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2 Exercises:

2.1 Dimensional analysis:

1. The dimensionless groups for the heat flux in a heat exchanger were
determined assuming that there is no inter-conversion between me-
chanical and thermal energy. If mechanical energy can be converted
to thermal energy, there would be one additional dimensionless group
which would be relevant for the heat flux. What is this dimensionless
group, and what is its significance?

2. The Maxwell equations in electrodynamics are,

∇.E = (ρs/ǫ0) (1)

∇.B = 0 (2)

∇×E = −∂B

∂t
(3)

∇×B = µ0J + µ0ǫ0
∂E

∂t
(4)

where E and B are the electric and magnetic field vectors, ρs is the
charge density, ǫ0 and µ0 are the permittivity and permeability of free
space, and J is the current density. The dimensions of electric field
E is (Volt/meter), and that of charge density ρs is (Coulombs/ m3),
or (Amps × s / m3), where m is meters and s is seconds. Using the
above equations, determine the dimensions of E, B, ǫ0, µ0 and J in
terms the fundamental dimensions of mass, length, time and
amperes. Note that (∂/∂t) is the partial derivative with respect to
time, ∇. and ∇× are the divergence and curl operators with dimensions
of inverse length, and

Power = Volt × Ampere (5)

3. Use dimensional analysis to obtain the dimensionless groups in the
problem of a droplet of oil placed in a water bath placed in an elec-
tric field between two plane electrodes separated by a distance L, and
moving with velocity U , as shown in figure 1. Assume the density of
oil and water are equal. The important dimensional parameters are,
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(a) the radius of the droplet R,

(b) the distance between the electrodes L (assume they are of infinite
extent in the x − y plane),

(c) the velocity of the droplet,

(d) the viscosity of water,

(e) the viscosity of oil,

(f) the density of water/oil,

(g) the surface tension between water and oil,

(h) the voltage difference between the two electrodes with dimension
Volts,

(i) the dielectric constant of water ǫw, with dimension (A2s4kg−1m−3),
where A is amperes, and

(j) the dielectric constant of oil ǫo, with dimension (A2s4kg−1m−3).

Note that the dimension of potential, Volt, is related to the dimension
of current, amperes, by the relation

Power = Volt × Ampere (6)

How many dimensionless groups are there in the above problem? Of
these, three are easily obtained as the ratio of lengths (L/R), the ratio
of viscosities and the ratio of dielectric constants of water and oil. The
other dimensionless groups are expressed as the ratios of stresses caused
by different physical mechanisms. Identify the dimensionless groups,
and the physical mechanisms.

How would the problem simplify if the distance between plates is large
compared to the droplet radius?

(a) How many dimensions are there in the above problem, and what
are they?

(b) On the basis of the number of dimensional quantities and the
number of dimensions, how many dimensionless groups that can
be obtained?

(c) Of these, three dimensionless groups are easily obtained, the ratio
of lengths (L/R), the ratio of viscosities of water and oil, and the
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Figure 1: Motion of oil droplet in a water bath.

ratio of dielectric constants of water and oil. The other dimen-
sionless groups can be expressed as ratios of stresses caused by
different physical mechanisms. What are these physical mecha-
nisms.

(d) Of these, there should be a stress due to the electric potential,
which involves the potential, dielectric constants, the droplet di-
ameter and distance between plates. Can you obtain an expression
for this on the basis of dimensional analysis? What stress would
you expect when the distance between plates is large compared to
the droplet diameter?

(e) Write down a complete set of dimensionless groups relevant in this
problem, apart from those listed in part (c).

4. It is desired to set up a spray drier for drying a solution of viscosity
0.1 kg/m/s and density 1000 kg/m3, and containing 80 % by weight
of water, into particles of diameter about 100 µm. In order to achieve
this, it is necessary to design the nozzle used for ejecting the spray, the
diameter of the spray drier and the hot air to be circulated through the
drier. Use dimensional analysis to determine the design considerations.
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Due to the temperature sensitivity of the product, it is not possible to
have an average difference in temperature between the droplet and the
air of more than 40oC.

