption) of heat in the shell due to several rea-
sons, such chemical reaction (exothermic or endothermic), heat of dissolution,
latent heat due to phase transformations, or even due to viscous heating. The
heat produced in the volume ∆x∆y∆z within the time ∆t is Se∆x∆y∆z∆t,
where Se is the rate of production of heat per unit volume per unit time. As
in the case of production of mass, we assume this is a function of z and time,

(

Production of
mass in shell

)

= Se(z, t)∆x∆y∆z∆t (3.15)

Substituting equations 3.12, 3.13 3.14 and 3.15 into equation 3.11, and
dividing by ∆x∆y∆z∆t, we obtain

ρCp(T (x, y, z, t + ∆t) − T (x, y, z, t)

∆t
=

qz|z − qz|z+∆z

∆z
+ Se (3.16)

The above equation is a ‘difference’ equation, since it relates the difference
in the concentration at two different locations and times. This difference
equation can be converted into a differential equation by taking the limit
∆t → 0 and ∆z → 0.

ρCp
∂T

∂t
= −∂qz

∂z
+ Se (3.17)

Using Fourier’s law for heat conduction,

qz = −k
∂T

∂z
(3.18)

the energy conservation equation can be written as,

ρCp
∂T

∂t
=

∂

∂z

(

k
∂T

∂z

)

+ Se (3.19)
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If the thermal conductivity is independent of the z co-ordinate, the energy
conservation equation can be written as,

∂T

∂t
= α

∂

∂z

(

∂T

∂z

)

+
Se

ρCp

(3.20)

where α = (k/ρCp) is the thermal diffusivity.

3.2.3 Momentum transport:

Though the final equation for the momentum transfer process is identical
to equations 3.10 and 3.20, the procedure is slightly different, and so we
provide a brief outline of the calculation. First, note that there are now two
directions in the problem. Since momemtum is a vector, there is a direction
associated with the momentum itself. In the present problem, this is the x
direction, because the velocity of the fluid is in the x direction. The second
is the direction of variation of the momentum, which is the z direction in
this problem, because the fluid velocity is varying only in the z direction.
Since diffusion takes place along the direction where there is a variation of
momentum, the diffusion in the present problem is also in the z direction.

The momentum balance equation (Newton’s third law), equivalent of
equation 3.1 and 3.11, is







Rate of change of
x momentum
in the shell





 =

(

Surface of forces
in x direction

)

+

(

Body forces
in x direction

)

(3.21)
The total fluid mass in the differential volume is ρ∆x∆y∆z, where ρ is the
fluid density and the volume of fluid is ∆x∆y∆z. We assume that the density
is a constant, so that the change in momentum (mass times velocity) is due
to the change in the velocity. The rate of change of momentum (change in
momentum per unit time) in the differential volume of thickness ∆z about
z in a time interval ∆t is given by,






Rate of change of
x momentum
in the shell





 =
(rho∆x∆y∆z)(ux(x, y, z, t + ∆t) − ux(x, y, z, t)

∆t

(3.22)
The forces acting are of two types. The first is the ‘body force’, such

as the gravitational, centrifugal and other forces, which act throughout the
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body. The second is the ‘surface force’ acting on the bounding surfaces,
pressure and the shear stress. The body forces (centrifugal, gravitational,
etc.) can be written as,

(

Body forces
in x direction

)

= fx∆x∆y∆z (3.23)

where fx is the force per unit volume in the x direction. The two important
body forces we will encounter are the gravitational force fx = ρgx, where
ρ is the mass density (mass per unit volume) and gx is the component of
the acceleration due to gravity in the x direction, and the centrifugal force,
fx = ρΩ2r, where Ω is the angular velocity and r is the distance from the
axis of rotation.

The surfaces forces acting on the two surfaces at z and z + ∆z are the
products of the shear stress τxz and the surface area (∆x∆y). It is important
to keep account of the directions of the forces in this case, since the force is
a vector. The shear stress τxz is defined as the force per unit area in the x
direction acting at a surface whose outward unit normal is in the positive z
direction. For the surface at z + ∆z, the outward unit normal is in the +z
direction, as shown in figure 3.1, and therefore the force per unit area at this
surface is + τxz|z+∆z. For the surface at z, the outward unit normal is in the
−z direction, and therefore the force per unit area at this surface is − τxz|z.
Therefore,

(

Surface of forces
in x direction

)

= ∆y∆z(τxz(z + ∆z, t) − τxz(z, t)) (3.24)

Therefore, the momentum balance equation is,

(∆x∆y∆z)
ρ∆ux

∆t
= ∆x∆y(τxz|z+∆z − τxz|z) + fx∆x∆y∆z (3.25)

Dividing throughout by A∆z, we obtain,

ρ
∆ux

∆t
=

τxz|z+∆z − τxz|z
∆z

+ fx (3.26)

Taking the limit ∆t → 0 and ∆z → 0, we obtain the partial differential
equation,

ρ
∂ux

∂t
=

∂τxz

∂z
+ fx (3.27)
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Note that f is a ‘force density’, which is the force acting per unit volume.
The shear stress is given by the product of the viscosity and the gradient

of the velocity,

τxz = µ
∂ux

∂z
(3.28)

With this, the governing equation for the velocity field becomes,

ρ
∂ux

∂t
=

∂

∂z

(

µ
∂ux

∂z

)

+ fx (3.29)

The differential equation derived above has the same form as the concentra-
tion and energy diffusion equations 3.1 and 3.11, though it was derived from
a force balance. This shows that the diffusion process is the same for mass,
momentum and energy. However, it should be noted that momentum could
be transmitted by pressure forces in addition to viscous forces, and there is
no analogue of pressure in mass and energy transport.

The momentum conservation equation can be recast in terms of the mo-
mentum diffusivity ν, if the viscosity and density are constants,

∂ux

∂t
= ν

(

∂2ux

∂z2

)

+ (fx/ρ) (3.30)

where ν = (µ/rho) is the momentum diffusivity.

3.2.4 Steady and unsteady solutions:

We now solve the diffusion equation in a sequence of problems increasing in
complexity, starting from the steady solution, and then moving on to the
unsteady solution in an infinite domain, the unsteady solution in a finite
domain, and finally a solution that is oscillatory in time. After this, we
consider the effect of sources of mass and energy, as well as body forces
exerted on the fluid.

At steady state, we solve the equations, for mass, momentum and energy
conservation of the form,

∂2c

∂z2
= 0;

∂2T

∂z2
= 0;

∂2ux

∂z2
= 0 (3.31)

with boundary conditions,

c = c1; T = T1; ux = U atz = 0 (3.32)

c = c0; T = T0; ux = U atz = H (3.33)
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It is a good practice to first non-dimensionalise the co-ordinate z, as well as
the concentration, temperature and velocity. For this problem, it is appro-
priate to use the scaling z∗ = (z/H), so that z∗ varies between 0 and 1 in
the domain between the plates. The scaled concentration, temperature and
velocity can be defined as,

c∗ =
c − c0

c1 − c0
(3.34)

T ∗ =
T − T0

T1 − T0
(3.35)

u∗
x =

ux

U
(3.36)

When scaled in this manner, the boundary conditions for the mass, momen-
tum and energy transport problems are identical,

c∗ = T ∗ = u∗
x = 1 at z∗ = 0 (3.37)

c∗ = T ∗ = u∗
x = 0 at z∗ = 1 (3.38)

It is quite easy to obtain the linear solutions for the concentration, temper-
ature and velocity equations, 3.31, which satisfy the boundary conditions
3.38,

c∗ = T ∗ = u∗
x = 1 − z∗ (3.39)

As expected, the concentration, temperature and velocity profiles are linear
because the fluxes are constant.

3.2.5 Unsteady transport into an infinite fluid:

Let us now consider the unsteady state transport of mass/momentum/heat
in a fluid between two flat plates, as shown in figure ??, with no sources.
In the mass transfer problem, the fluid and both plates are initially at a
concentration c0. At time t = 0, the temperature of the lower plate is
instanteneously set equal to c1 > c0. There is a heat flux from the bottom
plate, and the temperature increases upwards. In the final steady state,
the linear concentration profile equation 3.39 is obtained. Here, we shall be
concerned with the very initial stages, when the ‘penetration depth’ from the
bottom surface is small compared to the distance between the two plates, L.
In this case, the we can consider the region near the bottom plate alone,
and consider the fluid to be of infinite extent in the z direction. Instead of
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the boundary condition equation 3.38, we can use the boundary conditions
c = c1 at z = 0 and c = c0 as z → ∞. The initial condition is c = c0 for all
z > 0 at t = 0. The mass diffusion equation is 3.31, and the boundary and
initial conditions are,

c = 0 as z → ∞ at all t (3.40)

c = c0 at z = 0 at all t > 0 (3.41)

c = 0 at t = 0 for all z > 0 (3.42)

The scaled concentration field c∗ is defined in equation 3.34, and the
conditions for c∗ are

c∗ = 0 as z → ∞ at all t (3.43)

c∗ = 1 at z = 0 at all t > 0 (3.44)

c∗ = 0 at t = 0 for all z > 0 (3.45)

The diffusion equation for the concentration field is,

∂c∗

∂t
= D

∂2c∗

∂z2
(3.46)

In the equivalent heat and momentum transfer problems, we substitute
T ∗ and u∗

x instead of c∗, and the thermal diffusivity α and kinematic viscosity
ν instead of the mass diffusivity D.

In order to solve the concentration equation 3.46 with the boundary and
initial conditions 3.45, it is first important to realise that there no intrinsic
length scale in the problem, because the boundary conditions are applied at
z∗ = 0 and z∗ → ∞. Since the concentration c∗ is dimensionless, there are
only three dimensional variables z, t and D in the problem. These contain two
dimensions, L and T , and it is possible to construct only one dimensionless
number, ξ = (z/

√
Dt). Therefore, just from dimensional analysis, it can be

concluded that the concentration field does not vary independently with z
and t, but depends only on the combination ξ = (z/

√
Dt). If this inference

is correct, it should be possible to express the conservation equation 3.46 in
terms of the variable ξ alone. When z and t are expressed in terms of ξ, the
concentration equation becomes

−
(

z

2D1/2t3/2

)

∂c∗

∂ξ
=

D

Dt

∂2c∗

∂ξ2
(3.47)
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c*=1
T*=1
u*=1x

x

z
z

∆z+   z

z=0

c*=0
T*=0
u*=0x

z−−>Infinity

Figure 3.1: Configuration for similarity solution for unidirectional transport.
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After multiplying throughout by t, the equation for the concentration field
reduces to

ξ

2

∂c∗

∂ξ
+

∂2c∗

∂ξ2
= 0 (3.48)

Equation 3.48 validates the earlier inference, based on dimensional analysis,
that the non-dimensionalised concentration field is only a function of ξ, and
contains z, t or D only in the combination (z/

√
Dt).

It is also necessary to transform the boundary and initial conditions, 3.43,
3.44 and 3.45 into conditions for the ξ coordinate. The transformed boundary
conditions are

c∗ = 0 as z → ∞ at all t → as ξ → ∞ (3.49)

c∗ = 1 at z = 0 at all t > 0 → at ξ = 0 (3.50)

c∗ = 0 at t = 0 for all z > 0 → as ξ → ∞ (3.51)

Note that the original conservation equation, 3.46, is a second order differ-
ential equation in z and a first order differential equation in t, and so this
requires two boundary conditions in the z coordinate and one initial condi-
tion. The conservation equation expressed in terms of ξ is a second order
differential equation, which requires just two boundary conditions for ξ. From
equation 3.50 and 3.51, it can be seen that one of the boundary conditions
for z → ∞ (equation 3.43) and the initial condition t = 0 (equation 3.45)
turn out to be identical conditions for ξ → ∞.

Equation 3.48 is a second order ordinary differential equation for c∗(ξ),
which can be easily solved to obtain

c∗(ξ) = C1 + C2

∫ ∞

ξ
dξ′ exp

(

−ξ
′2

4

)

(3.52)

The constants C1 and C2 are determined from the conditions c∗ = 1 at ξ = 0,
and c∗ = 0 for ξ → ∞, to obtain

c∗(z/
√

Dt) =

(

1 − 1√
π

∫ (z/
√

Dt)

0
dξ′ exp

(

−ξ
′2

4

))

(3.53)

The solution 3.53 for c∗(z/
√

Dt) is shown as a function of (z/
√

Dt) in
figure 3.2. From this solution, we see that c∗ decreases to about 0.48 at
(z/

√
Dt) = 1.0, and to about 0.16 at (z/

√
Dt) = 2.0,and further to about

0.034 at (z/
√

Dt) = 3.0. For (z/
√

Dt) > 3.0, the scaled concentration field is
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(z/√Dt)
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Figure 3.2: The solution equation 3.53 for c∗(z/
√

Dt) as a function of
(z/

√
Dt).

close to zero. Therefore, the length scale for the variation of the concentration
(penetration depth) is

√
Dt. This length scale is a function of time, and it

increases proportional to t1/2.

As discussed at the beginning of this section, the solution equation 3.53
is valid only when the penetration depth is small compared to the distance
between plates, or

√
Dt ≪ H , or t ≪ (H2/D). When the penetration depth

becomes comparable to H , a similarity solution cannot be used, because the
length scale H is also relevant, and the scaled z co-ordinate can be defined as
z∗ = (z/H). The similarity reduction here was possible because the boundary
conditions 3.49 and 3.50 were applied at z = 0 and z → ∞ respectively. Since
there is no other length scale, there are three dimensional quantities, z, t and
D, and from these it was possible to form only one dimensionless group on
the basis of dimensional analysis. However, the similarity solution method is
more general, and does not rely on dimensional analysis alone, as shown in
the next problem. This method forms the basis of boundary layer theories
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to be discussed later.

3.2.6 Steady diffusion into a falling film

This problem is a simplification of the actual diffusion in a falling film, which
involves a combination of convection and diffusion. We discuss this now,
even though it is not an unsteady diffusion problem, because the solution
is a similarity solution similar to that for unsteady diffusion into an infinite
fluid.

A thin film of fluid flows down a vertical surface with a constant velocity
U in the x direction. At the gas-liquid interface, the liquid is in contact with a
gas which is soluble in the liquid. The concentration of gas in the liquid at the
entrance is c0, while the concentration of gas at the liquid-gas interface is c1.
The difference in concentration between the initial concentration in the liquid
and the concentration at the interface acts as a driving force for diffusion. The
z coordinate is perpendicular to the gas-liquid interface, which is located at
z = 0. As the liquid flows down, the gas is dissolved in the liquid and carried
by the fluid in the streamwise x direction, as shown in figure ??. Therefore,
there is a variation in concentration with the z co-ordinate. However, the
system is at steady state, and does not vary in time.

The mass conservation equation can be obtained by carrying out a shell
balance over a differential volume, as shown in figure ??. In this case, there
is transport due to fluid convection in the streamwise (x) direction, and
diffusion due to a concentration gradient in the z direction. There is diffusion
in the x direction as well, because the concentration is not a constant in
that direction. However, under certain conditions (which we will discuss at
the end), the diffusion in this direction is much smaller the the convective
transport due to the mean fluid flow.

The terms in the mass balance equation, 3.1, are as follows. Since the
system is at steady state, there is no change in the concentration with time,
and the term on the left side of equation 3.1 is zero. There is mass entering
the differential volume at the right surfaces at z, and mass leaving at the left
surface at z +∆z, and z +∆z due to diffusion. These are given by equations
3.3 and 3.4. In addition, there is also mass entering the top surface at x, and
leaving the bottom surface at x + ∆x due to convection,

(

Mass entering
surface at x

)

= Uc|x ∆y∆z (3.54)
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(

Mass leaving
surface at x + ∆x

)

= Uc|x+∆x ∆y∆z (3.55)

Therefore, the mass balance equation is,

jz|z ∆x∆y − jz|z+∆z ∆x∆y + Uc|x ∆y∆z − Uc|x+∆x ∆y∆z = 0 (3.56)

If the above equation is divided by ∆x∆y∆z, we obtain,

jz|z − jz|z+∆z

∆z
+

Uc|x − Uc|x+∆x

∆x
= 0 (3.57)

Taking the limit ∆x → 0 and ∆z → 0, we obtain,

∂(Uc)

∂x
= −∂jz

∂z
(3.58)

The Fick’s law for the mass flux, jz = −D(∂c/∂z), is substituted into equa-
tion 3.57, to obtain,

U
∂c

∂x
= D

∂2c

∂z2
(3.59)

Here, the term on the left has been simplified because the velocity U is a
constant. Using equation 3.34 for the scaled concentration field, the diffusion
equation becomes,

U
∂c∗

∂x
= D

∂2c∗

∂z2
(3.60)

Two boundary conditions are required in the z direction, since equation
3.60 is a second order differential equation in the z, while one ‘initial’ condi-
tion is required in the x direction equation 3.60 is first order in x. In the z
direction, the concentration at the liquid gas interface at z = 0 is c1, while
the concentration far from the surface in the limit z → ∞ is c0. Therefore,
the boundary condition for the scaled concentration field is,

c∗ = 1 atz = 0 (3.61)

c∗ = 0 forz → ∞ (3.62)

In addition, the concentration at x ≤ 0 is c0, for all z, because the liquid has
not yet come into contact with the gas. Therefore, the ‘initial’ condition at
x = 0 is,

c∗ = 0 atx = 0 for z ¿ 0 (3.63)
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If we compare equation 3.60 and the unsteady conservation equation 3.46,
we see that equation 3.60 can be obtained from equation 3.46 by substituting
(x/U) instead of t. The boundary and initial conditions, 3.61 and 3.62, and
the ‘initial’ condition 3.63, can also be obtained from the boundary and initial
conditions of the unsteady problem, 3.73, 3.74 and 3.42, if we substitute
(x/U) instead of t. Therefore, the solution for equation 3.60 is obtained by
substituting (x/U) instead of t in the solution 3.53.

c∗(z/
√

Dx/U) =



1 − 1√
π

∫ (z/
√

Dx/U)

0
dξ′ exp

(

−ξ
′2

4

)



 (3.64)

The diffusion in the falling film is an example of a similarity solution
where we have not used dimensional analysis. The similarity variable ξ =

(z/
√

Dx/U) is not a dimensional necessity, since there are four dimensional
variables, x, z, U and D, and only two dimensions, L and T . However, the
similarity between the equations 3.46 for the unsteady diffusion equation
and equation 3.60 for the falling film can be used to obtain the solution 3.64.

