
Chapter 1

Forced convection at high

Peclet number:

1.1 Streaming past a spherical object:

The system consists of a sphere whose surface is maintained at a temperature
T0 in a fluids in which the temperature is T∞ in the limit r → ∞. There is a
steady flow of fluids past the sphere, and the fluid velocity in the z direction is
U∞ at a large distance from the sphere, as shown in figure 1.1. As usual, it is
convenient to work in terms of a scaled temperature Θ = (T−T∞)/(T0−T∞).
The convection-diffusion equation in terms of the scaled temperature θ is
given by,

u.∇Θ = α∇2Θ (1.1)

The boundary conditions, expressed in terms of the scaled temperature Θ,

Θ = 1 at r∗ = 1

Θ → 0 forr∗ → ∞ (1.2)

It is convenient to scale the lengths in the problem by the sphere radius
R, and the velocity by the free stream velocity U∞. In terms of the scaled
coordinates, the convection-diffusion equation can be written as,

Peu∗.∇∗θ = ∇
∗2θ (1.3)

where u∗ = (u/U∞), r∗ = (r/R), ∇∗ is the gradient operator defined in
terms of the scaled radius r∗ and the angular coordinates θ and φ, and
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Figure 1.1: Forced convection due to the streaming flow past a sphere of
radius R. The velocity at a large distance from the sphere is U∞ in the z
direction, the temperature at the surface of the sphere is maintained at T0,
while the temperature of the fluid at a large distance from the sphere is T∞.
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Pe = (U∞R/α) is the Peclet number. The velocity field for the flow around
a sphere at low Reynolds number, in a spherical coordinate system, is given
by a solution of the Stokes equations, which will be solved a little later. The
components of the scaled velocity u∗, expressed in terms of the scaled radius
r∗, are,

u∗
r =

[

1 −
3

2

(

1

r∗

)

+
1

2

(

1

r∗

)3
]

cos (θ) (1.4)

uθ = −

[

1 −
3

4

(

1

r∗

)

−
1

4

(

1

r∗

)3
]

sin (θ) (1.5)

where r∗ is the distance from the center of the sphere, scaled by the radius of
the sphere, and θ is the angle made by the radius vector with the z coordinate.
Note that the configuration and boundary conditions are symmetric in the
meridional φ coordinate, and so the temperature field is independent of the
φ coordinate.

We consider the limit of small Peclet number, and therefore it is con-
venient to expand the temperature θ in an asymptotic series in the Peclet
number.

Θ = Θ0 + PeΘ1 + Pe2Θ2 + . . . (1.6)

where Θ0 is the temperature distribution in the absence of convective effects,
Θ1 is the first correction to the temperature distribution due to convection,
etc. This expansion is inserted into the conservation equation 1.3, to obtain
the leading order and higher corrections to the temperature distribution.
The equations for the leading order and first correction to the temperature
distribution are,

∇
∗2Θ0 = 0 (1.7)

u∗
r

∂Θ0

∂r
+ u∗

θ

∂Θ0

∂θ
= ∇

∗2Θ1 (1.8)

The boundary conditions for the leading order and first correction to the
temperature are obtained by inserting the expansion 1.6 into the equations
for the boundary conditions 1.2,

Θ0 + PeΘ1 + . . . = 1 at r∗ = 1 (1.9)

Θ0 + PeΘ1 + . . . = 0 for r∗ → ∞ (1.10)

Equating terms of equal powers of Pe on the left and right sides of the above
equations, we obtain the boundary conditions for the leading order and first
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correction to the temperature field,

Θ0 = 1 at r∗ = 1 (1.11)

Θ0 → 0 at r∗ → ∞ (1.12)

Θ1 = 0 at r∗ = 1 (1.13)

Θ1 → 0 atr∗ → ∞ (1.14)

The solution for the leading order equation can be obtained quite easily,
since the configuration is spherically symmetric in the absence of flow, and
the boundary conditions are also spherically symmetric. The leading order
diffusion equation reduces to,

1

r∗2
d

dr∗

(

r∗2
dΘ0

dr∗

)

= 0 (1.15)

This equation can be easily solved with the boundary condition Θ0 = 1 at
r∗ = 1, to obtain the leading approximation to the temperature field,

Θ0 =
1

r∗
(1.16)

The flux at the surface can be easily obtained in terms of this leading cor-
rection to the temperature,

j0 = K∇T

= −
K(T0 − T∞)

R
∇

∗Θ0

=
K(T0 − T∞)

Rr∗2
er (1.17)

The total heat transfer from the sphere is obtained by multiplying the heat
flux in the radial direction at r∗ = 1 by the surface area of the sphere, to
obtain

Q0 = 4πK(T0 − T∞)R (1.18)

The dimensionless total heat transfer rate, which is the Nusselt number, is
defined as,

Nu =
2Q

(4πR2)K(T0 − T∞)/R
(1.19)
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Therefore, the leading order contribution to the Nusselt number is Nu0 = 2.
The leading order solution can be inserted into the equation for the first

correction, 1.8, to obtain,

1

r∗2
d

dr∗

(

r∗2
dΘ1

dr∗

)

+
1

r∗2 sin (θ)

d

dθ

(

sin (θ)
dΘ1

dθ

)

= −
1

r∗2

(

1 −
3

2r∗
+

1

2r∗3

)

cos (θ) (1.20)

The above equation is an inhomogeneous linear differential equation, and so
the solution can be written as the sum of a particular and general solution.
First, we obtain the particular solution. Since the inhomogeneous term on
the right side is proportional to cos (θ) = P 0

1 (cos (θ), we would expect the
particular solution for Θ1 to also be proportional to cos (θ). Using the form
Θ1p = F (r∗) cos (θ), and inserting this form into equation 1.20, we can solve
for F (r∗) to obtain the explicit form of the particular solution,

Θ1p =
(

1

2
−

3

4r∗
−

1

8r∗3

)

P1(cos (θ)) (1.21)

In addition, there is a general solution for the homogeneous equation, which
is obtained by setting the right side of equation 1.20 equal to zero. Since
the linear operator acting on Θ1 is the Laplacian, the general solution is
just the sum of spherical harmonics. Since the leading order solution for the
temperature field is proportional to (1/r∗), and the inhomogeneous term on
the right side of equation 1.20 is proportional to P 0

1 (cos (θ) it is sufficient to
include just the first two terms in the spherical harmonic expansion in the
general solution,

Θ1g =
(

A0 +
B0

r∗

)

+
(

A1r
∗ +

B1

r∗2

)

P 0
1 (cos (θ) (1.22)

With this, the final solution for the temperature field becomes,

Θ1 =
(

A0 +
B0

r∗

)

+
(

A1r
∗ +

B1

r∗2

)

P 0
1 (cos (θ) +

(

1

2
−

3

4r∗
−

1

8r∗3

)

P1(cos (θ))

(1.23)
Imposing the boundary condition Θ1 = 0 at r∗ = 0 (1.13), we obtain,

A0 + B0 = 0

A1 + B1 = (3/8) (1.24)
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The boundary condition Θ1 = 0 at r∗ → ∞ (1.14) requires that

A1 = 0 (1.25)

since A1 multiplies a term that increases proportional to r∗ in the limit
r∗ → ∞. It would also appear that the boundary condition 1.14 also requires
that A0 = 0, but that turns out to not be the case, for reasons that will
become clear shortly. Therefore, the final expression for the temperature
field correct to O(Pe), Θ = Θ0 + PeΘ1, is,

Θ =
1

r∗
+ Pe

[

B0

(

1

r∗
− 1

)

+
(

1

2
−

3

4r∗
+

3

8r∗2
−

1

8r∗3

)

P1(cos (θ))
]

(1.26)

It should by now have become apparent that when we try to apply the
boundary conditions 1.14 at r∗ → ∞, we find that there is a constant term
on the right side, (1/2)P1(cos (θ)), which cannot be matched with any of
the other terms. Therefore, it is not possible to satisfy all the boundary
conditions simultaneously. This signifies that there is something wrong with
the original approach to the outer problem in the limit r∗ → ∞.

The origin of the problem can be explained as follows. We once again
examine the left and right sides of the conservation equation 1.3 in the limit
r∗ → ∞. On the left side the velocity u∗

r tends to a constant in the limit r∗ →
∞, while the gradient of the leading order solution for the temperature scales
as (1/r∗2). On the right side, the Laplacian of the leading order temperature
scales as (1/r∗3). Therefore, the ratio of the convective and diffusive terms
scales as (Per∗). Even when the Peclet number is small, if we go to sufficiently
large distances such that r∗ ∼ (1/Pe), it is clear that the convective term
becomes larger than the diffusive term, and can no longer be neglected while
calculating the outer solution. While the leading solution 1.16 is valid for
r∗ ≪ (1/Pe), it is not valid for r∗ ∼ (1/Pe), and it is necessary to incorporate
the convective term in this region to obtain a valid leading order solution.
This is done by rescaling the radial coordinate as r† = Per∗, so that the
convective and diffusive terms are of equal magnitude in this region. We first
re-express the velocity components in terms of the coordinate r†,

u∗
r =

[

1 −
3

2

(

Pe

r†

)

+
1

2

(

Pe

r†

)3
]

cos (θ)

≃ cos (θ) (1.27)
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uθ = −

[

1 −
3

4

(

Pe

r†

)

−
1

4

(

Pe

r†

)3
]

sin (θ)

≃ − sin (θ) (1.28)

In the expressions for the velocity, we have retained only the leading order
terms in an expansion in the small parameter Pe. This is inserted into the
conservation equation 1.3, to obtain,

cos (θ)
∂Θ†

0

∂r†
− sin (θ)

1

r†
∂Θ†

0

∂θ
= ∇

†2Θ†
0 (1.29)

where ∇† = Pe∇∗, and we have denoted the solution Θ†
0 with a superscript

† in order to indicate that this is the leading order solution for r† ∼ 1.
To solve the above equation 1.30, it is convenient to introduce a transfor-

mation
Θ†

0 = exp (r† cos (θ)/2)Φ(r†, θ) (1.30)

Substituting equation 1.31 in equation 1.30, we obtain,

∇
†2Φ −

1

4
Φ = 0 (1.31)

The solution of the above equation can be simplified by anticipating the
matching condition to be satisfied in the limit r† ≪ 1 and r∗ ≫ 1. In this
region, the inner solution Θ0 is proportional to (1/r∗) and is spherically sym-
metric. The outer solution, Θ†

0 = Φ exp (r† cos (θ)/2), is just proportional to
Φ for r† ≪ 1. Therefore, if the outer solution is to match with the spheri-
cally symmetric inner solution, we require that Φ should also be spherically
symmetric. With this, the equation for Φ reduces to,

1

r†2
d

dr†

(

r†2
dΦ

dr†

)

−
1

4
Φ = 0 (1.32)

The solution for this, which satisfies the boundary condition that the tem-
perature goes to zero as r† → ∞, is

Φ = A† exp (−r†/2)

r†
(1.33)

Therefore, the final solution for the temperature field in the outer region is
of the form,

Θ†
0 = A† exp (−(r†/2)(1 − cos (θ)))

r†
(1.34)
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The first correction to the temperature field, Θ†
1, the region r† ∼ 1, can

be determined in a manner similar to that carried out previously to obtain
equation 1.20. However, the explicit form of the equation is not necessary in
the present analysis, and we only note that Θ†