This example is an instance where fluid flow is coupled with heat and
mass transfer. In the spray drier, the flow through a very small nozzle
breaks up the liquid into small drops, and the water in these drops is
dried by the heat transferred from the air as the drops move through
the air. The drops in nozzle spray driers are usually coarse, and sizes
upto 100 µ m can be achieved. For finer drops, it is necessary to use
a spray disk drier, where the spraying is done by a disk of about 1 ft
in diameter rotating at speeds as large as 1000 rev/s. In the present
example, we consider a nozzle type spray drier, since a relatively coarse
size is required. The droplets are usually ejected with high velocities,
as large as 0.1 - 1 m/s, and so the time required for drying the droplets
is usually very small, of the order of seconds.

The spraying process can be separated into two distinct steps,

(a) The ejection of the drop from the nozzle. The size of the drops,
and the velocity of the drop at the nozzle, are determined primar-
ily by the nozzle geometry, fluid properties and the flow rate of
fluid through the nozzle.

(b) The subsequent drying of the drop as it passes through the air.
Here, it is necessary to ensure that the spray drier has a suffi-
cient radius that the drop is completely dried before it hits the
wall of the drier. Important for determining this are the veloc-
ity with which the drop leaves the nozzle, the heat transfer rate
for transporting heat from the drop to the air, the latent heat of
evaporation which determines the heat required to dry the drop.

For the second process above, determine the radius and height of the
drier form consideration that the droplet should have dried before it
reaches the side or bottom walls as follows.

(a) What are the dimensional groups on which the heat flux and mass
flux depends? Organise this into dimensionless parameters and
calculate the numerical values. Assume droplet diameter of 100
microns ejected with velocity of 0.5 m/s.

(b) Which procedure is rate limiting, the heat or mass transfer?
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(c) What is the diameter and height required for complete drying?

Data: Air thermal conductivity is 2−2J/m/s/oC, latent heat of water
2.2 × 106J/kg.

5. The waste water generated from a chemical process has to be passed
through activated carbon in order to remove organic matter by adsorp-
tion. The carbon particles are, on average, 1mm in diameter. The
process of adsorption is described by a first order process, with a rate
constant 1.6 s−1. It is desired to treat 160 l/min of the waste water,
and the maximum speed of the water through the activated carbon bed
is 1 mm/s, and the porosity (void fraction) of the bed is 0.45. First,
discuss why there is a limit on the maximum velocity in the bed. Then,
design the height and the cross sectional area of the bed.

The dimensional material parameters that the rate of adsorption can
depend on are the adsorption rate constant ka, which has units of in-
verse time for a first order process, and the diffusion constant for the
organics. The porosity can also be a factor, in addition to the fluid
properties, density and viscosity.

2.2 Diffusion

1. Compute the mean free path and the mean molecular velocity of hy-
drogen molecules (molecular diameter 2.915??) and chlorine molecules
(molecular diameter 4.115??) at 300 K temperature and 105 Pa pres-
sure. What is the ratio of the mean free path and the molecular diam-
eter? Compute the viscosity from kinetic theory.

2. Compute the viscosity of air (mixture of oxygen and nitrogen) at 300
K and 105 Pa. First, compute the viscosity of pure oxygen (molecular
diameter 3.433??) and pure nitrogen (molecular diameter 3.681??).
Then, compute the viscosity of the mixture using the semi-empirical
formula of Wilke for mixtures,

µmix =
n

∑

i=1

xiµi
∑n

j=1 xjΦij
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in which

Φij =
1√
8

(

1 +
Mi

Mj

)

−1/2
[

1 +
µi

µj

1/2 Mi

Mj

−1/4
]2

Compare the result with the measured value of 1.813 × 10−5 kg/m/s.

3. In the kinetic theory of gases, there are two dimensionless numbers that
relate the macroscopic flow properties to the molecular properties. The
Mach number is defined as (U/c), where U is the flow velocity and c is
the speed of sound. The Knudsen number is defined as (λ/L), where
λ is the mean free path and L is the macroscopic length scale. If the
speed of sound in a gas is approximately equal to the molecular velocity,
how is the ratio of convection and diffusion in a gas (the Peclet number
for concentration and diffusion or the Reynolds number for momentum
diffusion) related to the Mach number and the Knudsen number?

