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The variation of the viscosity as a function of the sequence distribution i\-aB random
copolymer melt is determined. The parameters that characterize the random copolymer are the
fraction of A monomersf, the parameteh which determines the correlation in the monomer
identities along a chain and the Flory chi parameterwhich determines the strength of the
enthalpic repulsion between monomers of typandB. For \>0, there is a greater probability of
finding like monomers at adjacent positions along the chain, andf@runlike monomers are more
likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is
altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the
phase diagram for the modified model has a binary fluid type transitioccf@rand does not exhibit

a phase transition for<0. A mode coupling analysis is used to determine the renormalization of the
viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the
dissipative nature of the coupling, there are nonlinearities both in the transport equation and in the
noise correlation. The concentration dependence of the transport coefficient presents additional
difficulties in the formulation due to the Ito—Stratonovich dilemma, and there is some ambiguity
about the choice of the concentration to be used while calculating the noise correlation. In the
Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the
calculation of the transport coefficient, when coupled with a causal discretization scheme, provides
a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This
functional integral formalism is used in the present analysis, and consistency is verified for the
present problem as well. The upper critical dimension for this type of renormalization is 2, and so
there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there
is a systematic dependence of the viscositydoand yr. The fluctuations tend to increase the
viscosity forA<0, and decrease the viscosity #or-0, and an increase ig- tends to decrease the
viscosity. © 1996 American Institute of Physids$$0021-96066)50506-(

I. INTRODUCTION polymerization of a mixture of “prepolymers” each of which
. _ consists of different monomers. The phase separation of co-
There have been many studies of the thermodynamicgoiymers is very different from that of homopolymers, be-

and dynamics of polymer melts in which the polymers con-,,;se the different types of monomers are chemically linked
tain two or more types of monomers. The interest stems no

) , X o ¥n the same chain. As a result, they form “microphases”
just from their practical applications, but also from the noveleach of which is rich in one type of monomer. The shape of
structures that could be formed by these polymer mixtureﬁqese microphases depends on the compositicioverall
under certain conditions. The earlier studiésfocused on ) ) :

X . ) ,fraction of one of the monomersand various micro-
the thermodynamics and dynamics of “homopolymers

. . . . structure® such as lamellar, cylindrical, spherical and or-
which consisted of a mixture of two different type of poly dered bicontinuous double diamond have been identified.

mers. There is a certain temperature below which these mix]_h h di for block | has b tudied i
tures undergo a demixing transition, and the transition tem- € phase diagram for block copolymers has been studied in
o limiting cases. In the weak segregation limit wh&r&,

perature is determined by a balance between the entropm’ . ) X o
effects which favor mixing and the enthalpic interactionsth€ interaction between the monomers is sufficiently weak

which favor segregation of the monomers. The dynamics of?at the conformation of the individual polymers is not much
early stage phase separation has been andiyzeding a  disturbed, and the fluctuations about the mean concentration
treatment similar to the mean field Cahn—Hilli4rfitheory ~ @ré small. In this limit, the composition fluctuation is ap-
for spinodal decomposition, and there has also been sonfoximately sinusoidal, and the period of the microdomains
recent work on the adapting the Langer—Baron—Millerscales asN™"? whereN degree of polymerization. In the
theory” which includes nonlinear effects, for polymer mix- Strong segregation limif;*? narrow interfaces separate mi-
tures. The late stage growth kineti¢®swald ripening of ~ crodomains which are nearly pure in the two different types
homopolymer mixtures has also been studiéd. of monomers, and the polymer conformation is significantly
In the recent years, there has been much work on coperturbed from the equilibrium Gaussian shape. The renor-
polymeric materials with well defined structures, such agmalization of the transport coefficient near the order—
block and star copolymers. These are prepared by anionidisorder transition has been studiédand the diffusion of
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polymers in the ordered phases has also been anaf{zed. the chain. The type of nonlinearity considered here is present

