
Chapter 11

Boundary layer theory

The simplest example of a boundary layer is the one formed at the surface
of a flat plate in the limit of high Reynolds number. The configuration
and co-ordinate system is shown in figure ??. A flat plate of width L and
infinitesimal thickness is placed along the y−z plane from x = 0 to x = L in
a fluid stream which has a uniform velocity U in the x direction far upstream
of the plate. The mass and momentum conservation equations for the fluid
at steady state are,

∇.u = 0 (11.1)

ρu.∇u = −∇p+ µ∇2u (11.2)

The boundary conditions for the fluid velocity field are the no-slip condition
at the surface of the flat plate,

ux = 0 at y = 0and x > 0 (11.3)

uy = 0 at y = 0and x > 0 (11.4)

and the free-stream condition in the limit of large y,

ux = U as y → ∞ (11.5)

There is an additional condition that the velocity is equal to the free-stream
velocity before the fluid encounters the plate, for x ≤ 0. Since convective
transport is fast compared to diffusive transport ahead, the presence of the
flat plate will not affect the fluid velocity upstream of the leading edge, and
we require that

ux = U for x ≤ 0 (11.6)
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As we shall see later, though the point x = y = 0 is a mathematical singular-
ity, this does not complicate the solution procedure for the velocity profile.

The naive method for scaling the mass and momentum equations is to
use scaled co-ordinates x∗ = (x/L), y∗ = (y/L) and u∗ = (u/U), since L
and U are the only length and velocity scales in the problem. The appro-
priate scaled pressure in the high Reynolds number limit is p∗ = (p/ρU2).
Expressed in terms of the scaled velocity and pressure, the mass and mo-
mentum conservation equations are,

∇
∗.u∗ = 0 (11.7)

u∗.∇∗u∗ = −∇p∗ + Re−1
∇

2u∗ (11.8)

In the limit of high Reynolds number, the viscous term (last term on the right
side of equation 11.8) is expected to be small compared to the inertial terms,
and the momentum conservation equation reduces to that for the potential
flow past a flat surface. However, as we have seen in the previous chapter, the
potential flow equations can satisfy only the normal velocity condition at the
surface of the flat plate, and cannot satisfy the condition on the tangential
velocity ux in equation 11.3. This is a familiar problem we have faced in flows
where convection is large compared to diffusion, and is caused by the fact that
when we neglect the diffusive effects, the conservation equation is converted
from a second order to a first order differential equation. Consequently, it is
not possible to satisfy all the boundary conditions which were specified for
the original second order differential equation.

The mass and momentum equations for the two-dimensional flow are,

∂ux

∂x
+
∂uy

∂y
= 0 (11.9)

ρ

(

ux
∂ux

∂x
+ uy

∂ux

∂y

)

= −
∂p

∂x
+ µ

(

∂2ux

∂x2
+
∂2ux

∂y2

)

(11.10)

ρ

(

ux
∂uy

∂x
+ uy

∂uy

∂y

)

= −
∂p

∂y
+ µ

(

∂2uy

∂x2
+
∂2uy

∂y2

)

(11.11)

We now use the familiar strategy in boundary layer theory, which is to scale
the cross-stream distance by a much smaller length scale, and adjust that
length scale in order to achieve a balance between convection and diffu-
sion. The dimensionless x co-ordinate is defined as x∗ = (x/L), while the
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dimensionless y co-ordinate is defined as y∗ = (y/l), where the length l is
determined by a balance between convection and diffusion. In momentum
boundary layers, it is also necessary to scale the velocity components and the
pressure. In the streamwise direction, the natural scale for the velocity is the
free-stream velocity U∞, and so we define a scaled velocity in the x direction
as u∗x = (ux/U∞). The scaled velocity in the y direction is determined from
the mass conservation condition, When the above equation is expressed in
terms of the scaled variables x∗ = (x/L), y∗ = (y/l) and u∗x = (ux/U∞), and
multiplied throughout by (L/U∞), we obtain,

∂u∗x
∂x∗

+
L

lU∞

∂uy

∂y∗
= 0 (11.12)

The above equation 11.12 indicates that the appropriate scaled velocity in the
y direction is u∗y = (uy/(U∞l/L)). Note that the magnitude of the velocity
uy in the cross-stream y direction, (U∞l/L), is small compared to that in the
stream-wise direction. This is a feature common to all boundary layers in
incompressible flows.