4. Estimate the mass flux in a gas with uniform density and a gradient in
temperature.

What is the mass flux when there is both a gradient in density and tem-
perature? What is the relation between the density and temperature
gradients when the mass flux is zero?

5. The haemoglobin molecule has a diffusivity of 0.069 × 10−9 m2/s in
water. Using the Stokes-Einstein relation, estimate the diameter of
this molecule. Assume water has a viscosity of 10−3 kg/m/s.

6. Use the Stokes-Einstein relation to determine the diffusion coefficient
of hydrogen (molecular diamter 2.915??), oxygen (molecular diameter
3.433??) and benzene (molecular diameter 5.270?? in water at 300K.
Compare with the measured values of 4.5×10−9, 2.1×10−9 and 1.02×
10−9 m2/s respectively. For which molecule would you expect the best
and worst agreement with measured values?

2.3 Unidirectional flow in Cartesian co-ordinates:

1. Consider a long and narrow channel two - dimensional of length L
and height H , where H ≪ L, as shown in figure 2. The ends of the
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Figure 2: Flow in a thin slot due to a moving wall.

channel are closed so that no fluid can enter or leave the channel. The
bottom and side walls of the channel are stationary, while the top wall
moves with a velocity V (t). Since the length of the channel is large
compared to the height, the flow near the center can be considered as
one dimensional. Near the ends, there will be some circulation due to
the presence of the side walls, but this can be neglected far from the
sides. For the flow far from the walls of the channel,

(a) Write the equations for the unidirectional flow. What are the
boundary conditions? What restriction is placed on the velocity
profile due to the fact that the ends are closed and fluid cannot
enter or leave the channel?

(b) If the wall is given a steady velocity V which is independent of
time, solve the equations (neglecting the time derivative term).
Calculate the gradient of the pressure.

(c) If the wall is given an oscillating velocity V cos (ωt), obtain an
ordinary differential equation to obtain the velocity profile. Get
an analytical solution for this which involves the constants of ite-
gration. Use the boundary conditions to determine all unknown
constants.

2. In shell-and-tube heat exchangers, the tube side often has fins in order
to increase the conduction rate, as shown in figure 3. The fin can
be modeled, in two dimensions, as a rectangular block of length L,
height H and with thermal conductivity k. One surface (outer wall
of the tube of the heat exchanger) is at the temperature Tt, which is
the temperature of the tube side fluid. The other three surfaces are
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Figure 3: Fin of a shell-and-tube heat exchanger.

at the temperature Ts, which is the temperature of the shell side fluid.
Determine the heat flux from the fin as follows.

(a) Write down the conduction equation, ∇2T = 0, in two dimensions,
and specify the boundary conditions.

(b) Define a non-dimensional temperature in such a way that both
boundary conditions are homogeneous along one of the co-ordinates.

(c) Use separation of variables to obtain separate the dependence of
T on the x and y co-ordinates.

(d) Write down the final solution for the temperature field which sat-
isfies homogeneous boundary conditions.

(e) Determine the coefficients using orthogonality relations along the
inhomogeneous direction. From this, calculate the heat flux as a
function of the temperature difference.

3. Consider a solid block extending from y = 0 to y = L in the y coordi-
nate, and from x = 0 to x → ∞ in the x co-ordinate, as shown in the
figure 4. The top and bottom faces at y = 0 and y = L are at temper-
ature T0, face at x = 0 is at temperature T1. Obtain the temperature
profile of the block at steady state as follows.

(a) Which coordinate system would you choose for analysing the prob-
lem? Write down the conservation equation for the temperature
field at steady state for this system.

(b) Transform the temperature to a new coordinate Θ in such a way
that Θ satisfies the same governing equations, but there is a ho-
mogeneous boundary condition in all directions except one.
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Figure 4: Conduction into a semi-infinite slab.

(c) Use separation of variables to solve for the temperature field. De-
termine the constants in the solution for the temperature.

