Effect of fluid flow on the fluctuations at the surface of an elastic medium
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The effect of a linear shear flow of a Newtonian fluid in the regienz&<«~ on the fluctuations at

the surface of an elastic medium of thicknéssn the region—H <z<<0 is analyzed in the regime

Re>1 andA~1, where Re=pyH?/ 7 is the Reynolds number ant= (py?H?/ E)/? is the ratio of

the inertial stresses in the fluid and the elastic stresses in the solidpldade; are the fluid density

and viscosityE is the coefficient of elasticity of the solid, ands the mean strain rate in the fluid.

A linear analysis is used to determine the effect of the flow on the fluctuations in the surface
displacement, and an asymptotic expansion in the small pararetét/Re) is employed. The
dynamics in the bulk of the fluid is inviscid in the leading approximation, and the leading order
growth rate is imaginary because energy is conserved in the absence of viscous dissipation. There
are multiple frequencies of oscillation, all of which satisfy the equations of motion. An increase in
the fluid velocity increases the frequency of the downstream traveling waves, and decreases the
frequency of the upstream traveling waves. The structure factor for the surface modes of the
upstream traveling waves increases with an increase in the fluid velocity because the kinetic energy
of the fluctuations decreases due to the lower frequency. An opposite effect is observed for the
downstream traveling waves; in addition, it is observed that the structure factor has a double-peaked
structure and reaches zero at an intermediate value at sufficiently high velocities. This is due to a
divergence in the ratio of the tangential and normal displacements, and a consequent divergence in
the energy required for the normal fluctuations at the surface. ThereQg &) correction to the

growth rate due to the presence of a viscous boundary layer of thickhe$$in the fluid at the
interface. TheO(€e'/?) calculation shows that the real part of the growth rate is negative for all
values ofA and wave numbek, except along certain lines in the—k parameter space where the

real part of the growth rate is zero, because the amplitude of the boundary layer velocity becomes
zero along these lines. The real part of tBée) correction to the growth rate at these points is
negative, indicating the presence of a small stabilizing effect due to the dissipation in the bulk of the
fluid and the elastic medium. @995 American Institute of Physics.

I. INTRODUCTION written for the fluid velocity and the displacement field in the
polymer network. These equations are solved in the “infinite
The flow of a fluid near an elastic surface is of interest incoupling limit,” where the coupling constant between the
practical applications such as biological systems, where thaetwork and the fluid is large, so their velocities are assumed
transport of fluid takes place through vessels with flexibleto be equal in the leading order approximation. In addition to
walls, biochemical and pharmaceutical industries wherehe viscous shear stress due to the fluid flow, there is an
many processes involve the transport and diffusion of fluidsadditional elastic stress due to the polymer network which
through gels and membranes, and in other industrial applicagives rise to features not observed in classical fluids.
tions such as polymer tribology where surface oscillations  The fluctuations at the surface of a polymer gel of finite
provide a mechanism for energy dissipation. The surfacehickness was analyzed using a two-fluid model by the
fluctuations in polymer gels in contact with air has beenauthof in the limit where the elastic oscillation time for the
previously studied:? However, it has recently been realized strain field in the polymer is small compared to the viscous
both theoretically and experimentalfly” that flow of a fluid  relaxation time. The smallness of the viscous effects permits
at the surface could significantly affect the dynamics of thean asymptotic analysis, where the viscous terms are ne-
interface. Here, the effect of a high Reynolds number sheaglected at leading order, and there is a balance between the
flow on the fluctuations at the surface of an elastic medium isnertial and the elastic stresses. The leading order decay rate
examined. It is shown that some of the characteristics of thef fluctuations is purely imaginary since energy is conserved
surface fluctuations could be significantly altered by the fluidin the leading approximation. There are multiple frequencies
flow. of oscillation, all of which are consistent with the equations
The majority of previous analyses have used a singlef motion. The structure factor for the height correlations is
fluid model, where the polymer is treated as a viscoelasticletermined from the total energy of the fluctuations, which is
fluid, and is described by the non-Newtonian Navier—Stokeshe sum of the kinetic energy of motion and the elastic strain
equations where the stress is a nonlinear function of thenergy. An interesting finding is that the frequency and struc-
strain rate. A two-fluid model was used by Harden, Pleinerfure factor depend not only the boundary conditions at the
and Pincus to determine the surface modes on a semifree surface, but also on the conditions at the other surface.
infinite gel. In the two-fluid model, coupled equations are  The study of the flow near a flexible wall has been mo-
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tivated by marine and aerodynamics applications. There have
been many theoretical analyses of the modification of the
flow near an elastic surfadgor a recent review, see Riley