Here, the penetration depth,
√

Dx/U increases proportional to
√

x, where x
is the downstream distance.

We can now examine the assumptions made at the beginning of the cal-

culation. One assumption is that the penetration depth
√

Dx/U is small

compared to the width of the fluid layer, H , or, (x ≪ UH2/D). Since
PeH = (UH/D) is a Peclet number based on the fluid velocity and the depth
of the flowing layer, this condition requires that (x/H) ≪ PeH . As fluid
travels downstream, the distance x becomes comparable to HPeH , and the
penetration depth is comparable to H . At this point, the similarity solution
can no longer be used.

A second assumption is that the velocity U is independent of z over
lengths comparable to the penetration depth. In real flows, there is a varia-
tion in the velocity near the surface, and the constant velocity approximation
is valid only if hte variation in the velocity over a distance comparable to the
penetration depth is small compared to the velocity itself. The velocity field
close to the surface can be expanded in a Taylor series about its value at the
surface,

U(z) = U(0) + z
dU

dz

∣

∣

∣

∣

∣

z=0

+
z2

2

d2U

dz2

∣

∣

∣

∣

∣

z=0

+ . . . (3.65)

At a liquid-gas interface, the shear stress exerted by the gas on the liquid
is zero to a good approximation. Due to this, the velocity gradient (dU/dz)
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is zero at the surface. Therefore, the variation in velocity near the surface,

U(z) − U(0) = (z2/2)(d2U/dz2). Since the penetration depth is
√

Dx/U ,
the variation in the velocity over distances comparable to the penetration
depth is (Dx/2U)(d2U/dz2). The velocity near the surface can be considered
constant if,

Dx

U

d2U

dz2
≪ U (3.66)

at the surface, or

x ≪
(

D

U2

d2U

dz2

)−1

(3.67)

Since (d2U/dz2) ∼ (U/H2), the above condition reduces to,

x

H
≪ UH

D
(3.68)

Therefore, the above condition is also equivalent to (x/H) ≪ PeH , the con-
dition for the penetration depth to be small compared to the flow depth.

A third assumption is that diffusion along the streamwise direction is
small compared to convection. The flux jx in the downstream direction is
D(∂c/∂x) ∼ (Dc/x). The flux due to the mean velocity Uc. Therefore,
the flux due to convection is large compared to that due to diffusion for
(Ux/D) ≫ 1, or x ≫ (D/U). This condition can be written as,

x

H
≫ Pe−1

H (3.69)

From conditions 3.68 and 3.69 it is clear that this analysis can be used only
for high Peclet number flows, PeH ≫ 1, that is, when convective transport
is large compared to diffusive transport over a distance comparable to H .

The solution 3.64 can be used to obtain a correlation for the Sherwood
number for the flow down an inclined plane. Consider a flow of depth H and
length L in the downstream direction. The flux at the surface at a position
z is given by,

jz|x,z=0 = −D
∂c

∂z

∣

∣

∣

∣

∣

z=0

= −D(c1 − c0)
√

Dx/U

dc∗

dξ

∣

∣

∣

∣

∣

ξ=0

=
1√
π

√

U

Dx
(c1 − c0) (3.70)
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The average flux j̄z over the length L is,

j̄z =
1

L

∫ L

0
dx jz|x,z=0

=
D(c1 − c0)

L

√

2U

Dπ

∫ L

0
dx x−1/2

=
2D(c1 − c0)√

π

√

U

DL

=
2D(c1 − c0)

L
√

π
Pe

1/2
L (3.71)

where PeL = (UL/D) is the Peclet number based on the length L. The
Sherwood number is the non-dimensional average flux,

Sh =
j̄zL

D(c1 − c0)

=
2√
π

Pe
1/2
L

= 1.12883Pe
1/2
L (3.72)

3.2.7 Diffusion in a channel of finite width:

Next we consider the problem of diffusion in a channel bounded by two walls
of infinite extent in the x − y plane, separated by a distance H in the z
direction, as shown in figure 3.3. Initially, the concentration of the fluid in
the channel is equal to c0. At t = 0, the concentration of the solute on the
wall at z = 0 is instanteneously increased to c1, while the concentration on
the surface at z = H is equal to c0. We would like to determikne the variation
of the concentration in the z co-ordinate and in time.

The concentration field is first expressed in terms of the scaled concen-
tration field c∗ by equation 3.34. The diffusion equation, obtained by a shell
balance as before, is given by equation 3.46. However, there is a modification
in the boundary conditions,

c∗ = 0 at z = H at all t (3.73)

c∗ = 1 at z = 0 at all t > 0 (3.74)

c∗ = 0 at t = 0 for all z > 0 (3.75)



3.2. CARTESIAN CO-ORDINATES: 19
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u*=0x

z=L

Figure 3.3: Configuration for similarity solution for unidirectional transport.

In this case, it is not possible to reduce the problem using a similarity trans-
form, because there is an additional length scale L in the problem, and so
the z coordinate can be scaled by H . A scaled z coordinate is defined as
z∗ = (z/L), and the diffusion equation in terms of this coordinate is

∂c∗

∂t
=

D

L2

∂2c∗

∂z∗2
(3.76)

The above equation suggests that it is appropriate to define a scaled time
coordinate t∗ = (Dt/L2), and the conservation equation in terms of this
scaled time coordinate is

∂c∗

∂t∗
=

∂2c∗

∂z∗2
(3.77)

The boundary conditions, in terms of the scaled coordinates z∗ and t∗, are

c∗ = 0 at z∗ = 1 at all t∗ (3.78)

c∗ = 1 at z∗ = 0 at all t∗ > 0 (3.79)

c∗ = 0 at t∗ = 0 for all z∗ > 0 (3.80)

We briefly note that similar problems can be framed for heat and momen-
tum transfer. In the heat transfer problem, the two plates and the fluid are
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initially at temperature T0. At t = 0, the temperature of the bottom plate is
instanteneously increased to T1. In the momentum transfer problem, the fluid
and the two plates are initially at rest. At t = 0, a constant velocity ux = U
is imparted to the bottom plate. In both cases, non-dimensional concentra-
tion, temperature and velocity fields can be defined according to equations
3.34, 3.35 and 3.36. The conservation equations for the scaled temperature
and velocity fields are identical to equation 3.77, except that t∗ = (tα/H2)
for the heat transfer problem, and t∗ = (tν/H2) for the momentum transfer
problem. The boundary and initial conditions for T ∗ and u∗

x are also iden-
tical to equations 3.78, 3.79 and 3.80. Therefore, the solutions for the T ∗

and u∗
x are identical to those obtained here for c∗, except for the definition of

the dimensionless time t∗ which contains the thermal diffusivity in the heat
transfer problem, and the momentum diffusivity in the momentum transfer
problem.

The solution method involves separating the concentration field into a
steady and transient part. In the long time limit, t∗ → ∞, the concentration
field will attain a steady state value c∗s which is independent of time. This
steady state concentration field is obtained by solving 3.77 with the time
derivative set equal to zero, and the solution for the steady concentration
field is a linear concentration profile in equation 3.39,

c∗s = (1 − z∗) (3.81)

The concentration can be separated into a steady and a transient part,

c∗ = c∗s + c∗t , (3.82)

where c∗t is the difference between the actual concentration and the concen-
tration at steady state. The reason for this decomposition will become clear
a little later.

The conservation equation for the unsteady concentration field is iden-
tical to that for the original concentration field, because (∂c∗s/∂t∗) = 0 and
(∂2c∗s/∂z∗2) = 0,

∂c∗t
∂t∗

=
∂2c∗t
∂z∗2

(3.83)

However, the boundary condition for c∗t is different from that for the c∗, and
is obtained by subtracting c∗s from c∗ at the boundaries,

c∗t = 0 at z∗ = 1 at all t∗ (3.84)
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c∗t = 0 at z∗ = 0 at all t∗ > 0 (3.85)

c∗t = −c∗s at t∗ = 0 for all z∗ > 0 (3.86)

Equation 3.83 can be solved by the method of ‘separation of variables’,
where the unsteady concentration field is expressed as two functions, one of
which is only a function of t∗, while the other is only a function of z∗.

c∗t = Θ(t∗)Z(z∗) (3.87)

This is inserted into the conservation equation 3.83, and the equation is
divided by the production ΘZ, to obtain

1

Θ

dΘ

dt∗
=

1

Z

d2Z

dz∗2
(3.88)

In equation 3.88, the left side is only a function of t∗, while the right side
is only a function of z∗. From this, it can be inferred, as follows, that these
two functions have to be constants independent of z∗ and t∗. To infer this,
assume that these two functions are not constants, and that the left side
varies as t∗ is varied, and the right side varies as z∗ is varied. In this case,
if we keep z∗ a constant and vary t∗, then the left side of 3.88 varies, while
the right side remains a constant, and so the equality is destroyed. The only
way for the equality to hold, if the left side is only a function of t∗ and the
right side is only a function of z∗, is if the two sides are constants.

The solution for Z is first obtained by solving

1

Z

d2Z

dz∗2
= −α2 (3.89)

where α is a positive constant. The reason for choosing the right side of
3.89 to be negative will become apparent a little later. The solution for this
equation is

Z = C1 sin (αz∗) + C2 cos (αz∗) (3.90)

where C1 and C2 are constants to be determined from the boundary con-
ditions. The boundary condition c∗u = 0 (Z = 0) at z∗ = 0 is satisfied for
C2 = 0. The boundary condition cau = 0 at z∗ = 1 is satisfied if α = (nπ),
where n is an integer. Therefore, the solution for Z which satisfied the
boundary conditions in the z∗ coordinate is

Z = C1 sin (nπz∗) (3.91)
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where n is an integer.
The solution for Θ can now be obtained from the equation

1

Θ

dΘ

dt∗
= −α2 = −n2π2 (3.92)

This equation is solved to obtain

Θ = C3 exp (−n2π2t∗) (3.93)

The final solution for c∗t = Θ(t∗)Z(z∗) is

c∗t = C exp (−n2π2t∗) sin (nπz∗) (3.94)

The solution 3.94 contains the integer n which is as yet unspecified, and the
solution 3.94 satisfies the equation 3.83 for any value of n. The most general
solution is one which contains a linear combination of the solution 3.94 for
different values of n,

c∗t =
∞
∑

n=1

Cn exp (−n2π2t∗) sin (nπz∗) (3.95)

The values of the coefficients Cn have to be determined from the initial
condition that has not been used so far,

c∗t = −(1 − z∗) for t∗ = 0
∞
∑

n=1

Cn sin (nπz∗) = −(1 − za) (3.96)

The coefficients can be determined because the functions sin (nπz∗) satisfy
‘orthogonality conditions’,

∫ 1

0
dz∗ sin (nπz∗) sin (mπz∗) = 0 for n 6= m

= (1/2) for n = m (3.97)

To use this condition, the left and right sides of 3.98 are multiplied by
sin (mπz∗), and integrated over the interval 0 ≤ z∗ ≤ 1, to obtain

Cm = −2
∫ 1

0
dz∗ sin (mπz∗)(1 − z∗)

= − 2

mπ
for odd n (3.98)
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Therefore, the final solution for the concentration field, which includes the
steady part (c∗s = (1 − z∗)) and the transient part is,

c∗z = (1 − z∗) −
∞
∑

n=1

2

nπ
sin (nπz∗) exp (−n2π2t∗) (3.99)

It is now time to examine the reason for choosing the constant on the right
side of 3.89 as a negative number. If we had chosen the right side of 3.89 to
be positive, the solution for Z consists of an exponentially growing and an
exponentially decaying function. In this case, it can easily be verified that
the boundary condtions c∗t = 0 at z∗ = 0 and at z∗ = 1 can be satisfied only
if C1 = 0 and C2 = 0. In addition, the solution for Θ in equation 3.93 would
have been a function that is exponentially increasing in time, and therefore,
there is no steady solution in this case. Since we have chosen the constant
to be negative, the unsteady solution c∗t decays exponentially in time, and
goes to zero in the long time limit. Also, the solutions for Z(z∗) are sine
functions, which can be chosen to satisfy the conditions c∗t = 0 at z∗ = 0 and
z∗ = 1.

Further, the separating the concentration field into a steady and a tran-
sient part is also now clear. The transient part of the concentration field has
homogeneous boundary conditions (c∗t = 0) at both the spatial boundaries,
z∗ = 0 and z∗ = 1. However, the initial condition (c∗t = −c∗s at t∗ = 0)
is inhomogeneous. Therefore, there is no forcing for the transient part of
the concentration field at the boundaries, but there is forcing at the initial
time t∗ = 0. The concentration field generated by the forcing at t∗ = 0 then
decays exponentially with time.

The homogeneous spatial boundary conditions c∗t = 0 at z∗ = 0 and
z∗ = 1 is also essential for another reason. In equation 3.91, we were able to
obtain discrete values for the constant α = nπ only because the solution was
a sine function with Z = 0 at z∗ = 0 and 1. This enabled us to get a discrete
‘spectrum’ of solutions with discrete eignevalues (nπ) and a corresponding
set of basis functions sin (nπz∗). The solution Z(z∗) was then written as a
linear combination of these eigen functions.

The ‘orthogonality’ conditions 3.97 for determining the constants Cn in
equation 3.98 can be physically interpreted as follows. We define the basis
functions Sn = sin (nπz∗), and we define the inner product

〈Sn, Sm〉 =
∫ 1

0
dz∗ sin (nπz∗) sin (mπz∗) (3.100)
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This inner product is non-zero only when n = m, and is zero when n 6= m,

〈Sn, Sm〉 =
δnm

2
(3.101)

where ‘Kronecker delta’ δnm = 1 for n = m, and δnm = 0 for n 6= m. The
basis functions Sn are analogous to the basis vectors in a three-dimensional
co-ordinate system, while the ‘inner product’ is analogous to the dot product
of unit vectors. The dot product of basis vector with another basis vector
is zero, sinc they are perpendicular to each other. In a similar manner, the
inner product of two different basis functions is zero, and they are orthogonal
to each other. However, there is an infinite number of basis functions for the
solution 3.99 for c∗, in contrast to the three unit vectors in three dimensional
space.

The concept of inner products can be used to express the orthogonality
conditions in a compact manner. In this, the solution 3.95 for c∗t can be
written as,

c∗t (z
∗, t∗) =

∞
∑

n=0

CnSn exp (−n2π2t∗) (3.102)

At t∗ = 0, the initial condition is c∗t = −c∗s = −(1 − z∗). Therefore,

∞
∑

n=0

CnSn = −(1 − z∗) (3.103)

We take the inner product of both right and left sides with the basis function
Sm.

∞
∑

n=0

Cn〈Sm, Sn〉 = −〈(1 − z∗), Sm〉 (3.104)

Due to the orthogonality relation 3.101, the above equation reduces to

∞
∑

n=0

Cn(δmn/2) = (Cm/2) = −〈(1 − z∗), Sm〉 (3.105)

In the summation on the left, δmn is zero only when m = n, and so the
entire summation reduces to (Cm/2). Thus, the orthogonality condition 3.105
enables us to determine all the constants in the expansion 3.95, and construct
the final solution.

Physically, we are expanding the solution Z(z∗) in a set of basis functions
Sn = sin (nπz∗), which consists of a set of sine functions as shown in figure
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??. This is a complete basis set, and any function can be expressed as a linear
combination of these basis functions. The basis functions are also orthogonal,
because the inner product of two different basis functions (equation 3.100)
is zero. This orthogonality condition is used to obtain the coefficients in
the expansion for Z(z∗). This procedure, of expanding the solutions in a
complete and orthogonal basis set, and using the orthogonality relations to
determine the terms in the expansions, will be used whenever the separation
of variables procedure is carried out.