(d) What is the total heat transfer at the surface at temperature T1?

4. A rectangular channel of width W and height H is used for transporting
fluid of density ρ and viscosity µ. If a steady pressure difference ∆p is
applied across the length L of the channel, determine the flow rate.

(a) First, obtain the momentum balance for the streamwise velocity
for a differential volume in the channel.

(b) Solve the equation using separation of variables to obtain the ve-
locity. Note that the fluid velocity is zero on all the walls of the
channnel.

5. A cubic solid of side a is initially held at a temperature T0. At times
t ≥ 0, its lateral faces are held at temperatures TA, TB, TC and TD as
illustrated in figure 5. The top and bottom faces are insulated so that
no heat is transferred through them. The cube has heat conductivity
C, density ρ and thermal conductivity K.

(a) Solve for the steady state temperature in the cube.
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Figure 5: Conduction from a cube.

(b) Show how the transient problem may be set up in a form to which
separation of variables can be applied.

6. There is a dissipation of energy during the shear flow of a viscous liquid
due to fluid friction, and this energy increases the temperature of the
fluid. We consider the specific example of a pressure-driven flow in a
channel between two infinite flat plates located at z = 0 and z = H .
There is no variation in the y direction perpendicular ot the plane of
the flow. The temperature at both the bounding surfaces is T0, but
there is an increase in the temperature within the channel due to the
heat generated by viscous dissipation, and the source of energy per
unit volume is τxz(dux/dz). At steady state, the velocity profile in the
channel is given by,

ux = − 1

2µ

dp

dx
z(H − z)

= 4U

(

z

H
−

( z

H

)2
)

(7)
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where (dp/dx) is the pressure gradient, and U is the maximum velocity
at the center of the channel. Determine the temperature profile in the
channel, and the heat flux through the wall.

2.4 Unidirectional flow in curvilinear co-ordinates:

1. In wire coating, a cylinder in a thin annular region, as shown in figure 6.
The cylinder is pulled with a constant velocity V. The pressure is equal
on both sides of the cylinder. Determine the fluid velocity, and the flow
rate.

2. A resistance heating appratus for a fluid consists of a thin wire im-
mersed in a fluid. In order to design the appratus, it is necessary to
determine the temperature in the fluid as a function of he heat flux
from the wire. For the purposes of the calculation, the wire can be
considered of infinite length so that the heat conduction problem is
effectively a two dimensional problem. In addition, the thickness of
the wire is considered small compared to any other length scales in the
problem, so that the wire is a line source of heat. The wire and the
fluid are initially at a temperature T0. At time t = 0, the current is
switched on so that the wire acts as a source of heat, and the heat
transmitted per unit length of the wire is Q. The heat conduction in
the fluid is determined by the unsteady state heat conduction equation

∂tT = K∇2T (8)
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and the heat flux (heat conducted per unit area) is

K∇T (9)

where K is the thermal conductivity of the fluid.

(a) Choose an appropriate coordinate system, and write down the
unsteady heat conduction equation.

(b) What are the boundary conditions? Give special attention o the
heat flux condition at the wire, and note that the wire is considered
to be of infinitesimal radius.

(c) Solve the heat conduction equation using the simplest method,
and determine the temperature field in the fluid.

(d) Use the boundary conditions to determine the constants in the
expression for the temperature field.

3. An ideal vortex is a flow with circular streamlines where the particle
motion is incompressible and irrotational. The velocity profile obeys
the equation in cylindrical coordinates:

vθ =
Γ

2πr
(10)

with vr = vz = 0. At the origin, the above equation indicates that the
velocity becomes infinite. But this is prohibited because viscous forces
become important and the flow is rotational in a small region near the
core.

