Chapter 9

Viscous flow

The Navier-Stokes equations for an incompressible fluid in indicial notation

are

p(0r + u;0;)u; = —0ip + u@fui (9.2)

When these are applied to practical problems, it is convenient to scale the
length and velocity scales by the characteristic length L and velocity U in
the problem. For example, in the case of the flow in a pipe, the characteristic
length is the pipe diameter, while the characteristic velocity is the average
velocity of the fluid. In the case of a particle falling through a fluid, the
characteristic length is the particle diameter and the characteristic velocity
is the velocity of the particle. The scaled velocity and length are defined as
xf = (x;/L), and u] = (u;/U). The natural time scale in the problem is then
(L/U), and the scaled time is defined as t* = (tU/L). Expressed in terms of
these scaled variables, the Navier-Stokes equations are

arul =0 (9.3)

pU2 * * Ok * 1 * ILLU *2 %

where 0f = (0/0x}), and 0f = (0/0t*). The pressure has not yet been
scaled in equation 9.4, and we choose to define the scaled pressure as p* =
(pL/pU), so that the pressure and viscous terms in the equation are of the
same magnitude. With this, the Navier-Stokes momentum equation becomes

UL
37{¢+@@Mp>@w+@%: (9.5)
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The dimensionless number (pUL/u) is the Reynolds number, which provides
the ratio of convection and diffusion for the fluid flow. This can also be
written as (UL/v), where nu = (u/p) is the kinematic viscosity or momentum
diffusivty.

When the Reynolds number is small, the convective terms in the mo-
mentum equation 9.5 can be neglected in comparison to the viscous terms
on the right side of 9.5. The Navier-Stokes equations reduce to the ‘Stokes
equations’ in this limit,

—0;p + pdiu; = 0 (9.7)

The Stokes equations have two important properties — they are linear, since
both the equations are linear in the velocity wu;, and they are quasi-steady,
since there are no time derivatives in the Stokes equations. The absence of
time derivatives in the governing equations implies that the velocity field
due to the forces exerted on the fluid depend only on the instanteneous value
of the forces, or the velocity boundary conditions at the surfaces bounding
the fluid, and not the time history of the forces exerted on the fluid. For
example, in order to determine the velocity field due to force exerted by a
sphere falling through a fluid, it is sufficient to know the instanteneous value
of the velocity of the sphere, and it is not necessary to know the details of
the previous evolution of the velocity of the sphere. This is because the flow
is diffusion dominated, and it is assumed that diffusion is instanteneous at
zero Reynolds number. A similar feature is encountered in the solution for
the diffusion equation in the limit of low Peclet number, where convective
effects are neglected.

DV?c =0 (9.8)

In this case, the concentration field is determined at any instant if the value
of the boundary conditions at the bounding surfaces are know, and it is not
necessary to know the previous evolution of the previous evolution of the
concentration at the bounding surfaces.

Diffusion is not instanteneous in reality, of course, and there is a distance
beyond which the assumption of instanteneous diffusion is not valid. For
example, consider the case of a sphere settling through a fluid. Though
diffusion is fast compared to convection over lengths comparable to the sphere
diameter in the limit of low Reynolds number, it is expected that there is
some larger length over which diffusion is not instanteneous, and convective
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effects become important. This ‘diffusion length’ Lp can be estimated by
balancing the convective and diffusive terms in the momentum equation,

pu;Ou; ~ (pU?/Lp)
Ma?Ui ~ (uU/Lp) (9.9)

A balance between these two indicates that Lp ~ (u/pU), or (Lp/L) ~ Re™".
Thus, convective effects become important when the ratio of the distance
from the sphere and the sphere radius is large compared to Re .

The linearity of the Stokes equations has some useful consequences. For
example linearity can be used to deduce that if the force exerted by a surface
on a fluid is reversed, then the fluid velocity field is also exactly reversed at
all points in the fluid, as shown in figure 9.1. This is called the ‘Stokes flow
reversibility’. Similarly, if the force exerted by the surfaces on the sphere
is reduced by a factor of 2, then the fluid velocity is also reduced by a
factor of 2 at all points. In addition, linear superposition can be used to
separate a problem into smaller sub-problems, and then add up the results.
For example, consider a sphere moving in a fluid as shown in figure 9.2. This
problem can be separated into three sub-problems, each of which consists
of a sphere which has a velocity along one of the coordinate axes, with the
stipulation that the sum of the three velocity vectors is equal to the velocity
of the sphere in the original problem. The velocity fields in each of these
three sub-problems are calculated, and are added up in order to obtain the
velocity field in the original problem.