The solution 3.99 for c∗ is a summation over an infinite set of basis
functions Sn, and so an exact solution requires the evaluation of an infi-
nite number of terms. However, the nth term in the series is proportional
to exp (−n2π2t∗). Therefore, at a fixed time t∗, it is possible to get a good
numerical approximation c∗≈ by truncating the series at a finite value of n.
The value of n required to obtain the desired accuracy can be estimated as
follows. The error Ec∗(p), which is the difference between the exact solu-
tion c∗ and the approximate solution c∗≈ obtained by truncating the series at
n = p − 1, and neglecting terms for n ≥ p, is,

Ec∗(p) = c∗ − c∗≈

=
∞
∑

n=p

2

nπ
sin (nπz) exp (−n2π2t∗) (3.106)

Since the modulus of sin (nπz∗), the upper bound on the incurred in the
approximation is,

E∗
c

max(p) =
∞
∑

n=p

2

nπ
exp (−n2π2t∗) (3.107)

For large values of n, the above summation can be approximated by an
integral,

E∗
c

max(p) =
∫ ∞

p
dn
(

2

nπ
exp (−n2π2t∗)

)

≤
∫ ∞

(p/π
√

t∗)
dn′

(

2

n′π
exp (−n

′2)
)

(3.108)

The function E∗
c

max(p) is shown as a function of (p/π
√

t∗) in figure 3.4.
This upper bound on the error decreases quite rapidly with an increase in
(p/π

√
t∗). It is less than 0.05 for p ≥ 1.1π

√
t∗, and it is less than 0.01
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Figure 3.4: The upper bound on the error, E∗
c

max(p) (equation 3.108), as a
function of (p/π

√
t∗).
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for p ≥ 1.52π
√

t∗. Thus, good numerical solutions can be obtained with a
relatively small number of terms in the series expansion equation 3.99.

The numerical solutions for c∗(z∗, t∗), equation 3.99, are shown as a func-
tion of z∗ for different values of t∗ in figure 3.5. The solid lines show the
results when the series is truncated after 20 terms, while the dashed lines
show the results when the series is truncated after 5 terms. There is very
little difference between the two results for t∗ ≥ 0.01, indicating that it is
sufficient to include just five terms in the series even at very short times,
t∗ = 0.01. However, the effect of truncation is clearly observed for t∗ < 0.01,
where the result obtained by truncation after five terms displays an oscilla-
tory behaviour, and it has not yet converged. In contrast, smooth variations
are obtained when 20 terms are included in the series. It is also seen that the
solution for t∗ = 1 is indistinguishable from the linear solution for t∗ → ∞,
and the maximum difference between the solution at t∗ = 1 and t∗ → ∞ is
10−4. This shows that the system has attained steady state, to a very good
approximation, at t∗ = 1.

3.2.8 Oscillatory flow

This example is used to illustrate the use of complex variables in problems
where the forcing on the fluid is oscillatory in time. Consider the flow between
two flat plates at z = 0 and z = H , shown in figure 3.6, with the modification
that the plate has an oscillatory velocity U = U cos (ωt). The differential
equation for the velocity field is given by equation 3.29, with fx = 0. As
usual, the scaled co-ordinate and velocity are defined as z∗ = (z/H) and u∗

x =
(ux/U). However, the scaled time co-ordinate is defined a little differently
in the present case. Since there is a time period (2π/ω) associated with the
oscillation of the bottom plate, the scaled time can be defined as t∗ = ωt.
With this, the momentum conservation equation, 3.29, is,

ωH2

ν

∂u∗
x

∂t∗
=

∂2u∗
x

∂z∗2
(3.109)

where Reω = (ωH2/ν) is a Reynolds number based on the frequency of
oscillations and the fluid thickness H . The boundary conditions in this case,
analogous to 3.38 and 3.38, are,

u∗
x = cos (t∗) at z∗ = 0 (3.110)

u∗
x = 0 at z∗ = 1 (3.111)
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Figure 3.5: Numerical solutions for c∗(z∗, t∗), equation 3.99, as a function for
c∗ for t∗ = 0.001, t∗ = 0.003, t∗ = 0.01, t∗ = 0.03, t∗ = 0.1, t∗ = 0.3, t∗ = 1.0
and t∗ → ∞.
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Figure 3.6: Oscillatory flow at a flat surface.

The solution procedure is simplified if the boundary condition is recast as
follows. The ‘complex’ velocity field u†

x is defined as a velocity field that
satisfies the same differential equation as 3.109,

Reω
∂u†

x

∂t∗
=

∂2u†
x

∂z∗2
(3.112)

but which satisfies the boundary conditions

u†
x = exp (ıt∗) at z∗ = 0 (3.113)

u†
x = 0 at z∗ = H (3.114)

where ı is the square root of −1. The solution to the differential equation
3.109, with the boundary condition 3.110 and 3.111, is the real part of the
solution to the differential equation 3.112 with the boundary conditions 3.113
and 3.114. Since dealing with exponential functions is easier than dealing
with sines and cosines, it is more convenient to solve equation 3.112 with
boundary conditions 3.113 and 3.114, for u†

x, and then take the real part of
the solution to obtain the solution u∗

x of equation 3.109.
The differential equation 3.112 for the velocity field is a linear differen-

tial equation, since all terms in the equation contain only the first power of
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u†
x. This first order differential equation is driven by a wall which is oscil-

latory wall velocity with frequency ω. When a linear system is driven by
wall motion of frequency ω, the response of the system also has the same
frequency ω. (This is not true if the system is non-linear, since forcing of a
certain frequency will generate response at different harmonics of this base
frequency). Therefore, the time dependence of the velocity field in the fluid
can be considered to be of the form

u†
x = ũx(z

∗) exp (ıt∗) (3.115)

When this form is inserted into the differential equation 3.112, and divided
by exp (ıt∗), the resulting equation is an ordinary differential equation for ũ∗

x.

ıReωũ∗
x =

∂2ũ∗
x

∂z∗2
(3.116)

The boundary conditions for u†
x (3.113 and 3.114), when expressed in terms

of τx, become,

ũ∗
x = 1 at z∗ = 0 (3.117)

ũ∗
x = 0 at z∗ = 1 (3.118)

This equation is easily solved to obtain

ũ∗
x(z

∗) = C1 exp (
√

ıReωz∗) + C2 exp (−
√

ıReωz∗) (3.119)

The constants C1 and C2 are determined from the boundary conditions 3.117
and 3.118,

ũ∗
x(z

∗) =
exp (

√
ıReωz∗) − exp (

√
ıReω(2 − z∗))

1 − exp (2
√

ıReω)
(3.120)

The physical velocity field, which is the real part of the product of ũ∗
x and

exp (ıt∗), is

u∗
x(z

∗) = Real

[

exp (
√

ıReωz∗) − exp (
√

ıReω(2 − z∗))

1 − exp (2
√

ıReω)
exp (ıt∗)

]

(3.121)

The numerical solutions for the velocity u∗
x are shown as a function of z∗

in figure ?? for Reω = 0.1, 1.0, 10.0 and 100.0. It is clear that the velocity
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Figure 3.7: The velocity u∗
x, equation 3.121, as a function of z∗, for Reω = 0.1

(a), Reω = 1.0 (b), Reω = 10.0 (c) and Reω = 100.0 (d). The profiles, form
right to left, are at t∗ = 0, t∗ = (π/4), t∗ = (π/2), t∗ = (3π/4) and t∗ = π.
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profiles are nearly linear functions of z∗ for Reω = 0.1. In contrast, the fluid
motion is confined to a thin layer near the moving plate for Reω = 100.0,
and there is almost no motion in the bulk of the fluid. The physical reason
for this is as follows.

In the limit Reω → 0, the solution for the fluid velocity, 3.120, is

u∗
x(z

∗) = (1 − z∗) cos (t∗) (3.122)

The physical reason for this result is as follows. The Reynolds number Reω

can be interpreted as the product of the frequency ω, and the time required
for the momentum to diffuse across the length of the channel, (H2/ν). For
Reω ≪ 1, the time period (2π/ω) of variation of the velocity of the bottom
plate is long compared to the time required for momentum to diffuse across
the channel. In this case, the velocity profile at any instant is the linear veloc-
ity profile for a steady flow, in which the velocity at z∗ = 0 is (u∗

x = cos (t∗),
the instanteneous velocity of the bottom plate at that instant. Therefore,
we recover the linear profile for the steady flow between two plates, but with
the velocity amplitude varying in time proportional to cos (t∗).

In the limit ω∗ ≫ 1, the fluid velocity field is given by

u∗
x(z

∗) = Real(exp (−
√

ıReωz∗) exp (ıt∗))

= exp (−
√

Reω/2z∗)(cos (
√

Reω/2z∗) cos (t∗) − sin (
√

Reω/2z∗) sin (t∗))(3.123)

In this case, the velocity field decreases over a distance z∗ ∼ (1/
√

Reω/2) from
the surface. This is because the frequency of oscillation is large compared
to the time required for diffusion of momentum across the channel, and the
momentum diffuses only to a distance comparable to (H/

√
Reω). Beyond

this distance, the momentum generated during the positive and negative
parts of a cycle cancel out, and the fluid velocity approaches zero. Thus, the
‘penetration depth’ of the fluid velocity field is proportional to (H/

√
Reω) in

the limit Reω ≫ 1.

3.3 Effect of bulk flow and reaction in mass

transfer

In this section, the special effects of bulk flow and reactions on the solutions
for unidirection mass transfer problems are examined.
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Figure 3.8: Flow down an inclined plane.

Flow down an inclined plane:

The flow of a fluid film along an inclined plane, as shown in figure 3.8, is an
example of flow due to the gravitational force acting on a fluid. The plane
is inclined at an angle θ to the horizontal. The fluid layer of thickness H is
flowing in the x direction along the inclined plane. The film is assumed to be
of infinite extent in the y direction, and there is no variation of the velocity
in this direction. The flow is fully developed, so that there is no variation
of the velocity in the x direction, and we consider both a steady flow and
an unsteady flow. The only non - zero component of the velocity, ux, is a
function of the coordinate z, and could be a function of time as well.

The momentum conservation equation 3.29 for the velocity field is of the
form,

ρ
∂ux

∂t
= µ

∂2ux

∂z2
+ ρg sin (β) (3.124)

where ρg sin (θ) is the component of the gravitational force acting in the x
direction. The boundary conditions for the flow are as follows. At the bottom
surface z = 0, the fluid is in contact with a stationary surface, and so the
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fluid velocity is zero at this surface.

ux = 0 at z = 0 (3.125)

At the top surface z = H , the liquid is in contact with a gas. Since the
gas viscosity is small compared to the viscosity of the liquid, the shear stress
exerted by the gas on the liquid is small. Therefore, we can use the ‘zero
shear stress’ condition at the top surface,

τxz = µ
∂ux

∂z
= 0 at z = H (3.126)

Thus, the gradient of the velocity in the z direction is zero at the free surface.
The scaled z co-ordinate in equation 3.124 can be defined as z∗ = (z/H),

as before. How do we define a scaled velocity u∗
x, since there is no prescribed

velocity at the boundaries? The scaling for the velocity can be determined
from the momentum conservation equation ?? itself, since this equation con-
tains a ‘source’ of momentum due to the gravitational force. If we substitute
z = z∗H , and divide the entire equation by ρg sin (θ), we obtain,

∂u∗
x

∂t∗
=

∂2u∗
x

∂z∗2
+ 1 (3.127)

where the scaled velocity u∗
x = (µux/(H2ρg sin (θ))), and t∗ = (tν/H2) is the

scaled time. Equation 3.127 is a linear partial differential equation for u∗
x,

which contains an inhomogeneous term, 1, due to the body force. In contrast,
the boundary conditions for the scaled velocity u∗

x are both homogeneous,

u∗
x = 0 at z∗ = 0 (3.128)

∂u∗
x

∂z∗
= 0 at z∗ = 1 (3.129)

Therefore, in the present problem, there is no forcing at the boundaries, and
the flow is driven by forcing within the flow itself due to the gravitational
flow. In contrast, in the flow between two flat plates in section ??, there is no
forcing within the flow, and the flow is driven by the motion of the boundary.

At steady state, the time derivative in equation 3.127 is set equal to zero,

∂2u∗
x

∂z∗2
+ 1 = 0 (3.130)
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This solution of this equation, which satisfies the boundary conditions 3.128
and 3.129, is,

u∗
x = z∗ − z∗2

2
(3.131)

The dimensional velocity can be easily determined from the above,

ux =
ρg sin (θ)

µ

(

zH − z2

2

)

(3.132)

Various average quantities can be determined once this velocity profile is
known.

1. the maximum velocity, uxm, is clearly at x = 0

uxm =
ρgH2 sin (θ)

2µ
(3.133)

2. The total flow rate is determined from

Q =
∫ H

0
dz
∫ W

0
dyux

=
ρgWH3 sin (θ)

3µ
(3.134)

3. The mean velocity can be calculated from

ūx =
Q

h

=
ρgWH2 sin (θ)

3µ
(3.135)

4. The film thickness δ can be expressed in terms of the flow rate as

H =

(

3µQ

ρgW sin (θ)

)1/3

(3.136)

5. The total force on the inclined surface in the z direction is given by

F =
∫ L

0
dz
∫ W

0
dy τxz|x=h (3.137)

= ρghLW sin (θ) (3.138)

This is just equal to the weight of the fluid in the z direction under
steady flow conditions.
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Next, we consider the start-up of the flow in an initially stationary film
of fluid down an inclined plane. The film is initially horizontal, and at t = 0,
the film is inclined at an angle θ with respect to the horizontal. As before,
there is no variation of the velocity in the streamwise x direction, but there is
a flow development in time. The momentum conservation equation is 3.127,
with boundary conditions 3.128 and 3.129. In addition, at the initial time
t∗ = 0, the fluid is stationary, and so the initial condition is,

u∗
x = 0 at t∗ = 0 for all z∗ > 0 (3.139)

The unsteady problem is solved by the method of separation of variables.
First, the velocity is separated into two parts, the steady part u∗

xs and the
transient part u∗

xt,
u∗

x = u∗
xs + u∗

xt (3.140)

The equation for the steady velocity field, 3.130, is subtracted from the equa-
tion for the total velocity field, 3.127, to obtain the equation for the transient
part of the velocity field.

∂u∗
xt

∂t
=

∂2u∗
x

∂z∗2
(3.141)

The boundary conditions for the total velocity and the steady velocity field,
3.128 and 3.129, are both homogeneous, the boundary conditions for the
transient velocity field are also homogeneous,

u∗
xt = 0 at z∗ = 0 (3.142)

∂u∗
xt

∂z∗
= 0 at z∗ = 1 (3.143)

Finally, the initial condition for u∗
xt is obtained by subtracting the steady

solution u∗
xs (equation 3.131) from the initial condition 3.139,

u∗
xt = −(z∗ − (z∗2/2)) at t∗ = 0 for all z∗ (3.144)

As in the case of the transient flow in a channel in section ??, the transient
part of the velocity field has homogeneous boundary conditions, but the
initial condition is inhomogeneous.

The separation of variables procedure provides the following solution for
the transient part of the velocity field,

u∗
xt =

∞
∑

n=1

(Cn sin (αnz
∗) + Dn sin (αnz

∗)) exp (−α2
nt∗) (3.145)
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where the coefficients Cn, Dn and the eigenvalues αn are chosen so that the
boundary conditions 3.142 and 3.143, and the initial condition 3.144, are
satisfied. The boundary condition 3.142 is satisfied only if Dn = 0, for all
n, while the boundary condition 3.143 is satisfied if αn = (2n + 1)π/2 for
n = 1, 2, . . .. Therefore, the solution for u∗

xt which satisfies the boundary
conditions at z∗ = 0 and z∗ = 1 is,

u∗
xt =

∞
∑

n=1

Cn sin ((2n + 1)πz∗/2) exp (−((2n + 1)/2)2π2t∗) (3.146)

The coefficients Cn determined from the initial condition at t∗ = 0, equa-
tion 3.144.

u∗
xt(z

∗, t∗ = 0) = −(z∗ − z∗2/2)

=
∞
∑

n=1

Cn sin ((2n + 1)πz∗/2) (3.147)

In the solution 3.147, the functions sin ((2n + 1)πz∗/2) form a set of basis
functions which are orthogonal to each other. The orthogonality relation is,

∫ 1

0
dz∗ sin ((2n + 1)πz∗/2) sin ((2m + 1)πz∗/2) =

δmn

2
(3.148)

This orthogonality relation can be used to determine the coefficients Cn in
equation 3.147,

∫ 1

0
dz∗(−(z∗ − z∗2/2)) sin ((2m + 1)πz∗/2)

=
∫ 1

0
dz∗ sin ((2m + 1)πz∗/2)

∞
∑

n=1

Cn sin ((2n + 1)πz∗/2)

= Cm/2 (3.149)

Thus, the coefficients Cm are,

Cm = − 1

π3((2n + 1)/2)3
(3.150)

This, the final solution for the unsteady velocity field is,

u∗
x = (z∗−z∗2/2)−

∞
∑

n=1

(π3((2n+1)/2)3)−1 sin ((2n + 1)πz∗/2) exp (−((2n + 1)/2)2π2t∗)

(3.151)
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The above analytical results are valid only if the flow is laminar and
the streamlines are smooth, so that the flow can be considered steady. These
conditions are satisfied for the slow viscous flow of a thin film. As the velocity
increases or the film thickness increases, it has been found that there is a
transition from a laminar flow ith straight streamlines to a laminar flow with
rippling and then to a turbulent flow. The conditions under which these
transitions occur is determined by the ‘Reynolds number’, Re = (4ρhūx/µ).
A laminar flow without rippling is observed for Re < 10, while there is
rippling for 10 < Re < 1000. The flow becomes turbulent when the Reynolds
number increases beyond about 1000.