Consider an ideal vortex in which the velocity is given by the above
equation for t < 0, and the core velocity is constrained to be zero at
t = 0. Find the velocity profile for t > 0. Assume that vθ is the only
non - zero velocity component. The momentum equation for vθ is,

∂vθ

∂t
= ν

∂

∂r

(

1

r

∂(rvθ)

∂r

)

4. Consider the fully developed flow in a circular tube with velocity profile

ux = U(t)

(

1 − r2

R2

)
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as shown in figure 7, where the maximum velocity U could be a function
of t, but is independent of the stream-wise co-ordinate x. There is
viscous dissipation which generates heat within the fluid, and the heat
generated per unit volume of the fluid per unit time is given by,

Q = µ

(

∂ux

∂r

)2

Due to this, there is a temperature variation across the tube, and the
temperature field is governed by the convection-diffusion equation,

ρCv

(

∂T

∂t
+ u.∇T

)

= k∇2T + Q

The temperature at the wall of the tube is maintained at T = T0,
and we assume that the temperature could be a function of
time, but the temperature field is ‘fully developed’ so that
the temperature is independent of the flow (x) direction.

(a) Choose a suitable co-ordinate system, and write down the convection-
diffusion equation for the time-dependent but ‘fully developed’
temperature field.

(b) Scale the co-ordinates and time. What would you use to scale the
temperature?

(c) Obtain the solution for the temperature at steady state, where
both the maximum velocity U and temperature are independent
of time.

(d) If the maximum velocity has a sinusoidal variation, U(t) = U cos (ωt),
what is the value of the heat source Q? How would you express the
inhomogeneous term in the time-dependent convection-diffusion
equation for the temperature in order to obtain a solution?

(e) Determine the solution for the temperature field.

5. A rotating cylinder geometry consists of a cylinder of radius R and
height H , filled with fluid, with two end caps. The cylinder rotates with
an angular velocity Ω, while the end caps are stationary. Determine
the fluid velocity field using separation of variables as follows.
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Figure 7: Viscous heating due to the flow in a tube.

(a) Choose a coordinate system for the problem. Clearly, the only
non-zero component of the velocity is uφ. Determine the boundary
conditions for this component of the velocity.

(b) Write down the mass balance condition for an incompressible fluid.
For a uni-directional flow in which the density is a constant, what
does this reduce to?

(c) The steady state momentum conservation equation for uφ is,

−∂p

∂φ
+ µ

(

∂

∂r

(

1

r

∂(ruφ)

∂r

)

+
∂2uφ

∂z2

)

= 0

Can you eliminate pressure in the above equation by taking a
derivative with respect to φ and using mass balance.

(d) Solve the conservation equation at steady state using the method
of separation of variables. Frame the orthogonality conditions
which would be required to solve the problem.

Data:

(a) Bessel equation:

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0
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Solution:
y = A1Jn(x) + A2Yn(x)

where Jn(x) is bounded for x → 0, and Yn(x) is bounded for
x → ∞. tem Modified Bessel equation:

x2 d2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0

Solution:
y = A1In(x) + A2Kn(x)

where In(x) is bounded for x → 0, and Kn(x) is bounded for
x → ∞.

6. A piston damper assembly, shown in figure 8, consists of a cylindrical
piston rod moving through a stationary cylindrical sleeve which is filled
with fluid. The sleeve is closed at both ends so that the fluid cannot
move in or out of the sleeve. The radius of the piston rod is Rp, while
the outer radius of the sleeve is Rs. The length of the sleeve L is large
compared to the radius Rs. The piston rod moves with a velocity U
with respect to the sleeve. Consider the region away from the ends
of the sleeve, where the flow is expected to be in only one direction
(parallel to the walls).

(a) Choose a co-ordinate system for analysing the configuration. Mark
the boundaries of the fluid in this co-ordinate system.

(b) Which is the non-zero component of the velocity in this co-ordinate
system, and which spatial co-ordinate does the velocity depend
on? Write the boundary conditions in the center region away
from the ends of the sleeve, where the flow is expected to be uni-
directional.

(c) What condition can be obtained about the velocity in the center
of the channel (away from the ends) from mass conservation?

(d) Use a shell balance to derive the momentum conservation equation
for the unidirectional flow in the center of the sleeve away from
the ends.

(e) Solve the momentum conservation equation to determine the ve-
locity field.
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Figure 8: Piston-damper assembly.

(f) Determine all the constants in the expression for the velocity from
the conditions obtained above.

