
Chapter 1

Potential flow:

1.1 General formulation

Inviscid and irrotational flows in the limit of high Reynolds number are referred
to as ‘potential’ or ‘ideal’ flows. The term ‘inviscid’ refers to flows where viscous
forces are small compared to inertial forces, so that the fluid viscosity can be
neglected in comparison to fluid inertia. ‘Potential’ or ‘ideal’ flows are a class of
inviscid flows in which the vorticity ω, which is the curl of the velocity vector,
is zero, i. e.

ωi = ǫijk

∂uk

∂xj

= 0 (1.1)

Since the curl of the velocity is zero, the velocity can be expressed as the gradient
of a potential φ,

ui =
∂φ

∂xi

(1.2)

and hence the name ‘potential flow’.
Using equation 1.2 for the velocity field, the Navier-Stokes mass and mo-

mentum equations can be written in terms of the velocity potential. The mass
conservation equation, expressed in terms of the velocity potential, is,

∂ui

∂xi

=
∂2φ

∂x2

i

= 0 (1.3)

Thus, the mass conservation equation simply states that the velocity potential
satisfies the Laplace equation, ∇2φ = 0. Therefore, for potential flow we can
use all the techiques developed for solving the Laplace equation earlier. The
momentum conservation equation an inviscid flow is,

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
fi

ρ
(1.4)

where fi is the body force per unit volume acting on the fluid. The second term
on the right side of the above equation can be simplified for an irrotational flow
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in which the vorticity is zero. Consider the cross product of the velocity and
vorticity, u × ω = u ×∇× u, which can be written in indicial notation as,

ǫijkujǫklm

∂um

∂xl

= (δilδjm − δimδjl)uj

∂um

∂xl

= uj

∂ui

∂xj

− ui

∂ui

∂xj

= uj

∂ui

∂xj

− 1

2

∂(u2

i )

∂xj

(1.5)

For an irrotational flow, the left side of the above equation is zero since the
vorticity ∇× u is zero. Therefore,

uj

∂ui

∂xj

=
1

2

∂(u2

i )

∂xj

(1.6)

Using the above substitution for the second term on the left side of equation 1.4,
and also expressing the first term on the left in terms of the velocity potential
using equation 1.2, we obtain,

∂

∂t

∂φ

∂xi

+
1

2

∂(u2

i )

∂xi

+
1

ρ

∂p

∂xi

− fi

ρ
= 0 (1.7)

If the body force fi is conservative, it can be expressed as the gradient of a
potential V as follows,

fi = − ∂V

∂xi

(1.8)

When this is inserted into equation 1.7, and simplified, we obtain,

∂

∂xi

(

∂φ

∂t
+

1

2
u2

i +
p

ρ
+
V

ρ

)

= 0 (1.9)

Since all components of the gradient of the term in brackets is zero in the above
equation, the term in brackets has to be equal to a constant,

(

∂φ

∂t
+

1

2
u2

i +
p

ρ
+
V

ρ

)

=
p0

ρ
(1.10)

where the constant p0 is the reference pressure at a location where the velocity
and potential V are zero. In a gravitational field, the potential is equal to ρgz,
where z is the height above the zero-potential reference. Equation 1.10 can then
be written as,

(

∂φ

∂t
+

1

2
u2

i +
p

ρ
+ gz

)

=
p0

ρ
(1.11)

Equation 1.11 is referred to as the ‘Bernoulli’ equation for the potential flow.
An important point to note is that in potential flows, it is possible to satisfy

only the normal velocity and stress conditions at a surface, and it is not possible
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to satisfy the tangential velocity and stress conditions. This is because we have
neglected the viscous terms in the momentum conservation equation 1.4, which
contain the second spatial derivatives of the velocity field. Consequently, we
have reduced the equations from a second order to a first order equation in
the spatial coordinates. And therefore, it is possible to satisfy only the normal
velocity and stress boundary conditions at the surface. If we neglect viscous
effects, the only contribution to the stress is the isotropic contribution due to
the pressure,

τij = −pδij (1.12)

It should be noted that the Laplace equation 1.3 for the velocity potential
is a linear equation, and if normal velocity boundary conditions are prescribed
at the bounding surface, the potential is a linear function of the velocity. If the
velocity of all surfaces is changed by a constant factor, the potential and the
velocity at all points in the fluid also change by the same factor. In addition,
the solutions for the velocity potential are ‘quasi-static’ for imposed normal
velocities of the bounding surfaces, because the potential at a given instant
in time depend only on the velocity of the bounding surfaces at that instant.
However, the Bernoulli equation 1.10 for the pressure is a non-linear equation,
since it has a contribution proportional to the square of the velocity, and is also
explicitly dependent on time, since it contains a term proportional to the time
derivative of the potential. Therefore, the solution for the velocity potential
under imposed normal stresses at the bounding surfaces is not linear or quasi-
static.