3.3.1 Viscous heating in a channel:

There is a dissipation of energy during the shear flow of a viscous liquid due
to fluid friction, and this energy increases the temperature of the fluid. We
consider the specific example of a pressure-driven flow in a channel between
two infinite flat plates located at z = 0 and z = H . The temperature at
both the bounding surfaces is T0, but there is an increase in the temperature
within the channel due to the heat generated by viscous dissipation. We
would like to find out the temperature within the channel. At steady state,
the velocity profile in the channel is given by,

ux = − 1

2µ

dp

dx
z(H − z)

= 4U

(

z

H
−
(

z

H

)2
)

(3.152)

where (dp/dx) is the pressure gradient, and U is the maximum velocity at
the center of the channel.

The rate of dissipation of energy due to fluid friction will be calculated
later when we derive the mass, momentum and energy balance equations for
a fluid. For a laminar shear flow where the velocity is in the x direction and
the velocity variation is in the z direction, the rate of dissipation of energy
(per unit volume per unit time), Se in equation 3.15, is given by,

Se = τxy
dux

dz

= µ

(

dux

dz

)2

(3.153)
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where τxy is the shear stress, and (dux/dy) is the strain rate. Using this
velocity profile in equation 3.152, we find that the dissipation rate per unit
volume, Se, is,

Se = 16U2

(

z

H
−
(

z

H

)2
)2

(3.154)

At steady state, the energy balance equation, 3.19, reduces to,

k
d2T

dz2
+

16µU2

H2

(

1 − 2z

h

)2

= 0 (3.155)

The boundary conditions are,

T = T0 at z = 0 (3.156)

T = T0 at z = H (3.157)

It is natural to define a scaled z co-ordinate, z∗ = (z/H), and a scaled
temperature, T ∗ = ((T − T0)/T0). Defined this way, the scaled temperature
is the ratio of the local temperature rise due to viscous heating and the wall
temperature. With this non-dimensionalisation, the energy balance equation
becomes,

d2T ∗

dz∗2
+ 16Br(1 − 2z∗)2 = 0 (3.158)

with boundary conditions,

T ∗ = 0 at z∗ = 0 (3.159)

T ∗ = 0 at z∗ = 1 (3.160)

where the Brinkman number is,

Br =
µU2

kT0

(3.161)

Equation 3.158 can be easily solved, subject to boundary conditions 3.159
and 3.160, to obtain,

T ∗ = Br

(

8z∗(1 − z∗)(1 − 2z∗ + 2z∗2)

3

)

(3.162)

The profile of the scaled temperature, divided by Br, is shown as a function
of the scaled z co-ordinate in figure 3.3.1. The temperature profile is very
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Figure 3.9: The ratio (T ∗/Br) of the scaled temperature T ∗ = ((T −T0)/T0),
as a function of z∗ a channel.
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flat at the center of the channel, because the strain rate (dux/dz) decreases
to zero at the center, and the rate of generation also decreases to zero. The
rate of generation of heat is a maximum near the wall, where the strain rate
is a maximum.

From equation 3.162 for the temperature profile, the fractional increase
in the temperature within the channel is given by the Brinkman number.
For Br ≪ 1, the temperature rise in the channel is small compared to the
wall temperature, and so change in temperature due to viscous heating can
be neglected. Viscous heating also results in a flux of energy across the wall
of the channel, which is given by,

qz = −k
dT

dz

= −kT0

H

dT ∗

dz∗

=
8kT0(1 − 2z∗)3Br

3H

=
8µU2(1 − 2z∗)3

3H
(3.163)

The heat flux is negative at the bottom surface at z∗ = 0, because heat is
transferred downwards from the fluid to the wall. At z∗ = 1, the heat flux is
positive because heat is transferred upwards to the wall. In both cases, the
magnitude of the heat flux is given by (8µU2/3H).

Recall that in dimensional analysis of the heat transfer in a heat exchanger
in chapter 1, we had assumed that there is no conversion of mechanical energy
to heat energy. The present calculation shows that this assumption is valid
only when the flux qz due to viscous heating, (8µU2/3H), is small compared
to the flux due to the temperature difference across the wall of the heat
exchanger. When the heat flux due to viscous heating is comparable to that
due to the temperature difference across the wall of the tube, it is necessary
to include the viscous heating in the energy balance equation, and the Nusselt
number will be a function of the Brinkman number as well.

3.3.2 Diffusion with homogeneous reaction

A gaseous reactant A dissolves in a liquid B, and undergoes a first order
reaction A + B → AB, in a tank of height L, as shown in figure 3.10. The
mass balance equation, ?? has to be modified in this case due to the presence
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of a ‘consumption’ term due to chemical reaction. The mass balance equation
at steady state takes the form

jAz|z − jAz|z+∆z − kcAS∆z = 0 (3.164)

This can be reduced to a differential equation by dividing throughout by
S∆z, and taking the limit ∆z → 0,

djAz

dz
− kCA = 0 (3.165)

If the concentration of A is small, the flux of A is given by

jAz = −DAB
dcA

dz
(3.166)

Inserting this into the concentration equation 3.165, we get

−DAB
d2cA

dz2
+ kCA = 0 (3.167)

The boundary conditions are

cA = cA0 at z = 0

jAz = 0 at z = H (3.168)

The solution that satisfied both these conditions is

CA

CA0
=

cosh ((kL2/DAB)1/2(1 − (z/L)))

cosh (kL2/DAB)1/2
(3.169)

3.3.3 Diffusion in a stagnant film

Water evaporates from a container through a stagnant air film through a
glass tube into dry air flowing at the top of the tube, as shown in figure 3.11.
If the mole fraction at the surface of the liquid surface is the saturation mole
fraction xWs, and the dry air flowing past the tube does not contain any
water, what is the concentration profile of water in the glass tube?

Though the air in the tube is stationary, the mean velocity across any
horizontal surface in the tube is not zero, because of the flow of water vapour
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Figure 3.10: Diffison with homogeneous chemical reaction.
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Figure 3.11: Diffusion with bulk flow.
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across the surface. The flux of water across a surface, jWz, contains a com-
ponent due to the bulk flow, as well as a component due to the diffusion of
water across the surface.

jWz = −cDWA
dxW

dz
+ xW (jWz + jAz) (3.170)

The last term on the right side of equation 3.170 is the flux of water due
to the bulk flow, where the total molar flow rate is the sum of the fluxes of
water (jWz) and air (jAz). In this particular case, the flux of air is identically
zero, and so the flux of water vapour across a surface is given by

jWz = − c

1 − xW

dxW

dz
(3.171)

The mass balance equation is obtained by writing a flux balance across a
section of thickness ∆z of the tube, which at steady state provides,

jWz|z+∆z − jWz|z = 0 (3.172)

If the above equation is divided by ∆z the differential equation for the flux
in the limit ∆z → 0 is

djWz

dz
=

d

dz

(

1

1 − xW

dxW

dz

)

= 0 (3.173)

This equation is solved to obtain

− log (1 − xW ) = A1z + A2 (3.174)

The constants A1 and A2 are determined from the boundary conditions xW =
xWs at z = 0 and x = 0 at z = l,

(1 − xW )

(1 − xWs)
=

(

(1 − xWf )

(1 − xWs)

)z/l

(3.175)

3.4 Cylindrical co-ordinates:

3.4.1 Balance laws:

In the previous section, we had used a Cartesian co-ordinate system to anal-
yse the transport between two flat plates. The Cartesian co-ordinate system
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was convenient for this geometry, because the boundaries were surfaces on
which one of the co-ordinates (the z co-ordinate) is a constant. Due to this,
the boundary conditions were applied at a constant value of z. In the case
of systems with cylindrical geometry, such as the flow through a pipe, heat
conduction across the surface of a tube, or the mass transfer in a cylindri-
cal pore on a catalyst surface, the use of a Cartesian co-ordinate system is
complicated, because none of the co-ordinates is a constant on the cylindri-
cal surface. It is more convenient to use a cylindrical co-ordinate system,
as shown in figure 3.12. This co-ordinate system has cylindrical symmetry
about an ‘axis’, which is the z axis in figure 3.12. The co-ordinates in the
cylindrical co-ordinate system are (r, θ, z), where r is the distance of a point
from the z axis, and θ is the angle between the position vector and the x
co-ordinate. The third co-ordinate, z, is identical to that in a Cartesian co-
ordinate system. In our analysis of unidirectional transport, we will assume
that there is variation of concentration, temperature or velocity only in the
r direction and in time, and there is no dependence on θ and z.

First, we derive a heat balance equation for the temperature variation in
a cylindrical shell of thickness ∆r and height ∆z at radius r. The terms in
the balance equation 3.11 for the energy in the cylindrical shell are as follows.

(

Accumulation of energy
in the shell

)

= ρCp(T (x, y, z, t+∆t)−T (x, y, x, t))2πr∆r∆z

(3.176)
The total energy entering the shell at r is the product of the heat flux, the
surface area, and the time interval ∆t,

(

Input of
energy into shell

)

= − (qr(2πr∆z∆t))|r (3.177)

where qr is the heat flux in the radial direction. Similarly, the total energy
leaving the shell at r + ∆r is

(

Output of
energy from shell

)

= (qr(2πr∆z∆t))|r+∆r (3.178)

The source of energy in the differential volume is,

(

Source of
energy from shell

)

= Se(2πr∆r∆z∆t) (3.179)
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Figure 3.12: Heat diffusion into a cylinder.
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where Se is the amount of energy generated per unit volume per unit time.
When these are inserted into the conservation equation 3.11, and divided by
2πr∆r∆z∆t, the net energy balance for the shell is

ρCp
(T (x, y, z, t + ∆t) − T (x, y, x, t))

∆t
=

1

r∆r

(

(rqr)|r − (rqr)|r+∆r

)

+ Se

(3.180)
Taking the limit ∆r → 0 and ∆t → 0, the partial differential equation for
the temperature field is

ρCp
∂T

∂t
= −1

r

∂

∂r
(rqr) + Se (3.181)

The heat flux qr is related to the temperature gradient in the radial direction
by the Fourier’s law for heat conduction,

qr = −k
∂T

∂r
(3.182)

With this, the energy balance equation becomes,

ρCp
∂T

∂t
=

1

r

∂

∂r

(

rk
∂T

∂r

)

+ Se (3.183)

When the thermal conductivity is independent of position, the energy balance
equation reduces to,

∂T

∂t
= α

1

r

∂

∂r

(

r
∂T

∂r

)

+ (Se/ρCp) (3.184)

where α = (k/ρCp) is the thermal diffusivity.
It is important to note that there is a variation in the surface area of the

shell as r varies. This leads to a more complicated form for the diffusion
term in 3.184, in comparison to the second derivative with respect to z in
the diffusion from a flat plane, 3.20.

Similar to equation 3.184, the mass conservation equation for a cylindrical
co-ordinate system, analogous to equation 3.10 for a Cartesian co-ordinate
system, is,

∂c

∂t
= D

1

r

∂

∂r

(

r
∂c

∂r

)

+ S (3.185)

where D is the mass diffusivity and S is the rate of increase of mass per unit
volume per unit time.
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In section ??, the momentum conservation equation was written for the
velocity ux, which is a constant in the x direction, but is a function of the
direction z between the two plates. In a cylindrical co-ordinate system, there
are two velocity components perpendicular to r, the θ co-ordinate uθ and the
z co-ordinate uz. Momentum balance equations could be written in either
of these two directions. A momentum balance equation in the z direction
is solved when there is a flow along the axis of the cylindrical co-ordinate
system, such as the flow in a pipe. The velocity uθ is non-zero when there
is a flow around the axis of the cylindrical co-ordinate system, with circular
streamlines. The momentum balance for uθ is similar to the energy and mass
balance equations 3.184 and 3.185,

ρ
∂uθ

∂t
= µ

1

r

∂

∂r

(

r
∂uθ

∂r

)

+ fθ (3.186)

where fθ is the force per unit volume acting in the θ direction.

3.4.2 Heat transfer across the wall of a pipe:

Consider a cylindrical pipe with inner radius Ri and outer radius Ro, as
shown in figure ??. The inner surface is at temperature Ti, while the outer
surface is at temperature To. We would like to determine the heat flux across
the wall of the pipe, which has thermal conductivity k at steady state.

The scaled temperature and distance are defined as T ∗ = (T−Ti)/(To−Ti)
and r∗ = (r/Ri). The heat balance equation at steady state is,

1

r∗
∂

∂r∗

(

r∗
∂T ∗

∂r∗

)

= 0 (3.187)

and the boundary conditions are,

T ∗ = 0 at r∗ = 1 (3.188)

T ∗ = 1 at r∗ = (Ro/Ri) (3.189)

This can be easily solved to obtain,

T ∗ =
log (r∗)

log (Ro/Ri)
(3.190)
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Thus, we obtain a logarithmic variation in the temperature along the radius
of the tube. The heat flux, qr, is given by,

qr = −k
∂T

∂r

= −k(To − Ti)

Ri

∂T ∗

∂r∗

= − k(To − Ti)

r∗Ri log (Ro/Ri)
(3.191)

The total heat transfer rate across the tube wall (per unit length of the tube)
is obtained by integrating the heat flux over the surface. At which surface
should this be calculated, the inner surface, the outer surface or somewhere
in between? The answer is that it does not matter which surface we use, the
heat transfer rate is independent of the radius of the surface. This is because
in the conservation equation 3.187, there is no generation or consumption
of heat in the tube wall, and the temperature is at steady state. Therefore,
the heat transferred per unit time is the same across any cylindrical surface
in the wall of the tube. If we consider a cylindrical surface of radius r and
length L, the heat transferred across this surface per unit time, Q, is (2πrL)
times the heat flux,

Q = (2πrL) ×
(

− k(To − Ti)

r∗Ri log (Ro/Ri)

)

=
2πk(To − Ti)L

log (Ro/Ri)
(3.192)

It is convenient to define an ‘average’ radial heat flux based on the thickness
of the tube wall, (Ro − Ri),

q̄r =
Q

2πL(Ro − Ri)
(3.193)

Based on this definition, the average heat flux from equation 3.192 is,

q̄r = − k(To − Ti)

(Ro − Ri) log (Ro/Ri)
(3.194)
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3.4.3 Heat conduction from a wire:

In our discussion of heat conduction into an infinite medium in a Cartesian
co-ordinate system, a similarity solution was used because there are no length
and time scales in the problem. Such a solution cannot be used for the con-
duction from a cylinder into an infinite medium, because the radius of the
cylinder also provides a length scale which can be used to non-dimensionalise
distances. However, there is one special situation where the similarity solu-
tion procedure can be used, which is the heat conduction from a thin wire.
This problem is of relevance in real applications, because resistance heating
is a common method for heating fluids. The problem is as follows.

A resistance heating appratus for a fluid consists of a thin wire immersed
in a fluid. In order to design the appratus, it is necessary to determine the
temperature in the fluid as a function of he heat flux from the wire. For the
purposes of the calculation, the wire can be considered of infinite length so
that the heat conduction problem is effectively a two dimensional problem.
In addition, the thickness of the wire is considered small compared to any
other length scales in the problem, so that the wire is a line source of heat.
The wire and the fluid are initially at a temperature T0. At time t = 0, the
current is switched on so that the wire acts as a source of heat, and the heat
transmitted per unit length of the wire is Q. The thermal conductivity of
the liquid is K.