et al®). Here, the dynamics of the surface is approximated by

a lumped parameter model, and the equation for the surface =0
contains an inertial term proportional to the normal accelera- ~

tion of the surface, a spring term proportional to the normal . Elastic Medium @
displacement, a damping term proportional to the normal ve- '

locity and possibly surface tension and curvature terms. The 2=-H

effect of flexibility of the surface on the hydrodynamic sta-
bility has been studied by Benjaniit? and Landaht! They
found that a flexible surface tends to delay the onset of the
Tollmien—Schlichting instability, which is the destabilizing

mechanism in flow past rigid surfaces. In addition, there isy is the ratio of the inertial stresses in the fluid and the
an additional mode of instability, called the flow induced g|astic stresses in the surface, and the conditienO(1) is
surface instability, which is not present in the flow past anecessary for the surface dynamics to significantly influence
rigid surface. Recently, there has been numerical work donghe fluid flow. The model for the fluid and solid dynamics is
on the flow past compliant surfacés® where a numerical given in Sec. II, and the dynamics of the fluctuations at the
solution of the Orr—Sommerfeld equation is obtained. Thesgrface is determined using a linear analysis in Sec. Ill. An
studies focus on the effect of surface flexibility on the stabil-asymptotic analysis in the small parameter{A/Re) is used,
ity of the flow, and so they do not account for the dynamicsang the fluid viscosity is neglected in the leading approxima-
of the elastic surface in an exact fashion. tion. We find that the leading order growth rate of the fluc-
The effect of a viscous flouzero Reynolds numbeon  tyations is always imaginary, and the fluctuations are neu-
the surface fluctuations of a polymer gel was studied by Kutrally stable in the leading approximation because there is no
maran, Fredrickson, and Pincighis showed that even in viscous dissipation. The decay rate of the fluctuations, which
the absence of fluid inertia, there is an instability when tth due to the dissipation in the viscous boundary |ayer, is
strain rate in the fluid exceeds a critical value. This instabil-O(¢'/?) smaller than the leading order frequency.
ity is driven by the transport of energy from the mean flowto  The characteristics of the leading order frequency and
the fluctuations due to the deformation work done by thestructure factor are similar to that for the surface modes at
mean flow at the elastic surface. The critical velocity for thethe surface of a gel in contact with éithough the flow does
onset of an instability has a complex dependence on the ratifave a significant effect on the structure factor. However, the
of the fluid and gel thicknesses, and the ratio of viscosities ofiecay rate of the fluctuations is qualitatively different for the
the fluid and the gel. present case, because the leading order dissipation of energy
There have been some experimental studies of fluid flowakes place in a viscous boundary layer at the interface and
past an elastic surface. Hansen and Hurfstiserved that not in the bulk of the fluid or the elastic medium. The im-
when a plasticol coated disk is spun in a Newtonian fluid,portant results are summarized in Sec. 1V, and the experi-
there is an increase in the drag force when the Reynoldsental results of Hansen and Hunst@re compared with
number is increased beyond a critical value, and a travelinghe predictions of the analysis.
wave pattern appears on the disk at the onset of instability.
Silberberg reported that the critical Reynolds number in the
Hansen and Hunst8rexperiments was proportional RY?,
whereRg is a dimensionless numbek &°p/4H °), E is the The system consists of an incompressible elastic me-
modulus of elasticity of the surfacp,is the fluid densityH  dium of thicknessH, modulus of elasticityE, viscosity 7,
is the thicknessa is the radius of the disk, anglis the fluid  and infinite lateral extent which is fixed to a rigid surface at
viscosity. In addition, Krindel and Silberbérgtudied the z=—H as shown in Fig. 1. There is a Newtonian fluid of
flow of a fluid through a tube with gel walls, and they ob- viscosity » and densityp in the region 6<z<w, and the
served an increased drag force for RR;, where fluid is flowing with a constant strain ratein thex direction
Rs=(ER®p/4H 7), R is the radius of the tube, artdl is the —
thickness of the wall in this case. The low Reynolds number Y~ Y% @
analysis of Kumararet al® correctly predicted that the criti- As mentioned in the Introduction, we consider a flow
cal Reynolds number is proportional ®p; , though they had  where the Reynolds number, RépyH?/ 7), is large, while
a different prefactor because they considered a flow in a twéhe parameten = (py?H?/E)/2, is O(1). Theparameter
dimensional channel instead of a tube. is the ratio of the inertial forces in the fluid and the elastic
In the present analysis, we consider the linear flow of &orces in the medium, and the elastic stresses in the medium
fluid of infinite thickness adjacent to a elastic surface ofare comparable to the inertial stresses in the fluid for
thicknessH. The Reynolds number, RdpyH?/7), is large, A~O(1). In this limit, it is appropriate to nondimensional-
while the parameten = (py?H?/E)¥2 is O(1). Here, y is ize the lengths in the equations of motion Hy the time by
the strain rate in the fluidp and # are the fluid density and (pH%/E)*'2, and the velocities byH/p)*'?. The nondimen-
viscosity, ancE is the elasticity of the surface. The parametersional mean velocityl) is