9.1 Spherical harmonic solutions

The Stokes equations can be written as two Laplace equations for the pressure
and the velocity fields by taking the divergence of the momentum equation
9.7.

0i(=0ip + pdiu;)
= —0p (9.10)
Equation 9.10 indicates that the Laplacian of the pressure field is identically

Zero,
?p =0 (9.11)
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Figure 9.1: When the force exerted on the fluid is reversed, the fluid velocity
is reversed at all points in Stokes flow.
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Figure 9.2: Use of linear superposition for separating the problem into simpler

sub-problems.
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The velocity field in the momentum equation can be separated into two
parties, a ‘homogeneous solution’” which satisfies

Pu™ =0 (9.12)
and a particular solution which satisfies
pd2u® = o, (9.13)

The particular solution is any one solution to the equation 9.13. One solution
which satisfies equation 9.13 is

1
u? = —px; (9.14)

This solution can be verified as follows. If we take the gradient of the par-
ticular solution 9.14, we get

1
ajuz(p) = ﬂ(xiajp + pdi;) (9.15)

Upon taking the divergence of the above equation, we get

1

8j2uz(p) = @(2(5”8]])4‘!['28?]))
1
M

Therefore, the velocity fields can be obtained by solving the Laplace equation
for the pressure and the homogeneous part of the velocity fields, and using
equation 9.16 to obtain the particular part of the velocity field.

We have already studied the solution for the Laplace equation,

V=0 (9.17)

which are obtained using separation of variables. In the present chapter, we
derive the same solutions using the more convenient indicial notation. The
fundamental solution for the Laplace equation in three dimensions, correct
to within a multiplicative constant (which is determined from the boundary
conditions, is

0 —

% (9.18)
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A series of solutions can be derived from equation 9.18 as follows. If we take
the gradient of equation 9.18, we get

0 oo
" =0 (9.19)

2, 2
VQS—V(%:Z

Therefore, if ¢ is a solution of the Laplace equation, then its gradient (0¢/dx;)
is also a solution of the Laplace equation. The gradient of the fundamental
solution is given by

od )
a.flfi

A 9 9 1

N <e1 0xy T e O tes 83:3) (23 + 2% + 23)1/2
e|xr; + esxy + esrs

(a2 a2+ a2

- (9.20)

Therefore, the second solution for the Laplace equation, which is proportional
to the gradient of the first, is

(I)Q) T

= (9.21)

The third solution can be obtained by taking the gradient of the second
solution,

o0 _ 02
4 @xj

_ jl(ﬁ)
-~ Ox; \r

_ (ﬁr—i%ﬁ> (9.22)

r 73

It can easily be verified that the above solutions are linear combinations of
the spherical harmonic solutions obtained by separation of variables. For
example, the three components of <I>Z(1) are
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cos (0)
= 77 2P)(cos ()

€

= 2P} (cos (8))((exp (1) + exp (—1)) /2
o = 2

= 2P} (cos (0))((exp (1)) — exp (—1$))/(22) (9.23)

Similarly, it can be verified that the elements of the second solution @S») are
linear combinations of the second solution obtained from spherical harmonics,
(1/r3)Pi(cos (0)) exp (1m¢). First note that the tensor CI)Z(JZ-) is a symmetric
tensor traceless tensor, and the sum of the diagonal elements is identically
equal to zero. Therefore, there are five independent elements in this tensor,
which correspond to the five solutions of the second spherical harmonic for
m = 0,+1,+£2. The component @é? is

@2 1 3[L’§
P = (‘ _F>
1 2
= ﬁ(l —3cos (6)7)
2P)(cos (0))
= _BT (9.24)
Similarly, the correspondence between the other elements of <I>§JZ») and the
other spherical harmonic solutions can be shown.

