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Subject Lectures Reading
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2. Vectors & Tensors. 3-6 Griffiths 1.
3. Kinematics. 7-8 Batchelor 2
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5. Viscous flow. 15-24 Batchelor 1.9, 4.10-4.11, Leal 4A-F,5A-B
6. Potential flow. 25-30 Panton 18, Batchelor 6.
7. Boundary layer theory. 30-37 Leal 11A-E,12A-B
8. Turbulence 38-40 Tennekes & Lumley 1,2,5.1-5.2
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Exercises

1 Vector and tensor analysis:

1. Verify if the following expressions for tensors are correct, and determine
their order.

(a) AijklBmk (b) LijmKimnMkmn

(c) SijilHjml (d) XijYilZjl

2. Does the order of appearance of the components make a difference in
the following expressions

(a) ǫijkajbk and bkajǫijk

(b) ρ∂ivj and vj∂jρ

(c) aijbk and aikbj

3. The stresses acting on the faces of a cube of unit length in all three
directions are as follows:

Tij =







1 2 1
3 1 1
2 0 2





 , (1)

where i denotes the direction of the force and j denotes the direction of
normal to the area. Find out the force acting on the faces of the cube,
and the torque on the cube in the three directions. For calculating the
torque, place the origin of the coordinate system at the center of the
cube. The torque is the cross product of the force acting on the cube
and the displacement from the center of the cube.

If it is required that the net torque in any direction should be zero,
what is the condition on Tij?

4. Show that:

(a) ∇ × ∇φ = 0 Interpret this in terms of contours of the scalar
function φ.

(b) ∇ × (∇ × u) = ∇(∇·u) − ∇2u. (Hint: Prove that ǫijkǫklm =
δilδjm − δimδjl and use this result.)
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(c) SijAij = 0 where Sij and Aij are a symmetric and antisymmetric
matrix respectively.

(d) An antisymmetric tensor Aij may be written as Aij = ǫijkωk where
ωk = (1/2)ǫklmAlm.

5. Derive an expression for ∇2φ in terms of the coordinates xa, xb and xc

and the scale factors ha, hb and hc for a curvilinear coordinate system.

6. Derive expressions for ei, hi and (∂ei/∂xj) for a cylindrical coordinate
system.

7. Let f(r) be any scalar function of the magnitude r = |r| of the position
vector r relative to the center of a sphere.

(a) Evaluate the integral:
∫

V
dV f(r) rr (2)

over the volume of a spherical sector with angle θ0 and axis in the
a direction. (Hint: After integrating, what vectors or tensors can
the result depend on?)

(b) What is the result when the sector is the entire sphere?

(Express your result in terms of integrals over the radius r).

8. Consider a two - dimensional coordinate system given by:

x = cosh (ξ) cos (η) y = sinh (ξ) sin (η) (3)

where

cosh (ξ) =
exp (ξ) + exp (−ξ)

2
sinh (ξ) =

exp (ξ) − exp (−ξ)

2
(4)

and
∂ cosh (ξ)

∂ξ
= sinh (ξ)

∂ sinh (ξ)

∂ξ
= cosh (ξ) (5)

(a) Derive an expression for eξ and eη in terms of ex, ey, ξ and η.
Note: In order to determine the unit vectors, it is not necessary
to invert the expressions in equation 162 to determine ξ = ξ(x, y)
and η = η(x, y).
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(b) Is the coordinate system an orthogonal one?

(c) Determine the scale factors hξ and hη.

9. Derive an expression for ∇2φ and ∇ × A in terms of the coordinates
xa, xb and xc and the scale factors ha, hb and hc for a curvilinear coor-
dinate system. The final expressions you get should be,

∇2φ =
1

hahbhc

(

∂

∂xa

(

hbhc

ha

∂φ

∂xa

)

+
∂

∂xb

(

hahc

hb

∂φ

∂xb

)

+
∂

∂xc

(

hahb

hc

∂φ

∂xc

)

φ

)

(6)
while for the curl, the final expression is,

∇×A =







haea hbeb hcec
∂

∂xa

∂
∂xb

∂
∂xc

haAa hbAb hcAc





 (7)

2 Kinematics:

1. Consider a linear velocity profile

vx = γy (8)

in a two dimensional x−y coordinate system. Separate the deformation
into its fundamental components, and sketch these for the flow under
consideration.