FIG. 1. Fluid and gel configuration and the coordinate system.

Il. MODEL
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v=Az (2) . ANALYSIS
The equations for the fluid velocity field; are the Navier— In this section, an asymptotic analysis in the small pa-
Stokes mass and momentum equations rametere is used to determine the growth rate of the surface
fluctuations. Small perturbations are placed on the displace-
dv;i=0, (3  ment and velocity fields of the form
ﬁtUi+Uj(?jUi:_é’ip+6[7jZUi. (4)

ui=(27-r)‘1J dk U(z)exp(ikx+ at),
Here, d,=(d/dt), d,=(d/9x%;), and e=(A/Re) is the small

parameter that will be used for the asymptotic expansion. (13
The stresses in the fluid are scaled by the shear mods|us, Ui:(zw)*lJ dk vi(z)explikx+ at),
as before
T,7=—P+2€d,0,, (5) wherek is the wave numbeg is the growth rate, and;(z)
andu;(z) are the eigenfunctions determined from conserva-

Tyz= €(I 0yt Iyv ). (6) tion equations(3), (4), (7), and(8).
] ] o ] ) The growth rate of the perturbations to the surface dis-
~ The dynamics of the elastic medium is described using &|acement and fluid velocity fields are expressed as an as-
displacement fieldi;, which represents the displacement of ymptotic expansion in the parameter Our subsequent
the material points in the solid from their equilibrium posi- analysis indicates that the first correction to the displacement
tions due to the stresses acting at the surface. The conservgyq velocity fields i<D(e'/), and in anticipation of this we
lar to those used for polymer gefs and the displacement and velocity fields:
du;i=0, (7 w=a0 4 (12,04 ...
2 2 ’ 2
i=—ap+au+ - 0.
(7tu| aip (?] Ui+ en (?](ﬁtl»h) (8) fjiZGi(O)—l—el/zcli(l)—l—--- ’ (14)
Here the pressurep, is nondimensionalized by the shear
modulus,E, and 5" =(74/7) is the ratio of the solid and 5i:5i<0>+61/25i<1)+... )
fluid viscosities. Equatiofi7) is the mass conservation equa-
tion for an incompressible elastic medium, whil® is the  The linearized mass and momentum conservation equations

momentum balance equation. In the latter, the term on thg7) and(8)] for the leading order an®(e*/?) displacement
left side is the rate of change of momentum in a volumefig|gs are

element of the elastic medium, while the terms on the right
represent the divergence of the pressure, the divergence of 9,09 +iki®=0
the elastic stress due to the strain in the medifiand the z X

divergence of the viscous stress due to the strain rate, respec- s i ikiW=0 =

tively. The shear and normal stresses in the elastic solid, z7z L

nondimensionalized by the shear modultisare . .