1 has to be small compared to
Θ†

0 in the small Peclet number limit.
The constant A has to be determined by ‘asymptotic matching’ of the

two solutions 1.26 and 1.35 which were obtained in different domains. The
solution Θ0 = (1/r∗) (equation 1.26) for r∗ ∼ 1, which is equivalent to r† =
Pe−1r∗ ≪ 1. The solution Θ†

0 = (A/r†) exp (−(r†/2)(1 − cos (θ))) (equation
1.35) was obtained for r† ∼ 1, or r∗ = Per† ≫ 1. Since these are solutions
for the same temperature field obtained in different domains, consistency
requires that these exhibit the same behaviour in the intermediate regime
where, simultaneously, r† ≪ 1 and r∗ ≫ 1. Formally, this is carried out
by setting r ∼ RPe−α, where α is in the interval 0 < α < 1, so that r∗ =
(r/R) = Pe−α

≫ 1, and r† = (r/R)Pe = Pe1−α
≪ 1. We first examine the

solution equation 1.26 for Θ. The leading terms in the equation are the first
term on the right, which is proportional to Pe−α, and the contributions to
the second term which are independent of r∗, which are proportional to Pe.
Therefore, the leading approximation for Θ in the limit r∗ → ∞ is,

Θ =
R

r
− PeB0 +

Pe cos (θ)

2
(1.35)

Next, we examine equation 1.35 for Θ†
0 in the limit r† ≪ 1. The exponential

in equation 1.35 is expanded in a Taylor series to linear order in r†, and the
substitution r† = Pr(r/R) is used, to obtain,

Θ†
0 =

A†

Pe
Rr + A† (cos (θ) − 1)

2
(1.36)

Clearly, the largest contribution to Θ†
0 is due to the first term on the right

side of equation 1.37. Equating this with the first term on the right side of
equation 1.36 for Θ, we find that A† = Pe. Therefore, the equation for Θ†

0

becomes,

Θ†
0 = Pe

exp (−(r†/2)(1 − cos (θ)))

r†

≃
R

r
+ Pe

(cos (θ) − 1)

2
forr† ≪ 1 (1.37)
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The O(Pe) term in equation 1.37 is now amtched with the O(Pe) term in
equation 1.35 to determine the value of the constant B0. It can be easily
seen that the O(Pe) contributions to equations 1.35 and 1.37 are identical in
form for B0 = 1/2, and therefore the solution for Θ0 which matches with the
outer solution Θ†

0 is obtained by setting B0 = 1/2 in equation 1.26,

Θ =
1

r∗
+ Pe

[

1

2

(

1

r∗
− 1

)

+ P1(cos (θ))
(

1

2
−

3

4r∗
+

3

8r∗2
−

1

8r∗3

)]

(1.38)

The total heat flux from the sphere can now be calculated,

Q =
∫

S
dS

(

−K
dT

dr

∣

∣

∣

∣

∣

r=R

)

= −
K(T0 − T∞)

R

∫

S
dS

(

dΘ

dr∗

)∣

∣

∣

∣

∣

r∗=1

(1.39)

The integral over the spherical surface of the terms proportional to cos (θ)
on the right side of equation 1.38 are identically zero, and so the expression
for the heat flux reduces to,

Q = −
K(T0 − T∞)

R

∫

S
dS

(

−
1

r∗2
−

Pe

2r∗2

)∣

∣

∣

∣

r∗=1

= 4πK(T0 − T∞)R (1 + (Pe/2)) (1.40)

The Nesselt number can now be evaluated,

Nu =
2Q

(4πR2)(K(T0 − T∞)/R)

= 2(1 + Pe/2) (1.41)

The higher order terms in the expansion can also be calculated using
matched asymptotic expansions. The expression for the Nusselt number
that incorporates higher order corrections is,

Nu = 2
(

1 +
1

2
Pe +

1

2
Pe2 log (Pe) + 0.41465Pe2 +

1

4
Pe3 log (Pe) + O(Pe3)

)

(1.42)
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1.2 Streaming past an object of arbitrary shape:

In the case of streaming past an object of arbitrary shape, we would expect
the expansion for the Nusselt number, in the limit of small Peclet number,
to be of the form,

Nu = Nu0 + PeNu1 + . . . (1.43)

While it is necessary to determine the leading order contribution to the di-
mensionless heat flux, Nu0, by solving the heat conduction equation for the
specific shape under consideration, it can be shown that the first correction
Nu1 is related to the leading order dimensionless heat flux by

Nu1 =
1

4
Nu2

0 (1.44)

This is an example of diffusion dominated processes where results can be ob-
tained just from a knowledge of the ‘far field’ temperature distribution which
is only a function of the most slowly decaying component of the temperature
field, without a knowledge of the temperature distribution in the vicinity of
the object. We first examine some general features of the ‘far field’ solution,
and show how these can be used to obtain the first correction to the Nusselt
number.

A spherical coordinate system is used, as shown in figure 1.2, and the
scaled radial coordinate is defined as r∗ = (r/R), where R is now some
characteristic length of the object, which is assumed to be the radius of
the sphere circumscribing the object. It is easy to see that there are some
features of the solutions for streaming past a sphere which are easy to extend
to objects of arbitrary shape, in which the boundary condition for the scaled
temperature is Θ = 1 on the surface of the object, and Θ = 0 at a large
distance from the object. The conservation equations for the leading order
solution Θ0 and the first correction Θ1 are still given by equations 1.7 and
1.8. The boundary conditions in the limit r∗ → ∞, 1.12 and 1.14, remain
unchnaged, whereas the boundary conditions 1.11 and 1.13 are now applied
on the surface of the object,

Θ0 = 1 on S (1.45)

Θ1 = 0 on S (1.46)

where S is the equation of the surface of the object.
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Figure 1.2: Forced convection due to the streaming flow past an object of
arbitrary shape. R is the radius of the sphere circumscribing the object,
the velocity at a large distance from the sphere is U∞ in the z direction,
the temperature at the surface of the sphere is maintained at T0, while the
temperature of the fluid at a large distance from the sphere is T∞. The ‘far-
field’ calculations are done over a surface S∞ which is at a radius r ≫ R but
r ≪ Pe−1R as shown.
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In the absence of spherical symmetry, the solution for Θ0 obtained by
solving equation 1.7 is a linear combination of the spherical harmonics,

Θ0 =
∞
∑

n=0

n
∑

m=−n

Anmr−(n+1)Y m
n (θ, φ) (1.47)

where the coefficients Anm are suitably chosen to satisfy the boundary condi-
tions on the surface of the object S. However, rate at which energy is emitted
from the object depends only on the first term in the series. If we consider a
sphere circumscribing the object, the outward rate of transfer of energy from
this sphere is equal to that from the object, since there is no source of energy
in the fluid. Therefore, at any distance r from the center of the object, the
total energy conducted per unit time can therefore be calculated as,

Q =
∫

S
dS

(

−K
dT

dr

)

= −
K(T0 − T∞)

R

∫

S
dS

(

∂Θ

∂r

)

(1.48)

The leading contribution to the heat transmitted by the object, Q0, due to
the leading order solution for the temperature in the high Peclet number
limit, Θ0, is

Q0 =
K(T0 − T∞)

r2
(4πr2)A00

= 4πK(T0 − T∞)A00 (1.49)

The heat flux depends only on the first term in the expansion in equation
1.48, because the integral of all other terms over the surface of a sphere is
identically zero. The leading order contribution to the Nusselt number can
now be expressed in terms of A00,

Nu0 =
2Q0

S(K(T0 − T∞)/R)

=
2SA00

R
(1.50)

The expression 1.49 for the leading order temperature can be rewritten by
expressing A00 in terms of Nu0,

Θ0 =
Nu0R

2Sr
+

∞
∑

n=1

n
∑

m=−n

Anmr−(n+1)Y m
n (θ, φ) (1.51)
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The solution for Θ†
0 is also independent of the shape of the particle, since

it depends only on the temperature and velocity fields at a large distance
from the particle. The leading order approximation for the fluid velocity
in equation 1.29 is just the free stream velocity, u∗ = er cos (θ) + eθ sin (θ).
We did make the assumption, just after equation 1.31 that the function Φ
is spherically symmetric. However, this equation is valid for an object of
arbitrary shape, because the leading order solution for Θ†

0 is matched to the
term in the solution equation 1.16 for Θ0 which is proportional to (1/r∗),
and this term is spherically symmetric. Therefore, the leading order solution
Θ†

0 equation 1.34 is also valid for objects of arbitrary shape.
Next, we examine the derivation of Θ1 from equation 1.20. In this equa-

tion, if r∗ is sufficiently large compared to 1 (but small compared to Pe−1),
the fluid velocity can be approximated by the free-stream velocity at a large
distance from the object, u∗ = er cos (θ) − eθ sin (θ). Therefore, the leading
approximation for equation 1.20 in the limit 1 ≪ (r/R) ≪ Pe−1 is

1

r2

d

dr

(

r2dΘ1

dr

)

+
1

r2 sin (θ)

d

dθ

(

sin (θ)
dΘ1

dθ

)

= −
U∞Nu0S

2αRr2
cos (θ) (1.52)

This equation can be easily solved to obtain,

Θ1 =
(

A0 +
B0

r∗

)

+
U∞Nu0S

4αR
P1(cos (θ)) (1.53)

Note that the term (B0/r
∗) is small compared A0 in the limit r∗ ≫ 1. When

we match the above solution with the solution 1.34 in the limit r† ≪ 1, we
find that A0 = (−1/2). Therefore, the leading order solution for Θ1 is,

Θ1 =
U∞Nu0S

4αR
(P1(cos (θ)) − 1) (1.54)

The conservation equations 1.7 and 1.8 are rewritten as,

∇q0 = 0 (1.55)

∇q1 = −u∗.∇Θ0

(1.56)
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Note that the above equations 1.54 and 1.55 apply only for r† = (Per∗) ≪ 1,
since we have shown in the previous section that there is a correction due to
convective effects for r† ∼ 1. The Nusselt number can be calculated once the
equations for the flux are known,

Nu0 =
2Q0

S(K(T0 − T∞)/R)

=
2

S(K(T0 − T∞)/R)

∫

S
dSq0.n (1.57)

Nu1 =
2Q1

S(K(T0 − T∞)/R)

=
2

S(K(T0 − T∞)/R)

∫

S
dSq1.n (1.58)

where n is the unit normal to the surface.

Equation 1.55 for the first correction to the temperature field can be
rewritten, noting that ∇.u∗ = 0, to obtain

∇.(q1 + uΘ0) = 0 (1.59)

It is convenient to multiply 1.58 by Θ0, and rewrite the result in the form,

∇.
(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

= 0 (1.60)

Here, we have used the simplifiation

Θ0∇.q1 = ∇.(Θ0q1) − q1.∇Θ0

= ∇.(Θ0q1) − (∇Θ1).(∇Θ0)

= ∇.(Θ0q1) −∇.(Θ1∇Θ0) + Θ1∇
2Θ0

= ∇.(Θ0q1) −∇.(Θ1∇Θ0) (1.61)

The final equality follows from the leading order equation 1.54, since ∇Θ0 is
zero.