The growing spherical harmonic solutions are obtained by multiplying

the decaying solutions by r2"*1, to obtain the series
o0 = 1
oM = g
®® = 725, + 3wy (9.25)

The solutions for the homogeneous part of the velocity field and the pressure
field are linear combinations of the growing and decaying solutions.
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9.1.1 Force on a settling sphere

In this section, we use the spherical harmonic expansion in order to determine
for force exerted on a sphere settling in a fluid. The sphere is considered to be
of unit radius, so that all length scales in the problem are scaled by the radius
of the sphere. The sphere has a velocity U, and the boundary conditions at
the surface of the sphere are that the fluid velocity is equal to the velocity
of the sphere,

u;=Uatr =1 (9.26)

while the velocity decreases to zero at a large distance from the center of the
sphere.

We use a spherical coordinate system, where the origin of the coordinate
system is fixed at the center of the sphere, as shown in figure 9.3. Since the
Stokes equations are linear, the fluid velocity and pressure fields are linear
functions of the velocity U; of the sphere. In addition, the homogeneous
solution for the velocity field and the pressure are solutions of the Laplace
equation, and so these are in the form of spherical harmonics given in 9.18,
9.20, 9.22 and the higher harmonics. The only linear combinations of the
velocity of the sphere U; and the spherical harmonic solutions which can
result in a velocity vector are

1 0ij 3wy
o) = At a0 (2 - ) (9.27

r3 rd

where A; and A, are constants. Similarly, the only linear combinations of
the velocity vector and the spherical harmonic solutions which can result in
the scalar pressure is

T

where Az is a constant. The total velocity field is the sum of the homogeneous
and particular parts,

w = A U;— + AU <_J_ 3ZE$J> +
r

r3 rd

Agl’in &€
20 13

(9.29)

The values of the constants A;, A; and Az are determined from the bound-
ary conditions at the surface of the sphere, 9.26, as well as the incompress-
ibility condition 9.1 which has not been enforced yet. The incompressibility
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Figure 9.3: Sphere settling in a fluid.

condition (Qu;/dx;) = 0 can be simplified as

ou,; 01 0 0;; 0 x;x; AU 0 x;x;
L= AU—— + AU, [ —— " 3T ] T
ox; ! ox; r + A (8@ r3 Ox; 1 ) 2 Ox; 13
- T3 + AU <_ s 5 B + 7
A3Uj (5”1'j 6Z]IZ 3$ZQ$J
* 241 ( r3 + r3 rd
o Alexz A3Uj$j

In simplifying equation 9.30, we have used z? = (z3+23+22) = r?. Therefore,
from the incompressibility condition, we get A; = (As/2u). Inserting this
into equation 9.30, the velocity field is

61' i T 6ij Bxixj

The constants A; and A, are determined from the boundary condition at the
surface of the sphere (r = 1),

wil,_y AU + AUz + AU — 3A5U 21
= U (9.32)
From this, we get two equations for A; and A,,
Al +A =1
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These can be solved to obtain

3 1
A, == Ay = = 9.34
=5 A=y (9:34)
The final solution for the velocity field is
3Uj 5ij XiZj Uj 5ij ?)ZL‘Z'ZL‘J'
i=— | —= — | = - 9.35
“ 4 ( r * r3 * 4 \r3 rd ( )
while the pressure is
BMUj[B]’
=) 9.36
p="4 (9.36)
The force exerted on the sphere is given by
Fo= [ STy,
s
— [ dS(=pni + o) (9.37)

The shear stress is 7 = pu((0u;/0xy) + (Ouy/0xy)). The gradient of the
velocity field, (Ou;/0xy), can be determined as follows,

3ui . ?)U] <_5ijxk 1 5ikxj 1 5jk'$i B 3I'ZZL‘JZL‘]€>

ox, 4 r3 r3 r3 rd
Uj 3(5”.Tk 3@]{1'] 3(5]ka 15xl$3$k

The gradient (Quy/0x;) is obtained by interchanging the indices i and k in
equation 9.38,

