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The effect of a linear shear flow of a Newtonian fluid in the region 0,z,` on the fluctuations at
the surface of an elastic medium of thicknessH in the region2H,z,0 is analyzed in the regime
Re@1 andL;1, where Re5rgH2/h is the Reynolds number andL5(rg2H2/E)1/2 is the ratio of
the inertial stresses in the fluid and the elastic stresses in the solid. Herer andh are the fluid density
and viscosity,E is the coefficient of elasticity of the solid, andg is the mean strain rate in the fluid.
A linear analysis is used to determine the effect of the flow on the fluctuations in the surface
displacement, and an asymptotic expansion in the small parametere5~L/Re! is employed. The
dynamics in the bulk of the fluid is inviscid in the leading approximation, and the leading order
growth rate is imaginary because energy is conserved in the absence of viscous dissipation. There
are multiple frequencies of oscillation, all of which satisfy the equations of motion. An increase in
the fluid velocity increases the frequency of the downstream traveling waves, and decreases the
frequency of the upstream traveling waves. The structure factor for the surface modes of the
upstream traveling waves increases with an increase in the fluid velocity because the kinetic energy
of the fluctuations decreases due to the lower frequency. An opposite effect is observed for the
downstream traveling waves; in addition, it is observed that the structure factor has a double-peaked
structure and reaches zero at an intermediate value at sufficiently high velocities. This is due to a
divergence in the ratio of the tangential and normal displacements, and a consequent divergence in
the energy required for the normal fluctuations at the surface. There is anO(e1/2) correction to the
growth rate due to the presence of a viscous boundary layer of thicknessHe1/2 in the fluid at the
interface. TheO(e1/2) calculation shows that the real part of the growth rate is negative for all
values ofL and wave numberk, except along certain lines in theL2k parameter space where the
real part of the growth rate is zero, because the amplitude of the boundary layer velocity becomes
zero along these lines. The real part of theO(e) correction to the growth rate at these points is
negative, indicating the presence of a small stabilizing effect due to the dissipation in the bulk of the
fluid and the elastic medium. ©1995 American Institute of Physics.
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I. INTRODUCTION

The flow of a fluid near an elastic surface is of interest
practical applications such as biological systems, where t
transport of fluid takes place through vessels with flexib
walls, biochemical and pharmaceutical industries whe
many processes involve the transport and diffusion of flui
through gels and membranes, and in other industrial applic
tions such as polymer tribology where surface oscillation
provide a mechanism for energy dissipation. The surfa
fluctuations in polymer gels in contact with air has bee
previously studied.1,2 However, it has recently been realized
both theoretically3 and experimentally4–7 that flow of a fluid
at the surface could significantly affect the dynamics of th
interface. Here, the effect of a high Reynolds number she
flow on the fluctuations at the surface of an elastic medium
examined. It is shown that some of the characteristics of t
surface fluctuations could be significantly altered by the flu
flow.

The majority of previous analyses have used a sing
fluid model, where the polymer is treated as a viscoelas
fluid, and is described by the non-Newtonian Navier–Stok
equations where the stress is a nonlinear function of t
strain rate. A two-fluid model was used by Harden, Pleine
and Pincus1 to determine the surface modes on a sem
infinite gel. In the two-fluid model, coupled equations ar
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written for the fluid velocity and the displacement field in th
polymer network. These equations are solved in the ‘‘infini
coupling limit,’’ where the coupling constant between th
network and the fluid is large, so their velocities are assum
to be equal in the leading order approximation. In addition
the viscous shear stress due to the fluid flow, there is
additional elastic stress due to the polymer network whi
gives rise to features not observed in classical fluids.

The fluctuations at the surface of a polymer gel of finit
thickness was analyzed using a two-fluid model by th
author2 in the limit where the elastic oscillation time for the
strain field in the polymer is small compared to the viscou
relaxation time. The smallness of the viscous effects perm
an asymptotic analysis, where the viscous terms are
glected at leading order, and there is a balance between
inertial and the elastic stresses. The leading order decay
of fluctuations is purely imaginary since energy is conserv
in the leading approximation. There are multiple frequenci
of oscillation, all of which are consistent with the equation
of motion. The structure factor for the height correlations
determined from the total energy of the fluctuations, which
the sum of the kinetic energy of motion and the elastic stra
energy. An interesting finding is that the frequency and stru
ture factor depend not only the boundary conditions at t
free surface, but also on the conditions at the other surfa