There are some general results that can be derived for potential flows. The
first is that the kinetic energy in a potential flow can be expressed as a function
of the potential and normal velocity at the bounding surfaces. The kinetic
energy of the fluid in a volume V with bounding surfaces S is defined as,

KE =
ρ

2

∫

V

dV u2

j

=
ρ

2

∫

V

dV

(

∂φ

∂xj

∂φ

∂xj

)

=
ρ

2

∫

V

dV

(

∂

∂xj

(

∂φ

∂xj

)

− φ
∂2φ

∂x2

j

)

(1.13)

where integration by parts has been used in the final step. Since the potential
satisfies the Laplace equation 1.3, the second term in the integrand on the right
side of equation 1.13 is zero, and the expression for the kinetic energy reduces
to,

KE =
ρ

2

∫

V

dV
∂

∂xj

(

∂φ

∂xj

)

=
ρ

2

∫

S

φujnj (1.14)
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where n is the outward unit normal at the surfaces bounding the fluid. There-
fore, the kinetic energy of the fluid can be expressed only in terms of the poten-
tial and normal velocity at the bounding surfaces. It follows that if the normal
velocity at all bounding surfaces is zero, then the kinetic energy is zero, which
implies that the fluid velocity is zero throughout the domain.

It is possible to prove a ‘uniqueness theorem’ for potential flows, which
states that the potential flow solution is unique if the normal velocity boundary
conditions are specified on all boundaries. To prove this, we first assume that
the potential flow solution is not unique, and that there are two potential flow
solutions, u and u

∗, which satisfy the same normal velocity boundary conditions,
uini = u∗ini on the bounding surfaces of the flow. Consider the integral over
the fluid domain V ,

I =

∫

V

dV (u∗i − ui)(u
∗

i − ui) (1.15)

Since the integrand is always positive, the integral also has to be positive. For a
potential flow, this integral can be rewritten by expressing the velocity in terms
of the velocity potential, and using integration by parts as follows.

I =

∫

V

dV (u∗i − ui)
∂(φ∗ − φ)

∂xi

=

∫

V

dV
∂

∂xi

((u∗i − ui)(φ
∗ − φ) −

∫

V

dV (φ∗ − φ)
∂(u∗i − ui)

∂xi

(1.16)

The second integral on the right side of equation 1.16 is zero due to the in-
compressibility condition, while the first integral can be expressed as a surface
integral using the divergence theorem,

I =

∫

S

dS(φ∗ − φ)(u∗i − ui)ni

= 0 (1.17)

Here, we have used the condition that the two velocity fields satisfy the same
normal velocity conditions on the boundaries, so that (u∗i − ui)ni is zero on all
boundaries.

We had earlier assumed that u
∗ and u are different velocity fields, in which

case the integral I has to be positive. However, we have proved in equation 1.17
that I is zero if the normal velocity fields at all surfaces are equal. Therefore,
this implies, that it is not possible to have two different potential flow solutions
which satisfy the same normal velocity boundary conditions at all the bounding
surfaces, and the solutions for the potential flow equations is unique if the normal
velocity conditions are specified at all boundaries.

Another general result is the ‘minimum energy theorem’, which states that
the kinetic energy of a potential flow is less than or equal to the kinetic energy
of any other flow that satisfies the same normal velocity boundary conditions
at the bounding surfaces. Let us consider two velocity profiles, ui and u∗i , both
of which satisfy the same normal velocity boundary conditions at the bounding



1.2. THREE-DIMENSIONAL POTENTIAL FLOWS 5

surfaces (uini = u∗ini). The velocity field ui is a solution of the potential
flow equations, whereas the velocity field u∗i is not necessarily a solution of
the potential flow condition, though it satisfies the mass conservation condition
(∂u∗i /∂xi) = 0. The difference in the kinetic energies of the two flows is,

KE∗ − KE =
ρ

2

∫

V

dV (u∗2i − u2

i )

=
ρ

2

∫

V

dV
(

(u∗i − ui)
2 + 2ui(u

∗

i − ui)
)

=
ρ

2

∫

V

dV (u∗i − ui)
2 + ρ

∫

V

dV ui(u
∗

i − ui)

=
ρ

2

∫

V

dV (u∗i − ui)
2 + ρ

∫

V

dV
∂φ

∂xi

(u∗i − ui)