There has been relatively less work on random copolywhen the two polymer#é andB have very different viscosi-
mers, where each polymer contains two different types ofies in the pure form, so that the viscosity of the mixture
monomers A and B distributed stochastically along a depends on the local concentration. This causes a “dissipa-
chain®~" In addition to the volume fraction of typ&  tive” nonlinearity in the conservation equations, since the
monomersf and the Flory chi parametey-, which repre- diffusion coefficient in the Fokker—Planck equation for the
sents the strength of the enthalpic repulsion between mongprobability distribution depends on the concentration. This is
mersA andB, the phase diagram depends on a parameter in contrast to the conservative nonlinearity, which originates
which represents the correlation between the identities of thifom the convective streaming term in the Fokker—Planck
monomers along the chain. The case—1 corresponds to equation. In addition, the upper critical dimension for the
an alternating copolymer, where the monom&randB al-  dissipative nonlinearity studied here is 2, in contrast to the
ternate along the chain, while the limit=1 corresponds to a upper critical dimension of 4 for the convective nonlinearity
mixture of homopolymers of typA andB. The intermediate near a critical point. Therefore, the renormalization of the
value A\=0 represents a truly random copolymer, whére Viscosity is convergent near a critical point, and could be
andB are distributed at random along a chain. Fredricksonimportant even at temperatures higher than the critical tem-
Milner, and Leiblet’ (FML) have shown that the phase dia- perature.
gram for this system has a complex dependence on the pa- The renormalization in the viscosity is determined using
rameter \, with a Lifshitz multicritical point at a value the Martin—Siggia—Rose functional integral formalism for
A=\_. The value\, depends on the microscopic model, but the coupled Langevin equations for the concentration and
is usually less than zero. Far>)\_ , the transition is of the Velocity fields, which has been used earlier for the study of
binary fluid type and the two coexisting phases have a concfitical dynamics in simple fluids>*° However, there are
position difference proportional t@(N_”z). Fora<x_,the some additional difficulties encountered due to the dissipa-
phase separation occurs at a finite wavelength, and is of tHé/e nature of the nonlinearity. The correlation of the random
“microphase separation” type observed in block copolymershoise in the distribution function is related to the diffusion

The anomalous behaviour of the transport coefficients ircoefficient for the probability distribution in the Fokker—
the vicinity of a critical point was analyzed by Kumaran and Planck equation. The dependence of the diffusion coefficient
Fredricksof® (KF). The dynamical equations for the melt On the concentration causes some ambiguity in the determi-
were similar to the Model H equatiotis®used for studying nation of the noise correlation. Since the noise correlation is
the critical dynamics of binary fluids. The divergence in theassumed to be a delta function in time, the concentration
Onsager coefficient and viscosity were determined as a fundield varies as a step function. Therefore, there is some am-
tion of the reduced temperatuee=(T—T.)/T., the fraction biguity about whether the value of the concentration in the
of A monomers and the parametér. Here, T is the critical ~ Noise correlation is before or after the step, and this is called
temperature. It was found that far<)_, the viscosity di- the Ito—Stratonovich paraddx*If the noise correlation is
verges proportional te %2 near the critical point while the incorrectly chosen, certain inconsistencies may arise in the
Onsager coefficient remains finite. In the limit-\, , the  results; in particular, the stationarity condition and the fluc-
divergence in the viscosity is weak while the Onsager coeftuation dissipation theorem may not be satisfied. This issue is
ficient diverges proportional te Y2 for e (\—\_)>1, and  considered in the Appendix, and it is found that the choice of
proportional toe ¥ for e 1A —\ )<1. noise correlation depends on the discretization scheme in the

The above critical dynamics studies have focused on théunctional integral formulation. If the causal discretization is
anomalous behavior of the transport coefficient near a critica#sed, then it is appropriate to use the value of the noise
point. Here, the nonlinear effects originate from the conveccorrelation before the step changéo formulation. In the
tive terms in the conservation equation, and the effect oPpresent analysis, the Ito formulation is used in conjunction
these terms becomes significant only as the critical point igvith the causal discretization scheme, and it is also explicitly
approached. Here, we study another type of viscosity renoierified that the fluctuation dissipation theorem is satisfied.
malization in a random copolymer, which is due to the de- ~ The model for the random copolymer is presented in the
pendence of the viscosity on the local concentration. Thé€Xxt section. This is very similar to that used by FML and
dependence of the viscosity renormalization on the sequend&™, though a minor modification is made to remove high
distribution of the random copolymer is analyzed. This couldwave number divergences in the wave vector integrals for
be of use in polymer processing applications, where the kithe structure factor. The renormalization of the viscosity is
netics of the polymerization reaction could be adjusted tgalculated using a functional integral formalism in Sec. Il
obtain a copolymer whose viscosity is suitable for furtherand the main conclusions are briefly summarized in Sec. IV.
processing.

