
Chapter 8

Equations of motion

The governing equations for the fluid motion are of two types - the ‘con-
servation’ equations which are common for all fluids, and the ‘constitutive’
equations which depend on the nature of the fluid. The conservation equa-
tions are a consequence of the fact that mass, momentum and energy are
conserved for all materials, while the constitutive equations give some infor-
mation about the type of motion that is generated due to the forces acting on
a volume element of the material. For example, for a rigid solid the conser-
vation equations state that the mass is conserved, while the rate of change of
velocity is equal to the applied force. The constitutive relation requires that
the distance between any two material points is conserved during the motion,
or that the deformation of the solid is zero regardless of the deforming torque
that is applied on it. For a fluid, the relations are more complicated because
the shape of a volume of fluid can change due to the applied forces, and the
conservation and constitutive equations are also more complex. To simplify
the derivation of the conservation equations, we require an integral theorem
called the ‘Leibnitz theorem.’

8.1 Leibnitz theorem

The Leibnitz theorem is useful for calculating the time derivative of a prop-
erty in a given volume when the shape of the volume itself is changing with
time, as shown in figure 8.1,

I(V (t), t) =
∫

V (t)
dV f(x, t) (8.1)
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Figure 8.1: A moving volume element of fluid.

For example, the total mass within a volume is given by

m(V (t), t) =
∫

V (t)
dV ρ(x, t) (8.2)

and the mass conservation within a moving volume of fluid requires that

dm(V (t), t)

dt
= 0 (8.3)

It should be noted that the mass conservation equation cannot be written as

∫

V (t)
dV

∂ρ

∂t
= 0 (8.4)

because the partial derivative is evaluated at a fixed point in space, whereas
the volume V (t) is moving.

The Leibniz rule can be best understood considering its one dimensional
analogue. Consider the one dimensional integral of a function shown in fig-
ure 8.2,

I(t) =
∫ b(t)

a(t)
dx f(x, t) (8.5)
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Here, note that the limits of integration are functions of time. When we want
to calculate the time derivative of this, it is necessary to take into account
the movement of the limits of integration.

dI(t)
dt

= lim
∆t→0

∆I

Dt

= lim
∆t→0

1

∆t

[

∫ a1(t+∆t)

a2(t+∆t)
dx f(x, t + ∆t) −

∫ a1(t)

a2(t)
dx f(x, t)

] (8.6)

Using diagrammatic representation, it can be shown that this is equal to:

dI(t)
dt

= lim
∆t→0

[

∫ a1(t)

a2(t)
dx

f(x, t + ∆t) − f(x, t)

∆t
+ f(a1)

a1(t + ∆t) − a1(t)

∆t
− f(a2)

a2(t + ∆t) − a2(t)

∆t

]

=
∫ a1(t)

a2(t)
dx ∂tf(x, t) + f(a1)dta1 − f(a2)dta2

(8.7)
Note that dta1 and dta2 are the velocities of the limits of the integral. There-
fore, the above integral can also be written as:

dI(t)

dt
=

∫ a1(t)

a(t)
dx ∂tf(x, t) +

∑

l

nlvlf(al) (8.8)

where vl are the boundaries of the limits al, and nl is the direction of the
outward normal to the limit of integration, which is −1 for the lower limit
and +1 for the upper limit. The Liebnitz theorem is the three dimensional
analogue of the above equation over a volume V (t) that is a function of time.
If we consider an integral over a volume which is changing in time:

I(t) =
∫

V (t)
dV f(xi, t) (8.9)

then the time derivative of this integral is given by:

dI(t)

dt
=

∫

V (t)
dV ∂tf(xi, t) +

∫

A
dA nivif (8.10)

where ni is the normal to the surface. The above expression can be simplified
using the divergence theorem:

dI(t)

dt
=

∫

V (t)
dV ∂tf(xi, t) +

∫

V (t)
dV ∂i(vif) (8.11)

This is the most general form of the Liebnitz rule.



4 CHAPTER 8. EQUATIONS OF MOTION

x

f(x)

a(t) a(t+  t)∆ b(t) b(t+  t)∆

Figure 8.2: Leibniz rule in one dimension.