3u;€ . ?)U] <_5kj$i 1 5ikxj 1 5ijxk B 3I'ZZL‘JZL‘]€>

+% <_3(5]ka B 3@]{1'] _ 36@]17{ 4 15xl$3$k> (939)

r3 r3 r3 o

o o o r7

Adding these two contributions and multiplying by the viscosity, and setting
the radius equal to 1 at the surface of the sphere, we get

3U;
Tik = W <7](6ikxj - 3%‘%‘%)

U,
+7j(_36ij$k — 36k — 3052 + 15xia:ja:k)) (9.40)
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The unit normal to the surface of the sphere, n; is also equal to the ratio of
the displacement vector and the radius, n; = (x;/7). Since the radius is 1 on
the surface of the sphere, n; = x;. Therefore, the dot product of the stress
tensor and the unit normal is

30,

5 (wiz; — Bxixsz)

TikNE — ,u(
L]' 2 e 2
+—2 (—36;;xy, — 6,25 + 1522577

3U;, 3U.x;x;
= (55 (5.41)

The contribution to the force on the sphere due to the pressure is given by

3,UU]'[BZ'.CEJ'

—pnil,_y = 5 (9.42)
Adding up these two contributions, we get
3U;
Tn; = — 5 (9.43)

Since the right side of 9.43 is independent of position on the surface of the
sphere, the total force is the product of Tj;n; and the surface area of the
sphere, which is 47 for a sphere of unit radius.

For a sphere of radius R, the dependence of the force on the radius is deduced
on the basis of dimensional analysis,

F;, = 6mpuRU; (9.45)

9.1.2 Effective viscosity of a suspension

A shear flow is applied to a suspension which consists of solid particles with
radius R and volume fraction ¢ suspended in a fluid of viscosity u, as shown
in figure 9.4(a). We will assume, for simplicity, that the suspension is di-
lute, so that the disturbance to the flow due to one particle does not affect
the surrounding particles. We would like to derive an average constitutive
relation for the suspension of the form

(Tij) = —(P)ij + 2pter (L) (9.46)
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Figure 9.4: Shear flow of a suspension (a) and the shear flow around a particle

(b).
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where pi.fr is the effective viscosity of the suspension, and () is a volume
average over the entire volume of the suspension.

The volume averaged symmetric traceless part of the stress tensor can be
expressed as

1
(1ij) = V/ AV
SuspenSIOn
= ( dV (2uE;;) +/ dV(ri; — 2NEij)>
SuspenSIOn VSUSpenSiOH
Vsuspensmn

The second term on the right side of 9.47 is identically equal to zero for the
fluid, from the constitutive equation. Therefore, the second integral reduces
to an integral over the particles,

Vv particles

In order to determine the effective viscosity, it is sufficient to consider the
symmetric traceless part of the above equation. Further, if the particles are
solid, the rate of deformation F;; within the particles is identically equal to
zero. Therefore, the symmetric traceless part of the above equation reduces
to

N
1 particles
N
= 2u(E;;) + v dV'Ti; (9.50)
1 particle
¢
(4m13/3) Jv Y1 particle

In deriving equation 9.51 from 9.50, we have used the simplification that the
number of particles per unit volume is the ratio of the volume fraction and
the volume of a particle. The second term on the right side of equation 9.51
can be simplified as follows. Consider the divergence of (7;x;),

3mxj 37'11
M = 4 — 9.52
8:1,7 7ol +x] 8:151 ( )
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The divergence of the stress tensor, in the right side of equation 9.53, is zero
if inertial effects are neglected, and therefore, the integral on the right side
of equation 9.51 can be written as

3711%-

VT, = av
Tii 3xl

Y1 particle Y1 particle

== CZSRZ’TZ'Z.TJ' (955)
1 particle

The surface integral on the right side of equation 9.55 can be calculated
using the spherical harmonic expansion, considering a sphere placed in a
linear shear flow in which the fluid velocity at a large distance from the
sphere, u® = Ej;jz;. The fluid velocity field at a large distance from the
sphere is given by

R® SvixjapEy (R R
(N <1 - F) + 9\ 5 (9.56)
and the pressure is
SuR3z;x,E;
p = TSR (9.57)

rd

Using this, the surface integral on the left side of equation 9.55 can be cal-
culated,