=
ρ

2

∫

V

dV (u∗i − ui)
2 + ρ

∫

V

dV

(

∂

∂xi

(φ(u∗i − ui))

)

− φ
∂(u∗i − ui)

∂xi

(1.18)

where integration by parts has been used in the final step. The second term
on the second integral on the right side of equation 1.16 is zero because the
velocities ui and u∗i satisfy the incompressibility condition. Finally, the right
side of equation 1.16 can be simplified using the divergence theorem,

KE∗ − KE =
ρ

2

∫

V

dV (u∗i − ui)
2 + ρ

∫

V

dV

(

∂

∂xi

(φ(u∗i − ui))

)

=
ρ

2

∫

V

dV (u∗i − ui)
2 + ρ

∫

S

dSniφ(u∗i − ui)) (1.19)

Note the surface integral on the right side of equation 1.19 is zero, since it was
assumed that the velocities u∗i and ui satisfy the same normal velocity boundary
conditions at the surface. Therefore, the kinetic energy of the velocity field u∗i
that does not necessarily satisfy the potential flow equations is always equal to
or greater than that of velocity field ui which does satisfy the potential flow
equations,

KE∗ − KE =
ρ

2

∫

V

dV (u∗i − ui)
2

≥ 0 (1.20)

1.2 Three-dimensional potential flows

1.2.1 Motion of a sphere in an infinite fluid

The simplest three-dimensional potential flow is the motion of a sphere in a fluid
that it at rest at a large distance from the sphere. The configuration consists
of a sphere of radius R moving with a velocity U in a fluid that is at rest at
a large distance from the sphere, as shown in figure 1.1. The normal velocity
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r

R

θ U

Figure 1.1: Sphere of radius R moving with a velocity U in a fluid which is at
rest at large distance from the sphere.

boundary condition for the fluid velocity ui at the surface of the sphere is,

uini = Uini (1.1)

The equation for the velocity potential, 1.3, has to be solved subject to the
boundary conditions 1.1 in order to determine the velocity field. Since equation
1.3 is linear, the potential is a linear function of the velocity of the particle. In
addition, the potential is a solution of the Laplace equation which decays to zero
at a large distance from the sphere, so it is a linear combination of the spherical
harmonic solutions. It is possible to construct only one scalar function which is
linear in the velocity and in one of the spherical harmonics,

φ =
AUjxj

r3
(1.2)

where A is a constant. The velocity field is then given by,

ui =
∂φ

∂xi

= AUj

(

δij
r3

− 3xixj

r5

)

(1.3)

The constant A is determined from the normal velocity boundary condition 1.1.
The normal fluid velocity at the surface is given by,

uini =
uixi

r

= −2AUjxj

r4

= −2AUjnj

r3
(1.4)
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Equation the normal velocity 1.4 to Ujnj at the surface r = R, we obtain the
solution A = −(R3/2). Therefore, the final solution for the velocity potential
which satisfies the boundary conditions at the surface is,

φ = −R
3Ujxj

2r3
(1.5)

It is convenient to express the potential in a spherical co-ordinate system with
co-ordinates (r, θ, φ), in which the azimuthal angle θ is measured from the direc-
tion of the velocity U. In this co-ordinate system, the potential is independent
of the meridional angle, and is given by,

φ = −R
3U cos (θ)

2r2
(1.6)

The components of the velocity in the r and θ directions are,

ur =
∂φ

∂r

= −R
3U cos (θ)

r3
(1.7)

uθ =
1

r

∂φ

∂θ

=
R3U sin (θ)

2r3
(1.8)

The total kinetic energy due to the fluid flow can be calculated using equation
1.14. Note that the unit normal n is the outward unit normal at the bounding
surfaces of the fluid. The integral in equation 1.14 has no contribution due to the
surface at a large distance from the sphere, since the velocity decreases to zero.
At the surface of the fluid, the outward unit normal to the fluid is directed
into the sphere, and therefore ni = −(xi/r) at the surface of the sphere. In
addition, the normal velocity of the fluid at the surface ujnj is equal to the
normal velcoity of the sphere Ujnj , and therefore the kinetic energy is given by,

KE = −ρ
2

∫

Ssphere

dS
φUjxj

r

=
ρ

2

∫

Ssphere

dS
R3Ukxk

r3
Ujxj

r

=
ρR3UjUk

4

∫

Ssphere

dS
xjxk

r4
(1.9)

The surface integral in equation 1.9 can easily be evaluated,
∫

Ssphere

dS
xjxk

r4
=

4π

3
(1.10)
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Therefore the final expression for the kinetic energy due to the fluid motion is,

KE =

(

2πR3ρ

3

)

U2

j

2
(1.11)

If the kinetic energy of due to the moving fluid is expressed as (MaU
2

j /2), where
Ma is the ‘added mass’ which has to be moved in addition to the mass of the
moving fluid, then the added mass is given by

Ma =
2πR3ρ

3
(1.12)

It can easily be seen that the added mass is equal to half the mass of fluid that
is displaced by the sphere.