In the present study, the mode coupling technique is use
to study the effect of fluctuations in the concentration an
velocity fields on the viscosity. Since the local fluctuations  The system consists of an incompressible random co-
are related to the sequence distribution in the random copolypolymer melt containing two type of monomeksandB in
mer, this effectively provides the variation in the viscosity aswhich the volumes of the monomers maintain a constant
a function of the correlation in the monomer identities alongvalue v. The polymers are considered to be monodisperse,

. MODEL

J. Chem. Phys., Vol. 104, No. 8, 22 February 1996

Downloaded-06-Apr-2005-t0-128.111.9.167.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp
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each polymer containg’,;, monomers, and the volume frac- B(nN)=2f—1
tion of type A monomers isf. The location of monomers

along a chain are indexed by lower case indices), - [g(n,N)— 6(n,N)][ 6(m,M)— 6(m,M)
while the different chains are identified by upper case indices
N,M,--- . The correlation between the monomer identities at ~ =4f(1—f A"y, 4

different separations along the chain is obtained from th

Markov model of random copolymerizatiGtwhich was ear-

lier used by FMLL” and KF*8 In this model, the reactivity of

a monomer and a polymer chain depends only on the ide

tities of the monomer located at the end of the polymer an .

the unreacted monomer itself, and four rate constants Jp (1+ 6(n,N))

ke ({K,L}=A,B) are sufficient to determine the growth ki- daX )= Z 2 ( (n,N;x,t #) )

netics. In addition, it is usually assumed that the monomer

concentrations are constant during the polymerization pro- I (1—6(n,N))

cess. ba(x,t)= 2 2 (¢>(n N;x, t T) 6)
The correlation of monomer identities along a chain can

be expressed in terms of a conditional probability matrixwhere the microscopic density fiel(n,N;x,t) of a mono-

Pk ({K,L}=A,B), which is the probability that a monomer mer at positiom on chainN is

of type L is followed by a monomer of typK. These prob-

abilities follow two conservation conditions: ¢(n,N;x,t) = 6(x—R(n,N,1)) @)

PantPea=1, Pas+Pee=1, (1)  andR(n,N,t) is the monomer position. The interaction be-
_ . _ . _ tween the monomers is expressed using the Flory chi param-
and a third relationship can be obtained from the conditioreter which is an enthalpy penalty per monomer £orB
that the relative concentrations of the two monomers remaingpntacts relative toA—A and B—B contacts. The Hamil-
a constant during polymerization tonian is the standard Edwards Hamiltonian modified to ac-
f=paaf+ pas(l—Tf ). ) count for enthalpic interactions

Svhere the overbars represent averages over the sequence dis-
tribution.

The microscopic densities & and B monomers at a
r(k}ositionx and timet are given by

/ W
Using these three relations, the correlation in the identity of 2
the monomers can be expressed as a function of two param- 2b2 E: Zl IR(N.N)=R(n+1N)|
eters, i.e., the volume fractioh, and the nontrivial eigen-

value of the| matrix A, given b
Pt given by - ka(—k)XF(ka(k), ®
A=paatpes—1. 3
— (9.3 ; ot
The parametex is a measure of the correlation in the mono- Where Ji=(2m) ~Jdk. Here, b is the statistical segment
mer identities along a chain. In the limit=1, the probabili- €ngth of a monomer angk-(k) is the nonlocal Flory inter-

ties pas andpgg are 1, indicating that a monomer of type action parameter. This is rglated to _t_he usual Flory chi_ pa-
is followed only by another of typd, and similarly forB, ~ ameter byye=(x/v)(b//6). In addition to the enthalpic

producing a mixture of homopolymers & and B. In the interaction, there is the incompressibility condition which
limit \=—1, every monomer of typa is followed by one of states that the sum of the monomer densities is a constant in

type B, and vice versa, producing an alternating polymerthe melt. This condition is enforced using the random phase