20mR3 B ;
dSmmyx; = %ﬂj (9.58)
51 particle
With this, we get the effective shear stress
(Tij) = 2pEi; +5¢pE;
5
= 2u (1 + %b) E;; (9.59)

Therefore, the effective viscosity is given by pierr = (1 4+ 5¢/2).
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Exercise: Show that the velocity and pressure fields due to a sphere of
radius R rotating with angular velocity €2 in a fluid which is at rest a large
distance from the sphere is,

R 3

Show that the exerted by the sphere on the fluid is,
L; = —8muR*); (9.61)

Hint: Note that the angular velocity is a pseudo-vector, and the velocity field
and pressure are real.

9.2 Green’s functions and Faxen’s laws:

9.2.1 Oseen tensor for a point force:

Since the Stokes equations are linear equations, it is possible to obtain
Green’s function formulations for the velocity field similar to those obtained
for the temperature field in steady state heat conduction. We briefly revisit
the solution for the conduction equation in chapter , and then we present
the analogous solution for the Stokes equations. In chapter , we solved the
conduction equation,

—kV2T = Qd(r — 1) (9.62)
to obtain the temperature field,
Q@
Tr)= ——— 9.63
(x) ArK|r — 1| (9.63)

where r, is the location of the source point. In order to obtain the Green’s
function solution, we first obtained the temperature field for a sphere of
radius R, and then took the limit R — 0 while keeping the heat flux () finite.

In viscous flows, the equations equivalent of the Green’s function formu-

lation 9.87 are,

—0ip + pdju; = Fid(x — x,) (9.65)

where x,, the location of the force, is the ‘source point’. Note that the right
side of equation 9.90 has dimensions of force per unit volume, since F; is the
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total force exerted at the point x,, and the delta function has units of inverse
volume.

In order to solve equation 9.89 and 9.90, we can first solve for the velocity
and pressure fields around a spherical particle of finite radius R, and then
take the limit R — 0 while keeping the force F; finite. The solutions for the
velocity and pressure fields were obtained in equations 9.35 and 9.36, and the
force was obtained as a function of the translational velocity of the sphere in
equation 9.44. If we use 9.44 to express the translational velocity in terms of
the force in equations 9.35 and 9.36, we obtain,

F’j 61']' ZiZj F’JRQ 61 3I'Z'Z'j
;= — | —= — — 9.66
“ 8 < r + r3 + 2471 \ r3 rd ( )
while the pressure is
Fix;
-2 (9.67)

When we take the limit R — 0, the first term on the right in equation 9.91
remains finite while the second becomes negligible, while the term on the
right side of equation 9.92 is finite. Therefore, the velocity and pressure
fields at a field point x due to a point force F; exerted at the source point
x() is,

wi = Jy(x = %) F(x)
p = Ki(x—x®)F(x®) (9.68)

where the ‘Oseen tensors’, J;; and K;, are given by,

Ji(x) = (i+x%>

8mu \ r r3
1 xT;
K;(x) = TS (9.69)
where r = |x| is the distance from the source point to the field point.

The linearity of the Stokes equations enables us to use superposition to
find the velocity field due to multiple forces. For example, if the are N point
forces Fz-(n) located at positions x™, where the index n varies from 1 to N,
then the total velocity field is just the superposition of the velocity fields due

to each of these forces,

ui(x) = g: Jij(x — xMYF™ (x()

=1

p(x) = Kix—x™)FxM) (9.70)

3
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Instead of having a discrete set of point forces, if we have a force distribution,
in which the force per unit volume is given by f;(x), the velocity and pressure
fields can be calculated by integrating the appropriate product of the Oseen
tensor and the force distribution over the volume,

wix) =[x Ts(x = x) f;(x)
p(x) = / dx' K (x — x) By (x') (9.71)