The pressure exerted on the fluid at the surface of the sphere can be evalu-
ated,

p = p0 − ρ

(

∂φ

∂t
+
u2

j

2

)

(1.13)

It is necessary to exercise some care in calculating the time derivative of the
potential in the above equation. Though the velocity of the sphere is a constant,
the potential in a fixed reference frame is not a constant. This is because the
radius vector from the center of the sphere to a fixed location in space changes as
the sphere moves, and consequently the potential at this location also changes.
If x0 is the location of the center of the particle, and x is the observation point,
the equation for the potential 1.2 can be written as,

φ = −R
3Uj

2

(xj − x0j)

|x − x0|3
(1.14)

Since the sphere is moving with velocity U, the rate of change of potential is,

∂φ

∂t
=

∂φ

∂Uj

dUj

dt
+

∂φ

∂x0k

dx0k

dt
(1.15)

The derivative of the potential with respect to x0k can be written as the negative
of the derivative with respect to xk in the above equation, because the potential
is only a function of the distance (x − x0). Therefore, the change in x − x0

due to a displacement of ∆x in the position x0 is identical to that due to a
displacement of −∆x in the position x. Therefore, (∂φ/∂x0k) = −(∂φ/∂xk),
and equation 1.16 reduces to,

∂φ

∂t
=

∂φ

∂Uj

dUj

dt
− ∂φ

∂xk

Uk

=
∂φ

∂Uj

dUj

dt
− Ukuk (1.16)

This is inserted into the equation for the pressure to obtain,

p = p0 − ρ

(

u2

j

2
− ujUj

∂φ

∂Uj

dUj

dt

)

(1.17)
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In the above equation, we have returned to a co-ordinate system in which the
origin is located at the center of the particle. The radial component of the fluid
velocity, ur, at the surface is zero, and the only contribution to the kinetic energy
is due to the tangential velocity at the surface, uθ (equation 1.8). Therefore,
the pressure at the surface r = R is given by,

p = p0 − ρ

(

u2

θ

2
+ U sin (θ)uθ −R cos (θ)

dU

dt

)

= p0 − ρU2

(

5 sin (θ)
2

16
− R

U2
cos (θ)

dU

dt

)

(1.18)

In equation 1.19, we have substituted Uθ = −U sin (θ) and uθ = (U sin (θ)/2)
at r = R.

The force exerted on the sphere can be calculated by integrating the pressure
over the surface of the sphere,

Fi =

∫

Ssphere

dSτijnj

=

∫

Ssphere

dSpni (1.19)

By symmetry, the force perpendicular to the velocity is zero. The force along
the direction of the velocity is,

Fz =

∫

Ssphere

dSpnz (1.20)

where Fz is the force in the direction of the velocity vector, and nz is the
component of the unit normal to the sphere in the direction of the velocity
vector. For the steady flow of a particle with (dU/dt) = 0, it can easily be
shown that the force Fi is identically zero due to symmetry considerations. The
pressure p is a symmetric function of θ about the mid-plane cutting the sphere
perpendicular to the direction of flow at θ = (π/2). However, the unit normal
nz = cos (θ) is anti-symmetric about the plane θ = (π/2), and therefore the
integral of the pressure and nz over the surface of the sphere is identically zero.
This result, that the steady motion of a sphere through a fluid does not exert a
force on the fluid, is referred to as ‘d’Alembert’s paradox’.

If the particle is accelerating, there is a net force exerted on the particle by
the fluid. This is calculated by integrating the contribution to the pressure due
to acceleration over the surface of the sphere.

Fi = ρ

∫

Ssphere

dSni

(

R3xj

2r3
dUj

dt

)

∣

∣

∣

∣

∣

∣

r=R

=
ρ

2R

dUj

dt

∫

Ssphere

dSxixj
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=

(

2πR3ρ

3

)

dUi

dt

= Mb

dUi

dt
(1.21)

Here, the outward unit normal to the sphere is given by ni = (xi/r), and we
have used the identity

∫

Ssphere

dSxixj =
4πR4δij

3
(1.22)

to obtain the third step in equation 1.22. Not surprisingly, the force requried to
accelerate the particle through the fluid is the product of the added mass and
the acceleration.