7. Consider an annular channel described in a cylindrical (r, θ, z) co-
ordinate system. The cross section of the channel is shown in figure 9,
and the z direction is perpendicular to the plane of the cross section.
The channel is bounded by solid walls at r = 0 and r = R, and at
θ = 0 and θ = Θ. The wall at r = R is moving in the z direction with
a velocity U , while those at θ = 0 and θ = Θ are stationary. The flow
is a unidirectional, fully developed, and steady flow with velocity only
in the z direction. The equation for the velocity field in the z direction
is,

µ

(

1

r

∂

∂r

(

r
∂uz

∂r

)

+
1

r2

∂2uz

∂θ2

)

= 0

where µ is the viscosity.

(a) What are the boundary conditions required for solving the above
equation?

(b) Use separation of variables, by writing uz = F (r)T (θ), and obtain
equations for F and T . [2]

(c) Find the solution for T (θ) that satisfies the boundary conditions.
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(d) Find the solution for F (r), and enforce boundary conditions to
find the final solution.

8. Consider a point source of heat located in an infinite medium of thermal
conductivity k maintained at temperature T0 far from the source. For
time t < 0, the source does not generate any heat, and the temperature
everywhere is T0. At time t > 0, the source generates Q units of energy
per unit time.

(a) What co-ordinate system will you use for solving the problem?
Obtain the unsteady energy conservation equation using a shell
balance.

(b) What are the boundary conditions?

(c) Use similarity transform obtain a solution for the differential equa-
tion. What is the boundary condition in terms of the similarity
variable?

(d) Can a similarity solution be obtained if Q is a constant? What
should be the dependence of Q on time in order to obtain a simi-
larity solution?

9. Solve the two-dimensional heat diffusion equation, ∇2T = 0, for the
temperature field around a cylinder, as shown in figure 10, when the
temperature at a large distance from the cylinder is T = T ′xy, and
the temperature at the cylinder surface is a constant, T0. Note that
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the solutions of the diffusion equation in a two-dimensional cylindrical
co-ordinate are,

T =
∞

∑

m=0

((

Am

rm
+ Bmrm

)

cos (mφ) +

(

Cm

rm
+ Dmrm

)

sin (mφ)

)

(11)
and the basis functions, cos (mφ) and sin (mφ) are orthogonal basis
functions, that is,

∫ 2π

0

dφ cos (mφ) cos (nφ) =

∫ 2π

0

dφ sin (mφ) sin (nφ) = πδmn

∫ 2π

0

dφ cos (mφ) sin (nφ) = 0 (12)

(a) Determine the temperature field.

(b) What is the heat flux, and the total heat transfer from the cylin-
der?
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2.5 Mass and energy conservation equations:

1. The cylindrical coordinate system consists of the coordinates (r, φ, z),
where r is the distance from the z axis, and φ is the angle made by the
position projection of the position vector on the x − y plane with the
x axis, as shown in figure 1. For this coordinate system,

(a) Determine the coordinates (x, y, z) in terms of (r, φ, z), and the
coordinates (r, φ, z) in terms of (x, y, z). How are the unit vectors
(er, eφ, ez) related to (ex, ey, ez).

(b) Write down the conservation equation for the concentration field
for the appropriate differential volume in cylindrical coordinates.
What is the divergence operator ∇. in this coordinate system?

(c) Express the flux in terms of the gradient of concentration in the
cylindrical coordinate system. What is the Laplacian operator ∇2

in this coordinate system?

(d) Solve the differential equation for the concentration in cylindrical
coordinates using the separation of variables, in a manner similar
to that for spherical coordinate system in class.

2.6 Transport due to diffusion:

1. Derive the harmonic expansion for a two dimensional cylindrical co-
ordinate system with coordinates (r, θ). Use separtion of variables to
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solve the equation K∇2T = 0 in cylindrical co-ordinates.

2. For a point source, solve the heat equation K∇2T = Qδ(x) in cylindri-
cal coordinates, to obtain the temperature distribution due to a point
source.

3. What is the temperature field when two sources are located as shown
in figure 5(a) and 5(b), and L ≪ r? Compare with the second terms
in the cylindrical harmonic expansion.