Next, we use the divergence theorem to express equation 1.59 as the
difference between two surface integrals, one at the surface of the object S,
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and the other at a surface S∞ which is at a large distance from the object
r∗ → ∞.
∫

S∞

dS∞

(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

.n∞−

∫

S
dS

(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

.n = 0

(1.62)
The integral over the surface of the object is considerably simplified, because
we know that Θ0 = 1, Θ1 = 0 and u = 0 on the surface of the object.
Therefore, the above equation reduces to,

∫

S∞

dS∞

(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

.n∞ −

∫

S
dSq1.n = 0 (1.63)

The last term on the left side of the above equation is the heat generated
by the object of arbitrary shape. Therefore, this term can be evaluated if
the other integrals over the surface S∞ at a large distance from the object
are known. Without loss of generality, we can assume that this surface is a
spherical surface, and the outward unit normal to this surface is in the radial
direction.

In order to evaluate the integrals in equation 1.62, it is necessary to have
expressions for Θ0 and Θ1 in the limit r∗ → ∞.

1. Consider the integral,

1

2

∫

S∞

dS∞Θ2
0u.n∞ (1.64)

The temperature Θ0 → (Nu0/2r∗) in the limit r∗ → 0∞ from equation
1.50, while the velocity u∗ → cos (θ)er+sin (θ)eθ. Since the unit normal
over the surface of a sphere is n = er, the above integral evaluated over
the surface S∞ is,

1

2

∫

S∞

dS∞Θ2
0u.n∞ =

∫

r∗2 sin (θ)dθdφ
(

Nu0

2r∗2

)

cos θ

= 0 (1.65)

2. The integral
∫

S∞

dS∞Θ0q1.n∞ (1.66)

is also zero in the limit r∗ → ∞. This is because the heat flux due
to the leading approximation for Θ1, equation 1.53, is zero, because
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the solution 1.53 is a constant. The next higher contribution to Θ1 is
proportional to (1/r∗), and the heat flux due to this is proportional
to (1/r∗2). The leading contribution to Θ0 is proportional to (1/r∗),
and therefore the integrand in equation 1.65 is proportional to (1/r∗3).
Since the surface area increases proportional to r∗2, the integral in
equation 1.65 decreases proportional to (1/r∗), and is zero in the limit
r∗ ≫ 1.

3. Finally, the integral
∫

S∞

dS∞Θ1q0.n∞ (1.67)

can be easily evaluated for the leading solutions equations 1.52 and
1.53. From equation 1.52, the leading order heat flux is given by,q0 =
−(K(T0 − T∞)/R)(Nu0S/2r2). Using this, we get

∫

S∞

dS∞Θ1q0.n∞ =
K(T0 − T∞)SNu0

2R

Nu0U∞S

4αR
(1.68)

Therefore, the final expression for the heat flux from the surface is,

Q1 =
∫

S
dSq1.n = (1.69)

The first correction to the Peclet number is, therefore,

1.2.1 Streaming past an object of arbitrary shape:

In the case of streaming past an object of arbitrary shape, we would expect
the expansion for the Nusselt number, in the limit of small Peclet number,
to be of the form,

Nu = Nu0 + PeNu1 + . . . (1.70)

While it is necessary to determine the leading order contribution to the di-
mensionless heat flux, Nu0, by solving the heat conduction equation for the
specific shape under consideration, it can be shown that the first correction
Nu1 is related to the leading order dimensionless heat flux by

Nu1 =
1

4
Nu2

0 (1.71)

This is an example of diffusion dominated processes where results can be ob-
tained just from a knowledge of the ‘far field’ temperature distribution which
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is only a function of the most slowly decaying component of the temperature
field, without a knowledge of the temperature distribution in the vicinity of
the object. The procedure is as follows.

The governing equation for the temperature field is given by equation ??,
while the boundary conditions, instead of ??, are

Θ = 1 on S

Θ → 0 forr∗ → ∞ (1.72)

where S is the surface of the object. The expansion for the temperature
field is given in equation ??, and the equations for the leading order and
first correction to the temperature field, written in terms of the heat fluxes
q0 = −∇∗Θ0 and q1 = −∇∗Θ1, are

∇
∗q0 = 0

Θ0 = 1 on S (1.73)

∇
∗q1 = −u∗.∇Θ0

Θ1 = 0 on S (1.74)

It should be noted that equation ?? applies only for r† = (Per∗) ≪ 1,
since we have shown in the previous section that there is a correction due to
convective effects for r† ∼ 1. The Nusselt number can be calculated once the
equations for the flux are known,

Nu0 =
2R

KS

∫

S
dSq0.n

Nu1 =
2R

KS

∫

S
dSq1.n (1.75)

where n is the unit normal to the surface.
Equation ?? for the first correction to the temperature field can be rewrit-

ten, noting that ∇.u∗ = 0, to obtain

∇
∗.(q1 + u∗Θ0) = 0 (1.76)

It is convenient to multiply ?? by Θ0, and rewrite the result in the form,

∇
∗.
(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

= 0 (1.77)
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Here, we have used the simplifiation

Θ0∇
∗.q1 = ∇

∗.(Θ0q1) − q1.∇
∗Θ0

= ∇
∗.(Θ0q1) − (∇∗Θ1).(∇

∗Θ0)

= ∇
∗.(Θ0q1) −∇

∗.(Θ1∇
∗Θ0) + Θ1∇

∗2Θ0

= ∇
∗.(Θ0q1) −∇

∗.(Θ1∇
∗Θ0) (1.78)

The final equality follows from the leading order equation ??, since ∇∗Θ0 is
zero.

Next, we use the divergence theorem to express equation ?? as the dif-
ference between two surface integrals, one at the surface of the object S,
and the other at a surface S∞ which is at a large distance from the object
r∗ → ∞.
∫

S∞

dS∞

(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

.n∞−

∫

S
dS

(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

.n = 0

(1.79)
The integral over the surface of the object is considerably simplified, because
we know that Θ0 = 1, Θ1 = 0 and u = 0 on the surface of the object.
Therefore, the above equation reduces to,

∫

S∞

dS∞

(

Θ0q1 − Θ1q0 +
1

2
Θ2

0u

)

.n∞ −

∫

S
dSq1.n = 0 (1.80)

The last term on the left side of the above equation is the heat generated by
the object of arbitrary shape. Therefore, this term can be evaluated if the
other integrals over the surface S∞ at a large distance from the object are
known.

In order to evaluate the integrals in equation ??, it is necessary to have
expressions for Θ0 and Θ1 in the limit r∗ → ∞. First, we note that while
determining the outer solution for the temperature field for r† = (Per∗) ∼ 1
from equation ?? to provide the solution ??, we did not solve for any specific
shape of the particle. We only used the fact that in the limit r† ∼ 1, the
fluid velocity was given by the free stream velocity u∗ = er cos (θ)−eθ sin (θ).
This approximation for the velocity field is valid independent of the shape of
the object, and therefore the solution for the leading order temperature in
this region is also valid independent of the shape of the object, subject only
to the condition that Θ0 = 1 on the surface of the object.

The first correction to the temperature field Θ1 was obtained by matching
the solution of equation ?? with the outer solution. In this solution, the terms
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which are independent of r∗ were obtained by matching the solution for Θ1

with the leading order outer solutions in the limit r∗ → ∞. Therefore, these
solutions are also independent of the shape of the object in the limit r∗ → ∞,
and are applicable for any shape subject to the condition Θ0 = 1 and Θ1 = 0
on the surface of the object. Therefore, the solution for the first correction
to the temperature field, in the limit r∗ ≫ 1, are

Θ1 =
1

2
(cos (θ) − 1) (1.81)

We next turn to the evaluation of the integrals in equation ??.

1. Consider the integral,

1

2

∫

S∞

dS∞Θ2
0u.n∞ (1.82)

The temperature Θ0 → C/r∗) in the limit r∗ → 0∞, where C is a
constant, while the velocity u∗ → cos (θ)er + sin (θ)eθ. Since the unit
normal over the surface of a sphere is n = er, the above integral eval-
uated over the surface S∞ is,

1

2

∫

S∞

dS∞Θ2
0u.n∞ =

∫

r∗2 sin (θ)dθdφ
(

C

r∗2

)

cos θ

= 0 (1.83)

2. The integral
∫

S∞

dS∞Θ0q1.n∞ (1.84)

can be evaluated using the approximation Θ0 = (1/r∗) and q1 =
∇∗Θ1 = (− sin (θ)/r∗)eθ in the limit r∗ → ∞. It is easy to see that the
above integral is identically zero, since the leading approximation for
q1 is orthogonal to the unit normal to the surface, which is along the
radial direction.

3. Finally, the integral
∫

S∞

dS∞Θ1q0.n∞ (1.85)

can be easily evaluated for q0 = (1/r∗2) and Θ1 = (cos (θ) − 1)/2.
Using this, we get

∫

S∞

dS∞Θ1q0.n∞ = −1 (1.86)
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Therefore, the final expression for the heat flux from the surface is,
∫

S
dSq1.n = 1 (1.87)

1.2.2 Creeping flow past flat plate:

We start with the simplest geometry which could be considered, which is the
flow part a flat plate. The configuration consists of a flat plate in the x − z
plane, bounding a fluid which occupies the half-space y > 0, as shown in
figure ??. The plate has a hot surface with temperature T0 in the interval
0 < x < L, while the rest of the plate is at the temperature T∞ < T0. The
velocity of the fluid in the x direction is given by ux = γ̇y, where γ̇ is the
strain rate, and the fluid velocity at the surface of the plate is zero. The
fluid upstream of the plate is at a temperature T∞, and the surface of the
plate is maintained at T = T∞ for x < 0, while the surface of the plate for
x > 0 is heated to T = T0. The fluid temperature at a large distance from
the plate, y → ∞, is given by T = T∞. We would like to find the heat flux
from the surface of the plate in the limit where convective effects dominate
over diffusive effects. The Peclet number for this case can be defined as
Pe = (UL/α) = (γ̇L2/α), since the appropriate velocity scale U = γ̇L, and
we are interested in the limit of high Peclet number, Pe ≫ 1.