The study of the flow near a flexible wall has been mo
/95/102(8)/3452/9/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3453V. Kumaran: Surface fluctuations on an elastic medium
tivated by marine and aerodynamics applications. There h
been many theoretical analyses of the modification of
flow near an elastic surface~for a recent review, see Riley
et al.8!. Here, the dynamics of the surface is approximated
a lumped parameter model, and the equation for the surf
contains an inertial term proportional to the normal accele
tion of the surface, a spring term proportional to the norm
displacement, a damping term proportional to the normal
locity and possibly surface tension and curvature terms. T
effect of flexibility of the surface on the hydrodynamic sta
bility has been studied by Benjamin9,10 and Landahl.11 They
found that a flexible surface tends to delay the onset of
Tollmien–Schlichting instability, which is the destabilizin
mechanism in flow past rigid surfaces. In addition, there
an additional mode of instability, called the flow induce
surface instability, which is not present in the flow past
rigid surface. Recently, there has been numerical work do
on the flow past compliant surfaces12,13 where a numerical
solution of the Orr–Sommerfeld equation is obtained. The
studies focus on the effect of surface flexibility on the stab
ity of the flow, and so they do not account for the dynami
of the elastic surface in an exact fashion.

The effect of a viscous flow~zero Reynolds number! on
the surface fluctuations of a polymer gel was studied by K
maran, Fredrickson, and Pincus.3 This showed that even in
the absence of fluid inertia, there is an instability when t
strain rate in the fluid exceeds a critical value. This instab
ity is driven by the transport of energy from the mean flow
the fluctuations due to the deformation work done by t
mean flow at the elastic surface. The critical velocity for t
onset of an instability has a complex dependence on the r
of the fluid and gel thicknesses, and the ratio of viscosities
the fluid and the gel.

There have been some experimental studies of fluid fl
past an elastic surface. Hansen and Hunston4 observed that
when a plasticol coated disk is spun in a Newtonian flu
there is an increase in the drag force when the Reyno
number is increased beyond a critical value, and a trave
wave pattern appears on the disk at the onset of instabi
Silberberg5 reported that the critical Reynolds number in th
Hansen and Hunston4 experiments was proportional toRG

1/2,
whereRG is a dimensionless number (Ea

3r/4Hh2), E is the
modulus of elasticity of the surface,r is the fluid density,H
is the thickness,a is the radius of the disk, andh is the fluid
viscosity. In addition, Krindel and Silberberg6 studied the
flow of a fluid through a tube with gel walls, and they ob
served an increased drag force for Re.RG , where
RG5(ER3r/4Hh), R is the radius of the tube, andH is the
thickness of the wall in this case. The low Reynolds numb
analysis of Kumaranet al.3 correctly predicted that the criti-
cal Reynolds number is proportional toRG , though they had
a different prefactor because they considered a flow in a t
dimensional channel instead of a tube.

In the present analysis, we consider the linear flow o
fluid of infinite thickness adjacent to a elastic surface
thicknessH. The Reynolds number, Re5(rgH2/h), is large,
while the parameterL5(rg2H2/E)1/2 is O(1). Here,g is
the strain rate in the fluid,r andh are the fluid density and
viscosity, andE is the elasticity of the surface. The paramet
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L is the ratio of the inertial stresses in the fluid and th
elastic stresses in the surface, and the conditionL5O(1) is
necessary for the surface dynamics to significantly influen
the fluid flow. The model for the fluid and solid dynamics i
given in Sec. II, and the dynamics of the fluctuations at th
surface is determined using a linear analysis in Sec. III. A
asymptotic analysis in the small parametere5~L/Re! is used,
and the fluid viscosity is neglected in the leading approxim
tion. We find that the leading order growth rate of the fluc
tuations is always imaginary, and the fluctuations are ne
trally stable in the leading approximation because there is
viscous dissipation. The decay rate of the fluctuations, whi
is due to the dissipation in the viscous boundary layer,
O(e1/2) smaller than the leading order frequency.

The characteristics of the leading order frequency a
structure factor are similar to that for the surface modes
the surface of a gel in contact with air,2 though the flow does
have a significant effect on the structure factor. However, t
decay rate of the fluctuations is qualitatively different for th
present case, because the leading order dissipation of en
takes place in a viscous boundary layer at the interface a
not in the bulk of the fluid or the elastic medium. The im
portant results are summarized in Sec. IV, and the expe
mental results of Hansen and Hunston4 are compared with
the predictions of the analysis.