Next, we turn to the x momentum equation, 11.10. When this is ex-
pressed in terms of the scaled spatial and velocity coordinates, and divided
throughout by (ρU2

∞
/L), we obtain,

u∗x
∂u∗x
∂x∗

+ u∗y
∂u∗y
∂y∗

= −
1

ρU2
∞

∂p

∂x∗
+

µ

ρU∞L

(

L2

l2

)(

∂2u∗x
∂y∗2

+
l2

L2

∂2u∗x
∂x∗2

)

(11.13)

The above equation indicates that it is appropriate to define the scaled pres-
sure as p∗ = (p/ρU2

∞
). Also note that the factor (µ/ρU∞L) on the right side

of equation 11.13 is the inverse of the Reynolds number based on the free
stream velocity and the length of the plate. In the right side of equation
11.13, we can also neglect the streamwise gradient (∂2u∗x/∂x

2

∗
), since this is

multiplied by the factor (l/L)2, which is small in the limit (l/L) ≪ 1. With
these simplifications, equation 11.13 reduces to,

u∗x
∂u∗x
∂x∗

+ u∗y
∂u∗y
∂y∗

= −
∂p∗

∂x∗
+ Re−1

(

L2

l2

)

∂2u∗x
∂y∗2

(11.14)

From the above equation, it is clear that a balance is achieved between con-
vection and diffuion only for (l/L) ∼ Re−1/2 in the limit of high Reynolds
number. This indicates that the boundary layer thickness is Re−1/2 smaller
than the length of the plate. Without loss of generality, we substitute
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l = Re−1/2L in equation 11.14, to get the scaled momentum equation in
the streamwise direction,

u∗x
∂u∗x
∂x∗

+ u∗y
∂u∗y
∂y∗

= −
∂p∗

∂x∗
+
∂2u∗x
∂y∗2

(11.15)

Next, we analyse the momentum equation in the cross-stream direction,
11.11. This equation is expressed in terms of the scaled spatial co-ordinates,
velocities and pressure, to obtain,

ρU2

∞
l

L2

(

u∗x
u∗y
x∗

+ u∗y
∂u∗y
∂y∗

)

= −
ρU2

∞

l

∂p∗
∂y∗

+
µU∞

lL





∂2u∗y
∂y∗2

+

(

l

L

)

2
∂2u∗y
∂x∗2





(11.16)
By examining all terms in the above equation, it is easy to see that the
largest terms is the pressure gradient in the cross-stream direction. We divide
throughout by the pre-factor of this term, and substitute (l/L) = Re−1/2, to
obtain,

Re−1

(

u∗x
u∗y
x∗

+ u∗y
∂u∗y
∂y∗

)

= −
∂p∗
∂y∗

+ Re−1

(

∂2u∗y
∂y∗2

+ Re−1
∂2u∗y
∂x∗2

)

(11.17)

In the limit Re ≫ 1, the above momentum conservation equation reduces to,

∂p∗

∂y∗
= 0 (11.18)

Thus, the pressure gradient in the cross-stream direction is zero in the leading
approximation, and the pressure at any streamwise location in the boundary
layer is the same as that in the free-stream at that same stream-wise loca-
tion. This is a salient feature of the flow in a boundary layers. Thus, the
above scaling analysis has provided us with the simplified ‘boundary layer
equations’ 11.12, 11.15 and 11.18, in which we neglect all terms that are o(1)
in an expansion in the parameter Re−1/2. Expressed in dimensional form,
these mass conservation equation is 11.9, while the approximate momentum
conservation equations are,

ρ

(

ux
∂ux

∂x
+ uy

∂ux

∂y

)

= −
∂p

∂x
+ µ

∂2ux

∂y2
(11.19)

∂p

∂y
= 0 (11.20)



5

From equation 11.20, the pressure is only a function from the leading edge
of the plate x, and not a function of the cross-stream distance y. Therefore,
the pressure at a displacement x from the leading edge is independent of the
normal distance from the plate y. However, in the limit y → ∞, we know
that the free stream velocity U∞ is a constant, and the pressure is a constant
independent of x. This implies that the pressure is also independent of x as
well, and the term (∂p/∂x) in equation 11.19 is equal to zero. With this,
equation 11.19 simplifies to,

ρ

(

ux
∂ux

∂x
+ uy

∂ux

∂y

)

= µ
∂2ux

∂y2
(11.21)

This has to be solved, together with the mass conservation condition equation
11.9, to obtain the velocity profile.