1.2.2 General three-dimensional potential flows:

Some general results can be obtained for the form of the velocity potential for an
object of arbitrary shape translating through a fluid in potential flow. The solu-
tion for the velocity potential is, in general, more complicated than the solution
1.6 for the motion of a sphere. However, the leading contribution to the poten-
tial is still the dipole contribution which decays proportional to (1/r2) in three
dimensions. There is no source term proportional to (1/r) due to the incom-
pressibility condition and the constant volume of the object. However, higher
order terms which decay faster than (1/r2) could be present in the solution.

Equation 1.18 for the pressure is valid for an object of arbitrary shape, since
no assumption was made regarding the specific form of the velocity potential
while deriving the pressure.

It is possible to show that the force required for the steady motion of an
object of arbitrary shape through the fluid,

Fi =

∫

Sobject

dSpni

= ρ

∫

Sobject

dSni

(

u2

j

2
− Ujuj

)

(1.1)

is equal to zero. Consider the volume integral

∫

V

dV
∂

∂xi

(

u2

j

2
− Ujuj

)

(1.2)

evaluated over the volume of the fluid surrounding the fluid. Using the diver-
gence theorem, this volume integral can be written as,

∫

V

dV
∂

∂xi

(

u2

j

2
− Ujuj

)

=

∫

S∞

dSni

(

u2

j

2
− Ujuj

)

−
∫

Sobject

dSni

(

u2

j

2
− Ujuj

)
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∫

S∞

dSni

(

u2

j

2
− Ujuj

)

− Fi (1.3)

The volume integral on the left side of equation 1.3 can further be simplified as
follows,

∫

V

dV
∂

∂xi

(

u2

j

2
− Ujuj

)

=

∫

V

dV (uj − Uj)
∂uj

∂xi

=

∫

V

dV (uj − Uj)
∂ui

∂xj

=

∫

V

dV
∂

∂xj

((uj − Uj)ui) (1.4)

In the second step of the above equation, we have used the fact that the stress
tensor is symmetric for an irrotational flow, so that (∂ui/∂xj) = (∂uj/∂xi). In
the final step, we have used the incompressibility condition (∂uj/∂xj) = 0. The
volume integral in equation 1.4 can further be converted into a surface integral
by first using the incompressibility condition

∫

V

dV
∂

∂xj

((uj − Uj)ui) =

∫

S∞

dSnj(uj − Uj)ui −
∫

Sobject

dSnj(uj − Uj)ui(1.5)

In the final step of the above equation, we have used the normal velocity bound-
ary condition, ujnj = Ujnj on the surface of the object, so that the integral
over the surface of the object is zero. Equating the right sides of equation 1.3
and 1.6, the force on the object can be expressed as,

Fi =

∫

S∞

dS

(

ni

(

u2

j

2
− Ujuj

)

− nj(uj − Uj)ui

)

(1.6)

The right side of the above equation contains terms that are linear or quadratic
in the velocity, and the integral is evaluated at a large distance from the object
in the limit r → ∞. In this limit, the velocity decreases proportional to (1/r3),
whereas the surface area increases proportional to r2. Therefore, both the inte-
grals on the right side are zero in the limit r → ∞. This shows that the force
on an object of arbitrary shape is zero in a potential flow.

1.3 Two-dimensional potential flows:

The analysis of potential flows in two dimensions is considerably simplified by
the use of complex functions. The simplification is due to two important prop-
erties of complex functions.

1. If a complex function F (z) of a complex variable z is analytic, i. e. the
change in the function DeltaF due to a small change in the variable ∆z
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can be expressed as

∆F =
dF

dz
∆z, (1.1)

then the real and imaginary parts of the complex function satisfy the
Laplace equation in the complex plane. Since the velocity potential is also
a solution of the Laplace equation, we can associate the real parts of all
complex functions to the velocity potential. Thus, there is a potential flow
field associated with all complex functions subject to the normal velocity
boundary condition at the surfaces.

2. A transformation, called a conformal mapping, can be effected from the
independent complex variable z to some other variable z′ in such a way
that the function F (z′) also satisfies the Laplace equation in the z′ plane.
In this way, it is possible to map the flow in a complicated domain onto
the flow in a much simpler domain, and solve the Laplace equation in the
simpler domain.

Both the above properties, and their application to two-dimensional complex
flows, will be explained in this section.

First, we will show that if the if a complex function is analytic, then the real
and imaginary parts satisfy the Laplace equation. Consider a complex function
F (z) which is a function of the independent variable z = x+ ıy, where ı =

√
−1.