II. MODEL

The system consists of an incompressible elastic m
dium of thicknessH, modulus of elasticityE, viscosityhg ,
and infinite lateral extent which is fixed to a rigid surface a
z52H as shown in Fig. 1. There is a Newtonian fluid o
viscosity h and densityr in the region 0,z,`, and the
fluid is flowing with a constant strain rateg in thex direction

v̄5gz. ~1!

As mentioned in the Introduction, we consider a flow
where the Reynolds number, Re5(rgH2/h), is large, while
the parameterL5(rg2H2/E)1/2, is O(1). TheparameterL
is the ratio of the inertial forces in the fluid and the elast
forces in the medium, and the elastic stresses in the medi
are comparable to the inertial stresses in the fluid f
L;O(1). In this limit, it is appropriate to nondimensional-
ize the lengths in the equations of motion byH, the time by
(rH2/E)1/2, and the velocities by (E/r)1/2. The nondimen-
sional mean velocity~1! is

FIG. 1. Fluid and gel configuration and the coordinate system.
, No. 8, 22 February 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3454 V. Kumaran: Surface fluctuations on an elastic medium
v̄5Lz. ~2!

The equations for the fluid velocity fieldv i are the Navier–
Stokes mass and momentum equations

] iv i50, ~3!

] tv i1v j] jv i52] i p1e] j
2v i . ~4!

Here, ] t5(]/]t), ] i5(]/]xi), and e5~L/Re! is the small
parameter that will be used for the asymptotic expansi
The stresses in the fluid are scaled by the shear modulusE,
as before

tzz52p12e]zvz , ~5!

txz5e~]zvx1]xvz!. ~6!

The dynamics of the elastic medium is described usin
displacement fieldui , which represents the displacement
the material points in the solid from their equilibrium pos
tions due to the stresses acting at the surface. The conse
tion equations for the displacement field used here are si
lar to those used for polymer gels1,2

] iui50, ~7!

] t
2ui52] i p1] j

2ui1eh8] j
2~] tui !. ~8!

Here the pressure,p, is nondimensionalized by the shea
modulus,E, and h85(hg/h) is the ratio of the solid and
fluid viscosities. Equation~7! is the mass conservation equa
tion for an incompressible elastic medium, while~8! is the
momentum balance equation. In the latter, the term on
left side is the rate of change of momentum in a volum
element of the elastic medium, while the terms on the rig
represent the divergence of the pressure, the divergenc
the elastic stress due to the strain in the medium,14 and the
divergence of the viscous stress due to the strain rate, res
tively. The shear and normal stresses in the elastic so
nondimensionalized by the shear modulusE, are

szz52p12@11eh8] t#~]zuz!, ~9!

sxz5@11eh8] t#~]zux1]xuz!. ~10!

The boundary conditions for the elastic medium at t
surfacez52H are the zero displacement conditions

uz50, ux50, ~11!

while the appropriate boundary conditions at the interfa
between the fluid and the elastic medium are the continu
of velocity and stress

vz5] tuz , vx5] tux ,
~12!

tzz5szz, txz5sxz .

Equations~3!, ~4!, ~7!, and~8!, along with the boundary
conditions atz52H, Eq. ~11!, and the boundary conditions
at the interface~12! can be solved to determine the growt
rate of fluctuations.
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III. ANALYSIS

In this section, an asymptotic analysis in the small pa
rametere is used to determine the growth rate of the surfac
fluctuations. Small perturbations are placed on the displac
ment and velocity fields of the form

ui5~2p!21E dk ũi~z!exp~ ikx1at !,

~13!

v i5~2p!21E dk ṽ i~z!exp~ ikx1at !,

wherek is the wave number,a is the growth rate, andũi(z)
and ṽ i(z) are the eigenfunctions determined from conserva
tion equations,~3!, ~4!, ~7!, and~8!.

The growth rate of the perturbations to the surface dis
placement and fluid velocity fields are expressed as an a
ymptotic expansion in the parametere. Our subsequent
analysis indicates that the first correction to the displaceme
and velocity fields isO(e1/2), and in anticipation of this we
use the following asymptotic expansions for the growth rat
and the displacement and velocity fields:

a5a~0!1e1/2a~1!1••• ,

ũi5ũi
~0!1e1/2ũi

~1!1••• , ~14!