We first define the scaled temperature Θ = (T − T∞)/(T0 − T∞). The
convection-diffusion equation for Θ in the present geometry is,

γ̇y
∂Θ

∂x
= α

(

∂2Θ

∂x2
+

∂2Θ

∂y2

)

(1.88)

The boundary conditions are,

Θ = 0 aty = 0 x < 0

Θ = 1 aty = 0 0 < x < L

Θ = 0 fory → ∞ (1.89)

The natural length scale for the x coordinate is the length of the plate,
L, and so we define x∗ = (x/L). The length scale for the y coordinate is
not so obvious, and so we define the scaled y coordinate as (y∗ = (y/l)),
where l is a length scale for the variation of the temperature perpendicular
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to the surface, which will be chosen so that there is a balance between the
convective and diffusive terms. This is inserted into the convection-diffusion
equation to obtain, and the result is multiplied by (l2/α) to make all terms
dimensionless, we obtain,

(

γ̇l3

αL

∂Θ

∂x∗

)

=

(

l2

L2

∂Θ

∂x∗2
+

∂Θ

∂y∗2

)

(1.90)

The factor (γ̇l3/αL) on the left side of the above equation can be recast as
Pe(l/L)3, since the Peclet number for this problem is Pe = (γ̇L2/α). There
is a balance between the convection term on the left and the second diffusion
term on the right only if Pe(l/L)3 ∼ 1, or l ∼ Pe−1/3L. In this case, the factor
(l2/L2) multiplying the first term on the right is Pe−2/3, which is small in the
limit Pe ≫ 1. Therefore, a balance is achieved between the term on the left
and the second convective term on the right. Without loss of generality, we
set l = Pe−1/3L, and the convection-diffusion equation ?? becomes,

(

y∗ ∂Θ

∂x∗

)

=

(

Pe−2/3 ∂Θ

∂x∗2
+

∂Θ

∂y∗2

)

≃
∂Θ

∂y∗2
(1.91)

Equation ?? can be solved using an appropriate method, such as sepa-
ration of variables. However, an important simplification can be made if we
recognise that when convective effects are dominant, the temperature at a
location is determined primarily by the convection of fluid from regions up-
stream of this location, and is not affected by the temperature distribution
downstream of this location. For example, at a point (x, y) for which the x
coordinate is in the heated region (0 < x < L), the temperature will depend
only on the distance of x from the beginning of the heated plate and the dis-
tance y from the surface, but not on the total length L of the heated region.
Therefore, the temperature distribution for (0 < x < L) and y < 0 does not
depend on the total distance of the heated region L. For this region, we solve
the partial differential equation,

γ̇y
∂Θ

∂x
= α

(

∂2Θ

∂y2

)

(1.92)

In the above equation, diffusion in the x direction along the surface has been
neglected, since we have already established in equation ?? that the diffusion
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in the x direction is small compared to that in the cross-stream y direction.
The boundary conditions are,

Θ = 0 aty = 0 x < 0

Θ = 1 aty = 0 x > 0

Θ = 0 fory → ∞ (1.93)

Equation ?? can be solved using the similarity solution technique, since
there are, now, no length scales in the problem. We define a similarity
variable

η = (y/g(x)), (1.94)

where g(x) is defined in such a way that after transforming the independent
variables from (x, y) to η, the resulting equation is a function of η alone. The
physical motivation for introducing this transformation is the same as that
used for rescaling the y coordinate in the high Peclet number limit in equation
??. In the absence of diffusion, we would expect the temperature field to
be a constant along fluid streamlines, which are straight lines in the flow
direction in the present configuration. However, the presence of diffusion,
there is a small distance shown to be of O(Pe−1/3L) from the surface, where
the temperature is modified due to diffusive effects, where Pe = (γ̇L2/α).
Further, we assumed in the previous paragraph, that the boundary layer
solution does not depend on the total distance L of the heated plate, but
only on the upstream distance x from the observation point. Therefore, we
would expect the distance of propagation, g(x) to scale as (Pe−1/3

x x), where
Pex = (γ̇x2/α). Further calculations show that this is, indeed, the case.

The spatial derivatives of the temperature field, expressed in terms of η,
are,

∂Θ

∂y
=

1

g(x)

dΘ

dη

∂2Θ

∂y2
=

1

g(x)2

d2Θ

dη2

∂Θ

∂x
= −

y

g(x)2

dg

dx

dΘ

dη
(1.95)

This is inserted into the convection-diffusion equation, ??, to obtain,

−γ̇y
dg

dx

y

g(x)2

dΘ

dη
=

α

g(x)2

d2Θ

dη2
(1.96)
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The boundary conditions ??, expressed in terms of the similarity variable η,
are,

Θ = 0 aty = 0 x = 0 → η → ∞0

Θ = 1 aty = 0 x > 0 → η = 0

Θ = 0 fory → ∞ → η → ∞ (1.97)

We express y in terms of g(x) and η, and multiply throughout by (g(x)2/α),
to obtain,

−

(

γ̇g(x)2

α

dg

dx

)

η2dΘ

dη
=

d2Θ

dη2
(1.98)

In the above equation, the left side is a function both of x and η, whereas
the right side is only a function of η. A similarity solution can be obtained
only if the function in brackets on the left side of equation ?? is independent
of x,

γ̇g(x)2

α

dg

dx
= Constant (1.99)

The exact value of the constant in the above equation does not change the
nature of the solution, but only serves to alter the scaling of the y coordinate
in terms of the similarity variable η. Therefore, without loss of generality,
we can set the value of the constant equal to 1, and solve the differential
equation ?? to obtain,

g(x) = ((xα/γ̇) + C)1/3 (1.100)

where C is a constant of integration. The constant of integration can be
determined from the physical expectation that g(x) is the distance over which
energy diffuses in the y coordinate, as discussed previously. Since the surface
is heated only in the domain x > 0, it is expected that g(x), the distance for
the diffusion of energy in the y coordinate, is identically zero at x = 0, and
the appropriate boundary condition is,

g(x) = 0 atx = 0 (1.101)

Thus, the constant C = 0 in equation ??, and the function g(x) is given by,

g(x) =

(

xα

γ̇

)1/3
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=

(

α

x2γ̇

)1/3

x

= Pe−1/3
x x (1.102)

Thus, the boundary layer thickness g(x) = Pe−1/3
x x, as anticipated earlier,

where Pex = (x2γ̇/α) is the Peclet number based on the downstream distance
from the beginning of the heated surface.

Equation ?? for the temperature field can be easily solved, to obtain,

Θ = C1

∫ η

0
dη′ exp (−η′3/3) + C2 (1.103)

wher C1 and C2 are constants of integration. The solutions for these two
constants, by application of the boundary conditions ??, are,

C1 = −
1

∫∞
0 dη′ exp (−η′3/3)

C2 = 1 (1.104)

Thus, the final solution for the temperature field is,

Θ = 1 −

∫ η
0 dη′ exp (−η′3/3)
∫∞
0 dη′ exp (−η′3/3)

(1.105)

The heat flux from the surface in the y direction, qy, can now be calcu-
lated,

qy = −K
∂T

∂y

∣

∣

∣

∣

∣

y=0

= −
K(T0 − T∞)

g(x)

dΘ

dη

∣

∣

∣

∣

∣

η=0

=
K(T0 − T∞)

(xα/γ̇)1/3

1
∫∞
0 dη′ exp (−η′3/3)

=
K(T0 − T∞)

(xα/γ̇)1/3

Γ(1/3)

32/3
(1.106)

The total heat transferred from a heated surface of length L, per unit length
in the z direction, Q, can be determined by integrating the heat flux per unit
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length over the x coordinate,

Q =
∫ L

0
dxqy

=
K(T0 − T∞)L2/3

(α/γ̇)1/3

Γ(1/3)31/3

2

= K(T0 − T∞)Pe1/3 Γ(1/3)31/3

2
(1.107)

where Pe = (γ̇L2/α). From this expression, the Nusselt number can be
calculated as,

Nu =
2Q

K(T0 − T∞)
= 31/3Γ(1/3)Pe1/3 (1.108)

1.2.3 Diffusion from a solid particle

In laminar flow, the velocity field around a particle is given by,

ur = U cos (θ)
(

1 −
3

2r∗
+

1

2r∗3

)

(1.109)

uθ = −U sin (θ)
(

1 −
3

4r∗
−

1

rr∗3

)

(1.110)

We define the ‘inner coordinate’ y∗ = (r − R)/R = ((1 − r∗)/ǫ), so that
y∗ ∼ 1 in the inner region where (1 − r∗) ∼ ǫ. With this rescaling, we can
express the equations for the velocity field in the inner region as,

u∗
r =

(

1 −
3

2(1 + ǫy∗)
+

1

2(1 + ǫy∗)3

)

cos (θ) (1.111)

u∗
θ = −

(

1 −
3

4(1 + ǫy∗)
−

1

4(1 + ǫy∗)3

)

sin (θ) (1.112)

Since the parameter ǫ is small and we are interested in the region y∗ ∼ 1, the
expressions for the components of the velocity, ?? and ??, can be simplified
by retaining just the leading order terms in an expansion in ǫ,

u∗
r =

3

2
ǫ2y∗2 cos (θ) (1.113)
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u∗
θ = −

3

2
ǫy∗ sin (θ) (1.114)

These expressions for the components of the velocity are inserted into the
convection-diffusion equation, ??, and the radial coordinate is written in
terms of the y∗ using the transformation r∗ = (1 + ǫy∗), to obtain,

Pe

(

3

2
ǫ2y∗2 cos (θ)

1

ǫ

∂Θ

∂y∗
−

3

2
y∗ǫ sin (θ)

1

(1 + ǫy∗)

∂Θ

∂θ

)

=
1

(1 + ǫy∗)2

1

ǫ

∂

∂y∗

(

(1 + ǫy∗)2 1

ǫ

∂Θ

∂y∗

)

+
1

(1 + ǫy∗)2 sin (θ)

∂

∂θ

(

sin (θ)
∂Θ

∂θ

)

(1.115)

It is apparent that the term on the left side is proportional to Peǫ in the limit
ǫ → 0, while the largest term on the right, which is the first term on the right,
is proportional to (1/ǫ2). A balance is achieved only for ǫ ∼ Pe−1/3, so that
the thickness of the boundary layer decreases proportional to RPe−1/3 in the
limit Pe ≫ 1. If we substitute ǫ = Pe−1/3 in equation ??, use the asymptotic
expansion ?? for Θ0, and retain only the largest terms in the expansion, we
get,

3

2
y∗2 cos (θ)

∂Θ0

∂y∗
−

3

2
y∗ sin (θ)

∂Θ0

∂θ
=

∂2Θ0

y∗2
(1.116)

This is the ‘boundary layer’ equation for the thermal boundary layer at the
surface of the sphere.