4. What is the temperature field when four sources are located as shown in
figures 5(c), and (d)? Compare with the third terms in the cylindrical
harmonic expansion.

5. Determine the second and third terms in the harmonic expansion by
successively taking gradients of the temperature field due to the point
source.

6. Determine the effective thermal conductivity for a dilute array of in-
finitely long circular cylinders along the plane perpendicular to the axis
of the cylinders, when the area fraction of the cylinders is φ. Use the
following steps.

(a) Consider an infinitely long cylinder with conductivity Kp in a
matrix of conductivity Km, and determine the temperature field
around the cylinder when a uniform gradient T ′ is imposed in the
x direction perpendicular to the axis of the cylinder.

(b) Write the heat flux as the sum of the flux over the matrix and
the sum over the cylinders. When the array is dilute, write the
integral as the sum over one cylinder, and determine the thermal
conductivity.

(c) What is the effective conductivity along the axis of the cylinders?

7. A point source of heat of strength Q (in units of heat energy per unit
time) is placed at a distance L from a wall.

(a) If the wall is perfectly conducting, so that the flux lines at the wall
are perpendicular to the wall as shown in figure 13, determine the
temperature as a function of position.
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Figure 12: Different arrangements of sources corresponding to higher har-
monics in two dimensions.
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Figure 13:

(b) If the wall is perfectly insulating, so that the flux lines at the
wall are parallel to the wall as shown in figure 13, determine the
temperature as a function of position.

(c) If the wall is not perfectly conducting, but only a fraction f of the
heat on the wall penetrates it, while a fraction (1 − f) does not
penetrate the wall, determine the temperature field as a function
of position.

8. A heater coil in the form of a ring of radius a in the x−y plane generates
heat Q per unit length of the coil per unit time, as shown in figure 14

(a) If the heater is placed in an unbounded medium of thermal con-
ductivity K, write an equation for the temperature as a function
of position in the medium.

(b) Plot the temperature as a function of position along the symmetry
axis of the heater (z axis in the figure 14). Simplify the expres-
sions for the temperature for z ≪ a and z ≫ a. What does the
expression for z ≫ a correspond to?

9. Solve the two-dimensional heat diffusion equation, ∇2T = 0, for the
temperature field around a cylinder, as shown in figure 1, when the
temperature at a large distance from the cylinder is T = T ′xy, and
the temperature at the cylinder surface is a constant, T0. Note that
the solutions of the diffusion equation in a two-dimensional cylindrical
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co-ordinate are,

T =
∞

∑

m=0

((

Am

rm
+ Bmrm

)

cos (mφ) +

(

Cm

rm
+ Dmrm

)

sin (mφ)

)

(13)
and the basis functions, cos (mφ) and sin (mφ) are orthogonal basis
functions, that is,

∫ 2π

0

dφ cos (mφ) cos (nφ) =

∫ 2π

0

dφ sin (mφ) sin (nφ) = πδmn

∫ 2π

0

dφ cos (mφ) sin (nφ) = 0 (14)

(a) Determine the temperature field.

(b) What is the heat flux, and the total heat transfer from the cylin-
der?

2.7 Transport at high Peclet number:

1. Consider the heat transfer in the flow past a corner, shown in figure
15. The temperature in the fluid is T0 for x ≤ 0, and there is a heated
section with temperature T1 for x ≥ 0. The fluid far from the surface is
at temperature T0. Adjacent to the heated section, the velocity profile
in the fluid close to the surface is given by, ux = kx1/2, uy = 0.

• Write down the steady state convection-diffusion equation for this
case.

• If we scale distance along the heated surface (x) and perpendicular
to heated surface (y) by the characteristic length L, what is the
Peclet number?

• When the Peclet number is large, the effect of heating is confined
to a thin boundary layer of thickness δ near the surface. Rescale
the equations, and determine the dependence of δ on Peclet num-
ber.

• Solve the simplified convection-diffusion equation, which includes
streamwise convection and cross-stream diffusion, using a similar-
ity transform to obtain a similarity solution for the temperature.
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Figure 15: Heat transfer in flow around a corner.