The case\=0 represents an ideal random copolymer, wheréPProximation.
it is equally probable for a monomer of tyge to be fol- For a melt of ideal chains in the absence of interactions,

lowed by typeA or B monomers. In general, the polymer the equilibrium pair distribution is a Gaussian distribufibn

melt consists of chains that differ in composition and se-Which is given by

guence distribution, and except in the limiting casesl 1

and\=—1, there is no correlation between the identities of  Sg(n,N;m,M;k)= v exp(— |n—m|k?) Sy - 9

monomers at a the same location on different chains. This is

in contrast ordered systems such as block copolymers, whetdéere, the wave vectdt has been scaled Ky6/b), whereb

the identities of monomers on different chains are perfectlyis the statistical segment length of the monomers. There are

correlated. deviations from this behavior due to two reasons—the inter-
The monomer sequence distribution can be convenientlactions between the monomers which is represented by the

expressed in terms of a random varials{en,N), which is  Flory chi parametey,, and the incompressibility condition

+1 if the monomer at position on chainN is typeA, and  which requires a constant density in the melt. The incom-

—1 if the monomer at position on chainN is typeB. The  pressibility condition is enforced using the random phase

moments of the variablé@ can be derived using the Markov approximation, where an external potentiek,w) is applied

model for copolymerization described above. The calculatioron the monomers to maintain constant density, and this po-

of the structure factor requires the first two moments of thetential is determined in terms of the concentrations in a self-

variable 6, which are derived in FMt’ consistent manner. The details of the calculation are given in
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KF, and the effective structure factor which includes the ef-the contribution due to the correlation in the monomers along
fect of the hardcore repulsions which render the melt incoma single chain, and the so the latter provides the dominant
pressible is contribution to the structure factor.

The structure factor which takes into account enthalpic

S/ (k)= } S sy(nN:mM:K) interactions can be easily calculated from the abbve
4 n,N,m,M S(k)_ Sr(k) (12)
X[6(n,N)—6(n,N)][ 6(m,M)— 6(m,M)]. 1-2xeS'(k)°

(10) Since the form of the structure factpggs. (11) and (12)]
used here is different from FM{’ and KF® the phase be-

At this point, we make a modification to the structure havior of the present model is also different. The present
factor used in earlier studi¥s'® to avoid difficulties with model predicts a phase transition only for0, and the tran-
divergent integrals later on. The above structure factor consition temperature is given by=f(1—f )(1—\)/4\. The
sists of two components—the self-component due to the pemost unstable mode has a wave numke0, indicating that
fect correlation in the identity of a single monomemat m, the transition is of the binary fluid type. FaK0, there is no
and the distinct component & m) due to the correlation in  transition in the present model. In contrast, the model of KF
the identities of different monomers located close together oand FML had predicted the presence of a Lifshitz point at a
the same chain. The self-component causes ultraviolet diveralue A=\ where the phase transition crosses over from a
gences in the convolution integrals over the wave vectorbinary liquid type transition foh>\_ to a microphase sepa-
since it does not decay to zero for laigeOne method to get ration transition forh<<\| . However, this would not affect
around this difficulty is to use a larde (ultravioled cutoff  the predictions of the present analysis, because we are focus-
Kmax Which is of the same magnitude as the inverse of théng on the effect of dynamical assymetries on the renormal-
segment length. In the present study, an alternative easiétation of the viscosity far from the transition point. As men-
method is used. Since the dynamical nonidealities are due téoned earlier, the upper critical dimension for this type of
the correlations between different monomers, the selffenormalization is 2, and there are no infrared divergences in
component is neglected while calculating the structure factothree dimensions. Therefore, the viscosity renormalization
This serves the same purpose as the ultraviolet cutoff, sino@mains finite in the vicinity of the phase transition.
it removes from the integrals contributions due to correla-
tions over lengths smaller than the segment length. In addiy, penORMALIZED TRANSPORT COEFFICIENTS
tion, this formulation is also more realistic, because the ther-
modynamic and dynamical assymetries are due to the The renormalization of the viscosity due to the depen-
interactions between different monomers mediated by thelence of the bare viscosity on the local concentration in the
correlation in their identities, and not due to the interactionrandom copolymer melt is determined here. The method
of a monomer with itself. With this modification, the struc- used is different from that for the renormalization due to the
ture factor(10) which includes the includes the effect of hard convective nonlinearity near a phase transitiof’2° be-