=900+ [ = (a)?+ - K0 =0,

0,,=—Pp+2[1+en'd](d,u,), 9 (16)
sz:[l+ en’&t]((?zux'i_axuz)- (10) _azf)(l)_za(O)a(l)a(ZO)+[_(a(0))2+55_kz]a(zl)zoi
The boundary conditions for the elastic medium at the —ikpO+[— (2 )2+ Z2—K2]T P =0,

surfacez= —H are the zero displacement conditions 17)
U,=0, Uu=0, (12) —ikp® =22 @aMi +[ - ()2 + 52~ k3TN =0.

while the appropriate boundary conditions at the interfaceThe expressions for the perturbation to the stresses in the
between the fluid and the elastic medium are the continuitgurface are
of velocity and stress

7 9=—p0+25,00, F9=5,02+iki?,
V;=0iUz, Ux=0diUy, (18)
(12) ~(1)_ _ (1) S () () (D)
Ty = Oyyy  Tyg=Oyy- o, =—p'P+29,u,”", oy, =du +ikuy .

Equations(3), (4), (7), and(8), along with the boundary The eigensolutions for the displacement field are ob-
conditions az= —H, Eq.(11), and the boundary conditions tained by adding t d,Xx(17)+ikx(16)], and using Eq.
at the interfacg12) can be solved to determine the growth (15) to expressi{’) and (" in terms ofu{® and (Y. The
rate of fluctuations. solution contains four eigenfunctions
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0(20) 1 1 1 1 expkz)
G;O) i (infk) —i —(iN/k) exp(\z)
o] | o (aQaVz/)\) 0 (—a@aDz/)) exp(—k2) | (19
0P\ 0 ia@a®(1+r2)/NK) 0 ia@aD(—1+rz)/(Ak)| | EXH—AZ)

wherex = (a9)2+K2. (26), because £2—k?)19=0. Therefore, we can set the
The perturbation to the velocity field in the fluid is de- first correction to the growth rate{Y=0 without loss of
scribed by the linearized Navier—Stokes equati@8s,and  generality.
(4). The other solutions for the characteristic equati@d)
decay within a boundary layer of thickne€¥e'/?H) from

dv,+ikv,=0, (20) the interface, and these are designated the “boundary layer

S AIKZ) D = — .54 el P KV solutiqns." These are pb.tained b_y scaling theoordinate by
(at Aikz)v;= = 0,0+ (7, =K v, (21) €'?H in the characteristic equatiq@4). It turns out that the
(a+ AiK2)5 - AB,= —ikp+ (2 kD), (22 leading order boundary layer velocilyy, which is obtained
from the following equation, is sufficient for the present
and the stresses in the fluid are analysis:
Tr= —D+2€0,0,, Ty=e(d04+ikD,). (23) [—(a® +|kAz)+aZ,]v(°)— (30)

The characteristic equation for the fluid velocity pertur-wherez' is e~ */?z. The solution for the velocity field in the
bations is derived by adding{d,x(22)+ikx(21)], and boundary layer is
expressing, in terms ofv, in the resulting expression using 5?3): B, exp— \/WZ’).
Eq. (20
ik e'/?B;

/ (O
whereB; is determined from the boundary conditions at the
%’nterface Note thab(? is O(€/?) smaller tharo(?) in the

[—(a+Aikz)+ (92— k?) (92— k?)v,=0 (24) 5(0= exp(—a©2'), (31)

Note that the highest derivative in the above equation is mul-

tiplied by the small parametes, which is a characteristic

feature of a singular perturbation problem and indicates th
; oundary layer.

presence of a boundary layer at the interface. Two of the fou At thi int. it is instructive to determine th .

eigenfunctions of the characteristic equation can be dete([- q flfhpo(ljn : IS InS rtuc |v|e (t) € e(;mltne ? Tjagn+'h

mined by settinge=0 in the characteristic equation. The udes ‘ot the displacement, velocity, and Stress Tields e