8.2 Mass conservation

The law of conservation of mass states that in any volume of fluid in the
flow, the total mass is conserved. If ρ(xi, t) is the density of the fluid at a
point xi and time t, then the total mass in a control volume V (t) is:

M =
∫

V (t)
dV ρ(xi, t) (8.12)

The law of conservation of mass states the total mass in a differential volume
is invariant in time.

dM

dt
=

d

dt

∫

V (t)dV ρ(xi, t) = 0 (8.13)

This can be simplified using the Liebnitz rule:
∫

V (t)
dV [∂tρ(xi, t) + ∂i(viρ(xi, t)] = 0 (8.14)

This is true for every differential volume in the fluid, and therefore the inte-
grand in the above equation has to be zero:

∂tρ + ∂i(ρvi) =
Dρ

Dt
+ ρ(∂ivi) = 0 (8.15)
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where the second equality follows from the definition of the total derivative.
If we consider an incompressible fluid, where the density ρ(xi, t) is not a
function of position or time, then the mass conservation equation reduces to
the following simple form:

∂ivi = 0 (8.16)

8.3 Momentum conservation

The momentum conservation equation is a consequence of Newton’s second
law of motion, which states that the rate of change of momentum in a dif-
ferential volume is equal to the total force acting on it. The momentum in a
volume V (t) is given by:

Pi =
∫

V (t)
dV ρvi (8.17)

and Newton’s second law states that:

dPi

dt
=

∫

V (t)
dV [∂t(ρvi) + ∂j(ρvivj)] = Sum of forces (8.18)

The forces acting on a fluid are usually of two types. The first is the body
force, which act on the bulk of the fluid, such as the force of gravity, and the
surface forces, which act at the surface of the control volume. If Fi is the
body force per unit mass of the fluid, and Ri is the force per unit area acting
at the surface, then the momentum conservation equation can be written as:

∫

V (t)
dV [∂t(ρvi) + ∂j(ρvivj)] =

∫

V (t)
dV ρFi +

∫

S
dSRi (8.19)

where S is the surface of the volume V (t).
In order to complete the derivation of the equations of motion, it is nec-

essary to specify the form of the body and surface forces. The form of the
body forces is well known – the force due to gravity per unit mass is just the
gravitational acceleration g, while the force due to centrifugal acceleration
is given by ωR2 where ω is the angular velocity and R is the radius. The
form of the surface force is not well specified, however, and the ‘constitutive
equations’ are required to relate the surface forces to the motion of the fluid.
But before specifying the nature of the surface forces, one can derive some
of the properties of the forces using symmetry considerations.
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The force acting on a surface will, in general, depend on the orientation
of the surface, and will be a function of the unit normal to the surface, in
addition to the other fluid properties:

Ri = Ri(ni) (8.20)

We can use symmetry considerations to show that the force is a linear func-
tion of the unit normal to the surface. If we consider a surface dividing the
fluid at a point P , then the force acting on the two sides of the surface have
to be equal according to Newton’s third law. Since the unit normal to the
two sides are just the negative of each other, this implies that:

Ri(−ni) = −Ri(ni) (8.21)

This suggests that the surface force could be a linear function of the normal:

Ri = Tijnj (8.22)

That this is the case can be shown using Cauchy’s theorem. Consider a
tetrahedron with three surfaces located along the three coordinate axes, with
lengths ∆x1, ∆x2 and ∆x3, as shown in figure 8.3. In the limit as three
lengths go to zero, the density and velocity in the region can be taken as
constants. The integral momentum conservation equation then becomes:

[∂t(ρvi)+ ∂j(ρvivj)]∆x1 ∆x2 ∆x3 = [ρFi]∆x1 ∆x2 ∆x3

+ Ri(ni)∆S + Ri(−e1)∆S1 + Ri(−e2)∆S2 + Ri(−e3)∆S3

(8.23)
In the limit as the length of the sides ∆xi go to zero, the inertial terms and
the body forces become much smaller than the body forces, we can write:

Ri(ni)∆S = Ri(e1)∆S1 + Ri(e2)∆S2 + Ri(e3)∆S3 (8.24)

The areas along the three axes are related to the area of the triangular plane
as:

∆Si = ni∆S (8.25)

Using this relation, we get:

Ri(ni) = n1Ri(e1) + n2Ri(e2) + Ri(e3) (8.26)

This is exactly of the same form as:

Ri(ni) = Tijnj (8.27)
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Figure 8.3: Forces acting on a tetrahedral control volume.

The tensor Tij is called the ‘stress tensor’, and this depends on the position
in the fluid but not on the direction of the unit normal.