2. Consider the parabolic flow of a fluid in a tube of radius R, with the
velocity given in cylindrical coordinates by:

vz = V

(

1 −
r2

R2

)

(9)

Separate the rate of deformation tensor into its elementary components.

3. The velocity profile of a fluid in cylindrical coordinates (r, φ, z) is given
by

vφ =
Ω

r
(10)

where Ω is a constant, and the velocity is independent of the z coordi-
nate. This flow appears to be rotational.
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• Calculate the symmetric and antisymmetric parts of the deforma-
tion tensor. Do this in Cartesian coordinates, and in cylindrical
coordinates. Are they different? Why?

• Calculate the vorticity ω = ∇× v for this flow. Can you explain
the results?

• What is the vorticity at the origin?

4. A ‘four roll mill’, which is used to carry out experiments on the effect
of deformation on complex fluids, consists of four rollers rotating as
shown in figure 1. The velocity field at the center point between these
four rollers can be approximated by

ux = Lα(Ωup − Ωdown) − βy(Ωright + Ωleft)

uy = −Lα(Ωright − Ωleft) + βx(Ωup + Ωdown)

where L and the angular velocities are shown in the figure, and α and
β are constants. Consider the steady flow of a Newtonian fluid in the
four roll mill.

x
y

Ωup

ΩrightΩleft

Ωdown

Fluid

Rollers

Center
point

L

Figure 1: Four roll mill.
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(a) In practical applications, it is necessary to have a stagnation point
at the center x = 0 and y = 0 shown in the figure, where the mean
velocity is zero. What is the condition for zero mean velocity at
this point?

(b) Consider a flow with zero mean velocity at x = 0 and y = 0. What
is the rate of deformation tensor at this point?

(c) Under what conditions is the flow purely extensional with no ro-
tational component?

(d) Under what conditions it the flow purely rotational with no ex-
tensional component?

(e) Under what conditions is the flow a linear shear flow near the
center, in which the velocity is a linear function of position?

3 Conservation equations:

1. Show that the rate of dissipation of energy, given by

D = (Sij − (δij/3)Skk)Sij) (11)

is always positive, where Sij is the symmetric traceless part of the rate
of deformation tensor.
Hint: Try to express this as the sum of squares.

4 Viscous flows:

1. Two spheres of equal radius are falling due to gravity in a viscous fluid,
and the line joining their centres is at an angle θ to the vertical as
shown in Figure 1. The velocities of the two spheres, u1 and u2, can
be separated into the velocity of the centre of mass v = (u1 + u2)/2
and the velocity difference between the spheres w = (u1 − u2). These
can further be separated into the components along the line joining
the centres, v‖ and w‖, and the velocities perpendicular to the line
of centres, v⊥ and w⊥. Using Stokes flow reversibility and symmetry,
determine which of these four components can be non - zero, and which
are identically zero.
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2. G. I. Taylor showed that the sedimentation velocity U‖ of a needle like
object (or slender body) when its axis is vertical (parallel to gravity)
is twice the sedimentation velocity U⊥ when the axis is perpendicular
to gravity, i. e., U‖ = 2U⊥. Using this information, find a general
equation that relates the sedimentation velocity Ui and orientation pi

of the slender body to U‖ and gi, the unit vector in the direction of
gravity. Assume zero Reynolds number flow.

3. Determine the fluid flow field and the stress acting on a particle of
radius a placed in an extensional strain field ui = Gijxj (Gij = Gji)
at low Reynolds number where the fluid and particle inertia can be
neglected. The particle is placed at the origin of the coordinate system,
and the fluid velocity field has the undisturbed value ui = Gijxj for
r → ∞. Find the fluid velocity and pressure fields around the particle.
Find the integral:

∫

A
dATilnlxj (12)

over the surface of the sphere, where nl is the outward unit normal.