We look for a similarity solution for the above equation, under the as-
sumption that the stream function at a location (x, y) depends only on the
distance x from the leading edge of the plate and the cross-stream distance
y, and not on the total length of the plate. The justification for that mo-
mentum is being convected downstream by the flow, and so conditions at
a trailing edge of the plate at x = L should not affect the velocity profile
upstream of this location. While scaling the spatial coordinates and veloc-
ities in equations 11.12, 11.15 and 11.18, we had used the dimensionless y
coordinate

y∗ =
y

Re−1/2L
=

y

(νL/U∞)1/2
(11.22)

Since we have made the assumption that the only length scale in the prob-
lem is the distance from the leading edge x, it is appropriate to define the
similarity varible using x instead of L in equation 11.22,

η =
y

(νx/U∞)1/2
(11.23)

This scaling implies that the thickness of the boundary layer at a distance x
from the upstream edge of the plate is proportional to (νx/U∞) = xRe−1/2

x ,
where Rex = (U∞x/ν) is the Reynolds number on the distance from the
upstream edge. It is appropriate to scale the velocity in the x direction
by the free stream velocity U∞, while the scaling for the velocity in the y
direction is obtained by replacing L by x in equation 11.12,

u∗x =
ux

U∞

(11.24)
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u∗y =
uy

(νU∞/x)1/2
(11.25)

where u∗x and u∗y are only functions of the similarity variable η. It is con-
venient to express the velocity components in terms of the stream function
ψ(x, y) for an incompressible flow, since the mass conservation condition is
identically satisfied when the velocity is expressed in terms of the stream
function. The components of the velocity are related to the stream function
by,

u∗x =
1

U∞

∂ψ

∂y

=
1

(νxU∞)1/2

∂ψ

∂η
(11.26)

The above equation indicates that it is appropriate to define the scaled stream
function ψ∗, often expressed in literature as f(η),

ψ∗(η) = f(η) =
ψ

(νxU∞)1/2
(11.27)

where f(η) is a dimensionless function of the similarity variable η. The
streamwise velocity can then be expressed in terms of the scaled stream
function as,

ux =
∂ψ

∂y

= U∞

df

dη
(11.28)

The cross-stream velocity is given by,

uy = −
∂ψ

∂x

=
1

2

(

νU∞

x

)1/2
(

η
df

dη
− f

)

(11.29)

Equation 11.19 also contains derivatives of the streamwise velocity, which
can be expressed in terms of the similarity variable η as,

∂ux

∂x
= −

U∞η

2x

d2f

dη2
(11.30)
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∂ux

∂y
=

U∞

(νx/U∞)1/2

d2f

dη2
(11.31)

∂2ux

∂y2
=

U2

∞

νx

d3f

dη3
(11.32)

Equations 11.29 to 11.32 are inserted into the equation 11.19 to obtain, after
some simplification,

d3f

dη3
+

1

2
f
d2f

dη2
= 0 (11.33)

This is the ‘Blasius boundary layer’ equation for the stream function for
the flow past a flat plate. This equation has to be solved, subject to the
appropriate boundary conditions, which are as follows. At the surface of the
plate, the no-slip condition requires that the velocity components ux and uy

are zero. Since ux is given by equation 11.28, the condition ux = 0 at y = 0
reduces to,

df

dη
= 0 at y = 0(η = 0) (11.34)

Using equation 11.29 for the cross-stream velocity uy, along with condition
11.34 at the surface, the condition uy = 0 at y = 0 reduces to,

f = 0 at y = 0(η = 0) (11.35)

Finally, we require that the velocity ux is equal to the free stream velocity
U∞ in the limit y → ∞. Using equation 11.29 for ux, we obtain,

df

dη
= 1 for y → ∞ → η → ∞ (11.36)

Further, we also require that the fluid velocity is equal to the free stream
velocity U∞ at the upstream edge of the plate x = 0 at any finite y. When
expressed in terms of the similarity variable η, this boundary condition is
identical to equation 11.34 for y → ∞.