• Determine the average heat flux and Nusselt number based on the
length L of the heated section.

2. Consider the high Peclet number mass transfer in the pressure-driven
flow of a ‘power-law’ fluid past a flat surface, as shown in figure 16.
Use a Cartesian co-ordinate system where the surface is in the x − z
plane, and the velocity is in the x direction. For a power-law fluid, the
stress τxy is related to the velocity gradient (dux/dy) by the relation,

τxy = c

(

dux

dy

)
∣

∣

∣

∣

dux

dy

∣

∣

∣

∣

n−1

The velocity field close to the surface can be approximated as,

ux =

(

−1

c

dp

dx

)1/n
n

n + 1
y((n+1)/n)

Consider the flow of a power-law fluid past a flat plate with the above
velocity profile. The temperature of the incoming fluid, as well as the
plate temperature for x < 0 is T0, while the plate temperature is T1 for
x > 0. If we neglect streamwise diffusion in comparison to convection,
the convection-diffusion equation for the temperature field is,

ux
∂T

∂x
= α

(

∂2T

∂y2

)
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Figure 16: Flow of power law fluid across a surface.

(a) Express the convection-diffusion equation and the boundary con-
ditions in terms of the scaled temperature field T ∗ = (T−T0)/(T1−
T0). Insert the expression for the mean velocity into this equation.
What are the boundary conditions?

(b) Define a scaled variable η = (y/g(x)), and express the conservation
equation in terms of η. Substitute y = ηg(x) in the resulting
equation, to obtain an equation which does not contain the y
coordinate.

(c) Determine the solution for g(x) required to obtain a similarity
solution.

(d) What is the equation for the temperature field in terms of the
similarity variable? Do not attempt to solve the equation.

3. Consider the flow around a cylinder in two dimensions as shown in
figure 17. The velocity field in the radial co-ordinate system is given
by,

ur = −U cos (θ)

(

1 − R2

r2

)

uθ = U sin (θ)

(

1 +
R2

r2

)

(15)

where R is the radius of the cylinder. The cylinder surface is at a
temperature T0, while the temperature far from the cylinder is T∞. The
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Figure 17: Flow past a cylinder.

equation for the temperature field is the convection diffusion equation
in cylindrical co-ordinates,

ur
∂T

∂r
+

uθ

r

∂T

∂θ
= α

(

1

r

∂

∂r

(

r
∂T

∂r

)

+
1

r2

∂2T

∂θ2

)

(16)

(a) Insert the expression for the fluid velocity into the above equation,
and scale the resulting equation to obtain a dimensionless equation
for the temperature field. What is the Peclet number (ratio of
convection and diffusion)?

(b) Consider the limit where the Peclet number is large. In this case,
the temperature variation is expected to be confined to a thin
boundary layer near the surface of the cylinder. Scale the distance
from the surface of the cylinder by a boundary layer thickness, and
simplify the equation. How is the boundary layer thickenss related
to the Peclet number?

(c) Use a similarity transform to express the convection-diffusion equa-
tion in terms of the ratio of the distance from the surface and a
boudary layer thickness, where the boundary layer thickness is a
function of the θ co-ordinate. What is the equation for the varia-
tion for the boundary layer co-ordinate with θ?

(d) Solve the equation for the temperature in terms of the similarity
variable.

4. Consider the flow past a curved surface with a slip boundary condition
at the surface, as shown in figure 18. There is fluid flow across the sur-
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Figure 18: Flow with velocity slip across a surface.

face and conduction from the surface, and the Peclet number is consid-
ered to be high. Use a local orthogonal co-ordinate system, (X, Y ), at a
point on the surface, and write down the convection-diffusion equation
in a similar to that done for a general surface with no-slip boundary
conditions, with the difference that the tangential velocity along the
surface is not zero, though the normal velocity has to be zero. Assum-
ing the flow is two-dimensional and that the velocity (uX , uY ) satisfies
incompressibility. Write down the steady convection diffusion equation,
and obtain a solution in terms of the similarity variable, as well as the
boundary layer thickness.
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