The function can be written as the sum of its real and imaginary parts,

F (z) = φ(x, y) + ıψ(x, y) (1.2)

The variation in the function F when the independent variable z is displaced
by ∆z = ∆x+ ı∆y is,

F (z + ∆z) − F (z) =

(

∂φ

∂x
+ ı

∂ψ

∂x

)

∆x+

(

∂φ

∂y
+ ı

∂ψ

∂y

)

∆y

=

(

∂φ

∂x
+ ı

∂ψ

∂x

)

∆x+

(

−ı∂φ
∂y

+
∂ψ

∂y

)

ı∆y (1.3)

The function is analytic if the variation ∆F is proportional to ∆z in the limit
∆z → 0, or if ∆F can be written as,

∆F =
dF

dz
∆z (1.4)

Therefore, for an analytic function, the real and imaginary parts of the coeffi-
cients of ∆x and ı∆y in equation 1.3 are equal, and the functions φ and ψ have
the relations,

∂φ

∂x
=

∂ψ

∂y
(1.5)

∂ψ

∂x
= −∂φ

∂y
(1.6)
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The above conditions are referred to as the ‘Cauchy Reimann’ conditions for the
analyticity of a complex function. If we sum the partial derivative of equation
1.5 with respect to x and the partial derivative of equation 1.6 with respect
to y, we find that the function φ(x, y) satisfies the Laplace equation in two
dimensions,

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (1.7)

Similarly, if we take the difference of the partial derivative of equation 1.5 with
respect to y and equation 1.6 with respect to x, we find that the function ψ also
satisfies the Laplace equation in two dimensions,

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 (1.8)

Therefore, if a complex function F (z) is analytic, then its real and imaginary
parts satisfy the Laplace equation.

Since the real part φ(x, y) of any complex function F (z) is a solution of
the Laplace equation 1.7, it is also a valid solution for the velocity potential in
a two dimensional domain provided it satisfies the normal velocity boundary
conditions at the prescribed boundaries. Thus, every complex function has a
two dimensional velocity field associated with it that satisfies the potential flow
equations. The velocities in the x and y direction are then given by,

ux =
∂φ

∂x
=
∂ψ

∂y

uy =
∂φ

∂y
= −∂ψ

∂x
(1.9)

where the Cauchy-Reimann conditions have been used to express derivatives
of the potential φ in terms of derivatives of the imaginary part ψ. It is clear,
from the relations 1.9 between ux, uy and ψ, that the imaginary part ψ is the
stream function for the flow. Thus, the real and imaginary parts of the complex
potential are the velocity potential and the stream function respectively. The
function F (z) is often referred to as the ‘complex potential’. The derivative of
F (z) with respect to z can be written as,

W (z) =
dF

dz

=
∂φ

∂x
+ ı

∂ψ

∂x
= ux − ıuy (1.10)

It is also convenient to express the function W (z) in terms of the components
(ur, uθ) in a polar co-ordinate system. The relation between the velocities in a
Cartesian and polar co-ordinate systems are,

ux = ur cos (θ) − uθ sin (θ)

uy = ur sin (θ) + uθ cos (θ) (1.11)
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Using these it can easily be verified that the complex potential is,

W (z) = (ur − ıuθ) exp (−ıθ) (1.12)

Since we have shown that there are potential flow velocity fields associated
with any analytic complex function, we can examine the potential flow fields
due to some fundamental forms of the function F (z). We first consider the form,

F (z) = Azm (1.13)

where A is assumed to be real without loss of generality. The derivative of F (z)
with respect to z is,

W (z) =
dF

dz

= mAzm−1

= mArm−1 exp (ı(m− 1)θ) (1.14)

Comparing the form of W (z) in equation 1.14 with that in equation 1.12, we
find that the velocities ur and uθ in a polar co-ordinate system are,

ur = Arm−1 cos (mθ)

uθ = Arm−1 sin (mθ) (1.15)

Equations 1.15 represent a flow that, for positive A, is directed radially outward
for θ = 0, radially inward for θ = (π/m), and along the θ co-ordinate for
θ = (π/2m), as shown in figure ??. Since the normal velocity is zero along the
lines θ = 0 and θ = (π/m), the velocity field 1.15 represents the flow in a corner
of subtended angle (π/m). Several special cases can be considered for specific
values of m. For m = 1, the subtended angle is π, and the flow is a steady
linear flow with velocity A in the x direction, as shown in figure ??. The flow
for m = 2 is the stagnation point flow in a corner of angle (π/2), as shown in
figure ??. The flow for m > 2 is the flow in a corner with a subtended acute
angle, while the flow for 1 < m < 2 is the flow in a corner with a subtended
obtuse angle, as shown in figure ??.