Equation 11.33, which is a third order equation, can be solved subject to
three boundary conditions 11.34, 11.35 and 11.36 to obtain the variation of
f(η) with η. This equation cannot be solved analytically, but can be solved
quite easily using numerical techniques. Figure ?? shows the solution for
(ux/U∞) = (df/dη) as a function of η.
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The shear stress at the surface is given by,

τxy = µ
∂ux

∂y

∣

∣

∣

∣

∣

y=0

=
µ

(νx/U∞)1/2

dux

dη

∣

∣

∣

∣

∣

η=0

= ρ

(

νU3

∞

x

)1/2
d2f

dη2

∣

∣

∣

∣

∣

η=0

(11.37)

Therefore, the shear stress at the surface decreases as x−1/2 as the downsteam
distance x increases. The value of (d2f/dη2) = 0.664 at η = 0 is obtained
from the numerical solution of equation 11.33 for f(η), and therefore the
shear stress at the surface of the plate is,

τxy = 0.332ρ

(

νU3

∞

x

)

1/2

(11.38)

The total force exerted on the plate, per unit length in the direction perpen-
dicular to the flow, is determined by integrating equation the shear stress,

Fx =
∫ L

0

dx τxy

= 0.664ρ(νU3

∞
L)1/2 (11.39)

The ‘drag coefficient’ is defined as,

CD =
Fx

(ρU2
∞
/2)L

= 1.328Re
−1/2

L (11.40)

where ReL is the Reynolds number based on the length of the plate and the
free stream velocity U∞.

11.1 Stagnation point flow

The stagnation point flow is encountered at the upstream stagnation point
in the flow past bluff bodies such as solid spheres, where the fluid velocity is
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perpendicular to the surface of the object. Over length scales small compared
to the radius of curvature of the object, the flow can be approximated by a
fluid stream incident on a flat plate as shown in figure ??. In the potential
flow approximation, the stream function and the velocity components, in the
co-ordinate system shown in figure ??, are

ψ = γ̇xy (11.41)

ux = γ̇x (11.42)

uy = −γ̇y (11.43)

where γ̇ is the strain rate (∂ux/∂y) = −(∂uy/∂x), which has units of inverse
time. The pressure in the potential flow is,

p = −
ρ(u2

x + u2

y)

2

= −
ργ̇2(x2 + y2)

2
(11.44)

The boundary conditions are the no-slip condition at the surface of the plate,

ux =
∂ψ

∂y
= 0 at y = 0 (11.45)

uy = −
∂ψ

∂x
= 0 at y = 0 (11.46)

while the condition that the velocity is equal to the potential flow solution
at a large distance from the plate can be written as,

ψ → γ̇xy for y → ∞ (11.47)

The potential flow solution for the velocity 11.42 does not satisfy the bound-
ary condition at the surface of the plate, and so it is necessary to postulate
a boundary layer very close to the surface where viscous effects become im-
portant. In this boundary layer, it is necessary to solve the boundary layer
equations 11.9, 11.19 and 11.20, subject to the appropriate boundary condi-
tions, to obtain the velocity profile.

The thickness of the boundary layer can be inferred as follows. In the
flow past a flat plate, the boundary layer thickness at a distance x from the
upstream edge was found to be proportional to (νx/U∞)1/2. In the stagna-
tion point flow, the velocity U∞ in the potential flow outside the boundary



10 CHAPTER 11. BOUNDARY LAYER THEORY

layer is not a constant, but is equal to γ̇x. Therefore, we would expect the
boundary layer thickness to be proportional to (ν/γ̇)1/2. The boundary layer
approximation will be valid only when this thickness is small compared to
the distance x from the plane of symmetry of the flow, (ν/γ̇)1/2 ≪ x, or for
(γ̇x2/ν) ≫ 1. The dimensionless parameter (γ̇x2/ν) is the Reynolds number
based on the strain rate and the distance x from the plane of symmetry of
the flow, and the boundary layer approximation is valid when this Reynolds
number is large.

We define the similarity variable η = y/(ν/γ̇)1/2, since the boundary layer
thickness is (ν/γ̇)1/2. If we express the outer potential flow solution in terms
of the similarity variable, we obtain,

ψ = ν1/2γ̇1/2xη (11.48)

Therefore, within the boundary layer, it is appropriate to assume a stream
function of the form,

ψ = ν1/2γ̇1/2xf(η) (11.49)

where f(η) is a dimensionless function of the similarity variable η. The
pressure gradient in the potential flow in the x direction is given by,

∂p

∂x
= −ργ̇x (11.50)

Since the pressure gradient (∂p/∂y) in the boundary layer is zero, the pressure
gradient (∂p/∂x) in the boundary layer is also given by equation 11.50.