There is an important difference between the above problem and the
problem of conduction into an infintite medium in Cartesian co-ordinates.
In the latter, the temperature at the surface was instanteneously increased
to from T0 to T1 at time t = 0. In the above problem, we have specified the
heat produced per unit length of the wire, Q. This is because the thickness
of the wire is small compared to any other length scales, and we take the
limit where the radius of the wire goes to zero. (As indicated above, if the
radius of the wire is finite, it is possible to scale all lengths by the radius
of the wire, and a similarity solution cannot be used). As the thickness
goes to zero, the surface area of the wire goes to zero, and so the heat flux
(ratio of heat generated and surface area) will go to infinity. An infinite
heat flux implies an infinite temperature gradient, and so it is not possible to
specify the temperature itself at the surface of the wire. Rather than using
a boundary condition at the surface, we will use the condition that the total
heat generated per unit length is Q in order to determine the constants in
the solution.
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The scaled temperature is defined as T ∗ = ((T − T∞)/T∞), so that the
scaled temperature is zero in the limit r → ∞. The heat conduction equation
in the fluid is,

∂T ∗

∂t
= α

(

1

r

d

dr
r
dT ∗

dr

)

(3.195)

One of the boundary conditions are that T ∗ → 0 in the limit r → ∞. The
other boundary condition is a flux condition. The total heat transmitted, per
unit length, of the wire is Q. Therefore, the flux from a cylindrical surface of
radius r is Q/(2πr). Therefore, the requirement at the wire surface, in the
limit r → 0, is that

−KT∞
dT ∗

dr
=

Q

2πr
(3.196)

where Q is a constant.
To solve for the temperature field, note that there is no length scale in

the problem (the wire is infinitesimal in thickness, and the boundaries are
at infinity). Therefore, a similarity solution can be used with the similar-
ity variable ξ = (r/

√
αt). The heat conduction equation, in terms of this

variable, is
d2T ∗

dξ2
+

(

1

ξ
+

ξ

2

)

dT ∗

dξ
= 0 (3.197)

This equation can be solved to obtain the

dT ∗

dξ
=

C

ξ
exp (−ξ2/4) (3.198)

The temperature can be obtained by integrating the above equation with
respect to ξ, and realising that T = 0 as ξ → ∞.

T ∗ =
∫ ξ

∞
dξ′

C

ξ′
exp (−ξ′2/4) (3.199)

The above equation shows that the temperature at the surface of the wire is
undefined, because the integral in equation 3.199 increases proportional to
log (ξ) as ξ → ∞. This was anticipated when we framed the problem, where
we defined the total heat generated per unit length of the wire, and not the
temperature at the wire itself.

The constant C can be determined from the flux condition, in the limit
r → 0(ξ → 0),

K
dT ∗

dr
= − Q

2πr
(3.200)
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When expressed in terms of ξ, this is equivalent to

dT ∗

dξ
= − Q

2πKξ
(3.201)

Substituting solution 3.198 into the above equation, we find that the constant
C = (Q/2πK). Therefore, the solution for the temperature field is,

T ∗ =
Q

2πk

∫ ξ

∞
dξ′

1

ξ′
exp (−ξ′2/4) (3.202)

The solution (T ∗/(Q/2πk)) is shown as a function of (r/
√

αt) in figure ??.

3.4.4 Heat conduction into a cylinder:

A cylindrical container of radius R containing fluid with temperature T1 is
dipped into a bath at temperature T0. Assume that the bath is large enough
that the conduction of heat into the fluid does not appreciably change the
temperature of the bath, and that there is no resistance to heat transfer in the
walls of the container. The temperature in the cylinder is to be determined
as a function of time and position is to be determined.

The conservation equation 3.184 can be scaled as follows. The scaled
radius and time are defined as r∗ = (r/R) and t∗ = (tR2/α), since R is the
length scale in the radial direction. The scaled temperature is defined as,
T ∗ = (T − T0)/(T1 − T0). The conservation equation 3.184, expressed in
these coordinates, is

∂T ∗

∂t∗
=

1

r∗
∂

∂r∗

(

r∗
∂T ∗

∂r∗

)

(3.203)

since there is no heat generation within the cylinder.
The boundary condition at the surface of the cylinder, r∗ = 1, is,

T ∗ = 0at r∗ = 1 for all t∗ (3.204)

At the center of the cylinder r∗ = 0, we specify a ‘symmetry condition’,
that the temperature gradient, (∂T ∗/∂r∗) = 0. The reason for this is as
follows. Consider a section of the cylinder through a plane passing through
the axis, as shown in figure ?? Since the temperature field is axisymmetric,
the temperature is the same at equal distances on the right and left of the
axis. If the derivative (∂T ∗/∂r∗) is not zero, then the slope of the temperature
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profile at the axis from the left will be the opposite of the slope from the
right, and so the slope at the center will not be uniquely defined. There is
a discontinuity in the slope when the axis is approached from left and right.
The slope will be continuous only if (∂T ∗/∂r∗) = 0 at r∗ = 0. Therefore,
symmetry requires that

∂T ∗

∂r∗
= 0at r∗ = 0 for all t∗(3.205)

At time t∗ = 0, the temperature is T0 throughout the cylinder except at the
cylinder wall, and so the initial condition is,

T ∗ = 1 at t∗ = 0 for all r∗ < 1 (3.206)

The spatial boundary conditions at r∗ = 1 and r∗ = 0, equations 3.204
and 3.205, both homogeneous, whereas the initial condition 3.206 is inho-
mogeneous. As we had discussed in relation to the separation of variables
in Cartesian co-ordinates, the separation of variables procedure provides a
discrete set of eigenvalues and basis functions only if we have homogeneous
boundary conditions in the spatial co-ordinates. Equations 3.204 and 3.205
provide the required homogeneous boundary conditions in the present prob-
lem.

Equation ?? is solved using the method of separation of variables. The
final steady state solution is one in which the temperature is uniform, T ∗ = 0,
throughout the cylinder. The unsteady solution is solved using the substitu-
tion

T ∗ = R(r∗)T (t∗) (3.207)

where R is a function of the radial coordinate, and T is a function of time.
The form 3.207 is inserted into the temperature equation, 3.203, and the
resulting equation is divided by R(r∗)T (t∗) to obtain

1

T
∂T
∂t∗

=
1

R
1

r∗
∂

∂r∗

(

r∗
∂R
∂r∗

)

(3.208)

The left side of the above equation is only a function of time, while the right
side is only a function of r∗. Therefore, the equality can only be satisfied
if both sides are equal to constants. From our earlier experience of the
separation of variables in Cartesian co-ordinates, we know that this constant
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has to be negative, so that the function T (t∗) decreases to zero in the limit
t∗ → ∞. The right side of the above equation is first solved,

1

R

(

d2R
dr∗2

+
1

r∗
dR
dr∗

)

= −β2 (3.209)

The solution for equation 3.199 can be obtained by recasting the equation as

r∗2 d2R
dr∗2

+ r∗
dR
dr∗

+ β2r∗R = 0 (3.210)

The two linearly independent solutions of the above equation 3.210, are
special functions called ‘Bessel functions’, The Bessel functions Jn(x) and
Yn(x), are linearly independent solutions of the equation,

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (3.211)

In equation 3.210, if we substitute x = βr∗, we find that the equation reduces
to,

x2 d2R
dx2

+ x
dR
dx

+ x2R = 0 (3.212)

The solutions to this equation are ‘zeroeth order’ Bessel functions, with n =
0,

R = C1J0(αr∗) + C2Y0(βr∗) (3.213)

There is no analytical solutions for these functions, and it is necessary to
evaluate these numerically. The Bessel functions J0(x) and Y0(x) are shown
as a function of x in figure 3.4.4. The Bessel functions have an oscillatory
dependence on x, but the maximum amplitude of the oscillations decreases
and the period increases as x increases. The Bessel function J0(x) has a
maximum value of 1 at x = 0. The Bessel function Y0(x) goes to −∞ for
x → 0.

The values of the constants C1 and C2 are determined from the boundary
conditions at r∗ = 0 and r∗ = 1. From equation 3.205, (dR/dr∗) = 0 at
r∗ = 0. From figure 3.4.4, it is observed that the derivative of J0(x) is
zero, whereas the radial derivative of Y0(x) approaches infinity for r∗ → 0.
Therefore, the boundary condition at r∗ = 0 can be satisfied only if C2 = 0.

The second boundary condition, T ∗ = 0 at r∗ = 1, is used to determine
the value of β in equation ??,

J0(β) = 0 (3.214)
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Figure 3.13: The Bessel functions, J0(x) and Y0(x) as a function of x.
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Since J0(β) is an oscillatory function of β, there are multiple solutions for
equation 3.214, which are the points where J0(x) crosses zero in figure 3.4.4.
The first few solutions are, β1 = 2.40483, β2 = 5.52008, β3 = 8.65373,
β4 = 11.79150 and β5 = 14.93090. Thus, the requirement that R(r∗) = 0 at
r∗ = 1 results in a discrete set values for the ‘eigenvalue’ βn. This is analogous
to the discrete values of βn = (nπ) in the unsteady heat conduction between
two parallel plates in section ??.

The equation for T ,
1

T
dT
dt∗

= −β2
n (3.215)

can be solved to obtain
T = exp (−α2

nt∗) (3.216)

With this, the solution for the temperature field is

T ∗ =
∞
∑

n=1

AnJ0(βnr∗) exp (−β2
nt∗) (3.217)

The coefficients An in equation 3.217 are chosen to satisfy the initial
condition at t∗ = 0,

∞
∑

n=1

AnJ0(βnr
∗) = 1 (3.218)

The values of the coefficients can be determined using orthogonality condi-
tions for the Bessel functions, which in this case are

∫ 1

0
r∗dr∗J0(βnr

∗)J0(βmr∗) =
1

2
(J1(βn))2 for m = n

= 0 for m 6= n (3.219)

In order to determine the coefficients, the right and left sides of 3.199 are
multiplied by r∗J0(βmr∗), and integrated from r∗ = 0 to r∗ = 1, to obtain

1

2
(J1(βn))2An =

∫ 1

0
r∗dr∗J0(βnr∗)

=
J1(βn)

βn
(3.220)

This provides the solution for An,

An =
2

βnJ1(βn)
(3.221)
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This, the final solution for the temperature field is,

T ∗ =
∞
∑

n=0

2

βnJ1(βn)
J0(βnr∗) exp (−β2

nt∗) (3.222)

When we had solved the unsteady temperature profile in between two
flat plates in section ??, we had expressed the solution in terms of ‘basis
functions’ Ψn = sin (nπz∗). In the present problems, the basis functions are,

Ψn = J0(βnr
∗) (3.223)

where βn are the solutions of equation 3.214. The inner product, equivalent
of equation 3.100, is,

〈Ψn, Ψm〉 =
∫

x dx J0(βnx)J0(βmx) (3.224)

The orthogonality relation, equivalent to equation 3.101, is,

〈Ψn, Ψm〉 =
J1(βm)δmn

2
(3.225)

In the equivalent mass transfer problem, a cylinder of radius with uniform
concentration c = c1 is immersed into a fluid with concentration c = c0

at time t = 0, and it is necessary to find the variation of concentration
with time in the cylinder. The scaled concentration field is defined as c∗ =
(c − c0)/(c1 − c0). The concentration equation is identical to 3.222, with
c∗ substituted for T ∗, and t∗ = (tD/R2), where D is the mass diffusion
coefficient.

In the equivalent momentum transfer problem, a fluid in a cylindrical
container is rotating with constant velocity uθ = rΩ. At t = 0, the wall of
the container at r = R is instanteneously brought to rest, uθ = 0. We would
like to find out the velocity profile within the cylinder. The scaled velocity
field is defined as u∗

θ = (uθ/rΩ).



3.5. EFFECT OF PRESSURE ON MOMENTUM TRANSPORT 59

3.5 Effect of pressure on momentum trans-

port

The momentum balance condition states that the rate of change of momen-
tum is equal to the applied force.

[

Rate of
momentum in

]

−
[

Rate of
momentum out

]

+

[

Sum of forces
acting on the system

]

= 0

(3.226)
This balance equation is written for a control volume of fluid which is in the
form of a thin shell. Momentum enters or leaves the control volume due to
fluid flow into or out of the control volume, or due to the stresses acting on
the surface due to viscosity. The forces acting on the system are usually the
gravitational force or the centrifugal force. Momentum balances are usually
easy to apply only if the streamlines are straight. Applying momentum
balances to systems with curved streamlines is more difficult, as we shall see
in the last example of this section.

The procedure for solving problems with momentum balance is to write
the momentum balance equation for a shell of finite thickness, and then
let the thickness go to zero. In this limit, the difference equations for the
velocity field across a finite shell reduces to differential equations for the
velocity fields. These can then be solved, subject to appropriate boundary
conditions, in order to determine the velocity fields.

The boundary conditions generally involve specifying the velocity or stress
fields at the boundaries of the flow. These conditions depend on the surface
adjoining the liquid at its boundaries.

1. If there is a solid surface adjacent to the fluid, the appropriate boundary
condition is the ‘no slip’ condition which states that the velocity of the
fluid at the surface is equal to the velocity of the surface itself.

2. At a liquid - gas interface, the momentum flux, and consequently the
velocity gradient, in the liquid side is assumed to be zero, because the
viscosity of the gas is small compared to that of the liquid.

3. At a liquid - liquid interface, the momentum flux and the velocity are
continuous across the interface.
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Figure 3.14: Flow in a circular tube.

3.5.1 Flow through a pipe:

The flow through a circular tube is often encountered in engineering applica-
tions, and the laminar flow can be analysed using shell momentum balances.
The cylindrical coordinate system that is used for the analysis is shown in
figure 3.14.

Consider a cylindrical shell of thickness ∆r and length ∆x. The balance
equation for the x component of the momentum can be written as,

Rate of change
of x momentum

= Sum of forces l (3.227)

The rate of change of momentum in a time interval ∆t within the differential
volume under consideration can be written as,

Rate of change
of x momentum

=
∆(ρux)

∆t
(2πr∆r∆z (3.228)

where ∆(ρux) is the change in the momentum per unit volume in the time
interval ∆t.

There are four bounding surfaces for the differential volume under con-
sideration, two or which are at perpendicular to the x axis and located at
x and x + ∆x, and two of which are perpendicular to the radial co-ordinate
and are located at r and r + ∆r. The forces acting on the surfaces at x and
x + ∆x can be separated into two parts, the first due to the pressure acting
on the surfaces, and the second due to the flux of momentum due to fluid
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motion. The forces due to fluid pressure can be written as,

Force due to pressure
on surface at x

= p(r, θ, x)(2πr∆r)

Force due to pressure
on surface at x + ∆x

= −p(r, θ, x + ∆x)(2πr∆r) (3.229)

Note that there is a negative sign for the force at x+∆x, because the pressure
always acts along the inward unit normal at the surface, and the inward unit
normal at x + ∆x is in the negative x direction. There is an additional force
due to the flow of momentum into the differential volume through the surface
at x and the flow of momentum out of the differential volume through the
surface at x + ∆x. This force is given by the product of the momentum flux
(momentum transported per unit area per unit time) and the surface area.
The momentum flux is the product of the momentum density (ρux) (per unit
volume) and the normal velocity to the surface ux. This is analogous to the
mass flux, which is the product of the concentration (mass density) c and
the normal velocity. Therefore, the force due to the flow of momentum is,

Force due to momentum flow
on surface at x

= ((ρux)ux(2πr∆r)

Force due to momentum flow
on surface at x + ∆x

= −p(r, θ, x + ∆x)(2πr∆r)(3.230)

Note that the force at (x + ∆x) is negative, since momentum leaves the
differential volume at this surface. We can now add up all the contributions
to get

−2πrLτrz|r+2πrLτrz|r+∆r+2πr∆rρv2
z

∣

∣

∣

z=0
−2πr∆rρv2

z

∣

∣

∣

z=L
+2πr∆rLρg+2πr∆r(p(r, x, t)−p(r, x+∆x, t))

(3.231)
Since the fluid is considered to be incompressible, vz is equal at z = 0 and
z = L. Therefore, the momentum flux due to fluid motion cancels out, and
we can divide by 2πL∆r and take the limit ∆r → 0 to get

ρ
∂ux

∂t
=

1

r

∂(rτrz)

∂r
− ∂p

∂x
(3.232)

Using Newton’s law of viscosity, τzr = µ(∂uz/∂r), we obtain the momentum
conservation equation,

ρ
∂uz

∂t
= −∂p

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

(3.233)
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Steady flow:

At steady state, the momentum conservation equation in the pipe reduces
to,

−∂p

∂z
+ µ

1

r

∂

∂r

(

r
∂uz

∂r

)

(3.234)

The boundary conditions are the no-slip condition at the wall of the pipe
(r = R),

uz = 0 at r = R (3.235)

and the symmetry condition at the axis of the tube,

∂uz

∂r
= 0 at r = 0 (3.236)

The above equation can be integrated quite easily of the pressure is inde-
pendent of r (no pressure variation in the radial direction). We will see
later, when we derive the momentum balance equation in the r direction,
that the pressure variation in the r diretion is, indeed, zero, when there is
no radial velocity ur. Physically, the reasoning is as follows. Just as the
axial momentum balance equation 3.233 balances the shear stresses (due to
the variation of uz in the radial direction), the acceleration term on the left
(due to the time derivative of uz on the left) and the axial pressure gradient,
the radial momentum balance equation will balance the stresses in the radial
direction (due to the variation of ur in the radial and axial directions), the
acceleration term (due to the time derivative of ur) and the radial pressure
gradient. However, ur is identically zero throughout the pipe, because flow
is only in the axial (z) direction. Therefore, the pressure is invariant in the
radial direction, and (∂p/∂r) = 0.