ṽ i5 ṽ i
~0!1e1/2ṽ i

~1!1••• .

The linearized mass and momentum conservation equatio
@~7! and~8!# for the leading order andO(e1/2) displacement
fields are

]zũz
~0!1 ikũx

~0!50,
~15!

]zũz
~1!1 ikũx

~1!50,

2]zp̃
~0!1@2~a~0!!21]z

22k2#ũz
~0!50,

~16!

2]zp̃
~1!22a~0!a~1!ũz

~0!1@2~a~0!!21]z
22k2#ũz

~1!50,

2 ik p̃~0!1@2~a~0!!21]z
22k2#ũx

~0!50,
~17!

2 ik p̃~1!22a~0!a~1!ũx
~0!1@2~a~0!!21]z

22k2#ũx
~1!50.

The expressions for the perturbation to the stresses in t
surface are

s̃zz
~0!52 p̃~0!12]zũz

~0! , s̃xz
~0!5]zũx

~0!1 ikũz
~0! ,

~18!
s̃zz

~1!52 p̃~1!12]zũz
~1! , s̃xz

~1!5]zũx
~1!1 ikũz

~1! .

The eigensolutions for the displacement field are ob
tained by adding [2]z3(17)1 ik3(16)], and using Eq.
~15! to expressũx

(0) and ũx
(1) in terms of ũz

(0) and ũz
(1). The

solution contains four eigenfunctions
No. 8, 22 February 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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S ũz~0!

ũx
~0!

ũz
~1!

ũx
~1!
D 5S 1 1 1 1

i ~ il/k! 2 i 2~ il/k!

0 ~a~0!a~1!z/l! 0 ~2a~0!a~1!z/l!

0 ia~0!a~1!~11lz!/~lk! 0 ia~0!a~1!~211lz!/~lk!

D S exp~kz!
exp~lz!

exp~2kz!
exp~2lz!

D , ~19!
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wherel 5 A(a (0))21k2.
The perturbation to the velocity field in the fluid is de

scribed by the linearized Navier–Stokes equations,~3! and
~4!.

]zṽz1 ik ṽx50, ~20!

~a1L ikz!ṽz52]zp̃1e~]z
22k2!ṽz , ~21!

~a1L ikz!ṽx1L ṽz52 ik p̃1e~]z
22k2!ṽx ~22!

and the stresses in the fluid are

t̃zz52 p̃12e]zṽz , t̃xz5e~]zṽx1 ik ṽz!. ~23!

The characteristic equation for the fluid velocity pertu
bations is derived by adding [2]z3(22)1 ik3(21)], and
expressingṽx in terms ofṽz in the resulting expression using
Eq. ~20!

@2~a1L ikz!1e~]z
22k2!#~]z

22k2!ṽz50. ~24!

Note that the highest derivative in the above equation is m
tiplied by the small parametere, which is a characteristic
feature of a singular perturbation problem and indicates
presence of a boundary layer at the interface. Two of the f
eigenfunctions of the characteristic equation can be de
mined by settinge50 in the characteristic equation. Th
length scale for the decay of these solutions isO(H), and
these solutions are designated the ‘‘outer flow solutions,’’ṽo .
The outer flow solutions are expanded in an asymptotic
ries in smalle

ṽoi5 ṽoi
~0!1e1/2ṽoi

~1! ~25!

and the characteristic equations forṽoz
(0) and ṽoz

(1) @from Eq.
~24!# are

~a~0!1L ikz!~]z
22k2!ṽoz

~0!50, ~26!

a~1!~]z
22k2!ṽoz

~0!1~a~0!1L ikz!~]z
22k2!ṽoz

~1!50. ~27!

The solution for the characteristic equation~26! is

ṽoz
~0!5exp@2kz#, ṽox

~0!52 i exp@2kz#, ~28!

p̃o
~0!5Fa~0!

k
exp@2kz#1

iL

k
exp@2kz#~11kz!G , ~29!

where the amplitude of the outer flow velocityṽzo
(0) at the

surface has been set equal to 1 without loss of genera
Note that in the above equations, the growing mode prop
tional to exp[kz] has been neglected because the veloc
fluctuations decay to zero forz→`. The characteristic equa
tion for the first correction to the growth rate,ṽoz

(1), Eq. ~27!,
is identical to that for the leading order growth rateṽoz

(0), Eq.
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~26!, because (]z
22k2) ṽoz

(0)50. Therefore, we can set the
first correction to the growth rateṽoi

(1)50 without loss of
generality.