: - length scale of flow is the thickness of the surfalde,and
length le for the d f th lution®iH), and ) . ) -
ength scale for the decay of these solutionsigH), an the time scale is{H%/E)Y2. If the displacementd){®) and

these solutions are designated the “outer flow solutions,” - 4
The outer flow solutions are expanded in an asymptotic sex + Scale as, the scaling of the fluid velocity fields are
ries in smalle - (0)_ ( E )1/{ -0 ( E )1/{
v0|_v(0)+61/2 (|) (25 p P
E |12 E \112 (32
and the characteristic equations fdfY ando (Y [from Eq. 09~ ¢l ( 2) 0, 0~ _2> i
(24)] are H pH
() L A: 2 Lovm(0)_ The elastic stresses in the surface @¢€EU/H), while of
(™4 Aikz)(9;—k%)vo, =0, (26) magnitudes of the stresses in the outer flow and boundary
W2 k)59 1 (2O + Aikz)(R—Kk)5L=0. (27) Dverare

70— Pot (EWH), 70~ (eEWH),
The solution for the characteristic equati26) is Tozz™~ " Po oxz

] WO~ (EWH), 70~ (PEUH). 33
vW=exg—kz], 20=—i exd—kz], (28) <)
In the above equation, the normal stregS), has been sepa-
o a® iA rated into the pressure and viscous components, the viscous
Py = i eXH—kz]+ - exd —kz](1+kz)|, (29  component of the stress B(e) smaller than the pressure.

Also note that the shear stress in the inner flayy,, is
where the amplitude of the outer flow velocify) at the  O(e *?) larger than the normal stress and the viscous
surface has been set equal to 1 without loss of generalitytresses in the outer region, which is characteristic of bound-
Note that in the above equations, the growing mode proporary layer flows.
tional to expkz] has been neglected because the velocity = The relative magnitudes of the velocity and stress fields
fluctuations decay to zero far— . The characteristic equa- permit us to neglect certain terms in the boundary conditions

tion for the first correction to the growth rately), Eq. (27),
is identical to that for the leading order growth raf®, Eq.

at the interface, and we are left with the following leading
order matching conditions at=h(x):
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a0 =59 O[O =501 501 A[GO and the shear and normal stresses in(B4). are independent
of the velocity in the boundary layer, and therefore the char-
(O _3(0)  =(0)_ (34) - . i

Oz22="Po + Oxz=0. acteristic equation for the leading order growth raié),
The last term on the right side of thevelocity boundary ~does not depend on the magnitude of the boundary layer
condition represents the change in the mean velocity at théelocity. The solutions for the displacement fielé”, Eq.
interface due to an increase in the height of the surfdoe. (19), the stress in the surface, EG@.8), and the outer flow
deriving this, we have séi(x) = u,|,_ o, which is permissible  Vvelocity fieldo,,, Eq. (28), and pressur@{”), Eq. (29), are
for small displacements. The above boundary conditions pesubstituted into the matching conditions for thevelocity
mit the following important simplification in the analysis. and the stress conditions in E(4), to give the following
The matching condition for the velocity in the direction  5X5 characteristic matrix:

() () () () 1
(N2IK) +k 2\ —(Nk)—k —2\ —(aO+ivy)/k

2ik (iN2IK) +ik 2ik (iN2k) +ik 0 . (35
exp —k) exp(—A\) exp(k) exp(\) 0
i exp(—k) (iNKyexp(—N)  —iexpk) —(iNk)exp(h) 0