Since the pressure is only a function of z, equation 3.234 can be integrated
to obtain,

uz =
r2

4µ

∂p

∂z
+ C1 log (r) + C2 (3.237)

The boundary condition 3.236 is satisfied only if C1 = 0, and C2 = −(R2/4µ)∂p
∂z

from boundary condition 3.235. Therefore, the final expression for the veloc-
ity field is,

uz = − 1

4µ

∂p

∂z
(R2 − r2) (3.238)
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This is the familiar parabolic velocity profile for the flow in a tube, called
the Hagen-Poiseuille flow. Note that the velocity is positive when the pres-
sure gradient is negative, that is, when the pressure decreases along the z
direction. The maximum value of the velocity at the center of the tube is,

umax = −R2

4µ

∂p

∂z
(3.239)

The velocity profile 3.238 can also be expressed in terms of the maximum
velocity as,

uz = umax

(

1 −
(

r

R

)2
)

(3.240)

The shear stress is,

τzr = µ
∂uz

∂r

= −2µumaxr

R2
(3.241)

The shear stress is zero at the center of the tube, and it increases linearly
with radius. At the wall, the wall shear stress is given by,

τzr|r=R = −2µumax

R
(3.242)

Note that the above shear stress is negative because it is the force per unit
area at a surface whose outward unit normal is in the radial direction. At the
wall, this represents the force per unit area exerted on the fluid by the wall,
which is in the −z direction. There is a force of equal magnitude exerted
by the fluid on the wall, which is in the +z direction in accordance with
Newton’s third law.

The volumetric flow rate is the product of the flow velocit and the cross-
sectional area of the tube. In this case, the velocity is varying in the r
direction, and so it is necessary to integrate the velocity vz(r) times the
differential area of a circular strip, (2πrdr) (figure ??) from r = 0 to r = R.

Q =
∫ R

0
uz2πr dr

−πR4

8µ

∂p

∂z
(3.243)
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The average velocity ū is defined as the ratio of the flow rate Q and the
cross-sectional area (πR2),

ū =
Q

πR2
= −R2

8µ

∂p

∂z
(3.244)

The maximum velocity equation 3.240 is two times the average velocity 3.244,

umax = 2ū (3.245)

The friction factor for the flow through a pipe is defined as the ratio of
the wall shear stress and (ρū2/2),

f =
τrz|r=R

(ρū2/2)
(3.246)

Using equation 3.242 for the wall shear stress, we find that the friction factor
is,

f =
2µumax

R(ρū2/2)
(3.247)

Using equation 3.245 for the relation between umax and ū, we find that the
friction factor is,

f =
16µ

ρumaxR
=

16

Re
(3.248)

where Re = (ρumaxR/µ), the Reynolds number based on the maximum fluid
velocity and the radius of the tube. The Reynolds number can also be ex-
pressed as Re = (ρūD/µ), which is the Reynolds number based on the aver-
age velocity and the tube diameter, because ū = (umax/2) and D = 2R.

The friction factor correlation 3.248 is valid only when the flow in the
tube is in the laminar regime, that is, when the Reynolds number is less
than 2100. When the Reynolds number increases beyond 2100, there is a
spontaneous transition to a turbulent flow, in which the friction factor is
significantly higher than that in a laminar flow. The solution 3.248 for a
laminar flow is a valid solution for the momentum balance equation even
when the Reynolds number is higher than 2100. However, this solution be-
comes unstable when the Reynolds number is higher than 2100, and naturally
occuring disturbances in the flow cause a spontaneous transition to a more
complicated ‘turbulent’ velocity profile. The distinction between the two is
as follows. In the laminar flow, the streamlines within the flow are straight
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and parallel to each other, and there is no motion in the cross-stream direc-
ton. The transport of momentum in the cross-stream (radial) direction is
by momentum diffusion, caused by the fluctuating velocity of the molecules.
We had discussed this mechanism in detail in chapter 2. In contrast, in a
turbulent flow, there are significant velocity fluctuations in both the stream-
wise and the cross-stream directions, though the cross-stream velocity is zero
on average. The momentum transport is caused by the motion of correlated
regions within the fluid called ‘eddies’. This mechanism of momentum trans-
port is more efficient than the molecular mechanism, and so this results in a
higher friction factor than that in a laminar flow. Due to this efficient cross-
stream momentum transport, the velocity profile in a turbulent flow is also
much flatter and plug-like than the parabolic velocity profile in a laminar
flow.

Oscillatory flow in a pipe

Oscillatory flows in tubes are of practical importance in physiological fluid
dynamics, where the pumping of the heart causes a periodic variation in
the flow velocity along the arteries. Here, we study the simple example
of the velocity profile due to an oscillatory pressure gradient, (δp/δz) =
p̃ cos (ωt). However, the solution procedure can be used for a more general
time-periodic variation with frequency ω, because any periodic modulation
can be expressed as a sum of sine waves with frequencies that are integer
multiples of ω.

We consider an unsteady (time-periodic) but fully developed flow along
the tube, where the velocity is dependent on time but is independent of the
z co-ordinate. The momentum conservation equation 3.233 for the present
case is,

ρ
∂uz

∂t
=

µ

r

∂

∂r

(

r
∂uz

∂r

)

− K cos (ωt) (3.249)

The boundary conditions at the center and the wall of the tube are the same
as those for a steady flow, 3.235 and 3.236. It is natural to define a scaled
radial co-ordinate as r∗ = (r/R). The scaled time can be defined as t∗ = (ωt),
since ω is the frequency of the pressure wave. How do we scale the velocity
uz? It is clear that the magnitude of the velocity is related to K, which is
the amplitude of the pressure fluctuations. Therefore, we express equation
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3.249 in terms of r∗ and t∗, and divide throughout by K, to obtain,

ρω

K

∂uz

∂t∗
=

µ

KR2

1

r∗
∂

∂r∗

(

r∗
∂uz

∂r∗

)

− cos (t∗) (3.250)

It is clear that all terms in the above equation are dimensionless, and there-
fore, we can define a scaled velocity either as u∗

z = (µuz/KR2), or as u∗
z =

(ρωuz/K). The former is obtained by balancing the viscous and pressure
forces, and is appropriate for low Reynolds numbers where inertial forces are
negligible. The latter is obtained by balancing inertial and pressure forces,
and is appropriate when the Reynolds number is large so that viscous forces
are negligible. We will proceed using the scaling obtained by balancing the
viscous and pressure forces, and return later to consider the situation when
the Reynolds number is large. Using a scaled velocity u∗

z = (µuz/KR2),
equation 3.250 becomes,

Reω
∂u∗

z

∂t∗
=

1

r∗
∂

∂r∗

(

r∗
∂u∗

z

∂r∗

)

− cos (t∗) (3.251)

where Reω = (ρωR2/µ) is the Reynolds number based on the frequency of
oscillations and the tube radius.

As in the case of an oscillatory flow past a flat plate in section ??, it is
more convenient to solve the equation 3.251 with an inhomogenous term of
the form exp (ıt), and then take the real part of this to obtain the solution
for u∗

z. Therefore, we define a complex velocity field u†
z as the solution of the

equation,

Reω
∂u†

z

∂t∗
=

1

r∗
∂

∂r∗

(

r∗
∂u†

z

∂r∗

)

− exp (ıt∗) (3.252)

with boundary conditions

u†
z = 0 at r∗ = 1 (3.253)

∂u†
z

∂r∗
= 0 at r∗ = 0 (3.254)

Clearly, equation 3.251 is the real part of equation 3.252, and the boundary
conditions 3.235 and 3.236 are the real parts of the boundary conditions 3.253
and 3.254. Therefore, the solution u∗

z is the real part of the complex velocity
u†

z.
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Since the equation 3.252 is a linear inhomogeneous equation for u†
z with a

time-periodic forcing proportional to exp (ıt∗), the solution u†
z is also periodic

in time with the sale frequency,

u†
z = ũz(r) exp (ıt) (3.255)

where ũz(r) is only a function of the radial co-ordinate. Substituting the
solution 3.255 into the equation 3.252, and dividing the resulting equation
by the common factor exp (ıt∗), the equation for ũz becomes

(

1

r∗
d

dr∗
r∗

dũx

dr∗

)

− ıReωũz = 1 (3.256)

The solution for ũx for the inhomogeneous equation 3.256 can be divided into
a general and a particular solution, ũz = ũg

z + ũp
z. The homogeneous solution

is the solution of the equation,
(

1

r∗
d

dr∗
r∗

dũg
z

dr∗

)

− ıReωũg
z = 0 (3.257)

while the particular solution is any one solution of the inhomogeneous equa-
tion 3.256.

The simplest particular solution, which satisfies the equation 3.256, is
just a constant, ũp

z = −ıRe−1
ω . Equation 3.257 for the general solution can

be solved using the substitution r† =
√
−ıReωr∗, to obtain,

r†2
∂2ũg

z

∂r†2
+ r†

∂ũg
z

∂r†
+ r†2ũg

z = 0 (3.258)

The above equation is the Bessel equation of zeroeth order discussed earlier,
and the solution of this equation is,

ũg
z = C1J0(

√

−ıReωr∗) + C2Y0(
√

−ıReωr∗) (3.259)

where J0 and Y0 are the Bessel functions of zeroeth order, and C1 and C2 are
constants. Therefore, the final solution of equation 3.256 is,

ũz = C1J0(
√

−ıReωr∗) + C2Y0(
√

−ıReωr∗) − ıRe−1
ω (3.260)

The constants C1 and C2 in equation 3.256 are evaluated from the bound-
ary conditions 3.253 and 3.254. The constant C2 is zero form the boundary
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condition 3.253, because Y0 goes to −∞ in the limit r∗ → 0. The constant C1,
evaluated from the boundary condition 3.254, is C1 = ı(ReωJ0(

√
−ıReω))−1.

Therefore, the final solution for ũz is of the form,

ũz = ıRe−1
ω (1−

(a)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
ux

∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z∗

(b)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
ux

∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z∗

(c)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
ux

∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z∗

(d)
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The velocity u∗
z, equation 3.121, as a function of r∗, for Reω = 0.1 (a),

Reω = 1.0 (b), Reω = 10.0 (c) and Reω = 100.0 (d). The profiles, form right
to left, are at t∗ = 0, t∗ = (π/4), t∗ = (π/2), t∗ = (3π/4) and t∗ = π.

One way to obtain the solution in the limit of low Reynolds number, we
can use a Taylor series expansion of the solution 3.262 in the small parameter
Reω. Another method is to use an expansion of the equation 3.256 itself. The
latter is useful even in more complicated situations where we are not able
to obtain an analytical solution for the velocity field, and it provides our
first encounter with the techniques of ‘regular’ and ‘singular’ perturbation
expansions. Therefore, we go through the analysis of the equation 3.256 in
the limits Reω ≪ 1 and Reω ≫ 1 in some detail.

In the limit Reω ≪ 1, we can obtain an approximate solution by consid-
ering the limit Reω → 0 in equation 3.256. The solution ũz in a series in
Reω,

ũz = ũ(0)
z + Reωũ(1)

z + Re2
ωũ(2)

z + . . . (3.262)

This expansion is inserted into equation 3.256, to obtain,

ıReω(ũ(0)
z + Reωũ(1)

z + Re(2)
ω ) =

1

r∗
∂

∂r∗

(

r∗
∂

∂r∗
(ũ(0)

z + Reωũ(1)
z + Re2

ωũ(2)
z )

)

− 1

(3.263)
We collect the coefficients of Re0

ω, Re1
ω, Re2

ω, . . . in equation 3.263 to obtain,

1

r∗
∂

∂r∗

(

r∗
∂ũ(0)

z

∂r∗

)

− 1+

Reω

(

1

r∗
∂

∂r∗

(

r∗
∂ũ(1)

z

∂r∗

)

− ıũ(0)
z

)

+

Re2
ω

(

1

r∗
∂

∂r∗

(

r∗
∂ũ(2)

z

∂r∗

)

− ıũ(1)
z

)

+

. . . = 0 (3.264)

In the limit Reω → 0, the first term on the left side of equation 3.264 is
O(1) (independent of Reω), the second is O(Reω) (proportional to Reω), the
third term on the left is O(Re2

ω) (proportional to Re2
ω), in the limit Reω → 0.

Here the symbol O(Rei
ω) (called ‘order of Reω power i’) indicates that that

term goes to zero as the ith power of the small parameter Reω in the limit
Reω → 0. If equation 3.264 is to be satisfied in the limit Reω → 0, then
the individual coefficients of of Re0

ω, Re1
ω, Re2

ω, . . . on the left side of equation
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3.264 should all be equal to zero. Therefore, we obtain a series of equations,

1

r∗
∂

∂r∗

(

r∗
∂ũ(0)

z

∂r∗

)

− 1 = 0 (3.265)

1

r∗
∂

∂r∗

(

r∗
∂ũ(1)

z

∂r∗

)

− ıũ(0)
z = 0 (3.266)

1

r∗
∂

∂r∗

(

r∗
∂ũ(2)

z

∂r∗

)

− ıũ(1)
z = 0 (3.267)

It is necessary to expand the boundary conditions also in a series in Reω.
In the present example, this expansion is quite easy, because the bound-
ary conditions 3.253 and 3.254 are homogeneous. Therefore, the boundary
conditions are of the form,

ũ(i)
z = 0 at r∗ = 1 (3.268)

and
∂ũ(i)

z

∂r∗
= 0 at r∗ = 0 (3.269)

for i = 0, 1, 2, . . ..
Equations 3.265, 3.266, and 3.267 can be solved sequentially to obtain

solutions for ũ(0)
z , ũ(1)

z , ũ(2)
z . The solutions are,

ũ(0)
z = −(1 − r∗2)

4
(3.270)

ũ(1)
z =

ı(3 − 4r∗2 + r∗4)

64
(3.271)

ũ(2)
z =

(19 − 27r∗2 + 9r∗4 + r∗6
)

2304
(3.272)

Therefore, the final solution for u∗
z in the limit Reω → 0, obtained by multi-

plying ũz (equations 3.270, 3.271 and 3.272) by exp (ıt∗) and taking the real
part, is,

u∗
z = −(1 − r∗2) cos (t∗)

4
− Reω(3 − 4r∗2 + r∗4) sin (t∗)

64

+
Re2

ω(19 − 27r∗2 + 9r∗4 + r∗6
) cos (θ)

2304
+ . . . (3.273)
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Thus, this procedure, referred to as a ‘regular perturbation’ expansion, pro-
vides a solution for the velocity field as a series in the small parameter Reω.

For zero Reynolds number, the velocity field is,

u∗
z = −(1 − r∗2)

4
cos (t∗) (3.274)

or the dimensional velocity field uz is,

uz = −K cos (ωt)R2

4µ

(

1 − r2

R2

)

(3.275)

This solution is identical to the steady solution 3.238, with the pressure gra-
dient given by (K cos (ωt)), which is the instanteneous value of the pressure
gradient at time t. The steady solution is recovered because the inertial
term on the left side of equation 3.233 has been neglected in the limit of
small Reynolds number. Physically, the Reynolds number Reω = (ωR2/ν)
can be considered as the ratio of two time scales, the time period of oscilla-
tion of the pressure field ω−1 and the time scale for momentum diffusion over
a distance R, which is (R2/ν). When the Reynolds number is small, the time
scale for momentum diffusion is small compared to the period of oscillation
of the pressure field. Therefore, the velocity field responds instanteneously
to the change in the pressure, and we obtain a solution that is identical to
the steady solution for the instanteneous value of the pressure gradient.

Next, we consider the limit Reω ≫ 1. In the high Reynolds number limit,
it is necessary to scale the velocity by the inertial scale (ρω/K) in equation
3.250, since we would expect a balance between the inertial forces and the
pressure gradient when the viscous forces are small compared to the inertial
forces. The non-dimensional velocity is defined as u∗∗

z = (ρuzω/K), and the
equation 3.250 becomes,

∂u∗∗
z

∂t∗
=

1

Reω

1

r∗
∂

∂r∗

(

r∗
∂u∗∗

z

∂r∗

)

− cos (t∗) (3.276)

The substitution
u∗∗

z = Realũ∗∗
z exp (ıt∗)(3.277)

is used to obtain an ordinary differential equation for ũ∗∗,

ıũ∗∗
z =

1

Reω

1

r∗
∂

∂r∗

(

r∗
∂ũ∗∗

z

∂r∗

)

− 1 (3.278)
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A naive approximation in this limit would be to just neglect the viscous
term on the right in comparison to the inertial term on the left in equation
3.278, to obtain,

ıũ∗∗
z = −1 (3.279)

This provides the solution for the velocity field as,

ũ∗∗
z = ı (3.280)

This solution has to satisfy the boundary conditions 3.253 and 3.254. Bound-
ary condition 3.254 is satisfied, but it is clear that we cannot satisfy boundary
condition 3.253, because we do not have any constants in the solution 3.280!
Why?