Using the stress tensor, the conservation equation is given by:

∫

V (t)
dV [∂t(ρvi) + ∂j(ρvivj)] =

∫

V (t)
dV ρFi +

∫

S
dSTijnj (8.28)

This can be further simplified using the divergence theorem:

∫

V (t)
dV [∂t(ρvi) + ∂j(ρvivj)] =

∫

V (t)
dV [ρFi + ∂jTij] (8.29)

Since the above equation is valid for any differential volume in the fluid, the
integrand must be equal to zero:

∂t(ρvi) + ∂j(ρvivj) = ρFi + ∂jTij (8.30)

The above equation can be simplified using the mass conservation equation:

ρ∂tvi + ρvj∂jvi = ρFi + ∂jTij (8.31)
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8.4 Angular momentum conservation

It turns out that the angular momentum conservation equation gives us just
one additional piece of information that cannot be derived from the linear
momentum equation, i.e. that the stress tensor Tij is symmetric. The angular
momentum of a volume of fluid is given by:

L =
∫

V (t)
dV x × ρv =

∫

V (t)
dV ǫijkxjρvk (8.32)

The angular momentum conservation equation states that:

dL

dt
= Sum of torques (8.33)

The torque due to the body forces on a volume of fluid is given by:

Tbi =
∫

V (t)
dV ǫijkxjρgk (8.34)

where gk is the acceleration due to gravity, while the torque due to the surface
forces is given by:

Tsi =
∫

V (t)
dV ǫijkxj∂lTkl (8.35)

The above expression can be simplified to read:

Tsi =
∫

S
dS [ǫijkxjTklnl)

=
∫

V (t)
dV ∂l[ǫijkxjTkl]

=
∫

V (t)
dV [ǫijkxj∂lTkl + ǫijkTkj ]

(8.36)

The rate of change of angular momentum in a differential volume is given
by:

dL
dt

=
d

dt

∫

V (t)
dV ǫijkxjρvk

=
∫

V (t)
dV [ǫijkxj∂t(ρvk) + ∂l(ǫijkxjρvkvl]

=
∫

V (t)
dV [ǫijkxj∂t(ρvk) + ǫijkδjlρvkvl + ǫijkxj∂l(ρvkvl)]

=
∫

V (t)
dV ǫijkxj [∂t(ρvk) + ∂l(ρvkvl)]

(8.37)
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Here, ǫijkδjlρvkvl = ǫijkρvjvk = 0 because ǫijk is an antisymmetric tensor and
vkvl is a symmetric tensor. Equating the rate of change of angular momentum
and the applied torques, and discarding the volume integrals, we find that:

ǫijkxj{∂t(ρvk + ∂l(ρvkvl) − Fk − ∂lTkl} = ǫijkTkj (8.38)

The term in the flower brackets is just equal to the linear momentum equa-
tion, which is zero. This implies that ǫijkTkj is zero, or Tij is a symmetric
matrix. Therefore, the angular momentum conservation equation has given
us an additional piece of information about the stress tensor.

8.5 Constitutive equations for the stress ten-

sor

Just as we had earlier separated the strain rate tensor into an antisymmetric
traceless part, a symmetric part and an isotropic part, it is conventional to
separate the stress tensor into an isotropic part and a symmetric traceless
‘deviatoric’ part:

Tij = −pδij + τij (8.39)

where τii = 0, and p is the ‘pressure’ in the fluid. In the absence of fluid
flow, the deviatoric part of the stress tensor becomes zero. This is because if
the deviatoric part is not zero, then the fluid volume will get distorted in the
absence of flow and the fluid cannot be at equilibrium. The pressure field is
related to the local density of the system by a thermodynamic equation of
state.

The shear stress, τij , is a function of the fluid velocity. However, the
stress cannot depend on the fluid velocity itself, because the stress has to
be invariant under a ‘Galilean transformation’, i.e., when the velocity of the
entire system is changed by a constant value. Therefore, the stress has to
depend on the gradient of the fluid velocity. In a ‘Newtonian fluid’, we make
the assumption that the stress is a linear function of the velocity gradient.
In general, the linear relation can be written as:

τij = µijkl∂kvl (8.40)

where µijkl is a fourth order tensor. This tensor is a property of the fluid.
In an isotropic fluid, there is no preferred direction in space, and the tensor
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µijkl can only be a function of the isotropic tensor δij and ǫijk. The most
general tensor that can be constructed from these is:

µijkl = Aδijδkl + Bδikδjl + Cδilδjk (8.41)

However this tensor has to satisfy certain symmetry properties. Since τij is
symmetric, we require that µijkl = µjikl, which in turn implies that B = C.
In addition, µiikl = 0 since τii = 0. This implies that:

Aδiiδkl + 2Bδikδil = 0 (8.42)

or A = (−2B/3). Using this, we get the expression for the deviatoric stress
(shear stress) in a Newtonian fluid:

τij = µ(∂ivj + ∂jvi − (2/3)δij∂kvk) (8.43)

where µ is called the ‘coefficient of viscosity’ of the fluid. This can also be
expressed in terms of the rate of strain tensor:

τij = 2µeij (8.44)

where eij is the symmetric traceless part of the rate of deformation tensor.
The above constitutive equation was derived for a Newtonian fluid with

the assumption that the shear stress is a linear function of the strain rate.
However, the stress could be a non - linear function of the strain rate in
complex fluids such as polymers solutions.

τij = f(eij) (8.45)

Since eij is a frame indifferent tensor, any tensor that can be written as:

τij = scalar × eij (8.46)

satisfies the conditions of frame indifference. There are three frame indifferent
scalars that can be constructed from the tensor eij :

I1 = sii I2 = sijsji I3 = Det(sij) (8.47)

Therefore, any constitutive equation of the form:

τij = µ(I1, I2, I3)eij (8.48)
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would satisfy the requirements of material frame indifference.
The constitutive equation for the stress tensor can be inserted into the

momentum conservation equation to obtain:

∂tρ + ∂i(ρvi) = 0
ρ∂tvi + ρvj∂jvi = −∂ip + µ(∂2

j vi − (2/3)∂i∂jvj)
(8.49)

These are the Navier - Stokes mass and momentum conservation equations.
For an incompressible fluid, where the density is a constant in both space
and time, the Navier - Stokes equations have a particularly simple form:

∂ivi = 0
∂tvi + vj∂jvi = −ρ−1∂ip + ν∂2

j vi
(8.50)

where ν = (µ/ρ) is the kinematic viscosity.

8.6 Energy conservation

The equation for the mechanical energy balance can be derived quite easily
by multiplying the momentum conservation equation by vi and doing some
integration by parts:

∂t[ρv2
i /2] + ∂i[vi(ρv2

j /2)] = −vi∂ip + vi∂jτji + ρviFi (8.51)

The integral energy balance equation over a volume V can be written as:

∫

V dV {∂t[ρv2
i /2] +

∫

V dV ∂i[vi(ρv2
i /2)] =

∫

V
[−vi∂ip + vi∂jτij + ρviFi]

=
∫

V
dV [−∂i(vip) + p∂ivi + ∂j(viτij − τij∂jvi + ρviFi]

(8.52)
The terms on the right side of the equation can be simplified as follows. The
first term can be converted into a surface integral:

∫

V
dV [−∂i(vip)] =

∫

S
dS(−vip) (8.53)

This is the rate of change of energy due to the pressure forces acting at the
surface of the volume V . The second term can be simplified using the mass
conservation equation:

p∂ivi = −pρ−1(∂tρ + vj∂jρ) = −pρ−1 Dρ

Dt
(8.54)
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Therefore, this term represents the increase in the energy of the fluid due to
the compression which the fluid experiences. The third term can once again
be expressed as a volume integral:

∫

V
dV ∂i(vjτij) =

∫

S
dSnivjτij (8.55)

This represents the rate of change of energy due to the work done by the
shear stress at the surface. The fifth term is, quite obviously, the work done
by the body forces. It remains to interpret the fourth term in the above
equation. This is given by:

D = (2µsij − (2/3)µδijskk)∂ivj

= (2µsij − (2/3)µδijskk)sij

= 2µsijsji − (2/3)µs2
kk

(8.56)

This represents the rate at which energy is dissipated in a volume of fluid
due to the viscous stresses. It can be shown that the rate of dissipation is
always positive,

D = 2µsijsji − (2/3)µs2
kk

= 2µ(s2
11 + s2

22 + s2
33 + 2s12s21 + 2s13s31 + 2s23s32)

−(2/3)µ(s2
11 + s2

22 + s2
33 + 2s11s22 + 2s11s33 + 2s22s33)

= 2µ(s2
12 + s2

13 + s2
23) + (2µ/3)((s11 − s22)

2 + (s22 − s33)
2 + (s11 − s33)

2)(8.57)

8.7 Boundary conditions

The Navier - Stokes equations of motion are partial differential equations,
and in order to solve the equations in a volume it is necessary to specify
the boundary conditions at the bounding surface of the volume. Note that
the surfaces could, in general, be at infinity, in which case it is necessary to
specify the boundary conditions in the limit when the coordinate tends to
infinity. There are two types of boundary conditions - the velocity conditions
and the stress conditions.