Next, we consider the form

F (z) =
m

2π
log (z) (1.16)

where m is a real constant. The derivative of F (z) with respect to z is,

W (z) =
m

2πz

=
m

2πr
exp (−ıθ) (1.17)

Comparing equation 1.17 with 1.12, we find that the components of the velocity
field are,

ur =
m

2πr
uθ = 0 (1.18)
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This is the flow from a point source of fluid in two dimensions, from which the
total volume of fluid generated (per unit length in the third dimension) Q at
any radius R is equal to m, and is independent of radius.

A logarithmic function with an imaginary coefficient represents circulation
about the origin. Consider the form,

F (z) =
ıΓ

2π
log (z) (1.19)

where Γ is real. The derivative of F (z) is,

W (z) = − ıΓ

2πz

= − ıΓ

2πr
exp (−ıθ) (1.20)

Comparing equation 1.20 with equation 1.12, we find the components of the
velocity,

ur = 0

uθ =
Γ

2πr
(1.21)

Thus, the flow due to the potential 1.21 is a circulating flow around the origin.
For this flow, the circulation is the integral of the tangential velocity along a
closed curve around the origin, is equal to Γ.

Circulation =

∫ 2π

0

rdθuθ

= Γ (1.22)

1.3.1 Flow around a cylinder

The motion around a cylinder translating with a velocity Ux in the x direction
in a fluid which is at rest at a large distance from the cylinder is expressed by
a complex potential of the form,

F (z) = −UxR
2

z
− ıΓ

2π
log (z) (1.1)

The velocity fields can be inferred from the derivative of this complex potential
with respect to z,

W (z) =
dF

dz

=
UxR

2

z2
− ıΓ

2πz

=

(

UxR
2

r2
exp (−ıθ) − ıΓ

2πr

)

exp (−ıθ) (1.2)
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The radial and polar components of the velocity can be inferred using equation
1.12,

ur =
UxR

2

r2
cos (θ)

uθ =
UxR

2

r2
sin (θ) +

Γ

2πr
(1.3)

The above velocity field satisfies the condition uini = Uini at the surface of
a cylinder with radius R, since the normal velocity uini, which is the radial
velocity ur in a polar co-ordinate system, is equal to Uini = Uxnx = Ux cos (θ),
where the component nx of the unit normal to the surface is equal to cos (θ).

The force on the cylinder can be determined from the equation 1.17 for the
force on an object moving with velocity Ui through the fluid,

Fi = ρ

∫

Sobject

dSni

(

u2

j

2
− Ujuj

)

= ρ

∫

2π

0

(Rdθ) ni

(

u2

θ

2
− Ux(ur cos (θ) − uθ sin (θ)

)∣

∣

∣

∣

r=R

(1.4)

The ‘drag’ force Fx, which is in the direction of the velocity, can be determined
using nx = cos (θ) in equation 1.4,

Fx = ρ

∫ 2π

0

(Rdθ) cos (θ)

(

1

2

(

Ux sin (θ) +
Γ

2πR

)2

+ Ux (ur cos (θ) + uθ sin (θ))

)

= ρ

∫

2π

0

(Rdθ) cos (θ)

(

1

2

(

Ux sin (θ) +
Γ

2πR

)2

+ U2

x

(

cos (θ)
2 − sin (θ)

2
)

)

= 0 (1.5)

As in three dimensions, the drag force due to the potential flow in two dimensions
is also equal to zero. The ‘lift’ force perpendicular to the direction of gravity
can be determined using ny = sin (θ) in equation 1.4,

Fx = ρ

∫ 2π

0

(Rdθ) sin (θ)

(

1

2

(

Ux sin (θ) +
Γ

2πR

)2

+ U2

x

(

cos (θ)
2 − sin (θ)

2

)

)

= ρUxΓ (1.6)

1.4 Force on a two-dimensional object of arbi-

trary shape:

The net force exerted on a two-dimensional object in potential flow can be
calculated in a manner similar to that for a three-dimensional flow. A procedure
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identical to that in section ?? will result in the equation 1.6 for a two dimensional
object,

Fi =

∫

S∞

dS

(

ni

(

u2

j

2
− Ujuj

)

− nj(uj − Uj)ui

)

(1.1)