In the characteristic matrix, the first row arises from the con-in A on the lowest harmonic is shown in Figs. 3 and 4; the
tinuity of the velocity in thez direction, the second and third trend is similar for the higher harmonics. We find that an
rows are due to the continuity of normal and tangential stresgicrease inA tends to decrease the frequency of perturba-
conditions in Eq.(34) while the fourth and fifth rows are a tions with positivew (which represent waves traveling oppo-
consequence of the zero displacement conditioz=at- 1 site to the direction of floyvand tends to increase the fre-
Eqg. (11). The amplitude for the velocity in the boundary quency of perturbations with negative (which represents
layer, B;, is determined from the boundary condition for the waves traveling along the flow directipn
velocity in thex direction The structure factor for the fluctuations is calculated
~0 ~0 ~0 from the change in the free energy due to the displacement of
Bi=(— 03"~ Al + @ VT = B9 the interfac@ The change in the free energy due to the dis-
The characteristic equation for the growth rate, which isplacement field in the elastic surface is given by
the determinant of the characteristic matrix, admits multiple o
soluthns, all of which are imaginary |nd|ce_1t|ng that the per- Fs=( J dx f dZ[%(r?in+r9,-Ui)2+%(r?tui)z] (37
turbations are neutrally stable in the leading order approxi- -1
mation. For A=0, the solutions for the characteristic fre-
quency w=a'%/i are equidistant from the real axis. The
magnitude of the characteristic frequenej, is shown as a
function ofk for A=0 in Fig. 2. The characteristic frequency
assumes values df+/2), (+3n/2),..., for k—0, and in-
creases proportional tofor largek. The effect of variations

where the free energy has been scaled B{#Y). The first
term in the integral on the right side represents the elastic
energy due to the strain in the surfdéeyhile the second

0

FIG. 3. Effect of variation inA on the leading order frequenay for up-
stream traveling wavesw>0). (O) A=0; (A) A=3; (d) A=10; ()
FIG. 2. The first three harmonics of the leading order frequésagcst A=0. A=30.
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FIG. 4. Effect of variation inA on the leading order frequeneyfor down- FIG. 5. Effect of variation in\ on the structure factor for upstream traveling

stream traveling waveigs<0). (O) A=0; (A) A=3; () A=5; () A=30; waves.(O) A=0; (A) A=3; (O) A=5; (¢) A=30.
(X) A=

Ff = (38)

where [, represents$2m) %[ dk. The change in free energy
due to a variation in the height of the interfaggk) can be
expressed in terms of the structure factor for the correlation

term is the kinetic energy due to the motion of the elastic,

the surface is given by structure factor decreases to zero at an intermediate wave
finite value ofk is because the ratidif”/0{")) at the inter-

terms of the Fourier modes and{j The leading order calculation has proved inconclusive
rate, o'?. This calculation is similar to that far'®, and the

F= fk Jm A2 5% +5,53), (40)  the first three harmonics in Fig. 7. The behavior-ef!? is

0
tion, it was found that the decay rate increases monotonically

of the surface modés that the decay rate increases proportion&t¥3 for the low-

for the structure factor of the downstream traveling waves in
Fig. 6, because the frequency of these waves increases as the
medium. The kinetic energy due to the fluid motion aboveﬂu'd velocity is increased. Further, it can be seen that the
numberk=1.23 for higher fluid velocities, and develops a
0 double-peaked structure. The decreas&(k) to zero at a
f dxf dz(3v?)|. P ®)
0
. . . face diverges at this point, and therefore the energy required
It is convenient to express the changes in the free energy ig, produce a change in the height of the interface diverges.
0 e o e 1 for determining the growth rate of the fluctuations, and it is
Fs= fk f_l d7] 9,U,9,U; + Kk UxUy + (2) (9 Uy +ikuy) necessary to determine tk €' correction to the growth
X (9,0 —ikUF )+ aa* (U,0% +0,0%)] (399  details are not given here. The real part of the first correction
to the decay rate- Re(!), is shown as a function d¢ for
very different from that of the decay rate for the modes at the
interface between a gel and air or vacufin. that calcula-
as the wave number is increased, and the increase is propor-
ﬁonal tok? for largek. However, in the present case we find
Y est harmonic, andecreasegroportional tok /2 in the limit
— l -1 * ]
F= 2JL S(k)~uy(kyuz (k). (42) k>1 for the higher harmonics. This is because the energy

Equation(41) is similar in form to Eqs(39) and (40) after
the integration over the coordinate has been carried out.