The most commonly used velocity boundary condition is that the velocity
vector is continuous across the material interface. This is called the no - slip
condition. In effect, this implies that the velocity of a fluid particle in one
fluid at the interface is equal to that of a particle in the other fluid. In the case
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of solid boundaries, it is assumed that the velocity of the fluid at the surface is
equal to the velocity of the solid surface itselr. This is physically reasonable,
because if their velocities are different, we would expect a viscous shear stress
to act at the interface. This would imply an infinite acceleration since the
interface has negligible volume. However, there are certain extraordinary
conditions where it may be necessary to use a slip boundary condition at an
interface. In the case of a gas - liquid interface, it is usually not necessary to
specify velocity boundary conditions; it turns out that the stress boundary
conditions are sufficient to completely specify the problem.

There are two types of stress conditions - the normal stress and the shear
stress boundary conditions. The shear stress acts tangential to the surface,
and the shear stress at a surface with normal ni is given by:

(δij − ninj)τjknk (8.58)

Note that the operator (δij −ninj) is the ‘tangential’ operator, and when this
acts on a vector fj it subtracts the normal component of the vector since:

(δij − ninj)nj = 0 (8.59)

The tangential stress boundary condition requires that the stress is con-
tinuous across a material interface. This is because if we consider a small
differential volume of thickness ∆ and L at the interface. Let Ri(xi) be the
surface stress (force per unit area) and Fi(xi) be the body force (the force
per unit volume) due to the body force and the inertial forces. Then the
total force due to the surface stresses and the inertial and body forces on
this differential volume are given by:

Force due to surface stresses = RiL
2

Force due to the inertial and body forces = FiL
2∆

(8.60)

In the limit ∆ → 0, the force due to the inertial and body forces becomes
negligible, and therefore the force balance equation contains just the force
due to the surface stresses. Therefore, the stress balance condition requires
that the difference in the tangential force due to the surface stresses is zero
across the interface:

(δij − ninj)(τ
1
jk − τ 2

jk)nk = 0 (8.61)

Note that the pressure p does not enter into the above equation because it
gives rise to a normal force.
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The normal force balance condition contains an additional term due to
the ‘surface tension’, which is defined as the force exerted per unit length of
the interface. The force due to surface tension per unit area of the interface
is given by:

Fsti = γ
(

1

R1
+

1

R2

)

ni (8.62)

where γ is the coefficient of surface tension, and R1 and R2 are defined as
the principal radii of curvature, which are the radii of curvature along any
two orthogonal planes intersecting the surface. Here, the radii of curvature
are considered to be positive if they are located in the medium into which
ni is directed. Moreover, it is known from analytical geometry that for any
continuous surface, the sum of the inverse of the principal radii of curvature
along any two orthogonal axes is a constant. Therefore, the force due to
the surface tension is unique regardless of the directions along which the two
principal radii R1 and R2 are measured. The normal stress balance condition
then becomes:

niT
1
ijnj − niT

2
ijnj = γ

(

1

R1
+

1

R2

)

(8.63)

Note that in the above equation, the center of curvature of the two radii R1

and R2 are located in medium 1.
There are many cases where the principal radii of curvature are small

compared to the other length scales in the problem. In these cases, the sum
of the principal radii of curvature can be related to the divergence in the unit
normal to the surface. Consider a coordinate system {x1, x2} located at an
interface. The divergence of the unit normal is given by:

∂ini =
∂n1

∂x1

+
∂n2

∂x2

= lim
∆x1,∆x2→0

∆n1

∆x1
+

∆n2

∆x2

(8.64)

By geometrical construction, we can show that (∆n1/∆x1) = (1/R1) and
(∆n2/∆x2) = (1/R2), and therefore:

∂ini =
1

R1
+

1

R2
(8.65)