9.2.2 Green’s function for force dipoles:

There are often situations where the suspended particles in a fluid a ‘neutrally
buoyant’, so that they exert no net force on the fluid. Examples are for a
solid sphere in a uniform shear flow in equations ?? and 7?7, and for a rotating
particle in equations 7?7 and ?7. The velocity disturbance at a large distance
from the center of the particle decays proportional to =2, in contrast to the
decay proportional to r~! in equation ?? for the flow around a particle which
exerts a net force on the fluid. The far-field velocity can be expressed as a
function of the ‘force dipole moment’, which is defined as the integral over
the sphere of the tensor product of the surface force and the position vector,

Force dipole moment = / dSz;f;

Note that this definition is analogous to the ‘dipole moment’ for the tem-
perature field due to a point dipole. The force dipole moment is a second
order tensor, and it is convenient to separate it into a symmetric and an
antisymmetric part. The symmetric part is given by,

1
Sij = i/ds(xiTjknk + 2 Tieng) (9.73)
while the antisymmetric part is,
1
Ay = §/dS(Tiknk%’ — Tjknkxi) (9.74)

The velocity and pressure fields around a point particle which exerts no net
force on the fluid can be expressed in terms of the symmetric and antisym-
metric dipole moments S;; and A;;.



9.2. GREEN’S FUNCTIONS AND FAXEN’S LAWS: 19

In the previous sub-section, we had derived the velocity field due to a
point force by first solving the flow around a sphere of finite radius R, and
then taking the limit R — 0 while keeping the force exerted a constant. The
velocity field due to a force dipole can be obtained by first solving for the
shear flow around a particle for radius R, and taking the limit of the radius
going to zero while keeping the dipole moment fixed. First, we consider the
symmetric dipole moment due to a sphere in a shear flow, for which the
velocity and pressure fields are given by equations 7?7 and ?7?7. It can easily
be shown, using symmetry considerations, that the net force exerted by the
sphere on the fluid is identically zero. The symmetric force dipole due to the
sphere is given by,

1
= %/SdS(TilnlxijTﬂnlxi) (975)

The integrals on the right side of equation ?? were already evaluated in
equation 7?7, and the final result for the symmetric force dipole is,
QOW/LRBEZ‘]'

S, = ——— 9.76
. (9.76)

The rate of deformation tensor E;; can be written in terms of the symmetric
force dipole using equation 7?7 and substituted into equations 7?7 and ?7? for
the velocity and pressure fields.

3S.x:R*>  3v;xixpSa (R°  R?
i = Bz, — —2 P | = - — 9.77
b K 207 purd + 8T rtord (5.77)
and the pressure is
ij‘fksjk
= ITERIR 9.78
p 5 (9.78)

In equation 77, the first term on the right side is the imposed flow and not
the disturbance due to the particle, and so we have not expressed this in
terms of S;;. If we take the point particle limit R — 0 while keeping 5;;
a constant, we obtain the solution for the velocity field due to a symmetric
point dipole,

3Sjkxi$]’$k

8mpurd
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while the pressure field is given by equation 77.
The response to an antisymmetric force dipole can be related to the torque
exerted by the particle on the fluid, which is defined as,

Li = /Sdseijkxjfk

1
= §/Sd56ijk(xjfk_xkfj)

where D;-‘}C is the antisymmetric force dipole moment exerted by the particle.
The torque is related to the angular velocity by equation 77, while the pres-
sure is zero. Substituting for the particle velocity in terms of the torque, we
obtain,

eijij (xk)
= (2 =0 9.81
“ 8 \r3 p ( )

9.2.3 Faxen’s laws

Faxen’s laws provide the velocity of a particle which is placed in some imposed
flow field U*(x). We have studied examples where the imposed flow field has
a specific form; in section 77, the imposed flow field is a constant streaming
flow around the particle, while in section 77, the imposed flow field is a linear
shear flow. In this section, we examine the response of a spherical particle
to an arbitrary imposed flow field, U*°(x), which is the velocity field at a
large distance from the particle. This is a first step towards understanding
inter-particle interactions, because if we know how the particle reacts to some
imposed flow field, we can infer how it would react to the velocity disturbance
caused by a second particle.