Thus, the structure fact@®(k) can be determined by carrying 008 1
out the integral in Eqs(39) and (40) over thez coordinate, 0.07 1
and expressing the result in termsigtk). The leading order 0.06 -
value ofS(k), scaled by EH?/T), is determined by inserting i
the leading order growth rate® and the displacement and - 0031
velocity fieldsti(® ands(® into Egs.(39) and (40). F 004r

The effect of fluid flow on the leading order structure 0.03 -
factor S(k) for waves traveling upstream is shown in Fig. 5. 002 |
The increase in the structure factor indicates that the ampli- .
tude of the upstream waves is amplified, and this can be 0.0t /’_eh\"‘
explained as follows. As the fluid velocity increases, the fre- 0.00 O
guency of the upstream traveling waves decredses Fig.

3), and therefore the kinetic energy required for a perturba-

tion Qf a given amp"tUd_e decreases, th.ereby in(freasmg theiG. 6. Effect of variation inA on the structure factor for downstream
amplitude of the fluctuations. The opposite effect is observedtaveling waves(O) A=0; (A) A=3; (O) A=7; (¢) A=10; (X) A=100.
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Re(o™)
Re(a®)

FIG. 7. TheO(€''?) correction to the growth rate'?. (O) First harmonic;  FIG. 9. The effect of variation ith on theO(e'/) correction to the growth
(A) second harmonidg{) third harmonic. rate o? for the second harmoni¢O) A=0; (A) A=5 upstream waves{)
A=5 downstream wave$>) A=10 downstream waves.

dissipation in the present case occurs in the boundary Iayehr1anner similar to the leading order a calculations
in the fluid, in contrast to the fluctuations at the gel—air in- 9 Ode ) ’

terface where the dissipation takes place in the gel. ;E?(;’%T}g tlrs1englca Zst;agetg“:':nchxg ]EITIZ \tlﬁguﬁazt;ﬁzsﬁ Sm']n the
The effect of fluid flow on the decay rates of the fluc- 5~ @ 0@ Fi 10' d 11 show? and a?

tuations is considered next. Figures 8 and 9 show the re a1 rapaz . FgUures 19 an Snowy ?énl)_az asa

part of 'V as a function ok for A=5 andA=10 for per- Inction ofk for(;t)he parameter values whete =0. It is

turbations witho>0 (waves traveling upstregmrhere is an found that bothn;” and a” are negative, indicating that the

increase in the decay rate as the velocity is increased, due {j ss[pa.tlon in the outer flow and'elastlc medium have a small
the increased dissipation in the boundary layer. The behaviot abilizing effect on the fluctuations.

of Re(a'?) for waves traveling downstream<0 is shown in

Figs. 8 and 9. An increase in the fluid velocity tends to de-V- CONCLUSIONS

crease the decay rate, an’=0 for certain values ofy, In this section, the important features of the high Rey-
implying that the waves are neutrally stable at these pointsyo|ds number flow near an elastic surface are first discussed,
The locus of these points ik—y space for the first four  ang the results of the analysis are compared with the experi-
harmonics are shown in Fig. 10. Along these lines, thementa| observations of Hansen and Hunstdhe system
O(€''?) correction to the growth rate is zero, indicating that consists of a linear flow of a fluid of infinite extent adjacent
the waves are neutrally stable at this level of approximationyy an elastic surface of thicknest. The dynamics of the
This is because the amplitude of the boundary layer velocityj,ctuations is governed by two dimensionless parameters—
B; Eq. (36), is identically zero along these points, and there-ipe Reynolds number, Re pyH?/ ), and the dimensionless
fore there is no dissipation in the boundary layer. To dEter'parameter,Az(py2H2/E)1’2, where y is the strain rate in
mine the decay rates of the neutral!y stable waves, it is NeGne fluid, p and » are the fluid density and viscosity, afds
essary to determine the(e) correction to the growth rate  ne coefficient of elasticity of the surface. The paramétés