The other solutions for the characteristic equation~24!
decay within a boundary layer of thicknessO(e1/2H) from
the interface, and these are designated the ‘‘boundary lay
solutions.’’ These are obtained by scaling thez coordinate by
e1/2H in the characteristic equation~24!. It turns out that the
leading order boundary layer velocityṽ ix

(0), which is obtained
from the following equation, is sufficient for the present
analysis:

@2~a~0!1 ikLz!1]z8
2

#ṽ ix
~0!50, ~30!

wherez8 is e21/2z. The solution for the velocity field in the
boundary layer is

ṽ ix
~0!5Bi exp~2Aa~0!z8!,

ṽ iz
~0!5

ike1/2Bi

Aa~0!
exp~2Aa~0!z8!, ~31!

whereBi is determined from the boundary conditions at the
interface. Note thatṽ iz

(0) is O(e1/2) smaller thanṽ ix
(0) in the

boundary layer.
At this point, it is instructive to determine the magni-

tudes of the displacement, velocity, and stress fields. Th
length scale of flow is the thickness of the surface,H, and
the time scale is (rH2/E)1/2. If the displacements,ũz

(0) and
ũx
(0), scale asũ, the scaling of the fluid velocity fields are

ṽoz
~0!;S E

rH2D 1/2ũ, ṽox
~0!;S E

rH2D 1/2ũ,
~32!

ṽ iz
~0!;e1/2S E

rH2D 1/2ũ, ṽ ix
~0!;S E

rH2D 1/2ũ.
The elastic stresses in the surface areO(Eũ/H), while of
magnitudes of the stresses in the outer flow and bounda
layer are

t̃ozz
~0! ;2 p̃o1~eEũ/H !, t̃oxz

~0! ;~eEũ/H !,
~33!

t̃ izz
~0!;~eEũ/H !, t̃ ixz

~0!;~e1/2Eũ/H !.

In the above equation, the normal stress,t̃ozz
(0) has been sepa-

rated into the pressure and viscous components, the visco
component of the stress isO(e) smaller than the pressure.
Also note that the shear stress in the inner flow,t ixz , is
O(e21/2) larger than the normal stress and the viscou
stresses in the outer region, which is characteristic of boun
ary layer flows.

The relative magnitudes of the velocity and stress field
permit us to neglect certain terms in the boundary condition
at the interface, and we are left with the following leading
order matching conditions atz5h(x):
No. 8, 22 February 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3456 V. Kumaran: Surface fluctuations on an elastic medium
a~0!ũz
~0!5 ṽoz

~0! , a~0!ũx
~0!5 ṽ ix

~0!1 ṽox
~0!1Lũz

~0! ,
~34!

szz
~0!52 p̃o

~0! , s̃xz
~0!50.

The last term on the right side of thex velocity boundary
condition represents the change in the mean velocity at
interface due to an increase in the height of the surface.3 In
deriving this, we have seth(x)5uzuz50, which is permissible
for small displacements. The above boundary conditions p
mit the following important simplification in the analysis
The matching condition for the velocity in thez direction
e

y

e

y
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and the shear and normal stresses in Eq.~34! are independent
of the velocity in the boundary layer, and therefore the cha
acteristic equation for the leading order growth rate,a~0!,
does not depend on the magnitude of the boundary la
velocity. The solutions for the displacement fieldũ(0), Eq.
~19!, the stress in the surface, Eq.~18!, and the outer flow
velocity field ṽoz , Eq. ~28!, and pressurep̃o

(0), Eq. ~29!, are
substituted into the matching conditions for thez velocity
and the stress conditions in Eq.~34!, to give the following
535 characteristic matrix:
S a~0! a~0! a~0! a~0! 1

~l2/k!1k 2l 2~l2/k!2k 22l 2~a~0!1 ig!/k

2ik ~ il2/k!1 ik 2ik ~ il2/k!1 ik 0

exp~2k! exp~2l! exp~k! exp~l! 0

i exp~2k! ~ il/k!exp~2l! 2 i exp~k! 2~ il/k!exp~l! 0

D . ~35!
n

e
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In the characteristic matrix, the first row arises from the co
tinuity of the velocity in thez direction, the second and third
rows are due to the continuity of normal and tangential str
conditions in Eq.~34! while the fourth and fifth rows are a
consequence of the zero displacement condition atz521
Eq. ~11!. The amplitude for the velocity in the boundar
layer,Bi , is determined from the boundary condition for th
velocity in thex direction

Bi5~2 ṽx
~0!2Lũz

~0!1a~0!ũx
~0!!uz50 . ~36!