In order to solve the equation, we note that there are boundary conditions
on the surface of the sphere (y∗ = 0) and in the limit y∗ → ∞. Since there
is no length scale in the problem,we can examine a solution in terms of a
similarity variable, η,

Θ0 = Θ0(η) (1.117)

where the similarity variable is defined as,

η = (y∗/h(cos (θ)) (1.118)

The derivatives of Θ0 can then be expressed only in terms of the variable η,

∂Θ0

∂y∗
=

1

h

∂Θ0

∂η
(1.119)
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∂2Θ0

∂y∗2
=

1

h2

∂2Θ0

∂η2
(1.120)

∂Θ0

∂θ
= −

y∗

h2

dh

dθ

∂Θ0

∂η
(1.121)

Substituting this into the convection-diffusion equation ??, we get,

d2Θ0

dη2
−

3

2
η2dΘ0

dη

(

h3 cos (θ) + sin (θ)h2dh

dθ

)

= 0 (1.122)

The above equation has a similarity solution only is the term in the braces,
(h3 + sin (θ)2h2(dh/dθ)), is a constant. The numerical value of this constant
can be chosen arbitrarily, but this constant has to be negative, so that the
solution for the temperature is finite in the limit η → ∞. The simplest choice
is,

(

sin (θ)h2dh

dθ
+ h3 cos (θ)

)

= −1 (1.123)

This equation can be solved by first obtaining the homogeneous solution hh,
which is the solution of the above equation with the right side set equal
to zero, and then using the product rule to find the general solution. It
can easily be verified that the solution of the homogeneous equation, upto a
constant prefactor, is,

hh =

The constant C has to be determined from the boundary condition in
the θ coordinate. This constant is determined from the condition at θ = Π,
which is the upstream stagnation point on the sphere. At this point, the
derivative of h with respect to θ is well defined, along all approaches, only if
(dh/dθ) = 0. If we apply this condition, we find that the constant C = 0, so
that the solution for h(θ) is,

h(θ) =
1

sin (θ)

(

Pi − 2θ + sin (2θ)

2

)1/3

(1.125)

With this substitution, the equation ?? reduces to,

d2Θ0

dη2
+

3η2

2

dΘ0

dη
= 0 (1.126)
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This equation can be integrated once by parts to obtain,

dΘ0

dt
= A exp (−η3/2) (1.127)

After integrating a second time, we obtain the most general solution,

Θ0 = A
∫ η

0
dη′ exp (−η′3/2) + B (1.128)

The boundary conditions require that in the limit y∗ → ∞, Θ0 = 0, while
Θ0 = 1 at y∗ = 0. With these, the general solution for the temperature field
becomes,

Θ0 = 1 −

∫ η
0 dη′ exp (−η′3/2)
∫∞
0 dη′ exp (−η′3/2)

(1.129)

The radial heat flux at the surface is given by,

qr = −
K

R

dΘ0

dr∗

∣

∣

∣

∣

∣

r∗=1

= −
KPe1/3

R

dΘ0

dy∗

∣

∣

∣

∣

∣

y∗=0

−
KΠ1/3

Rh(θ)

dT0

dη

∣

∣

∣

∣

∣

η=0

= −
KPe1/3

Rh(θ)

1
∫∞
0 dη′ exp (−η′3/2)

(1.130)

This flux is a function of position θ on the surface, and so the total heat
transferred from the surface to the fluid is given by,

Q = −
KPe1/3

R

1
∫∞
0 dη′ exp (−η′3)

R2
∫ 2π

0
dφ
∫ π

0
sin (θ)dθ

1

h(θ)
(1.131)

It is necessary to evaluate the two integrals in the above expression numeri-
cally, and the numerical expressions for the integrals are,

1
∫∞
0 dη′ exp (−η′3/2)

= 21/3Γ
(

4

3

)

= 0.8930 (1.132)

∫ π

0
sin (θ)dθ

1

h(θ)
= 1.11546 (1.133)
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Inserting the numerical values of the above integrals, we find the final ex-
pression for the total heat transferred from the particle is

Q = 1.2491(2πRKPe1/3)(T0 − T∞) (1.134)

The Nusselt number is obtained by dividing this by

Nu =
2Q

(4πR2K(T0 − T∞)/R)

= 1.2491Pe1/3 (1.135)

1.2.4 General considerations:

In this section, we examine the extent to which the previous results obtained
for spherical particles and bubbles can be generalised to arbitrary shapes of
particles, drops and bubbles.

First consider the case of the fluid flow past a solid particle in which the
velocity field satisfies the no-slip condition at the surface. The characteristic
length scale of the particle is L, and the fluid velocity at a large distance
from the particle is U∞ in the x direction, as shown in figure ??. We know,
from the previous discussions, that the concentration or temperature varia-
tions are restricted to a boundary layer of thickness ǫL at the surface, where
ǫ is a small parameter to be determined from a balance between convection
and diffusion. The variation of the fluid velocity field very near the surface
can be inferred as follows. Consider a coordinate system at a point on the
surface, where the coordinate normal to the surface is ζ and the coordinate
tangential to the surface is ξ, as shown in figure ??. The components of
the mean velocity are required, by the no-slip condition, to be equal to zero
at the surface ζ = 0. Therefore, very near the surface for ζ ≪ L, it is ex-
pected that the two components of the velocity are linear in the coordinate
ζ , i. e., uξ = U∞A(ξ)(ζ/L) and uζ = U∞B(ξ)(ζ/L), where A(ξ) and B(ξ)
are dimensionless functions of the tangential coordinate ξ. However, for an
incompressible fluid, this velocity field does not satisfy the mass conserva-
tion condition for an incompressible fluid. The mass conservation condition,
∇.u = 0, written in terms of ξ and ζ near the surface is,

∂uξ

∂ξ
+

∂uζ

∂ζ
= 0 (1.136)
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If we assume uξ = A(ξ)ζ , the above equation requires that uζ = (−(dA(ξ)/dξ)ζ2/2).
Therefore, the fluid velocity in a thin layer near the surface can be approxi-
mated as,

uξ = U∞A(ξ)
ζ

L

uζ = −U∞

dA(ξ)

dξ

ζ2

2L2
(1.137)

The exact form of the function A(ξ) depends on the details of the particle
shape.

This velocity field is inserted into the convection-diffusion equation, to
obtain,

U∞

(

A(ξ)
ζ

L

∂Θ

∂ξ
−

ζ2

2L2
A′(ξ)

∂Θ

∂ζ

)

= α

(

∂2Θ

∂ξ2
+

∂2Θ

∂η2

)

(1.138)

where A′(ξ) = (dA/dξ). It is convenient to define a scaled tangential coor-
dinate ξ∗ = (ξ/L), since L is the length scale for the variation of tempera-
ture in the flow direction. In the cross-stream direction, we postulate that
there is a much smaller length ǫL over which convection and diffusion are
of equal magnitude in the high Peclet number limit, where ǫ ≪ 1. Con-
sequently, the dimensionless distance in normal to the surface is defined as
ζ∗ = (ζ/ǫL). Inserting these into the convection diffusion equation, and
multiplying throughout by ǫ2L2, we get,

Peǫ3

(

A(ξ∗)ζ∗ ∂Θ

∂ξ∗
−

ζ∗2

2
A′(ξ)

∂Θ

∂ζ∗

)

=

(

ǫ2 ∂2Θ

∂ξ∗2
+

∂2Θ

∂ζ∗2

)

(1.139)

The above equation indicates that there is a balance between convection and
diffusion only for ǫ ∼ Pe−1/3, and ζ∗ = (Pe1/3ζ/L). Thus, the boundary layer
thickness is O(Pe−1/3) smaller than the particle length L for the general case
of the flow past a solid surface. Without loss of generality, we set ǫ = Pe−1/3,
and neglect the first term on the right side of equation ?? since it is O(ǫ2),
to obtain the boundary layer equation,

(

A(ξ∗)ζ∗ ∂Θ

∂ξ∗
−

ζ∗2

2
A′(ξ)

∂Θ

∂ζ∗

)

=
∂2Θ

∂ζ∗2
(1.140)

To proceed further, we examine the possibility of a similarity solution,
using the substitution,

η =
ζ∗

h(ξ∗)
(1.141)
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The derivatives of Θ with respect to ξ∗ and ζ∗ can be expressed in terms of
η using the chain rule,

∂Θ

∂ζ∗
=

1

h

∂Θ

∂η

∂2Θ

∂ζ∗2
=

1

h2

∂2Θ

∂η2

∂Θ

∂ξ
= −

ζ∗

h2

dh

dξ

∂Θ

∂η
(1.142)

This is inserted into equation ??, and the left and right sides are multiplied
by h2, to obtain,

∂2Θ

∂η2
+ η2∂Θ

∂η

(

A(ξ)h(ξ)2dh

dξ
+

h(xi)3

2

dA

dξ

)

= 0 (1.143)

It is apparent that the above equation admits a similarity solution only if

(

A(ξ)h(ξ)2dh

dξ
+

h(xi)3

2

dA

dξ

)

= Constant (1.144)

The above equation is can be rewritten as,

1.3 Creeping flow past flat plate:

We start with the simplest geometry which could be considered, which is the
flow part a flat plate. The configuration consists of a flat plate in the x − z
plane, bounding a fluid which occupies the half-space y > 0, as shown in
figure 1.3. The plate has a hot surface with temperature T0 in the interval
0 < x < L, while the rest of the plate is at the temperature T∞ < T0. The
velocity of the fluid in the x direction is given by ux = γ̇y, where γ̇ is the
strain rate, and the fluid velocity at the surface of the plate is zero. The
fluid upstream of the plate is at a temperature T∞, and the surface of the
plate is maintained at T = T∞ for x < 0, while the surface of the plate for
x > 0 is heated to T = T0. The fluid temperature at a large distance from
the plate, y → ∞, is given by T = T∞. We would like to find the heat flux
from the surface of the plate in the limit where convective effects dominate
over diffusive effects. The Peclet number for this case can be defined as
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Figure 1.3: Forced convection due to the streaming flow past a heated surface
of length L in the high Peclet number limit. The fluid velocity field is given
by ux = γ̇y and uy = 0, the temperature on the heated section of the surface
is maintained at T0, and the temperature at a large distance from the surface
is T∞.
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Pe = (UL/α) = (γ̇L2/α), since the appropriate velocity scale U = γ̇L, and
we are interested in the limit of high Peclet number, Pe ≫ 1.

We first define the scaled temperature Θ = (T − T∞)/(T0 − T∞). The
convection-diffusion equation for Θ in the present geometry is,

u.∇Θ = α∇2Θ (1.145)

The boundary conditions are,

Θ = 0 aty = 0 x < 0

Θ = 1 aty = 0 0 < x < L

Θ = 0 fory → ∞ (1.146)

It is natural to scale all lengths by the length of the heated section of
the flat plate, L, and velocities by γ̇L, in the convection-diffusion equation
1.145. After scaling, we divide the equation by (α/L2), to obtain the scaled
convection-diffusion euation which can be written in component form as,

Pey∗ ∂Θ

∂x∗
=

∂2Θ

∂x∗2
+

∂2Θ

∂y∗2
(1.147)

where the Peclet number is given by Pe = (γ̇L2/α). We are considering
the limit of large Peclet number, Pe ≫ 1. In this limit, we would naively
expect that the right side of equation 1.147 can be neglected in comparison
to the left side, and the leading order convection-diffusion equation can be
approximated as,

y∗ ∂Θ

∂x∗
= 0 (1.148)

This equation simply states that Θ is independent of the x∗ coordinate, and
Θ is only a function of y∗. However, we know that Θ = 0 far upstream
of the heated surface as x∗ → −∞. Therefore, solution for equation 1.148
is, simply, Θ = 0 everywhere in the flow. However, note that this solution
does not satisfy the boundary condition at 1.146 at y∗ = 0. So clearly, the
solution of equation 1.148 is not a valid leading order solution for the original
convection-diffusion equation 1.145.

The origin of the inconsistency can be traced to the fact that when we
neglected the diffusion term on the right side in equation 1.147, we reduced
the governing equation from a second-order partial differential equation to a
first-order partial differential equation 1.148. It was necessary to specify two
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boundary conditions for the well-posedness of the original second-order par-
tial differential equation 1.147, but it is possible to specify only one boundary
condition for the first order differential equation 1.148. Physically, the in-
consistency arises because we have assumed that the characteristic length in
the cross-stream y∗ direction is also L. In the high Peclet number limit, the
rate of transport due to convection downstream is rapid compared to the rate
of diffusion from the surface. Since material diffusing from the surface gets
convected rapidly downstream, we would expect that the length to which the
material diffuses perpendicular to the surface is small compared to the down-
stream distance. Therefore, we should use a much smaller distance l to scale
the y coordinate. The length l is determined from the consistency condition
that diffusion in the y direction is comparable to convection in the equation
1.147, so that the equation remains a second-order differential equation.