Equation 11.19 for the x momentum has to be solved, using the form
11.49 for the stream function, in order to determine the similarity solution
f(η). The velocity and velocity gradients in equation 11.19, expressed in
terms of f(η), are,

ux =
∂ψ

∂y
= γ̇x

df

dη
(11.51)

uy = −
∂ψ

∂x
= −γ̇1/2ν1/2f

∂ux

∂x
= γ̇

df

dη
(11.52)

∂ux

∂y
=

γ̇3/2x

ν1/2

d2f

dη2
(11.53)

∂2ux

∂y2
=

γ̇2x

ν

d3f

dη3
(11.54)
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The above velocity and velocity gradients are inserted into the x momentum
balance equation 11.19, and divided throughout by (γ̇x), to obtain,

d3f

dη3
−

(

df

dη

)

2

+ f
d2f

dη2
+ 1 = 0 (11.55)

The boundary conditions for f(η) can be obtained from the boundary con-
ditions on the stream function 11.45 and 11.46 at the surface of the plate
y = 0 (η = 0), and the condition 11.47 in the limit y → ∞ (η → ∞).

f(η) = 0 at η = 0 (11.56)

df

dη
= 0 at η = 0 (11.57)

f(η) → η for η → ∞ (11.58)

The shear stress at the surface is given by,

τxy = µ
∂ux

∂y

∣

∣

∣

∣

∣

y=0

(11.59)

= ρ(ν1/2γ̇3/2x1/2)
d2f

dη2

∣

∣

∣

∣

∣

η=0

(11.60)

Therefore, the shear stress at the surface increases as x1/2 as the downsteam
distance x increases.

( The value of (d2f/dη2) = 0.664 at η = 0 is obtained from the numerical
solution of equation ?? for f(η), and therefore the shear stress at the surface
of the plate is,

τxy = 0.332ρ

(

νU3

∞

x

)

1/2

(11.61)

The total force exerted on the plate, per unit length in the direction perpen-
dicular to the flow, is determined by integrating equation the shear stress,

Fx =
∫ L

0

dx τxy

= 0.664ρ(νU3

∞
L)1/2 (11.62)

The ‘drag coefficient’ is defined as,

CD =
Fx

(ρU2
∞
/2)L

= 1.328Re
−1/2

L (11.63)
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where ReL is the Reynolds number based on the length of the plate and the
free stream velocity U∞. )

11.2 Falkner-Skan solutions

In the previous two sections, we obtained boundary layer solutions for two
specific potential flow velocity profiles in the flow past a flat plate. This raises
the question of whether it is possible to obtain boundary layer solutions for
all flows past solid surfaces in the high Reynolds number limit. It turns
out that it is possible to obtain boundary layer solutions only for a specific
class of flows past flat solid surfaces, and this class of solutions is called the
‘Falkner-Skan’ boundary layer solutions.

The configuration consists of a two-dimensional flow past a solid object,
and we assume that the potential flow velocity profile is knows. Near the
surface, the no-slip boundary conditions cannot be satisfied by the potential
flow solution, and so it is necessary to postulate the presence of a ‘boundary
layer’ near the surface whose thickness is small compared to the characteristic
length of the object. A local co-ordinate system (x, y) is used, where x is
along the surface and y is perpendicular to the surface. The normal velocity
at the surface of the object is zero in the potential flow approximation, though
the tangential velocity is, in general, non-zero. We assume that the tangential
velocity profile is given by U(x) in the boundary layer, which corresponds to
the limit y → 0 for the potential flow solution.

The pressure gradient in the x direction in equation 11.19 can be deter-
mined in terms of the potential flow velocity U(x) as follows. Equation 11.20
indicates that the pressure gradient in the cross-stream direction is zero, so
that the pressure is independent of y. Therefore, the pressure at any loca-
tion is a function of x alone, and p(x, y) = p(x, y → ∞). However, the limit
y → ∞ corresponds to the free stream, where the flow is not affected by the
presence of the surface at y = 0. The free-stream velocity profile satisfies the
potential flow equations, and the pressure p∞ is related to the free stream
velocity by the Bernoulli equation,

p∞ +
ρU2

2
= Constant (11.64)

Since the pressure depends only on x and not on y, the pressure at any
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location p(x, y) = p∞(x), and the pressure gradient in the x direction is,

∂p

∂x
=
∂p∞
∂x

= −ρU
dU

dx
(11.65)

When this is inserted into the momentum conservation equation 11.19, we
obtain,

ρ

(

ux
∂ux

∂x
+ uy

∂ux

∂y

)

= ρU
∂U

∂x
+ µ

∂2ux

∂y2
(11.66)