The characteristic equation for the growth rate, which
the determinant of the characteristic matrix, admits multip
solutions, all of which are imaginary indicating that the pe
turbations are neutrally stable in the leading order appro
mation. ForL50, the solutions for the characteristic fre
quencyv5a (0)/ i are equidistant from the real axis. Th
magnitude of the characteristic frequency,uvu, is shown as a
function ofk for L50 in Fig. 2. The characteristic frequenc
assumes values of~6p/2!, ~63p/2!,..., for k→0, and in-
creases proportional tok for largek. The effect of variations

FIG. 2. The first three harmonics of the leading order frequencyuvu atL50.
N¬
-

ss

s
e
-
i-

in L on the lowest harmonic is shown in Figs. 3 and 4; th
trend is similar for the higher harmonics. We find that a
increase inL tends to decrease the frequency of perturb
tions with positivev ~which represent waves traveling oppo
site to the direction of flow! and tends to increase the fre
quency of perturbations with negativev ~which represents
waves traveling along the flow direction!.

The structure factor for the fluctuations is calculate
from the change in the free energy due to the displacemen
the interface.2 The change in the free energy due to the di
placement field in the elastic surface is given by

Fs5S E dx E
21

0

dz@ 1
4~] iuj1] jui !

21 1
2~] tui !

2# D , ~37!

where the free energy has been scaled by (EH2). The first
term in the integral on the right side represents the elas
energy due to the strain in the surface,14 while the second

FIG. 3. Effect of variation inL on the leading order frequencyv for up-
stream traveling waves~v.0!. ~s! L50; ~n! L53; ~h! L510; ~L!
L530.
o. 8, 22 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3457V. Kumaran: Surface fluctuations on an elastic medium
term is the kinetic energy due to the motion of the elast
medium. The kinetic energy due to the fluid motion abov
the surface is given by

F f5F E dx E
0

`

dz~ 1
2v i

2!G . ~38!

It is convenient to express the changes in the free energy
terms of the Fourier modesṽ i and ũi

Fs5E
k
E

21

0

dz@]zũz]zũz*1k2ũxũx*1~ 1
2!~]zũx1 ikũz!

3~]zũx*2 ikũz* !1aa* ~ ũzũz*1ũxũx* !# ~39!

F f5E
k
E
0

`

dz~ ṽzṽz*1 ṽxṽx* !, ~40!

where*k represents~2p!22* dk. The change in free energy
due to a variation in the height of the interfaceũz~k! can be
expressed in terms of the structure factor for the correlatio
of the surface modes2

F5 1
2E

k
S~k!21ũz~k!ũz* ~k!. ~41!

Equation~41! is similar in form to Eqs.~39! and ~40! after
the integration over thez coordinate has been carried out
Thus, the structure factorS~k! can be determined by carrying
out the integral in Eqs.~39! and ~40! over thez coordinate,
and expressing the result in terms ofũz~k!. The leading order
value ofS(k), scaled by (EH2/T), is determined by inserting
the leading order growth ratea~0! and the displacement and
velocity fieldsũi

(0) and ṽ i
(0) into Eqs.~39! and ~40!.

The effect of fluid flow on the leading order structure
factorS~k! for waves traveling upstream is shown in Fig. 5
The increase in the structure factor indicates that the amp
tude of the upstream waves is amplified, and this can
explained as follows. As the fluid velocity increases, the fr
quency of the upstream traveling waves decreases~see Fig.
3!, and therefore the kinetic energy required for a perturb
tion of a given amplitude decreases, thereby increasing
amplitude of the fluctuations. The opposite effect is observ

FIG. 4. Effect of variation inL on the leading order frequencyv for down-
stream traveling waves~v,0!. ~s! L50; ~n! L53; ~h! L55; ~L! L530;
~3! L5`.
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for the structure factor of the downstream traveling waves in
Fig. 6, because the frequency of these waves increases as t
fluid velocity is increased. Further, it can be seen that the
structure factor decreases to zero at an intermediate wav
numberk51.23 for higher fluid velocities, and develops a
double-peaked structure. The decrease inS(k) to zero at a
finite value ofk is because the ratio (ũx

(0)/ũz
(0)) at the inter-

face diverges at this point, and therefore the energy require
to produce a change in the height of the interface diverges.