The fluid velocity field due to a particle in the flow field U*(x) can be
expressed in terms of the surface forces using the Oseen tensor,

!/
wix) = UF()+ [ dSy(x = x) f5(x)
s
!
= U(x)+ /S dS' Jij(x — x") 1 (x" ), (9.82)
where x’ is a point on the surface of the particle, S’ is the surface of the

particle and n’ is the unit normal to the surface at the position x’. Equation
7?7 also applies to the fluid velocity at the surface of the particle. The fluid
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velocity at a location on the surface, x”, which is equal to the particle velocity
at that location U +  x x”, can be written as,

ui(x”) = Uz -+ Eiijj.fEZ
'
Ux(x")+ /S dS' Ji;(x" — x") 7 (x")ny, (9.83)

Here U is the translational velocity of the particle, and €2 is the rotational
velocity. Note that in equation 7?7, both the field point x” and the source
point x" are located on the surface of the sphere. Now, we integrate the
equation 7?7 over the surface of the sphere, and use the no-slip condition at
the surface which states that the fluid velocity u.

47 R?U, / dS"US(x") + / ds" / dS" T (x" — x')75,(x ) (9.84)

Note that the integral of the velocity due to partice rotation at the surface,
Jg dS" €182 is zero, since the integrand is an odd function of the position
vector on the surface. The second term on the right side of equation ?7 can
be simplified by changing the order of integration,

/ 49" / dS"Jij(x" — x)7j(x / dS' 7 (x ) / dS" Jy; (x" ~(95)

The integral over S” in equation 7?7, which is a constant independent of x/,
was shown to be equal to (20;;R/(3mu)) in 7?7, and the integal [ dS'7;,(x)n),
is just the total force exerted by the sphere, F;. With this, equation 7?7
simplifies to

= dS"U>(x" 9.86
gt fas U (9.56)
This is the integral form of the Faxen law for the velocity of a particle in an
imposed velocity field U*.

9.3 Lubrication flow

The flow of fluids through thin layers between solid surfaces are referred to
as ‘lubrication flows’. These flows are dominated by viscous effects, since the
Reynolds number based on the relevant length scale, which is the distance
between the solid surfaces, is small. The approach of the two surfaces requires
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the fluid to be squeezed out of the gap between the surfaces, and the velocity
of the fluid tangential to the surfaces is large compared to the velocity with
which the surfaces approach each other. This results in large shear stresses
in the gap, and a large resistance to the relative motion of the surfaces. This
flow can be analysed using asymptotic analysis when the gap thickness is
small. The lubrication flow generated due to a sphere approaching a solid
surface is analysed in this section.

The configuration, shown in figure 9.5, consists of a sphere of radius
R approaching a plane surface with a velocity U. The minimum distance
between the surface of the sphere and the plane surface is e R, where € < 1.
A cylindrical coordinate system is used, since there is cylindrical symmetry
about the perpendicular to the surface that passes through the center of
the sphere, and the origin is fixed at the intersection between the axis of
symmetry and the plane surface. There is no dependence on the polar angle
in this problem, and so the velocity field is a function of the distance from
the axis r and the height above the plane surface z. The plane surface is
located at z = 0, while the equation for the surface of the sphere is given by

(R(1+¢€) =2 +r) 2 =R (9.87)

Since € is small, the above equation can be expanded in a Taylor series in e.
The equation for the bottom surface is

R(l14+¢€) —z=VR?—1r? (9.88)
z=R(l4+¢€) —VR?—1? (9.89)

We anticipate that r is also small compared to R in this region, and so the
second term on the right side of equation 9.89 can be expanded in small
r. When this expansion is carried out, and the first term in the series is
retained, we get

r

z = R(1+6)_R<1_2—RQ>

2

.
= Re+t o (9.90)

Dividing throughout by Re, the equation for the surface is

z 7“2

Z =14+

Re 2R2¢? (9:91)
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Figure 9.5: Lubrication flow in a small gap between a sphere and a solid
surface.

This equation suggests the use of the scaled coordinates z* = (z/Re)
and 7* = (r/Re/?). The equation for the surface in terms of these scaled
coordinates is

(9.92)

This is called the ‘parabolic approximation’ for the surface of the sphere. The
scaling z* = (z/Re) is natural, since the fluid is in the domain 0 < z < Re
at 7 = 0. The scaling 7* = (r/Re'/?) arises because the slope (dr/dz) of the
surface of the sphere is zero at » = 0, and so the surface can be approximated
by a parabola around this point.