The boundary conditions at the surface of are given by 11.3 and 11.4,

ux = 0 at y = 0 (11.67)

uy = 0 at y = 0 (11.68)

while the boundary condition in the limit y → ∞ is given by equation 11.5.

ux = U(x) for y → ∞ (11.69)

The fluid velocity and pressure fields are governed by equations 11.9,
11.20 and 11.66. We assume that the solution can be expressed in terms of a
similarity variable η = (y/δ(x)), where the boundary layer thickness δ(x) is a
function of x. Note that δ(x) ≪ L in the high Reynolds number limit, where
L is the characteristic length scale of the flow. The form for the velocity ux

is chosen to be,

ux = U(x)
df

dη
(11.70)

Note that this is of the same form as that for the flow past a flat plate in
equation 11.27, and for the stagnation point flow in equation 11.49 where
U(x) = γ̇x. The stream function can be obtained by integrating equation
11.70 with respect to y,

ψ =
∫ y

0

dy ux

= δ(x)U(x)
∫ η

0

dη′
df

dη

= δ(x)U(x)f(η) (11.71)

The velocity uy in the y direction is,

uy = −
∂ψ

∂x

= −
d(δ(x)U(x))

dx
f(η) +

U(x)y

δ(x)2

dδ(x)

dx

df

dη
(11.72)
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The velocity gradients in the x momentum equation can now be expressed
in terms of f(η),

∂ux

∂x
=

dU(x)

dx

df

dη
−
U(x)y

δ(x)2

dδ(x)

dx

d2f

dη2
(11.73)

∂ux

∂y
=

U(x)

δ(x)

d2f

dη2
(11.74)

∂2ux

∂2y
=

U(x)

δ(x)2

d3f

dη3
(11.75)

These are inserted into the x momentum equation 11.66, and the result is
divided throughout by (νU(x)/δ(x)2), to obtain,

d3f

dη3
−
δ2

ν

dU(x)

dx

(

df

dη

)

2

+
U(x)δ(x)

ν
η
dδ(x)

dx

df

dη

d2f

dη2

+
δ2

ν

df

dη

(

d(δ(x)U(x))

dx
f(η) +

U(x)y

δ(x)2

dδ(x)

dx

df

dη

)

= 0 (11.76)

Problems:

1. Consider the uniform flow of a fluid past a flat plate of infinite extent
in the x1−x3 plane, with the edge of the plate at x1 = 0. The Reynolds
number based on the fluid velocity and the length of the plate is large.
At a large distance from the plate, the fluid has a uniform velocity U1

in the x1 direction and U3 in the x3 direction. All velocities are inde-
pendent of the x3 direction, and the velocities U1 and U3 are uniform
and independent of position in the outer flow,

(a) Write down the equations of motion in the x1, x2 and x3 directions.
If the thickness of the boundary layer δ is small compared to
the length of the plate L, find the leading order terms in the
conservation equations.

(b) What is the similarity form of the equation for the momentum
equations for the velocity u1? Make use of the similarity forms for
boundary layer flows derived in class. Do not try to solve the

equation.

(c) Find the solution for the velocity u3 in terms of the solution for
u1.
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(d) If the velocity U1 in the outer flow is a constant, but the velocity
U3 = U30 +U31x1, what is the form of the equation for the velocity
u3? Is a similarity solution possible?

2. Consider the Blasius boundary layer flow of a fluid past a flat plate
of length L in the high Reynolds number limit, where x and y are
the streamwise and cross-stream directions respectively. The velocity
profile is given by the Blasius boundary layer profile. The temperature
of the fluid at a large distance from the plate is T0. For x < 0, the
temperature of the plate is T0, while for x > 0, the plate is at a higher
temperature T1 > T0. The equation for the temperature field in the
fluid is:

∂T

∂t
+ u.∇T = α∇2T

where u is the fluid velocity. The above equation gives a balance be-
tween the convective and diffusive transport of heat in the fluid.

(a) Scale the coordinates in the temperature equation, and determine
the equivalent Peclet number for this problem.

(b) Assume that the temperature field can be expressed in terms of the
similarity variable using a suitable form, and derive a similarity
equation for the temperature field, which contains the Prandtl
number, the ratio of the Peclet and Reynolds numbers.

(c) If this number is large, one would expect the conduction to be
confined to a thin layer near the surface of the plate. Scale the co-
ordinates in the heat balance equation in this case, and determine
the boundary layer thickness as a function of the Prandtl number.

(d) What is the scaling of the flux as a function of the Prandtl and
Reynolds numbers?