We define the scaled y coordinate as (y∗ = (y/l)), where l is a length scale
for the variation of the temperature perpendicular to the surface, which will
be chosen so that there is a balance between the convective and diffusive
terms. This is inserted into the convection-diffusion equation to obtain, and
the result is multiplied by (l2/α) to make all terms dimensionless, we obtain,

(

γ̇l3

αL

∂Θ

∂x∗

)

=

(

l2

L2

∂Θ

∂x∗2
+

∂Θ

∂y∗2

)

(1.149)

The factor (γ̇l3/αL) on the left side of the above equation can be recast as
Pe(l/L)3, since the Peclet number for this problem is Pe = (γ̇L2/α). There
is a balance between the convection term on the left and the second diffusion
term on the right only if Pe(l/L)3 ∼ 1, or l ∼ Pe−1/3L. In this case, the factor
(l2/L2) multiplying the first term on the right is Pe−2/3, which is small in the
limit Pe ≫ 1. Therefore, a balance is achieved between the term on the left
and the second convective term on the right. Without loss of generality, we
set l = Pe−1/3L, and the convection-diffusion equation 1.149 becomes,

(

y∗ ∂Θ

∂x∗

)

=

(

Pe−2/3 ∂Θ

∂x∗2
+

∂Θ

∂y∗2

)

≃
∂Θ

∂y∗2
(1.150)

Equation 1.150 can be solved using an appropriate method, such as sep-
aration of variables. However, an important simplification can be made if
we recognise that when convective effects are dominant, the temperature at
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a location is determined primarily by the convection of fluid from regions
upstream of this location, and is not affected by the temperature distribu-
tion downstream of this location. For example, at a point (x, y) for which
the x coordinate is in the heated region (0 < x < L), the temperature will
depend only on the distance of x from the beginning of the heated plate and
the distance y from the surface, but not on the total length L of the heated
region. Therefore, the temperature distribution for (0 < x < L) and y < 0
does not depend on the total distance of the heated region L. For this region,
we solve the partial differential equation,

γ̇y
∂Θ

∂x
= α

(

∂2Θ

∂y2

)

(1.151)

In the above equation, diffusion in the x direction along the surface has
been neglected, since we have already established in equation 1.150 that the
diffusion in the x direction is small compared to that in the cross-stream y
direction. The boundary conditions are,

Θ = 0 aty = 0 x < 0

Θ = 1 aty = 0 x > 0

Θ = 0 fory → ∞ (1.152)

Equation 1.151 can be solved using the similarity solution technique, since
there are, now, no length scales in the problem. We define a similarity
variable

η = (y/g(x)), (1.153)

where g(x) is defined in such a way that after transforming the independent
variables from (x, y) to η, the resulting equation is a function of η alone. The
physical motivation for introducing this transformation is the same as that
used for rescaling the y coordinate in the high Peclet number limit in equation
1.149. In the absence of diffusion, we would expect the temperature field to
be a constant along fluid streamlines, which are straight lines in the flow
direction in the present configuration. However, the presence of diffusion,
there is a small distance shown to be of O(Pe−1/3L) from the surface, where
the temperature is modified due to diffusive effects, where Pe = (γ̇L2/α).
Further, we assumed in the previous paragraph, that the boundary layer
solution does not depend on the total distance L of the heated plate, but
only on the upstream distance x from the observation point. Therefore, we
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would expect the distance of propagation, g(x) to scale as (Pe−1/3
x x), where

Pex = (γ̇x2/α). Further calculations show that this is, indeed, the case.
The spatial derivatives of the temperature field, expressed in terms of η,

are,

∂Θ

∂y
=

1

g(x)

dΘ

dη

∂2Θ

∂y2
=

1

g(x)2

d2Θ

dη2

∂Θ

∂x
= −

y

g(x)2

dg

dx

dΘ

dη
(1.154)

This is inserted into the convection-diffusion equation, 1.151, to obtain,

−γ̇y
dg

dx

y

g(x)2

dΘ

dη
=

α

g(x)2

d2Θ

dη2
(1.155)

The boundary conditions 1.156, expressed in terms of the similarity variable
η, are,

Θ = 0 aty = 0 x = 0 → η → ∞0

Θ = 1 aty = 0 x > 0 → η = 0

Θ = 0 fory → ∞ → η → ∞ (1.156)

We express y in terms of g(x) and η, and multiply throughout by (g(x)2/α),
to obtain,

−

(

γ̇g(x)2

α

dg

dx

)

η2dΘ

dη
=

d2Θ

dη2
(1.157)

In the above equation, the left side is a function both of x and η, whereas the
right side is only a function of η. A similarity solution can be obtained only
if the function in brackets on the left side of equation 1.157 is independent
of x,

γ̇g(x)2

α

dg

dx
= Constant (1.158)

The exact value of the constant in the above equation does not change the
nature of the solution, but only serves to alter the scaling of the y coordinate
in terms of the similarity variable η. Therefore, without loss of generality,
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we can set the value of the constant equal to 1, and solve the differential
equation 1.158 to obtain,

g(x) = ((xα/γ̇) + C)1/3 (1.159)

where C is a constant of integration. The constant of integration can be
determined from the physical expectation that g(x) is the distance over which
energy diffuses in the y coordinate, as discussed previously. Since the surface
is heated only in the domain x > 0, it is expected that g(x), the distance for
the diffusion of energy in the y coordinate, is identically zero at x = 0, and
the appropriate boundary condition is,

g(x) = 0 atx = 0 (1.160)

Thus, the constant C = 0 in equation 1.159, and the function g(x) is given
by,

g(x) =

(

xα

γ̇

)1/3

=

(

α

x2γ̇

)1/3

x

= Pe−1/3
x x (1.161)

Thus, the boundary layer thickness g(x) = Pe−1/3
x x, as anticipated earlier,

where Pex = (x2γ̇/α) is the Peclet number based on the downstream distance
from the beginning of the heated surface.

Equation 1.157 for the temperature field can be easily solved, to obtain,

Θ = C1

∫ η

0
dη′ exp (−η′3/3) + C2 (1.162)

wher C1 and C2 are constants of integration. The solutions for these two
constants, by application of the boundary conditions 1.156, are,

C1 = −
1

∫∞
0 dη′ exp (−η′3/3)

C2 = 1 (1.163)

Thus, the final solution for the temperature field is,

Θ = 1 −

∫ η
0 dη′ exp (−η′3/3)
∫∞
0 dη′ exp (−η′3/3)

(1.164)
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The heat flux from the surface in the y direction, qy, can now be calcu-
lated,

qy = −K
∂T

∂y

∣

∣

∣

∣

∣

y=0

= −
K(T0 − T∞)

g(x)

dΘ

dη

∣

∣

∣

∣

∣

η=0

=
K(T0 − T∞)

(xα/γ̇)1/3

1
∫∞
0 dη′ exp (−η′3/3)

=
K(T0 − T∞)

(xα/γ̇)1/3

Γ(1/3)

32/3
(1.165)

The total heat transferred from a heated surface of length L, per unit length
in the z direction, Q, can be determined by integrating the heat flux per unit
length over the x coordinate,

Q =
∫ L

0
dxqy

=
K(T0 − T∞)L2/3

(α/γ̇)1/3

Γ(1/3)31/3

2

= K(T0 − T∞)Pe1/3 Γ(1/3)31/3

2
(1.166)

where Pe = (γ̇L2/α). From this expression, the Nusselt number can be
calculated as,

Nu =
2Q

K(T0 − T∞)
= 31/3Γ(1/3)Pe1/3 (1.167)

It is useful to review some of the general features of the solution for
the high Peclet number flow past a flat plate, since these are common to
other problems of high Peclet number flow past solid surfaces. We start with
the scaled convection-diffusion equation, 1.147, and the boundary conditions
on the surface of the sphere are given by 1.146. The limit of high Peclet
number is considered, in which convective effects are expected to be dominant
compared to diffusive effects. The leading order equation for the temperature
field is,

u∗.∇∗Θ0 = 0 (1.168)

The above equation just states that the temperature does not vary along fluid
streamlines. Since the boundary condition requires that Θ0 → 0 for r∗ → ∞,
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the only possible solution of the above equation is Θ0 = 0 everywhere in the
flow. However, with this solution, it is not possible to satisfy the boundary
condition Θ0 = 1 at r∗ = 1. Clearly, this is an unsatisfactory situation, and
this arises from two related causes, one physical and one mathematical.

1. The mathematical reason is that since we neglected the diffusive term
in equation 1.147, the equation was converted from a second order
differential equation to a first order differential equation. While it
was possible to satisfy boundary conditions on two surfaces for the
original second order differential equation, it is only possible to satisfy
one boundary condition in the limit x∗ → ∞ in the modified equation
1.148, and it is not possible to satisfy the boundary condition on the
surface.

2. This mathematical reason is related to the physical reason that con-
vection transports mass and energy only in the direction of flow. Since
there is no flow in the direction normal to the surface of the sphere,
there can be no convective transport of energy in the direction normal
to the surface of the sphere. Therefore, any flux from the surface of
the sphere has to occur due to diffusion alone. Since equation 1.148
neglects the diffusive flux even at the surface of the sphere, we are not
able to satisfy the boundary condition at the surface of the sphere.

From the above discussion, it is clear that diffusive transport has to be incor-
porated in order to determine the flux from the surface of the sphere. This
can be done as follows.

1. Mathematically, we note that the convective part of the convection-
diffusion equation 1.145 is proportional to the gradient of the temper-
ature, while the diffusive part is proportional to the Laplacian. In
scaling all lengths by the length of the heated section of the surface
L, we have implicitly assumed that the gradient of the temperature
scales as (Θ/L). In this case, the convective term in the convection-
diffusion equation 1.147 is scales as (γ̇Θ), while the diffusive term
scales as (αΘ/L2). The ratio of the convective and diffusive terms
is (γ̇L2/α) = Pe, which is large. However, if there is a variation in
the temperature field over a much smaller than L, then the gradient
in the temperature field at the surface would be much larger than that
previously assumed, and the diffusive term in the convection-diffusion
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equation (which is proportional to the second spatial derivative of the
temperature) could become of the same magnitude as the convective
term (which is proportional to the first spatial derivative). In this case,
there could be a balance between convection and diffusion in the high
Peclet number limit.

2. Physically, in the high Peclet number limit, any heat that diffuses out
of the surface due to diffusion is convected rapidly downstream by the
fluid flow. When convective effects are strong compared to diffusive
effects, the rate at which heat is swept downstream is rapid compared
to the rate at which it is convected form the surface. Therefore, on
would expect the departure from Θ = 0 to be confined to a thin layer
at the surface of the sphere. However, the thickness of this region has
to be determined by a balance between the convection and diffusion of
energy close to the surface.

Subsequent to this discussion, we propose that there is a layer of thickness
(l = Lǫ) near the surface of the sphere where the diffusion term is comparable
to the convection term, and ǫ ≪ 1. Note that ǫ is a scale factor, which will
be determined from the condition that the convective and diffusive terms
are of equal magnitude in the thermal boundary layer. The scale factor ǫ
is determined by a balance between convection and diffusion at the surface,
and is dependent on the velocity boundary conditions at the surface. Two
limiting cases can be considered,

1. Flow past a solid particle, in which case there is a no-slip condition
at the surface, and the components of the fluid velocity normal and
tangential to the surface are zero.