With this, the normal stress balance condition becomes:

niT
1
ijnj − niT

2
ijnj = γ∂ini (8.66)
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The stress boundary conditions derived above are directly applicable to
the interface between two fluids. In the case of a solid - fluid interface, it is
usually not necessary to use stress boundary condition; the velocity boundary
conditions usually suffice. This is because a rigid solid is defined as one which
does not deform regardless of the stress applied at the surface, and the shear
and normal forces due to the fluid are balanced by equal and opposite forces
generated by the solid itself. Therefore, stress boundary conditions at the
interface between a fluid and a solid are unnecessary. In the case of a liquid
- gas interface, we can make use of the fact that the viscosity of a gas is
usually much smaller (about 10−3 times smaller) than the viscosity of a fluid.
Therefore, the visous stresses in the gas are also much smaller than that of
the fluid, and they can be neglected. Since the shear stress is caused entirely
due to viscous effects, the shear stress balance condition becomes:

(δij − ninj)τ
l
jknk = 0 (8.67)

where τ l
jk is the deviatoric stress in the liquid. The normal stress in the gas

is entirely due to the pressure, since the component due to viscous effects
has been neglected. The normal stress condition then becomes:

niT
l
ijnj − pg = γ∂ini (8.68)

where the unit normal ni is directed into the liquid.

8.8 Solution of Problems

The Navier - Stokes equation, which are the basic equations of fluid dynam-
ics, are non - linear partial differential equations. As a result, there is no
general technique for solving these equations. In practical situations one
can make certain simplifications which may render these equations soluble.
However, before making these approximations, certain systemmatic steps do
help. The first is to choose a coordinate system that simplifies the problem.
The coordinate systems that we will deal with in the present course are the
Cartesian, cylindrical and spherical coordinate systems. However, in certain
systems more complex coordinate systems may be necessary, and it is nec-
essary to have a more complete knowledge of analytical geometry to solve
these problems.

Further, it is necessary to non - dimensionalise the velocities, distances
and time scales in the problem correctly. Often, the choice of correct length,
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time and velocity scales could be subjective, especially in ‘singular perturba-
tion’ problems, and it is necessary to have some experience to do it correctly.
Hopefully the examples that we will work out here will provide some expe-
rience in this. Incorrect scaling often leads to inconsistent results, and the
appearance of inconsistencies can often be taken as an indication that there
is something wrong with the scaling. Another step that could help, related
to scaling, is to understand clearly the forces that ‘drive’ the flow, and to
visualise the paths followed by the fluid particles. The qualitative picture
can be used to clearly and unambiguously scale the variables in the problem.

Finally, after obtaining a sufficiently simplified form of the governing
equations, it is necessary to ensure that one has a sufficient number of bound-
ary conditions so that the problem is completely specified. For an nth order
ordinary differential equation, one requires a total of n boundary condition,
and for a partial differential equation in contains n derivatives along the
xi coordinate one requires n boundary conditions in that direction. In this
course, we will discuss a number of techniques for simplifying and solving the
equations of motion for the fluid.

The exactly solvable problems in fluid dynamics are usually of one of the
following types:

1. One dimensional problems, where the fluid flow is along one direction
only. Flows in channels and tubes are of this type.

2. Low Reynolds number flows, where the inertial terms in the conserva-
tion equation can be neglected. In this case, the equations of motion
become linear, and several simplification procedures can be used. Flows
of colloidal suspensions, slurries and many flows in chemical engineering
applications which are at relatively low speeds are of this type.

3. Inviscid flows at high Reynolds numbers, where the vicsous terms in
the conservation equations can be neglected. This leads to a fairly
simple momentum conservation equation – the Laplace equation for
the ‘velocity potential’ ∇2φ = 0. This equation is often used to model
the flows over aircraft wings and other bodies at high speeds.

4. Boundary layer flows where very different length scales are involved. In
this case, asymptotic techniques can be used to simplify the problem.

5. Problems concerning the stability of a steady flow. Here, one usu-
ally uses a linear stability analysis, where small fluctuations about the
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steady solution are considered, and the equations for the growth of
these fluctuations are linear.

There are other flows, such as turbulent flows, where it is difficult to make
simplifications. Here, it is necessary to use certain scaling arguments to make
some qualitative predictions about the nature of the flow. In the next few
lectures, we will solve some problems in the above catogeries using mathe-
matical techniques such as:

1. Similarity solutions

2. Separation of variables

3. Greens functions

4. Asymptotic analysis

5. Boundary layer theory