The mathematical reason can be explained by examining the approxima-
tion made in going from equation 3.278 to 3.279. Equation 3.278 is a second
order differential equation in r∗, and so the solution of this equation will
contain two constants which are fixed by the boundary conditions. However,
in going from equation 3.278 to 3.279, we neglected the highest derivative,
because of the small factor Re−1

ω . In doing so, we have converted a differen-
tial equation into an algebraic equation, and there are no constants in the
solution.

The physical reason for the inability to satisfy the no-slip condition at
the pipe wall is as follows. The velocity at the wall will decrease to zero only
if the wall exerts a stress on the fliud, that is, if there is momentum diffusion
from the wall to the fluid. In going from equation 3.278 to 3.279, we have
neglected the momentum diffusion, and so there is no shear stress exerted
by the pipe wall on the fluid. Due to this, we are not able to satisfy the
no-slip boundary condition. However, in the real pipe flow, there is a no-slip
condition at the surface which is satisfied by the actual flow. How can this
paradox be resolved?

We had neglected the momentum diffusion term in equation 3.279 because
the Reynolds number Reω is small. The Reynolds number, Reω = (ωR2/ν),
is the ratio of the time required for diffusion over a lenght scale R, ∼ (ν/R2),
and the period of oscillation, ∼ ω−1. Even when this number is large, diffu-
sion is still taking place, but the length scale to which momentum diffuses
is smaller than R. Therefore, there is an ‘inner length scale’ at the wall of
the pipe, which is the length scale over which diffusion takes place. Over
a time period ∼ ω−1, this length scale is obviously (ν/ω)1/2 ∼ (RRe−1/2

ω ).
Therefore, if we scale the distance from the wall by this inner length scale,
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there will be a balance between the inertial and the viscous terms in the
momentum balance equation 3.278.

Mathematically, this is accomplished by postulating a ‘boundary layer’ at
the wall with thickness δR, where δ ≪ 1. The condition for finding the value
of δ is that in the limit Reω → ∞ (as we keep increasing Reω), there continues
to be a balance between the inertial and viscous terms in the conservation
equation 3.276, within the region of thickness δR. In order to apply this
condition, we focus on a thin layer near the wall, and define the distance
from the wall, (R − r) = δRy, where y is the inner co-ordinate. Therefore,
the inner co-ordinate is defined as,

y = δ−1(1 − r∗) (3.281)

The inner co-ordinate is defined in such a manner that y is O(1) within the
region where there is a balance between inertial and viscous forces in the
limit Reω → ∞. We return to the dimensional equation 3.276, and express
r∗ in terms of the scaled co-ordinate y,

∂u∗∗

∂t∗
=

1

Reω

1

(1 + δy)

1

δ

∂

∂y

(

(1 + δy)
1

δ

∂u∗∗

∂y

)

− cos (t∗) (3.282)

In the limit δ ≪ 1, we can neglect terms proportional to δ to obtain,

∂u∗∗

∂t∗
=

1

Reωδ2

∂

∂y

(

∂u∗∗

∂y

)

− cos (t∗) (3.283)

It is clear that, for the inertial and viscous terms to be of the same magnitude
in the limit Reω → ∞, we require that δ ∼ Re−1/2

ω . The thickness of the
‘boundary layer’ near the wall, where viscous and inertial effects are of the
same magnitude, is (δR) = (ω/ν)1/2, as anticipated above on the basis of
physical arguments.

One could set δ equal to some constant multiplied by Re−1/2
ω , and proceed

to solve the problem; with this choice, the inertial and viscous terms are
comparable so long as the constant is O(1). The question arises, what should
the value of the constant be? The answer is that the constant could be any
value; while the solution of equation 3.283 in terms of the scaled co-ordinate
y will depend on C, the solution in terms of the original co-ordinate r∗ will
be independent of this constant. In order to illustrate this, we set will use
δ = CRe−1/2

ω without specifying C in the present problem, and then show
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that the final solution does not depend on C. When we use this procedure
in our later analysis of boundary layer theory, we will just use the simplest
choice C = 1.

Substituting δ = CRe−1/2
ω in equation 3.283, we obtain,

∂u∗∗

∂t∗
=

1

C

∂

∂y

(

∂u∗∗

∂y

)

− cos (t∗) (3.284)

As usual, we use the substitution u∗∗ = Real(ũ∗∗(y) exp (ıt∗)), to obtain an
equation for ũ∗∗(y),

ı(y) =
1

C

∂2

∂y2
− 1 (3.285)

This is easily solved to obtain,

ũ∗∗ = ı + C1 exp (
√

ıCy) + C2 exp−(
√

ıCy) (3.286)

The constants in equation 3.286 are evaluated from the boundary condi-
tions, which are to be re-expressed in terms of the scaled co-ordinate y. The
boundary condition 3.253, expressed in terms of y, is

ũ∗∗ = 0 at y = 0 (3.287)

The second boundary condition 3.254 is applied at r∗ = 0 which is equivalent
to y = δ−1. In the limit δ → 0(Reω → ∞), this is equivalent to,

∂ũ∗∗

∂y
= 0 for y → ∞ (3.288)

Using these two conditions, the constant C1 = 0 and C2 = −ı in equation
3.286, and therefore, the final solution for ũ∗∗ is,

ũ∗∗ = ı(1 − exp (−
√

ıCy)) (3.289)

Substituting y = (1− r∗)/δ and δ =
√

CReω, the solution for ũ∗∗ in terms of
r∗ is,

ũ∗∗ = ı(1 − exp (−
√

ıRe−1/2
ω (1 − r∗)) (3.290)

As we had anticipated earlier, the solution for ũ∗∗ in terms of r∗ is indepen-
dent of the constant C used in the definition of δ. Therefore, without loss
of generality, we can set this constant to any value. In practice, it is most
convenient to set this equal to 1.

The solution for u∗∗ is,

u∗∗ = Real(ũ∗∗)

= − sin (t∗)(1 − exp (−(1 − r∗)/
√

2Reω) cos ((1 − r∗)/
√

2Reω)) + cos (t∗) sin ((1 − r∗)/
√

2Re(3.291)
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3.6 Spherical co-ordinates:

The spherical co-ordinate system is used to analyse transport in or around
objects with spherical symmetry, such as spherical particles, bubbles or drops
immersed in a fluid. If we were analysing the mass or energy transport from
a spherical particle immersed in a fluid, it is preferable to have a co-ordinate
system in which the surface of the particle is a surface on which one of the
co-ordinates is a constant, so that boundary conditions can be easily applied
there. The surface of a sphere in a Cartesian co-ordinate system is described
by the equation x2+y2+z2 = R2; clearly, this is not a convenient description
for applying boundary conditions. In the spherical co-ordinate system, shown
in figure ??, the three co-ordinates are the radius r, the distance from the
origin, the azimuthal angle θ, which is the angle made by the position vector
with the z axis, and meridional angle φ, the angle made by the (projection of
the position vector on the x− y plane) with the x axis. Surfaces of constant
r are now spherical surfaces with radius r.

3.6.1 Balance equation:

Here, we consider one-dimensional transport, in which there is a variation
of the concentration or temperature fields only in the radial direction. In
order to obtain a balance equation, we consider a spherical shell bounded by
two surfaces at r and r + ∆r. The volume of the shell is 4πr2∆r, while the
surface area is 4πr2. The terms in the mass balance equation, 3.1, for this
shell, are as follows. The accumulation of mass in the shell in a time ∆t is,

(

Accumulation of mass
in the shell

)

= (c(r, t + ∆t) − c(r, t))4πr2∆r (3.292)

The total mass entering the shell at r is the product of the mass flux, the
surface area, and the time interval ∆t,

(

Input of
mass into shell

)

= −
(

jr(4πr2∆t)
)∣

∣

∣

r
(3.293)

where jr is the mass flux in the radial direction. Similarly, the total mass
leaving the shell at r + ∆r is

(

Output of
mass from shell

)

=
(

jr(4πr2∆t)
)∣

∣

∣

r+∆r
(3.294)
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The source of mass in the differential volume is,
(

Source of
mass in shell

)

= S(4πr2∆r∆t) (3.295)

where S is the amount of mass generated per unit volume per unit time.
Substituting these into the balance condition ??, and dividing thoughout

by 4πr2δrδt, we obtain,

(c(r, t + ∆t) − c(r, t))

∆t
=

1

r2∆r

(

(r2jr)
∣

∣

∣

r
− (r2jr)

∣

∣

∣

r+∆r

)

+ S (3.296)

Note that, as in the case of the cylindrical co-ordinate system, the surface
area 4πr2 is a function of the radius r, and this surface area is different for
the surfaces at r and r + ∆r. Therefore, the factors r2 in the numerator and
denominator of the first two terms on the right side of equation 3.296 cannot
be cancelled. Taking the limit ∆r → 0 and ∆t → 0, the partial differential
equation for the concentration field is

∂c

∂t
= − 1

r2

∂

∂r

(

r2jr

)

+ S (3.297)

The mass flux jr is related to the concentration gradient in the radial direction
by the Fourier’s law for heat conduction,

jr = −D
∂c

∂r
(3.298)

With this, the mass balance equation becomes,

∂c

∂t
=

1

r2

∂

∂r

(

r2D
∂c

∂r

)

+ S (3.299)

When the diffusion coefficient is independent of position, the mass balance
equation reduces to,

∂c

∂t
= D

1

r2

∂

∂r

(

r2 ∂c

∂r

)

+ S (3.300)

The energy balance equation for unidirectional transport in a spherical
co-ordinate system, derived in a similar manner, is,

∂T

∂t
= α

1

r2

∂

∂r

(

r2∂T

∂r

)

+ Se (3.301)

where α = (k/ρCp) is the thermal diffusivity. The momentum balance equa-
tion in a spherical co-ordinate system is more complicated, and so we defer
discussion to a later chapter.
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3.6.2 Steady diffusion from a sphere:

A spherical particle of radius R, with temperature T0 at the surface, is im-
mersed in a fluid in which the temperature is T∞ far from the particle. The
system is at steady state, so that the temperature field does not vary with
time. We would like to find out the temperature variation in the fluid around
the particle, and the total amount of heat emitted by the particle per unit
time.

The scaled radius and temperature are defined as, r∗ = (r/R) and T ∗ =
(T − T∞)/(T0 − T∞). In terms of these scaled co-ordinates, the steady state
balance equation is,

1

r∗2

d

dr∗

(

r∗2 dT ∗

dr∗

)

= 0 (3.302)

with boundary conditions,

T ∗ = 0 for r∗ → ∞ (3.303)

T ∗ = 1 at r∗ = 1 (3.304)

Equation 3.302 is easily solved to obtain,

T ∗ =
C1

r∗
+ C2 (3.305)

where the constants, C1 and C2 are determined from the boundary conditions
3.303 and 3.304. The final solution is,

T ∗ =
1

r∗
(3.306)

The dimensional temperature T is given by,

T = T∞ +
(T0 − T∞)R

r
(3.307)

The heat flux from the surface of the sphere is,

qr = −k
∂T

∂r

= −k(T0 − T∞)

R

∂T ∗

∂r∗

=
k(T0 − T∞)

Rr∗2
(3.308)
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An important result is obtained if the temperature field is expressed in
terms of the total heat generated by the spherical surface, Q, instead of the
temperature at the surface. The total heat passing through any spherical
shell of radius r is the product of the heat flux and the radius of the shell,

Q = 4πr2qr

= 4πRk(T0 − T∞) (3.309)

From the energy balance condition, this is independent of the radius of the
shell, since there is no generation or absorption of energy within the fluid.
Using 3.309 to substitute for (T0 − T∞) in equation 3.307, we obtain,

T − T∞ =
Q

4πKr
(3.310)

When expressed in this manner, the temperature field does not depend on
the radius of the sphere R, but only on the total heat emitted by the sphere
per unit time Q. Therefore, this solution is valid outside a sphere of any
radius, provided the total heat emitted per unit time is Q. Specifically, it is
also valid in the limit R → 0, the ‘point source’. The temperature field due
to a point source will be an important concept in our later discussion of the
harmonic expansions.

3.6.3 Unsteady conduction in a sphere:

This problem is the analogue, in spherical co-ordinates, of the unsteady con-
duction into a cylinder. A spherical particle of radius R and initial temper-
ature T0 is immersed into a fluid with temperature T∞. The volume of the
surrounding fluid is considered to be large enough that the heat generated
from the particle does not increase the temperature of the fluid. We would
like to find out the variation of the temperature in the particle with time.

In the long time limit, we would expect the temperature of the particle
to be equal to T∞. Therefore, we can define a scaled temperature T ∗ =
(T − T∞)/(T0 − T∞), so that the scaled temperature is zero everywhere in
the long time limit. The scaled radius is defined as r∗ = (r/R), and the
scaled time is t∗ = (tα/R2). With this, the unsteady energy balance equation
becomes,

∂T ∗

∂t∗
=

1

r∗2

∂

∂r∗

(

r∗2 ∂T ∗

∂r∗

)

(3.311)
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with the boundary condition at the surface of the sphere,

T ∗ = 0 at r∗ = 1 (3.312)

and initial condition that the temperature is equal to T0 everywhere within
the sphere at t = 0,

T ∗ = 1 at

t∗ = 0 for r∗ < 1(3.313)
Equation 3.311 is a second order differential equation in the radial co-

ordinate r∗, but we have specified only one boundary condition 3.312 at the
surface of the sphere. The second condition is the ‘symmetry’ condition at
r∗ = 0, similar to the condition 3.205 at the axis of the cylindrical co-ordinate
system. Since the temperature field is spherically symmetric, the derivative
of the temperature at the center will be independent of the direction of
approach only if it is zero at the center,

∂T ∗

∂r∗
= 0 at r∗ = 0 (3.314)

This is the symmetry condition at the origin of the spherical co-ordinate
system.

Equation 3.311 is solved using the separation of variables procedure,
where the temperature field is written as,

T ∗(r∗, t∗) = R(r∗)T (t∗) (3.315)

Using the separation of variables procedure (substitute the above expression
for T ∗ into the conservation equation 3.311, and divide the equation by T ∗),
we obtain equations for R and T ,

1

R
1

r∗2

∂

∂r∗

(

r∗2∂R
∂

)

= −β2 (3.316)

1

T
∂T
∂t∗

= −β2 (3.317)

where β is the eigenvalue to be determined from the boundary condition at
the surface of the sphere.

The equation 3.316 for R can be simplified as,

r∗2 ∂2R
∂r∗2

+ 2r∗
∂R
∂r∗

+ β2r∗2R = 0 (3.318)
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The general solution for this equation is,

R(r∗) =
C sin (βr∗)

r∗
+

D cos (βr∗)

r∗
(3.319)

where C and D are constants to be determined from the boundary conditions.
From the symmetry boundary condition 3.314, it is clear that C has to be
equal to zero. The constant β is determined from the boundary condition
3.312, which is equivalent to R = 0 at r∗ = 1. Therefore, the eigenvalue β
assumes discrete values,

βn = nπ (3.320)

where n is an integer. The solution of equation 3.317 for T (t∗) is,

T (t∗) = exp (−β2
nt∗) = exp (−n2π2t∗) (3.321)

Therefore, the general solution for the temperature field is,

T ∗ =
∞
∑

n=1

Cnr
∗−1 sin (nπr∗) exp (−n2π2t∗)

=
∞
∑

n=1

CnΨn(r∗) exp (−n2π2t∗) (3.322)

where Ψn = (sin (nπr∗)/r∗) is the set of basis functions for the differential
equation 3.318.

The constants Cn are determined from the initial condition,

T ∗ = 1 at t∗ = 0 (3.323)

which is equivalent to,
∞
∑

n=1

Cn sin (nπr∗)

r∗
= 1 (3.324)

The orthogonality relations for the basis functions Ψn = (sin (nπr∗)/r∗) for
the present problem,

〈Ψn, Ψm〉 =
∫ 1

0
r∗2dr∗

sin (nπr∗)

r∗
sin (mπr∗)

r∗

=
δmn

2
(3.325)

where δmn is 1 for m = n, and 0 for m 6= n. Using this, we obtain the solution
for the constants Cn,

Cn = 2 (3.326)
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3.6.4 Similarity solution for diffusion from a point source:

The scaled temperature is defined as T ∗ = ((T −T∞)/T∞), so that the scaled
temperature is zero in the limit r → ∞. The heat conduction equation in
the fluid is,

∂T ∗

∂t
= α

(

1

r2

d

dr

(

r2dT ∗

dr

))

(3.327)

One of the boundary conditions are that T ∗ → 0 in the limit r → ∞,
while the other is the flux condition at the source, which requires that the
total amount of heat emitted per unit time is Q. Therefore, the flux from a
spherical surface of radius r around the point source is (Q/(4πr2))

−KT∞
dT ∗

dr
=

Q

4πr2
(3.328)

in the limit r → 0.
As before, the equation ?? can be expressed in terms of a similarity

variable,
d2T ∗

dξ2
+

(

2

ξ
+

ξ

2

)

dT ∗

dξ
= 0 (3.329)

This equation can be solved to obtain the

dT ∗

dξ
=

C

ξ2
exp (−ξ2/4) (3.330)

The temperature can be obtained by integrating the above equation with
respect to ξ, and realising that T = 0 as ξ → ∞.