2. Flow past a gas bubble, in which case the component of the velocity
normal to the surface is zero, but the component tangential to the sur-
face is non-zero because the zero tangential stress boundary condition
is applied on the liquid side of the gas-liquid interface.

1.4 Diffusion from a solid particle

Next, we analyse the streaming flow past a sphere in the high Peclet number
limit. The configuration and coordinate system are shown in figure ??, and
all lengths are scaled by R, the radius of the sphere, and all velocities are
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scaled by U∞, the free stream velocity at a large distance from the sphere.
The components of the velocity for the creeping flow around the sphere are,

u∗
r =

[

1 −
3

2

(

1

r∗

)

+
1

2

(

1

r∗

)3
]

cos (θ) (1.169)

uθ = −

[

1 −
3

4

(

1

r∗

)

−
1

4

(

1

r∗

)3
]

sin (θ) (1.170)

It is clear, from the discussion in the previous section, that diffusion is
comparable to convection only in a thin ‘boundary layer’ near the surface.
Therefore, we define an ‘inner coordinate’ y∗ = (r − R)/R = ((1 − r∗)/ǫ),
which represents the distance from the solid surface scaled by a small pa-
rameter ǫ. The value of ǫ will be determined by balancing convection and
diffusion in the boundary layer. With this rescaling, we can express the
equations for the velocity field in the inner region as,

u∗
r =

(

1 −
3

2(1 + ǫy∗)
+

1

2(1 + ǫy∗)3

)

cos (θ) (1.171)

u∗
θ = −

(

1 −
3

4(1 + ǫy∗)
−

1

4(1 + ǫy∗)3

)

sin (θ) (1.172)

Since the parameter ǫ is small and we are interested in the region y∗ ∼ 1,
the expressions for the components of the velocity, 1.171 and 1.172, can be
simplified by retaining just the leading order terms in an expansion in ǫ,

u∗
r =

3

2
ǫ2y∗2 cos (θ) (1.173)

u∗
θ = −

3

2
ǫy∗ sin (θ) (1.174)

These expressions for the components of the velocity are inserted into the
convection-diffusion equation, 1.145, and the radial coordinate is written in
terms of the y∗ using the transformation r∗ = (1 + ǫy∗), to obtain,

Pe

(

3

2
ǫ2y∗2 cos (θ)

1

ǫ

∂Θ

∂y∗
−

3

2
y∗ǫ sin (θ)

1

(1 + ǫy∗)

∂Θ

∂θ

)

=
1

(1 + ǫy∗)2

1

ǫ

∂

∂y∗

(

(1 + ǫy∗)21

ǫ

∂Θ

∂y∗

)

+
1

(1 + ǫy∗)2 sin (θ)

∂

∂θ

(

sin (θ)
∂Θ

∂θ

)

(1.175)
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It is apparent that the term on the left side is proportional to Peǫ in the limit
ǫ → 0, while the largest term on the right, which is the first term on the right,
is proportional to (1/ǫ2). A balance is achieved only for ǫ ∼ Pe−1/3, so that
the thickness of the boundary layer decreases proportional to RPe−1/3 in the
limit Pe ≫ 1. If we substitute ǫ = Pe−1/3 in equation 1.175, and retain only
the largest terms in the expansion, we get,

3

2
y∗2 cos (θ)

∂Θ

∂y∗
−

3

2
y∗ sin (θ)

∂Θ

∂θ
=

∂2Θ

y∗2
(1.176)

This is the ‘boundary layer’ equation for the thermal boundary layer at the
surface of the sphere.

In order to solve the equation, we note that there are boundary conditions
on the surface of the sphere (y∗ = 0) and in the limit y∗ → ∞. Since there
is no length scale in the problem,we can examine a solution in terms of a
similarity variable, η,

Θ0 = Θ0(η) (1.177)

where the similarity variable is defined as,

η = (y∗/h(cos (θ)) (1.178)

The derivatives of Θ0 can then be expressed only in terms of the variable η,

∂Θ0

∂y∗
=

1

h

∂Θ0

∂η
(1.179)

∂2Θ0

∂y∗2
=

1

h2

∂2Θ0

∂η2
(1.180)

∂Θ0

∂θ
= −

y∗

h2

dh

dθ

∂Θ0

∂η
(1.181)

Substituting this into the convection-diffusion equation 1.176, we get,

d2Θ0

dη2
−

3

2
η2dΘ0

dη

(

h3 cos (θ) + sin (θ)h2 dh

dθ

)

= 0 (1.182)

The above equation has a similarity solution only is the term in the braces,
(h3 − sin (θ)2h2(dh/dθ)), is a constant. The numerical value of this constant
can be chosen arbitrarily, and for convenience we choose,

(

sin (θ)2h2dh

dθ
− h3

)

= 2 (1.183)
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This equation can be solved to obtain,

h(θ) =
1

sin (θ)

(

6θ + 3 sin (2θ)

2
+ C

)1/3

(1.184)

The constant C has to be determined from the boundary condition in the θ
coordinate. This constant is determined from the condition at θ = 0, which is
the upstream stagnation point on the sphere. At this point, the derivative of
h with respect to θ is well defined, along all approaches, only if (dh/dθ) = 0.
If we apply this condition, we find that the constant C = 0, so that the
solution for h(θ) is,

h(θ) =
1

sin (θ)

(

6θ + 3 sin (2θ)

2

)1/3

(1.185)

With this substitution, the equation 1.182 reduces to,

d2Θ0

dη2
+ 3η2dΘ0

dη
= 0 (1.186)

This equation can be integrated once by parts to obtain,

dΘ0

dt
= A exp (−η3) (1.187)

After integrating a second time, we obtain the most general solution,

Θ0 = A
∫ η

0
dη′ exp (−η′3) + B (1.188)

The boundary conditions require that in the limit y∗ → ∞, Θ0 = 0, while
Θ0 = 1 at y∗ = 0. With these, the general solution for the temperature field
becomes,

Θ0 = 1 −

∫ η
0 dη′ exp (−η′3)
∫∞
0 dη′ exp (−η′3)

(1.189)

The radial heat flux at the surface is given by,

qr = −
K

R

∂T

∂r∗

∣

∣

∣

∣

∣

r∗=1

= −
K(T0 − T∞)

R

∂Θ

∂r∗

∣

∣

∣

∣

∣

r∗=1
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= −
KPe1/3

R

dΘ0

dy∗

∣

∣

∣

∣

∣

y∗=0

= −
KΠ1/3

Rh(θ)

dT0

dη

∣

∣

∣

∣

∣

η=0

= −
KPe1/3

Rh(θ)

1
∫∞
0 dη′ exp (−η′3)

(1.190)

This flux is a function of position θ on the surface, and so the total heat
transferred from the surface to the fluid is given by,

Q = −
KPe1/3

R

1
∫∞
0 dη′ exp (−η′3)

R2
∫ 2π

0
dφ
∫ π

0
sin (θ)dθ

1

h(θ)
(1.191)

It is necessary to evaluate the two integrals in the above expression numeri-
cally, and the numerical expressions for the integrals are,

1
∫∞
0 dη′ exp (−η′3)

= Γ
(

4

3

)

= 0.8930 (1.192)

∫ π

0
sin (θ)dθ

1

h(θ)
= 1.11546 (1.193)

Inserting the numerical values of the above integrals, we find the final ex-
pression for the total heat transferred from the particle is

Q = 1.2491(2πRKPe1/3)(T0 − T∞) (1.194)

The Nusselt number is obtained by dividing this by

Nu =
2Q

(4πR2K(T0 − T∞)/R)

= 1.2491Pe1/3 (1.195)

1.5 Diffusion from a gas bubble:

The Nusselt number for the diffusion from a gas bubble has a different de-
pendence on the Peclet number than that from a solid particle, because the
tangential velocity in the fluid at the bubble surface is not zero. Conse-
quently, convective effects are stronger in the streaming past a gas bubble.
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The coordinate system used is the same as that shown in figure ??. The
equations for the velocity field in the flow past a spherical bubble, with zero
tangential stress conditions applied at the surface of the bubble, are different
from those for the flow past a particle with no-slip conditions at the surface,
1.169 and 1.170.

u∗
r =

(

1 −
1

r∗

)

cos (θ) (1.196)

uθ = −

(

1 −
1

2r∗

)

sin (θ) (1.197)

As before, we focus attention on a thin region of thickness Rǫ near the surface
of the bubble, where the small parameter ǫ will be determined by a balance
between the convection and diffusion terms in the momentum conservation
equation. The transformation to a scaled coordinate y∗ = (1 − r∗)/ǫ is
used, and the fluid velocity expressed in terms of these coordinates correct
to leading order in an expansion in ǫ, are,

u∗
r = ǫy∗ cos (θ)

u∗
θ = −

1

2
(1 + ǫy∗) sin (θ) (1.198)

The expressions for the velocity are inserted into the convetion-diffusion
equation, and the transformation r∗ = 1 + ǫy∗ is used, to obtain,

Pe

(

ǫy∗ cos (θ)
1

ǫ

∂Θ

∂y∗
−

1

2
(1 + y∗ǫ) sin (θ)

1

(1 + ǫy∗)

∂Θ

∂θ

)

=
1

(1 + ǫy∗)2

1

ǫ

∂

∂y∗

(

(1 + ǫy∗)21

ǫ

∂Θ

∂y∗

)

+
1

(1 + ǫy∗)2 sin (θ)

∂

∂θ

(

sin (θ)
∂Θ

∂θ

)

(1.199)

If we retain only the leading order terms in an expansion in small ǫ, we
obtain,

Pe

(

y∗ cos (θ)
∂Θ

∂y∗
+

1

2
sin (θ)

∂Θ

∂θ

)

=
1

ǫ2

∂2Θ

∂y∗2
(1.200)

It is clear that the leading order term on the left side is O(Pe), while the
leading order term in the right side is O(1/ǫ2). Therefore, to achieve a balance
between the convective and diffusive terms, it is necessary for ǫ ∼ Pe−1/2.
This indicates that that the thickness of the thermal boundary later at the
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surface of a gas bubble is O(Pe−1/2), which is much small than the thickness
O(Pe−1/3) at the surface of a particle. This is because the tangential velocity
at the surface of a gas bubble is non-zero, in contrast to the zero tangential
velocity at the surface of a solid particle. Consequently, convective effects
are stronger at the surface of the gas bubble than at the surface of a solid
particle.