4. A sphere is rotating with an angular velocity Ωk in a fluid that is at
rest at infinity, and the Reynolds number based on the angular velocity
and radius of the sphere, Re ≡ ρΩa2/µ is small. The velocity at the
surface of the particle is:

ui|r=a = ǫiklΩkxl (13)

and the velocity and pressure fields decay far from the sphere.

(a) Find the most general form for the velocity and pressure fields at
zero Reynolds number. Note that the velocity and pressure are
real vectors, whereas Ωk is a pseudo vector.

(b) Use the incompressibility condition and the condition on the ve-
locity at the surface of the sphere to determine the constants in
your expression for the fluid velocity.

(c) Determine the force per unit area fi exerted on the surface of the
sphere. Note that the force is a function of position on the surface
of the sphere.
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(d) The torque on the particle is

Li =
∫

A
dAǫijkfjnk (14)

where fj is the force per unit area exerted on the sphere at position
xn. Find the torque.

5. Find the force necessary to move a disk of radius a towards a plane
solid boundary with a velocity U when the gap between the disk and
the boundary h is small, h = ǫa where ǫ ≪ 1.

6. A two dimensional cylinder of radius a is moving with a velocity U
along the center of a two dimensional channel of width 2a(1+ ǫ), where
ǫ ≪ 1 as shown in Figure 1. The end of the slot is closed so that the
fluid displaced by the cylinder has to escape through the narrow gap
between the cylinder and the channel.

(a) Choose a coordinate system for analysing the flow in the gap be-
tween the cylinder and the channel wall. Write the Navier Stokes
equations for the flow in the gap, and scale the equations ap-
propriately. Under what conditions can the inertial terms in the
conservation equation be neglected?

(b) What are the boundary conditions required to solve the problem?
What is the other condition due to the requirement that the vol-
ume displaced by the cylinder has to flow through the gap?

(c) Determine the velocity and pressure fields in the gap when the
inertial terms in the conservation equation can be neglected.

(d) Calculate the forces on the cylinder along the center line of the
channel and perpendicular to it.

U

Figure 2: Two dimensional cylinder moving in a slot.
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5 Potential flow:

1. Find the added mass per unit length of an infinite cylinder in potential
flow, using a procedure identical to that for a three-dimensional object
derived in class.

2. Consider two line sources of strength −m and m separated by a distance
d along the x axis, in a fluid flowing with a constant velocity U in the
x direction. What is the equation for the shape of the object which
is equivalent to these two sources? Show that in the limit d → 0 and
(md) finite, the object assumes the shape of a cylinder, and find its
radius.

3. (a) Find the total kinetic energy of the fluid flow due to a sphere of
radius a moving with a velocity Ui in potential flow.

KE =
∫

V
dV

1

2
ρu2

i (15)

where the integral is carried out over the volume of the fluid.

(b) What would you get if you attempt to determine the kinetic energy
for the flow at zero Reynolds number? How would you estimate
the magnitude of the kinetic energy in this case?

(c) Which would you expect to be greater, and why?

4. A fluid is contained in the annulus between two concentric cylinders of
radius R1 and R2 and of infinite height, and the cylinders are rotated
with angular velocity Ω1 and Ω2 respectively.

(a) What is the condition for the flow in the gap between the two
cylinders to be irrotational? Find the velocity profile for the irro-
tational flow in the annulus.

(b) Find the equation of the surface of the fluid if the viscous effects
are neglected. Sketch the surface.

5. Consider the transform from the z to the z′ plane given by

z = z′ +
a2

z′
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(a) Determine the relations between the coordinates (x′, y′) and (x, y).

(b) Consider a circle of radius a in the z′ plane. What is the trans-
formed shape in the z plane? If we consider the flow past the
cylinder in the z′ plane

F (z′) = z′ +
a2

z′

in the z′ plane, what is the equivalent flow in the z plane?

(c) Consider a circle of radius b > a in the z′ plane. What is the
transformed shape in the z plane? If we consider the flow past the
cylinder in the z′ plane

F (z′) = z′ +
b2

z′

in the z′ plane, what is the equivalent flow in the z plane?

6. Consider a bubble with internal pressure pb expanding in a fluid in
which the pressure a large distance from the bubble is p0. The radius
of the bubble R(t) is a function of time as it expands.