o/ along the lines shown in Fig. 10. This is determined in ahe ratio of the inertial stresses in the fluid and the elastic
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FIG. 8. The effect of variation itA on theO(€'/?) correction to the growth  FIG. 10. Lines inA —k plane where the first correction to the growth rate
rate ol for the first harmonic(O) A=0; (A) A=5 upstream waves{]) aY=0. (O) First harmonic{A) second harmonidiJ) third harmonicy($)
A=5 downstream waveg;>) A=10 downstream waves. fourth harmonic.
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ot ing downstream. In addition, the structure factor has a
double-peaked structure and approaches zero at an interme-
diate wave number, due to the divergence in the ratio of the
tangential and normal displacements at this wave number.
The characteristics of the decay rate of the fluctuations is
very different from that of a gel-air interface. In the present
case, the leading order decay rat©i&*'?) smaller than the
frequency of fluctuations due to the presence of a viscous
boundary layer in the fluid, while the decay rate of the sur-
A, face modes at a gel—air interface@e) smaller than the
Lo R TR leading order frequency due to the dissipation in the bulk of
1o° ’ oot e e the gel. TheO(€'?) correction to the growth rate'” was
determined by including the effect of the boundary layer ve-
FIG. 11. The second correction to the growth ratg), as a function ok |OCity. The real part of” is negative for all values df and
for the curves i\ —k space whereY'=0. (O) First harmonic{A) second A, except along certain lines in tHe- A parameter space
harmonic;(L)) third harmonic;(©) fourth harmonic. where it is zero, indicating that the fluctuations are neutrally
stable at this order of approximation. Along these lines, the

stresses in the surface. At high Reynolds number, we used &nPlitude of the boundary layer velocity becomes zero, and

asymptotic expansion in the small paramete(A/Re). The consequently there is no dissipation in the boundar;iz)layer.
leading order flow in the fluid is inviscid, but the viscous The real part of théd(e) correction to the growth rate

stresses ar®©(e'’?) smaller than the inertial stresses in a Was found to be negative along these lines, indicating the
boundary layer of thicknesset’?H) at the interface. The Presence of a small stabilizing effect due to the dissipation in
leading order growth ratey®, obtained by solving the in- the bulk of the fluid and the elastic medium.
viscid equations of motion, has the same characteristics as We now compare the results of the analysis with the
the frequency at a gel—air interfat@here are multiple fre- experimental observations of Hansen and Hun&tdheir
quencies of oscillation, all of which are consistent with theexperimental system consisted of a disk of an elastic material
boundary conditions imposed on the elastic surface. In tha&hich was spun in a container fluid, and they observed the
absence of fluid flow, the frequencies have value$mdp), appearance of waves on the elastic surface when the angular
(37/2)--- in the limitk— 0, and increase proportional kdor  velocity exceeded a critical value. Silberbeamalyzed these
largek, wherek is the wave number of the perturbation.  results in detail, and showed that the waves appear when the
A shear flow tends to increase the frequency of wavegritical Reynolds numbergwa?®/ 7) exceeds 1.RY?, where
traveling downstream, and decrease the frequency of thr;=(Ea®p/4H #?), a is the radius of the disk, and is the
waves traveling upstream. The structure factor of the surfacgngular velocity. Note that the parameR is proportional
waves was calculated from the total energy of the fluctuaig ¢ 2, since the ratio 4/H) was a constant in the experi-
tions, which is the sum of the elastic strain energy in thements. If we assume that the strain rate at the surface is
elastic medium and the kinetic energy in the medium andyoportional to the angular velocity, the experimental obser-
fluid. The structure factor of the upstream traveling waves ig ations indicate that the fluctuations are unstable when
increased by the flow, because the kinetic energy of fluctuag, ceeds a critical value. Though the present analysis does not

;IOHS fora gl\I{]en ampl@udef?ecrgasgs dueéofa decrease in t:ﬂ?edict an instability, it is found that the first correction to the
requency. The opposite effect is observed for waves travegrowth rate 'Y becomes zero for a specific value Af

indicating the presence of slowly decaying waves. These
may be destabilized by some effect that is not included in
this simplified analysis, such as curvature in the velocity pro-
file or nonuniformity in the elasticity of the surface. A com-
parison of the numerical value of the critical is not pos-
sible, however, because we do not have an exact knowledge
of the strain rate at the surface of the disk as a function of the
angular velocity, and the viscosity of the compliant material.
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