Next, the components of the velocity in the fluid are scaled using the
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mass conservation equation.

10(ru,) N ou,
r or 0z

=0 (9.93)

The axial velocity u, can be scaled by the velocity of the surface of the sphere,

U, since the axial velocity varies between 0 at the plane surface and —U at

the surface of the sphere. When the mass conservation equation is expressed

in terms of the scaled coordinates and the scaled velocity uf = (u,/U), we
get

1 10(r*u,) U Ou:

Rel/Zpx  Or* + eR 0z*

—0 (9.94)

The above equation provides the scaled for the radial velocity is u} = (u,e*/2/U).

This scaling indicates that when u’ is O(1), the magnitude of the radial ve-
locity is u, ~ (U/€'/?), which is large compared to the magnitude of the axial
velocity. This is because as the sphere moves downward, all the fluid dis-
placed per unit time within a cylindrical section of radius r is 7r?U. This fluid
has to be expelled from the cylindrical surface with area 27rh, and therefore
the radial velocity scales as (Ur/h), which is proportional to (U/e'/?).

The momentum conservation equations in the radial direction, expressed
in terms of the scaled variables are

R2o72 02 T RS 7 O

(9.95)
In the above equation, the scaled time has been defined as t* = (teR/U),
since the relevant time scale is the ratio of the gap width and the velocity
of the sphere. This ensures that the first term on the left side of equation
9.95 is of the same magnitude as the other three terms. The momentum
conservation can be simplified by dividing throughout by the coefficient of
the largest viscous term, which is proportional to (uU/R?e%/?),

ot o "9 ) T Razor

3/2

pURe (Our Ou:  , Ou’ Re? Op Pur e 9 ,our
U, +u, = —-—— + — T
1 ot* or* 0z* ulU Or* 0z*2  r*or*  Or*

(9.96)

This equation indicates that the scaled pressure should be defined as p* =

(pRe*/pU) for the pressure to be of the same magnitude as the viscous terms.

Equation 9.96 also indicates that the appropriate Reynolds number in this

case is (pURe/p), which is based on the gap thickness and the velocity of

r

or*

pU? <8uﬁ Lour *3uj>_ 1 dp < U 0uf U 10 ,ou

)
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the sphere. Inertial effects can be neglected when this Reynolds number is
small, even though the Reynolds number based on the sphere velocity and
the sphere radius and sphere velocity is large. After neglecting inertial ef-
fects, and retaining only the largest terms in the € expansion, the momentum
conservation equation in the radial direction becomes

op*  Our
_ _|_ —
or*  0z*2

(9.97)

The momentum conservation equation in the axial direction, expressed

in terms of the scaled coordinates, velocity and pressure, is

pU? (au; +u*8uj, +u*au;j> U op* u( U 0u N U iir*&Q)

Re \ Ot* " or* #0z* Re3 0z* R?¢2 022 R2er*Or* Or*
(9.98)

It is evident that the largest term in the equation is the pressure gradient,

since it is multiplied by (uU/Re®). Dividing throughout by this factor, we

get

pURE* (Our  Oul  ,Oul dp* Pur e 0 0ul

i <8t* U Gy +u23z*> 0z* e (82*2 * o 37“*)
(9.99)

If all terms that are small in the € expansion are neglected, the axial momen-

tum conservation equation becomes

op*
Oz

(9.100)

Equation 9.100 indicates that the pressure is independent of the z* coor-
dinate. Using this, equation 9.97 can be solved to obtain the radial velocity,
B ap* Z*Z

iy + Ay (r*) 2" + Ay (r") (9.101)

U

The functions A;(r*) and As(r*) are obtained from the no-slip condition
ur = 0 at z* = 0 and the surface of the sphere z* = h(r*). The radial
velocity then becomes

(9.102)

Ur or* B

. ap* 2*2 Z*h(r*)
B 2 2
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At this point, the radial pressure gradient is not yet specified, and we have
not used the mass conservation equation so far. So the mass conservation
equation can be used to obtain the radial pressure gradient. It is convenient
to integrate the mass conservation equati