T ∗ =
∫ ξ

∞
dξ′

C

ξ′2 exp (−ξ′2/4)(3.331)

The above equation shows that the temperature at the surface of the wire is
undefined, because the integral in equation ?? increases proportional to ξ−1

as ξ → ∞.
The constant C can be determined from the flux condition, in the limit

r → 0(ξ → 0),

K
dT ∗

dr
= − Q

4πr2
(3.332)

When expressed in terms of ξ, this is equivalent to

dT ∗

dξ
= − Q

2πKξ
(3.333)
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x

z

Figure 3.15: Flow of immiscible fluids.

Inserting solution ?? into the above equation, we find that the constant
C = (Q/2πK). Therefore, the solution for the temperature field is,

T ∗ =
Q

2πk

∫ ξ

∞
dξ′

1

ξ′
exp (−ξ′2/4) (3.334)

Adjacent flow of two immiscible liquids.

This is an example which illustrates the application of boundary conditions
between two immiscible liquids. Two immiscible liquids flow through a chan-
nel of length L and width W under the influence of a pressure gradient, as
shown in figure 3.15. The flow rates are adjusted such that the channel is
half filled with fluid I (more dense phase) and half filled with fluid II (less
dense phase). It is necessary to find the distribution or velocity in this case.

The momentum balance is similar to that for the flow in a pressure gra-
dient shown in the last example. The pressure balance reduces to

dτxz

dx
+

p0 − pL

L
= 0 (3.335)

This equation is valid in either phase I or phase II. Integration gives two
relations in the two phases.

τ (I)
xz = −

(

p0 − pL

L

)

x + C(I)

τ (II)
xz = −

(

p0 − pL

L

)

x + C(II) (3.336)
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We can make use of one of the boundary conditions, that the stress is equal
at the interface, to relate C(I) and C(II).

Atx = 0 τ (I)
xz = τ (II)

xz

C(I) = C(II) (3.337)

Using Newton’s law of viscosity to relate the stress to the strain rate, we get

µ(I) dv(I)
z

dx
= −

(

p0 − pL

L

)

x + C(I)

µ(II)dv(II)
z

dx
= −

(

p0 − pL

L

)

x + C(II) (3.338)

This can be integrted to give

v(I)
z = −

(

p0 − pL

2µ(I)L

)

x2 +
C(I)x

µ(I)
+ C

(I)
2

v(II)
z = −

(

p0 − pL

2µ(II)L

)

x2 +
C(I)x

µ(I)
+ C

(II)
2

(3.339)

There are three constants in the above equations, which are determined using
the three available boundary conditions.

Atx = 0 v(I)
z = v(II)

z

Atx = −b v(I)
z = 0

Atx = b v(II)
z = 0 (3.340)

These boundary conditions provide three relationships between the constants
C(I), C

(I)
2 and C

(II)
2 .

C
(I)
2 = C

(II)
2

0 = −
(

p0 − pL

2µ(I)L

)

b2 − C(I)b

µ(I)
+ C

(I)
2

0 = −
(

p0 − pL

2µ(II)L

)

b2 +
C(I)b

µ(I)
+ C

(I)
2 (3.341)

These can be solved to obtain

C1 =
(p0 − pL)b

2L

(

µ(I) − µ(II)

µ(I) + µ(II)

)

C
(I)
2 =

(p0 − pL)b2

2µ(I)L

(

2
µ(I)

µ(I) + µ(II)

)

(3.342)
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Therefore, the velocity profiles in each layer are

v(I)
z =

(p0 − pL)b2

2µ(I)L

[(

2µ(I)

µ(I) + µ(II)

)

+

(

µ(I) − µ(II)

µ(I) + µ(II)

)

x

b
− x2

b2

]

v(I)
z =

(p0 − pL)b2

2µ(II)L

[(

2µ(II)

µ(I) + µ(II)

)

+

(

µ(I) − µ(II)

µ(I) + µ(II)

)

x

b
− x2

b2

]

(3.343)

Exercises

1. Consider a long and narrow channel two - dimensional of length L and
height H , where H ≪ L. The ends of the channel are closed so that
no fluid can enter or leave the channel. The bottom and side walls of
the channel are stationary, while the top wall moves with a velocity
V (t). Since the length of the channel is large compared to the height,
the flow near the center can be considered as one dimensional. Near
the ends, there will be some circulation due to the presence of the side
walls, but this can be neglected far from the sides. For the flow far
from the walls of the channel,

(a) Write the equations for the unidirectional flow. What are the
boundary conditions? What restriction is placed on the velocity
profile due to the fact that the ends are closed and fluid cannot
enter or leave the channel?

(b) If the wall is given a steady velocity V which is independent of
time, solve the equations (neglecting the time derivative term).
Calculate the gradient of the pressure.

(c) If the wall is given an oscillating velocity V cos (ωt), obtain an
ordinary differential equation to obtain the velocity profile. Get
an analytical solution for this which involves the constants of ite-
gration. Use the boundary conditions to determine all unknown
constants.

2. In shell-and-tube heat exchangers, the tube side often has fins in order
to increase the conduction rate, as shown in figure 1. The fin can
be modeled, in two dimensions, as a rectangular block of length L,
height H and with thermal conductivity k. One surface (outer wall
of the tube of the heat exchanger) is at the temperature Tt, which is
the temperature of the tube side fluid. The other three surfaces are



3.6. SPHERICAL CO-ORDINATES: 85

at the temperature Ts, which is the temperature of the shell side fluid.
Determine the heat flux from the fin as follows.

(a) Write down the conduction equation, ∇2T = 0, in two dimensions,
and specify the boundary conditions.

(b) Define a non-dimensional temperature in such a way that both
boundary conditions are homogeneous along one of the co-ordinates.

(c) Use separation of variables to obtain separate the dependence of
T on the x and y co-ordinates.

(d) Write down the final solution for the temperature field which sat-
isfies homogeneous boundary conditions.

(e) Determine the coefficients using orthogonality relations along the
inhomogeneous direction. From this, calculate the heat flux as a
function of the temperature difference.

3. A rectangular channel of width W and height H is used for transporting
fluid of density ρ and viscosity µ. If a steady pressure difference ∆p is
applied across the length L of the channel, determine the flow rate.

(a) First, obtain the momentum balance for the streamwise velocity
for a differential volume in the channel.

(b) Solve the equation using separation of variables to obtain the ve-
locity. Note that the fluid velocity is zero on all the walls of the
channnel.

4. Consider a cylinder in a thin annular region, as shown in figure 3.16.
The cylinder is pulled with a constant velocity V. The pressure is equal
on both sides of the cylinder. Determine the fluid velocity, and the flow
rate.

5. A fluid is contained in the annular region between two concentric cylin-
ders of radius R1 and R2 moving with angular velocities Ω1 and Ω2.
The gravitational field acts along the axis of the cylinders as shown in
figure. The vessel is tall enough that the flow can be considered unidi-
rectional when the distance from the bottom is large compared to the
gap width (R1−R2). In this case, choose a coordinate system and write
down the mass and momentum conservation equations. Solve these for
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Figure 3.16: Wire coating of dies.

the pressure and velocity fields. Can you find the equation for the free
surface?

6. Consider the unidirectional flow of a ‘power law fluid’ through a pipe
of radius R, where the flow takes place only in the axial direction and
there is no radial flow. Use a polar coordinate system where the flow
is in the x direction, and the radial vector is in the r direction. The
constitutive relation for the shear stress τxr for this fluid is given by

τxr = kn

∣

∣

∣

∣

∣

dux

dr

∣

∣

∣

∣

∣

n−1 (
dux

dr

)

(a) Use a momentum balance in the axial direction to determine equa-
tion for the variation in the velocity as a function of the pressure
gradient.

(b) What are the boundary conditions?

(c) Assume the pressure gradient is a constant, and solve the equation
to obtain the velocity profile.

7. Consider the annular flow of two fluids in a tube, as shown in figure
2, driven by a pressure difference applied across the ends of the tube.
The tube radius is Ro, while the radius of the interface between the
two fluids is Ri. The viscosities of the two fluids are µi and µo. Assume
that the densities of the two fluids are equal.



3.6. SPHERICAL CO-ORDINATES: 87

(a) Write down momentum balance equations for the two fluids. (Do
not try to derive it, but use expressions already derived in the
notes).

(b) What are the boundary conditions, and the interface conditions
between the two fluids?

(c) How are the pressures and pressure gradients in the two fluids
related?

(d) Solve the momentum conservation equations to obtain the veloc-
ity fields in the two fluids. From this, calculate the relationship
between friction factor and the Reynolds numbers based on the
average velocity and viscosity of the two fluids.

8. A resistance heating appratus for a fluid consists of a thin wire im-
mersed in a fluid. In order to design the appratus, it is necessary to
determine the temperature in the fluid as a function of he heat flux
from the wire. For the purposes of the calculation, the wire can be
considered of infinite length so that the heat conduction problem is
effectively a two dimensional problem. In addition, the thickness of
the wire is considered small compared to any other length scales in the
problem, so that the wire is a line source of heat. The wire and the
fluid are initially at a temperature T0. At time t = 0, the current is
switched on so that the wire acts as a source of heat, and the heat
transmitted per unit length of the wire is Q. The heat conduction in
the fluid is determined by the unsteady state heat conduction equation

∂tT = K∇2T (3.344)

and the heat flux (heat conducted per unit area) is

K∇T (3.345)

where K is the thermal conductivity of the fluid.

(a) Choose an appropriate coordinate system, and write down the
unsteady heat conduction equation.

(b) What are the boundary conditions? Give special attention o the
heat flux condition at the wire, and note that the wire is considered
to be of infinitesimal radius.
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(c) Solve the heat conduction equation using the simplest method,
and determine the temperature field in the fluid.

(d) Use the boundary conditions to determine the constants in the
expression for the temperature field.

9. Consider a two dimensional incompressible flow in a diverging channel
with subtended angle α bounded by solid walls as shown in the figure
below. The flux of fluid through the channel is Q. The two dimensional
(r, φ) polar coordinate system used for the analysis is also shown in the
figure. Assume a one dimensional velocity field ur 6= 0 and uφ = 0. For
this case,

(a) From the mass conservation equation, determine the form of the
velocity in the radial direction.

(b) Write down the momentum conservation equations in the r and
θ directions and simplify assuming that the Reynolds number is
small, so that inertial terms can be neglected. Simplify the equa-
tions. What are the boundary conditions?

(c) Eliminate the pressure from the momentum equations to obtain
an equation for the velocity field.

(d) Solve the equation to obtain an expression for the velocity. How
many constants are there, and how are they determined? Do not

determine the constants.

(e) If we assume that the Reynolds number is high, so that poten-
tial flow conditions apply, what are the governing equations and
boundary conditions?

(f) What are the velocity and pressure fields in this case?

10. Consider an annular channel described in a cylindrical (r, θ, z) co-
ordinate system. The cross section of the channel is shown in figure 1,
and the z direction is perpendicular to the plane of the cross section.
The channel is bounded by solid walls at r = 0 and r = R, and at
θ = 0 and θ = Θ. The wall at r = R is moving in the z direction with
a velocity U , while those at θ = 0 and θ = Θ are stationary. The flow
is a unidirectional, fully developed, and steady flow with velocity only
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φ

r

α
Wall

Wall

in the z direction. The equation for the velocity field in the z direction
is,

µ

(

1

r

∂

∂r

(

r
∂uz

∂r

)

+
1

r2

∂2uz

∂θ2

)

= 0

where µ is the viscosity.

(a) What are the boundary conditions required for solving the above
equation?

(b) Use separation of variables, by writing uz = F (r)T (θ), and obtain
equations for F and T .

(c) Find the solution for T (θ) that satisfies the boundary conditions.

(d) Find the solution for F (r), and enforce boundary conditions to
find the final solution.

11. A piston damper assembly, shown in figure 1, consists of a cylindrical
piston rod moving through a stationary cylindrical sleeve which is filled
with fluid. The sleeve is closed at both ends so that the fluid cannot
move in or out of the sleeve. The radius of the piston rod is Rp, while
the outer radius of the sleeve is Rs. The length of the sleeve L is large
compared to the radius Rs. The piston rod moves with a velocity U
with respect to the sleeve. Consider the region away from the ends
of the sleeve, where the flow is expected to be in only one direction
(parallel to the walls).
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Figure 3.17:

(a) Which is the non-zero component of the velocity in this co-ordinate
system, and which spatial co-ordinate does the velocity depend
on? Write the boundary conditions in the center region away
from the ends of the sleeve, where the flow is expected to be uni-
directional.

(b) What condition can be obtained about the velocity in the center
of the channel (away from the ends) from mass conservation?

(c) Use a shell balance to derive the momentum conservation equation
for the unidirectional flow in the center of the sleeve away from
the ends.

(d) Solve the momentum conservation equation to determine the ve-
locity field.

12. Consider the fully developed flow in a circular tube with velocity profile

ux = U(t)

(

1 − r2

R2

)

as shown in figure 1, where the maximum velocity U could be a function
of t, but is independent of the stream-wise co-ordinate x. There is
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viscous dissipation which generates heat within the fluid, and the heat
generated per unit volume of the fluid per unit time is given by,

Q = µ

(

∂ux

∂r

)2

Due to this, there is a temperature variation across the tube, and the
temperature field is governed by the convection-diffusion equation,

ρCv

(

∂T

∂t
+ u.∇T

)

= k∇2T + Q

The temperature at the wall of the tube is maintained at T = T0,
and we assume that the temperature could be a function of
time, but the temperature field is ‘fully developed’ so that
the temperature is independent of the flow (x) direction.

(a) Choose a suitable co-ordinate system, and write down the convection-
diffusion equation for the time-dependent but ‘fully developed’
temperature field.

(b) Scale the co-ordinates and time. What would you use to scale the
temperature?
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(c) Obtain the solution for the temperature at steady state, where
both the maximum velocity U and temperature are independent
of time.

(d) If the maximum velocity has a sinusoidal variation, U(t) = U cos (ωt),
what is the value of the heat source Q? How would you express the
inhomogeneous term in the time-dependent convection-diffusion
equation for the temperature in order to obtain a solution?

(e) Determine the solution for the temperature field.

R
x

r

0T=T

T=T0

13. An ideal vortex is a flow with circular streamlines where the particle
motion is incompressible and irrotational. The velocity profile obeys
the equation in cylindrical coordinates:

vθ =
Γ

2πr
(3.346)

with vr = vz = 0. At the origin, the above equation indicates that the
velocity becomes infinite. But this is prohibited because viscous forces
become important and the flow is rotational in a small region near the
core.

Consider an ideal vortex in which the velocity is given by the above
equation for t < 0, and the core velocity is constrained to be zero at
t = 0. Find the velocity profile for t > 0. Assume that vθ is the only
non - zero velocity component.
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14. A cubic solid of side a is initially held at a temperature T0. At times
t ≥ 0, its lateral faces are held at temperatures TA, TB, T0 and T0 as il-
lustrated in figure 3.19. The top and bottom faces are insulated so that
no heat is transferred through them. The cube has heat conductivity
C, density ρ and thermal conductivity K.

(a) Solve for the steady state temperature in the cube.

(b) Show how the transient problem may be set up in a form to which
separation of variables can be applied.

q=0

q=0

T0 T0

T

T

A

B

Figure 3.19: Conduction from a cube.

15. A rotating cylinder geometry consists of a cylinder of radius R and
height H , filled with fluid, with two end caps. The cylinder rotates with
an angular velocity Ω, while the end caps are stationary. Determine
the fluid velocity field using separation of variables as follows.

(a) Choose a coordinate system for the problem. Clearly, the only
non-zero component of the velocity is uφ. Determine the boundary
conditions for this component of the velocity.
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(b) Write down the mass balance condition for an incompressible fluid.
For a uni-directional flow in which the density is a constant, what
does this reduce to?

(c) Use a shell balance to determine the conservation equation for the
velocity. Can you eliminate the pressure term using a result from
the mass balance condition?

(d) Solve the conservation equation at steady state using the method
of separation of variables. Frame the orthogonality conditions
which would be required to solve the problem.

Data:

(a) Bessel equation:

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

Solution:
y = A1Jn(x) + A2Yn(x)

where Jn(x) is bounded for x → 0, and Yn(x) is bounded for
x → ∞. tem Modified Bessel equation:

x2 d2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0

Solution:
y = A1In(x) + A2Kn(x)

where In(x) is bounded for x → 0, and Kn(x) is bounded for
x → ∞.