We set ǫ = Pe−1/2 in equation 1.200, to obtain,
(

y∗ cos (θ)
∂Θ

∂y∗
+

1

2
sin (θ)

∂Θ

∂θ

)

=
∂2Θ

∂y∗2
(1.201)

We explore the possibility of a similarity solution using the similarity vari-
able η = (y∗/h(θ)). The derivatives of Θ with respect to r∗ and θ can be
transformed using 1.179, 1.180 and 1.181, to obtain the convection-diffusion
equation in terms of the similarity variable η,

η
∂Θ

∂η

(

h2 cos (θ) +
1

2
h
dh

dθ
sin (θ)

)

=
∂2Θ

∂η2
(1.202)

This equation has a similarity solution only if (h2 cos (θ)+(1/2)h(dh/dθ) sin (θ)
is a constant. For convenience, we choose the constant to be −2,

(

h2 cos (θ) +
1

2
h
dh

dθ
sin (θ)

)

= −2 (1.203)

This equation has a solution of the form,

h(θ) =
1

sin (θ)2 (C + 9 cos (θ) − cos (3θ))1/2 (1.204)

The constant is determined from the boundary condition at the upstream
stagnation streamline, (dh/dθ) = 0 at θ = 0. This requires that C = −8,
and the final solution for h(θ) is,

h(θ) =
1

sin (θ)2 (9 cos (θ) − cos (3θ) − 8)1/2 (1.205)

With the substitution given in equation 1.203, equation 1.202 simplifies
to,

∂2Θ0

∂η2
+ 2η

∂Θ

∂η
= 0 (1.206)
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with the boundary conditions Θ = 1 at η = 0, and Θ → 0 as η → ∞. This
can be solved quite easily to obtain,

Θ = 1 −

∫ η
0 dη′ exp (−η′2)
∫∞
0 dη′ exp (−η′2)

(1.207)

1.6 Streaming past objects of arbitrary shape:

In this section, we examine the extent to which the previous results obtained
for spherical particles and bubbles can be generalised to arbitrary shapes of
particles, drops and bubbles.

First consider the case of the fluid flow past a solid particle in which the
velocity field satisfies the no-slip condition at the surface. The characteristic
length scale of the particle is L, and the fluid velocity at a large distance from
the particle is U∞ in the x direction, as shown in figure ??. We know, from
the previous discussions, that the concentration or temperature variations
are restricted to a boundary layer of thickness ǫL at the surface, where ǫ
is a small parameter to be determined from a balance between convection
and diffusion. The variation of the fluid velocity field very near the surface
can be inferred as follows. Consider a coordinate system at a point on the
surface, where the coordinate normal to the surface is X and the coordinate
tangential to the surface is Y , as shown in figure ??. The components of the
mean velocity are required, by the no-slip condition, to be equal to zero at the
surface Y = 0. Therefore, very near the surface for Y ≪ L, it is expected that
the two components of the velocity are linear in the coordinate Y , i. e., uX =
U∞A(X)Y and uY = U∞B(X)Y , where A(X) and B(X) are dimensionless
functions of the tangential coordinate X. However, for an incompressible
fluid, this velocity field does not satisfy the mass conservation condition for
an incompressible fluid. The mass conservation condition, ∇.u = 0, written
in terms of X and Y near the surface is,

∂uX

∂X
+

∂uY

∂Y
= 0 (1.208)

If we assume uX = A(X)Y , the above equation requires that uζ = (−(dA(X)/dX)Y 2/2).
Therefore, the fluid velocity in a thin layer near the surface can be approxi-
mated as,

uX = U∞A(X)X
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uY = −U∞

dA(X)

dX

Y 2

2
(1.209)

The exact form of the function A(X) depends on the details of the particle
shape.

This velocity field is inserted into the convection-diffusion equation, to
obtain,

U∞

(

A(ξ)Y
∂Θ

∂X
−

Y 2

2

dA(X)

dX

∂Θ

∂Y

)

= α

(

∂2Θ

∂X2
+

∂2Θ

∂Y 2

)

(1.210)

Here, we have neglected diffusion in the streamwise direction, since we know
that this is small compared to diffusion in the cross-stream direction. It is
convenient to define a scaled tangential coordinate X∗ = (X/L), since L is
the length scale for the variation of temperature in the flow direction. In
the cross-stream direction, we postulate that there is a much smaller length
ǫL over which convection and diffusion are of equal magnitude in the high
Peclet number limit, where ǫ ≪ 1. Consequently, the dimensionless distance
in normal to the surface is defined as ǫ∗ = (Y/ǫL). Inserting these into the
convection diffusion equation, and multiplying throughout by ǫ2L2, we get,

Peǫ3

(

A(X∗)ǫ∗
∂Θ

∂X∗
−

ǫ∗2

2

dA(X∗)

dX∗

∂Θ

∂ǫ∗

)

=

(

ǫ2 ∂2Θ

∂X∗2
+

∂2Θ

∂ǫ∗2

)

(1.211)

The above equation 1.211 indicates that there is a balance between convection
and diffusion only for ǫ ∼ Pe−1/3, and ǫ∗ = (Pe1/3Y/L). Thus, the boundary
layer thickness is O(Pe−1/3) smaller than the particle length L for the general
case of the flow past a solid surface. Without loss of generality, we set
ǫ = Pe−1/3, and neglect the first term on the right side of equation 1.211
since it is O(ǫ2), to obtain the boundary layer equation,

(

A(X∗)ǫ∗
∂Θ

∂X∗
−

ǫ∗2

2

dA(X∗)

dX∗

∂Θ

∂ǫ∗

)

=
∂2Θ

∂ǫ∗2
(1.212)

To proceed further, we examine the possibility of a similarity solution,
using the substitution,

η =
ǫ∗

h(X∗)
(1.213)
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The derivatives of Θ with respect to X∗ and ǫ∗ can be expressed in terms of
η using the chain rule,

∂Θ

∂ǫ∗
=

1

h

∂Θ

∂η

∂2Θ

∂ǫ∗2
=

1

h2

∂2Θ

∂η2

∂Θ

∂X∗
= −

ǫ∗

h2

dh

dX∗

∂Θ

∂η
(1.214)

This is inserted into equation 1.212, and the left and right sides are multiplied
by h2, to obtain,

∂2Θ

∂η2
+ η2∂Θ

∂η

(

A(ξ)h(ξ)2dh

dξ
+

h(ξ)3

2

dA

dξ

)

= 0 (1.215)

The boundary conditions are,

Θ = 1 atǫ∗ = 0 → η = 0

Θ = 0 asǫ∗ → ∞ → η → ∞ (1.216)

It is apparent that the equation 1.215 admits a similarity solution only if

(

A(X∗)h(X∗)2 dh

dX∗
+

h(X∗)3

2

dA

dX∗

)

= Constant (1.217)

The constant can be set to any value, without loss of generality, and it
is convenient to set the constant equal to 3. With this, equation 1.217 is
rewritten as,

dh(X∗)3

dX∗
+

3h(X∗)3

2A(X∗)

dA

dX∗
=

9

A(X∗)
(1.218)

This equation can be solved to obtain,

h(X∗)3 = 9A(X∗)−3/2
∫ X∗

0
dX∗′A(X∗′)1/2 + CA(X∗)−3/2 (1.219)

The equation 1.215 for the temperature field becomes,

∂2Θ

∂η2
+ 3η2∂T

∂η
= 0 (1.220)
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This can be easily solved to obtain,

Θ = C1

∫ η

0
dη′ exp (−η′3/3) + C2 (1.221)

The constants C1 and C2 are easily determined from the boundary conditions,
1.214, and the final expression for Θ is,

Θ = 1 −

∫ η
0 dη′ exp (−η′3/3)
∫ η
0 dη′ exp (−η′3/3)

(1.222)

The heat flux normal to the surface can now be calculated,

qY = −K
dT

dY

∣

∣

∣

∣

∣

Y =0

= −
K(T0 − T∞)

L

dΘ

dǫ∗

∣

∣

∣

∣

∣

ǫ∗=0

= −
K(T0 − T∞)Pe1/3

Lh(X∗)

dΘ

dη

∣

∣

∣

∣

∣

η=0

=
K(T0 − T∞)Pe1/3

Lh(X∗)

1
∫ η
0 dη′ exp (−η′3/3)

(1.223)

The total heat generated by the object, per unit width in the direction per-
pendicular to the plane of flow, is,

Q =
K(T0 − T∞)Pe1/3

L

1
∫ η
0 dη′ exp (−η′3/3)

∫

dX∗ 1

h(X∗)
(1.224)

Problems:

1. In a gas-liquid contacting system, a fluid film of thickness H is flowing
down an inclined plane, and is in contact with the gas phase at the
liquid-gas interface. The fluid velocity is given by:

ux =
3ū

H2
(yH − y2/2)

where ū is the mean velocity, x is the flow direction and y is perpen-
dicular to the interface. At the liquid-gas interface, the concentration
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of the solute in the liquid phase is cs. At the entrance, the concentra-
tion is zero throughout the film. The concentration field satisfies the
equation,

u.∇c = D∇
2c

where u is the fluid velocity.

(a) Choose an appropriate coordinate system and write the steady
state mass balance equation for this system.

(b) What is the dimensionless number that determines the ratio of
convection and diffusion?

(c) If this number is large, one would expect the solute concentration
to be confined to a thin layer in the liquid film near the liquid-gas
interface. Scale the coordinates in the heat balance equation in
this case, and determine the boundary layer thickness.

(d) If the concentration at a point on the plate is determined only
by the conditions upstream of the point, and not by the total
film thickness H , find a similarity equation for the concentration
profile.

(e) Determine the mass flux for a film of length L, and the Nusselt
number.

2. Consider the mass diffusion from a spherical bubble in the high Peclet
number limit, governed by the convection-diffusion equation

u.∇c = D∇
2c

There is a constant velocity uz = U∞ in the z direction, and the velocity
field is given by,

ur = U∞

(

1 −
R

r

)

cos (θ)

uθ = −U∞

(

1 −
R

2r

)

sin (θ)

where r is the radial position, R is the radius of the bubble, and θ is
the angle from the z direction.

(a) In the high Peclet number limit, express (r/R) = (1 + ǫy), where
ǫ is a small coordinate. Insert this into the convection-diffusion
equation, and obtain the dependence of ǫ on the Peclet number
for a balance between convection and diffusion.
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(b) Obtain the leading order equation in the high Peclet number limit.
Use a similarity transform which relates the y and θ coordinates
using η = y/h(θ). What equation has to be satisfied by h(θ) for
a similarity solution to be possible?

(c) Solve the convection-diffusion equation in terms of the similarity
variable.

3. Consider the flow around a cylinder as shown in figure ??. The velocity
field in the radial co-ordinate system is given by,

ur = −U cos (θ)

(

1 −
R2

r2

)

uθ = U sin (θ)

(

1 +
R2

r2

)

+
Γ

2πr
(1.225)

where R is the radius of the cylinder. The cylinder surface is at a
temperature T0, while the temperature far from the cylinder is T∞. The
equation for the temperature field is the convection diffusion equation

u.∇T = α∇2T (1.226)

(a) Insert the expression for the fluid velocity into the above equation,
and scale the resulting equation to obtain a dimensionless equation
for the temperature field. What is the Peclet number (ratio of
convection and diffusion)?

(b) Consider the limit where the Peclet number is large. In this case,
the temperature variation is expected to be confined to a thin
boundary layer near the surface of the cylinder. Scale the distance
from the surface of the cylinder by a boundary layer thickness, and
simplify the equation. How is the boundary layer thickenss related
to the Peclet number?

(c) Use a similarity transform to express the convection-diffusion equa-
tion in terms of the ratio of the distance from the surface and a
boudary layer thickness, where the boundary layer thickness is
a function of the θ co-ordinate. What is the equation for the
variation for the boundary layer co-ordinate with θ? Solve this
equation to determine the boundary layer thickness as a function
of θ.
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(d) Solve the equation for the temperature in terms of the similarity
variable.

(e) Determine the Nusselt number as a function of the Peclet number
for this case.