(a) Solve the potential flow equations to determine the fluid velocity
field due to the expanding bubble.

(b) Determine the pressure at the surface of the bubble.

(c) Form a pressure balance condition, find the equation for the evo-
lution of the bubble radius.

7. Determine the energy dissipation due to the motion of a sphere at high
Reynolds number, assuming that the fluid velocity field is given by the
potential flow solution. Using this, find the drag force on the sphere.
How does it compare to the drag force on a sphere at zero Reynolds
number? The rate of dissipation of energy is given by,

D =
∫

dV µ(∇u:∇u)

8. A three dimensional irregular body is moving with a velocity U1 in the
x1 direction near a wall which is perpendicular to the x2 axis as shown
in Figure 2. The Reynolds number is large so that the potential flow
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equations are applicable. The wall is impermeable so that the fluid
flow at the wall is tangential to it. Find the force on the body in the
x1 and x2 directions as a function of the velocity of the object U1 and
the fluid velocity at the wall.
(Hint: Consider a control volume bounded by the surface of the object
S, the surface of the wall Sw and the surface at infinity S∞. Use meth-
ods similar to the derivation of the d’Alembert paradox for a general
body in irrotational flow.

9. Consider the dynamics of waves on the surface of a liquid of wavelength
λ, frequency ω and amplitude ξ0. Find the conditions (at high Reynolds
number) under which the uj∂jui term in the momentum conservation
equation can be neglected compared to the ∂tui term. Under these
conditions, find the frequency of the surface waves on the surface of a
liquid of infinite depth as a function of the wavelength of the waves.
The height of the surface fluctuations is given by the equation:

ξ = ξ0 exp (ikx + iωt)

where k = (2π/λ) is the wave number, and ω is the frequency of the
waves. In addition, the normal velocity at the surface z = 0 is given
by the time rate of change of the displacement ξ.

10. Consider the extensional flow around a spherical particle in the fig-
ure, where the velocity normal to the sphere surface is zero on the
surface of the particle r = R, and the velocity is ui = Gijxj far from
the particle r → ∞, where Gij is a symmetric traceless tensor. Assume
the flow satisfies the potential flow equations, where the velocity is de-
fined as the gradient of a potential, ui = (∂φ/∂xi), and the potential
satisfies the Laplace equation ∇2φ = 0.

(a) What is the normal velocity condition at the surface of the sphere?

(b) If the potential far from the surface r → ∞ is given by φ =
CGijxixj , what is the value of the constant C so that the velocity
is ui = Gijxj for r → ∞?

(c) Close to the particle surface, there is a disturbance to the potential
due to the zero normal velocity condition. This disturbance is
linear in the second order tensor Gij as well as linear in the terms
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R

Figure 3: Extensional flow around a sphere.

in the spherical harmonic expansion. What is the form of the
disturbance to the potential?

(d) Determine the constants in the expressions for the potential and
velocity so that the zero normal velocity conditions are satisfied
on the surface.

6 Boundary layer theory:

1. Consider the uniform flow of a fluid past a flat plate of infinite extent
in the x1−x3 plane, with the edge of the plate at x1 = 0. The Reynolds
number based on the fluid velocity and the length of the plate is large.
At a large distance from the plate, the fluid has a uniform velocity U1

in the x1 direction and U3 in the x3 direction. All velocities are inde-
pendent of the x3 direction, and the velocities U1 and U3 are uniform
and independent of position in the outer flow,

(a) Write down the equations of motion in the x1, x2 and x3 directions.
If the thickness of the boundary layer δ is small compared to
the length of the plate L, find the leading order terms in the

12



conservation equations.

(b) What is the similarity form of the equation for the momentum
equations for the velocity u1? Make use of the similarity forms for
boundary layer flows derived in class. Do not try to solve the

equation.

(c) Find the solution for the velocity u3 in terms of the solution for
u1.

(d) If the velocity U1 in the outer flow is a constant, but the velocity
U3 = U30 +U31x1, what is the form of the equation for the velocity
u3? Is a similarity solution possible?