In two dimensions, the surface area (per unit length in the direction perpen-
dicular to the plane of flow) of a surface with radius r increases proportional
to r in two dimensions. Therefore, the force is non-zero only if the integrand
decreases proportional to r in the limit r → ∞. In two dimensions, the most
slowly decaying velocity field is due to a line source of fluid equation 1.18, and
due to a line vortex equation 1.21, both of which decay proportional to (1/r)
in the limit r → ∞. In the absence of a source of fluid within the object, a non-
zero contribution to the force can be caused only by a line vortex with velocity
uθ = (Γ/2πr) where Γ is the circulation. co-ordinates, or ui = ǫijkΓjnk/(2πr)
in Cartesian co-ordinates, where Γ is the circulation, and Γi = Γδiz . In equation
1.1, there is no contribution due to the terms proportional to u2

j and uiuj, since
these decay proportional to (1/r) in the limit r → ∞. Therefore, it is sufficient
to consider the components of the integrand of equation 1.1 linear in the velocity
ui,

Fi = ρ

∫

S∞

dSUj(njui − niuj) (1.2)

If we choose the direction of the mean velocity to be along the x direction
without loss of generality, it is clear that the ‘drag’ force along the x direction
is zero from equation 1.2. However, the ‘lift’ force along the y direction is not
zero, and can be calculated by writing the velocity uθ = (Γ/2πr) (equation
1.2) in terms of the Cartesian components, ux = (−Γ sin (θ)/(2πr)) and uy =
(Γ cos (θ)/(2πr)),

Fy = ρ

∫

S∞

dSUx(nxuy − nyux)

= ρ

∫

S∞

dSUxΓ/(2πr)

= ρUΓ (1.3)

Problems:

1. Find the added mass per unit length of an infinite cylinder in potential
flow, using a procedure identical to that for a three-dimensional object
derived here.

2. Determine the total kinetic energy due to a moving sphere under potential
flow conditions. From this, calculate the added mass. Also, find the
total kinetic energy of the fluid when a sphere moves in the limit of zero
Reynolds number. How do the two compare?
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3. Determine the energy dissipation due to the motion of a sphere at high
Reynolds number, assuming that the fluid velocity field is given by the
potential flow solution. Using this, find the drag force on the sphere. How
does it compare to the drag force on a sphere at zero Reynolds number?
The rate of dissipation of energy is given by,

D =

∫

dV µ(∇u:∇u)

4. Consider a bubble with internal pressure pb expanding in a fluid in which
the pressure a large distance from the bubble is p0. The radius of the
bubble R(t) is a function of time as it expands.

(a) Solve the potential flow equations to determine the fluid velocity field
due to the expanding bubble.

(b) Determine the pressure at the surface of the bubble.

(c) Form a pressure balance condition, find the equation for the evolution
of the bubble radius.

5. Consider two line sources of strength −m and m separated by a distance
d along the x axis, in a fluid flowing with a constant velocity U in the
x direction. What is the equation for the shape of the object which is
equivalent to these two sources? Show that in the limit d → 0 and (md)
finite, the object assumes the shape of a cylinder, and find its radius.

6. Consider the transform from the z to the z′ plane given by

z = z′ +
a2

z′

(a) Determine the relations between the coordinates (x′, y′) and (x, y).

(b) Consider a circle of radius a in the z′ plane. What is the transformed
shape in the z plane? If we consider the flow past the cylinder in the
z′ plane

F (z′) = z′ +
a2

z′

in the z′ plane, what is the equivalent flow in the z plane?

(c) Consider a circle of radius b > a in the z′ plane. What is the trans-
formed shape in the z plane? If we consider the flow past the cylinder
in the z′ plane

F (z′) = z′ +
b2

z′

in the z′ plane, what is the equivalent flow in the z plane?
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7. A three dimensional irregular body is moving with a velocity U1 in the x1

direction near a wall which is perpendicular to the x2 axis as shown in the
figure. The Reynolds number is large so that the potential flow equations
are applicable. The wall is impermeable so that the fluid flow at the wall
is tangential to it. Find the force on the body in the x1 and x2 directions
as a function of the velocity of the object U1 and the fluid velocity at the
wall.
(Hint: Consider a control volume bounded by the surface of the object
S, the surface of the wall Sw and the surface at infinity S∞. Use methods
similar to the derivation of the d’Alembert paradox for a general body in
irrotational flow.)

8. Consider the dynamics of waves on the surface of a liquid of wavelength
λ, frequency ω and amplitude ξ0. Find the conditions (at high Reynolds
number) under which the uj∂jui term in the momentum conservation
equation can be neglected compared to the ∂tui term. Under these con-
ditions, find the frequency of the surface waves on the surface of a liquid
of infinite depth as a function of the wavelength of the waves. The height
of the surface fluctuations is given by the equation:

ξ = ξ0 exp (ikx+ iωt)

where k = (2π/λ) is the wave number, and ω is the frequency of the waves.
In addition, the normal velocity at the surface z = 0 is given by the time
rate of change of the displacement ξ.