The leading order calculation has proved inconclusive
for determining the growth rate of the fluctuations, and it is
necessary to determine theO(e1/2) correction to the growth
rate,a~1!. This calculation is similar to that fora~0!, and the
details are not given here. The real part of the first correction
to the decay rate,2Re~a~1!!, is shown as a function ofk for
the first three harmonics in Fig. 7. The behavior of2a~1! is
very different from that of the decay rate for the modes at the
interface between a gel and air or vacuum.2 In that calcula-
tion, it was found that the decay rate increases monotonicall
as the wave number is increased, and the increase is propo
tional tok2 for largek. However, in the present case we find
that the decay rate increases proportional tok3/2 for the low-
est harmonic, anddecreasesproportional tok23/2 in the limit
k@1 for the higher harmonics. This is because the energy

FIG. 5. Effect of variation inL on the structure factor for upstream traveling
waves.~s! L50; ~n! L53; ~h! L55; ~L! L530.

FIG. 6. Effect of variation inL on the structure factor for downstream
traveling waves.~s! L50; ~n! L53; ~h! L57; ~L! L510; ~3! L5100.
o. 8, 22 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3458 V. Kumaran: Surface fluctuations on an elastic medium
dissipation in the present case occurs in the boundary la
in the fluid, in contrast to the fluctuations at the gel–air in
terface where the dissipation takes place in the gel.

The effect of fluid flow on the decay rates of the fluc
tuations is considered next. Figures 8 and 9 show the r
part of a~1! as a function ofk for L55 andL510 for per-
turbations withv.0 ~waves traveling upstream!. There is an
increase in the decay rate as the velocity is increased, due
the increased dissipation in the boundary layer. The behav
of Re~a~1!! for waves traveling downstreamv,0 is shown in
Figs. 8 and 9. An increase in the fluid velocity tends to d
crease the decay rate, anda~1!50 for certain values ofg,
implying that the waves are neutrally stable at these poin
The locus of these points ink2g space for the first four
harmonics are shown in Fig. 10. Along these lines, th
O(e1/2) correction to the growth rate is zero, indicating tha
the waves are neutrally stable at this level of approximatio
This is because the amplitude of the boundary layer veloci
Bi Eq. ~36!, is identically zero along these points, and there
fore there is no dissipation in the boundary layer. To dete
mine the decay rates of the neutrally stable waves, it is ne
essary to determine theO(e) correction to the growth rate
a~2! along the lines shown in Fig. 10. This is determined in

FIG. 7. TheO(e1/2) correction to the growth ratea~1!. ~s! First harmonic;
~n! second harmonic;~h! third harmonic.

FIG. 8. The effect of variation inL on theO(e1/2) correction to the growth
ratea~1! for the first harmonic.~s! L50; ~n! L55 upstream waves;~h!
L55 downstream waves;~L! L510 downstream waves.
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manner similar to the leading order andO(e1/2) calculations,
though it is necessary to include the viscous stresses in t
fluid and the elastic medium. We find thata~2! has the form
a~2!5a1

~2!1h8a2
~2! . Figures 10 and 11 showa1

~2! anda2
~2! as a

function of k for the parameter values wherea~1!50. It is
found that botha1

~2! anda2
~2! are negative, indicating that the

dissipation in the outer flow and elastic medium have a sma
stabilizing effect on the fluctuations.

IV. CONCLUSIONS

In this section, the important features of the high Rey
nolds number flow near an elastic surface are first discusse
and the results of the analysis are compared with the expe
mental observations of Hansen and Hunston.4 The system
consists of a linear flow of a fluid of infinite extent adjacent
to an elastic surface of thicknessH. The dynamics of the
fluctuations is governed by two dimensionless parameters—
the Reynolds number, Re5(rgH2/h), and the dimensionless
parameter,L5(rg2H2/E)1/2, whereg is the strain rate in
the fluid,r andh are the fluid density and viscosity, andE is
the coefficient of elasticity of the surface. The parameterL is
the ratio of the inertial stresses in the fluid and the elasti

FIG. 9. The effect of variation inL on theO(e1/2) correction to the growth
ratea~1! for the second harmonic.~s! L50; ~n! L55 upstream waves;~h!
L55 downstream waves;~L! L510 downstream waves.