2. Consider the Blasius boundary layer flow of a fluid past a flat plate
of length L in the high Reynolds number limit, where x and y are
the streamwise and cross-stream directions respectively. The velocity
profile is given by the Blasius boundary layer profile. The temperature
of the fluid at a large distance from the plate is T0. For x < 0, the
temperature of the plate is T0, while for x > 0, the plate is at a higher
temperature T1 > T0. The equation for the temperature field in the
fluid is:

∂T

∂t
+ u.∇T = α∇2T

where u is the fluid velocity. The above equation gives a balance be-
tween the convective and diffusive transport of heat in the fluid.

(a) Scale the coordinates in the temperature equation, and determine
the equivalent Peclet number for this problem.

(b) Assume that the temperature field can be expressed in terms of the
similarity variable using a suitable form, and derive a similarity
equation for the temperature field, which contains the Prandtl
number, the ratio of the Peclet and Reynolds numbers.

(c) If this number is large, one would expect the conduction to be
confined to a thin layer near the surface of the plate. Scale the co-
ordinates in the heat balance equation in this case, and determine
the boundary layer thickness as a function of the Prandtl number.

(d) What is the scaling of the flux as a function of the Prandtl and
Reynolds numbers?
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3. Consider free convection of heat from a plate of height H in the y
direction (opposite to the diretion of gravity), of infinitesimal width
and of infinite length in the direction perpendicular to the page, as
shown in figure 4. The temperature of the surface of the plate is T1,
and the temperature far away is T0. The velocity is zero both at the
surface of the plate, and far away from the plate. However, the hot
fluid near the plate is lighter, so it rises. The conservation equations
are given by the Bousinessq approximation,

∇.u = 0

ρ

(

∂u

∂t
+ u.∇u

)

= −∇p − β(T − T0)gey + µ∇2u

u.∇T = α∇2T

Here β is the coefficient of thermal expansion, ρ is the density and g
is the acceleration due to gravity, and ey is the vector in the upward
direction.

a) There is no imposed velocity, the velocity and pressure scales are
determined from a balance between inertial and buoyancy forces.
What are the velocity and pressure scales?

b) Non-dimensionalise the equations using the velocity scale derived
above, in such a way that there is a balance between buoyancy
and inertial forces. The resulting equations should contain two
dimensionless numbers, the Prandtl number (µ/ρα) and a second
dimensionless number which measures the ratio of viscous and
buoyancy forces. Identify this number.

c) When the Prandtl number is large and the ratio of viscous and
buoyancy forces is O(1), the heat transfer is confined to a thin
boundary layer at the surface of the plate. Assume a boundary
layer of thickness δ in the x direction near the plate, while the
length scale in the y direction is still H . Obtain the scaled equa-
tions.

d) Determine the scaling for uy in terms of δ by balancing the vis-
cous and buoyancy terms in the y momentum equation, and then
determine the scaling for ux in terms of δ from the continuity
equation.
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Figure 4: Convetion from a vertical plate.

e) Insert these scalings into the equation for the temperature, in
order to obtain δ in terms of the Prandtl number in the limit
Pr ≫ 1.

4. Consider the biaxial extensional flow towards a flat surface shown in
the figure. For the outer inviscid flow, the velocity field is given by,

ux = Ax

uy = −(A + B)y

uz = Bz

where A and B are constants. At the surface, the no-slip conditions
require that ux = 0, uy = 0, uz = 0. Obtain a boundary layer solution
for the flow near the surface as follows.

(a) What are the simplified equations for the boundary layer flow,
where the boundary layer thickness is small compared to x and z?

(b) How would you approximate the pressure gradients in the momen-
tum equations in the boundary layer?
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Figure 5: Biaxial extensional flow towards a surface.

(c) Assume forms for the velocity profiles ux and uz in the boundary
layer as,

ux = Axf ′(η)

uz = Azg′(η)

where η = (y/
√

ν/A) is the similarity variable, and the prime
denotes a derivative with respect to η. From the mass conservation
equation, what is the velocity uy in the boundary layer?

(d) Substitute the similarity forms for the velocity in the boundary
layer equations. What are the equations for f and g?

(e) What are the boundary conditions for f and g?

(f) Is it possible to obtain a similarity solution?
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