FIG. 10. Lines inL2k plane where the first correction to the growth rate
a~1!50. ~s! First harmonic;~n! second harmonic;~h! third harmonic;~L!
fourth harmonic.
o. 8, 22 February 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3459V. Kumaran: Surface fluctuations on an elastic medium
stresses in the surface. At high Reynolds number, we used
asymptotic expansion in the small parametere5~L/Re!. The
leading order flow in the fluid is inviscid, but the viscous
stresses areO(e1/2) smaller than the inertial stresses in
boundary layer of thickness (e1/2H) at the interface. The
leading order growth rate,a~0!, obtained by solving the in-
viscid equations of motion, has the same characteristics
the frequency at a gel–air interface.2 There are multiple fre-
quencies of oscillation, all of which are consistent with th
boundary conditions imposed on the elastic surface. In t
absence of fluid flow, the frequencies have values of~p/2!,
~3p/2!••• in the limit k→0, and increase proportional tok for
largek, wherek is the wave number of the perturbation.

A shear flow tends to increase the frequency of wav
traveling downstream, and decrease the frequency of
waves traveling upstream. The structure factor of the surfa
waves was calculated from the total energy of the fluctu
tions, which is the sum of the elastic strain energy in th
elastic medium and the kinetic energy in the medium an
fluid. The structure factor of the upstream traveling waves
increased by the flow, because the kinetic energy of fluctu
tions for a given amplitude decreases due to a decrease in
frequency. The opposite effect is observed for waves trav

FIG. 11. The second correction to the growth rate,a1
~2! , as a function ofk

for the curves inL2k space wherea~1!50. ~s! First harmonic;~n! second
harmonic;~h! third harmonic;~L! fourth harmonic.

FIG. 12. The second correction to the growth rate,a2
~2! , as a function ofk

for the curves inL2k space wherea~1!50. ~s! First harmonic;~n! second
harmonic;~h! third harmonic;~L! fourth harmonic.
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ing downstream. In addition, the structure factor has a
double-peaked structure and approaches zero at an interm
diate wave number, due to the divergence in the ratio of th
tangential and normal displacements at this wave number.

The characteristics of the decay rate of the fluctuations i
very different from that of a gel–air interface. In the present
case, the leading order decay rate isO(e1/2) smaller than the
frequency of fluctuations due to the presence of a viscou
boundary layer in the fluid, while the decay rate of the sur-
face modes at a gel–air interface isO(e) smaller than the
leading order frequency due to the dissipation in the bulk o
the gel. TheO(e1/2) correction to the growth ratea~1! was
determined by including the effect of the boundary layer ve
locity. The real part ofa~1! is negative for all values ofk and
L, except along certain lines in thek2L parameter space
where it is zero, indicating that the fluctuations are neutrally
stable at this order of approximation. Along these lines, the
amplitude of the boundary layer velocity becomes zero, an
consequently there is no dissipation in the boundary laye
The real part of theO(e) correction to the growth ratea~2!

was found to be negative along these lines, indicating th
presence of a small stabilizing effect due to the dissipation i
the bulk of the fluid and the elastic medium.

We now compare the results of the analysis with the
experimental observations of Hansen and Hunston.4 Their
experimental system consisted of a disk of an elastic materi
which was spun in a container fluid, and they observed th
appearance of waves on the elastic surface when the angu
velocity exceeded a critical value. Silberberg5 analyzed these
results in detail, and showed that the waves appear when th
critical Reynolds number (rva2/h) exceeds 1.2RG

1/2, where
RG5(Ea3r/4Hh2), a is the radius of the disk, andv is the
angular velocity. Note that the parameterRG is proportional
to e22, since the ratio (a/H) was a constant in the experi-
ments. If we assume that the strain rate at the surface
proportional to the angular velocity, the experimental obser
vations indicate that the fluctuations are unstable whenL
exceeds a critical value. Though the present analysis does n
predict an instability, it is found that the first correction to the
growth ratea~1! becomes zero for a specific value ofL,
indicating the presence of slowly decaying waves. Thes
may be destabilized by some effect that is not included in
this simplified analysis, such as curvature in the velocity pro
file or nonuniformity in the elasticity of the surface. A com-
parison of the numerical value of the criticalL is not pos-
sible, however, because we do not have an exact knowledg
of the strain rate at the surface of the disk as a function of th
angular velocity, and the viscosity of the compliant material
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