core repulsions but not the enthalpic interactions, is cause the nonlinearity in the present case is dissipative. In
) particular, the renormalization is due to nonlinear terms in
N exp(—k9) the transport equation as well as in the noise correlations,

S'(k)=2f(1-f) (11)

and the nonlinearities in the noise correlation are essential to
ensure that the stationarity condition and the fluctuation—
where Eq.(4) has been used for the momentségh,N) in  dissipation theorem are satisfied. Therefore, the formulation
Eq. (10), and we have assumed, following KF, that' m is discussed in some detail in the present analysis, and it is
< 1, i.e., the number of monomers in the polymer is suffi-shown explicitly that the fluctuation—dissipation theorem is
ciently large that there is no correlation in the monomerssatisfied for the noise correlations used here.
located at the ends of the chain. This structure factor is dif-  The binary fluid is described by transport equations for
ferent from the Debye-like function for homopolymers andthe concentration fieldy and the velocity fieldv,. The
block copolymers, because it lacks a correlation hole at théjamiltonian for the system is assumed to be of the form
origin. In block copolymers, the identities of monomers lo-

) : 7 . ; 1
cated at identical positions on different chains are correlated, H=_ f [ (=K, t)x(K)~Ly(k,t)
and so if a monomer at positiam on chainN is located at 2 Jx
the origin, the probability of finding another monomer at -1
position n on chainM is reduced. However, in a random X0 Vel =k ua(k, D], (13
copolymer the identities of the species at positioon dif-  wherey,=p ! is the susceptibility for the velocity field;,
ferent chains are uncorrelated, and so there is no correlatiarepresent$27) 3fdk and Greek subscripts are used for the
hole in the structure factor. Due to the lack of correlation invelocity and the wave vector. The transport equation for the
the identities of monomers on different chains, the contribu-concentration field is similar to that used in the Model H
tion to the structure factor due to the potential used to ensystem of equations. As mentioned in Sec. |, we consider
force incompressibility turns out to B&(1/./";) smaller than  only the dissipative nonlinearity in the present analysis, and

1—\ exp—k?)’
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3124 V. Kumaran: Viscosity of a random copolymer melt

neglect the nonlinearity due to the convective terms. In thidield ¢ is a step function. Since the noise correlation is pro-

case, the concentration equation is a linear equation portional to the diffusion coefficier®d .4, there is some un-
certainty as to whether the value #fto be inserted int® .4
SH ) RO @
3tl//(kvt):—/\oki ————+0(k,1), (14) is before or after the step change; this is called the Ito—
SPp(—k,t) Stratonovich dilemma&?2In the Ito formulation, the value

whereA, is the Onsager transport coefficient. The first termof ¢ before the step change is used, while in the Stratonovich
on the right side of the above equation represents the corformulation the average of the initial and final valuesjoi
centration diffusion, and the second term is the random noisghosen. Different results are obtained for the correlation and
which has a Gaussian distribution with zero mean and théesponse functions depending on the choice of the noise cor-
following variance to satisfy the fluctuation—dissipation relation. If the noise correlation is incorrectly chosen, the
theorem: fluctuation—dissipation theorem may not be satisfied, and the
, 5 , . Langevin equation written in the classical fashion may not
(0(k, ) 6(k",1))=2k“AoS(k+ k") S(t—t"). (15 satisfy the stationarity condition, which requires that the val-
The equation for the velocity field is different from that ues of the concentration and velocity fluctuations relax to
used earlier in the Model H equations due to the presence @€ro in the absence of the noise. This issue is considered in
dissipative nonlinearities, and it is useful to examine thethe Appendix, and it is shown that the Ito formulation, when
derivation of this equation in greater detail. The microscopiccoupled with the causal discretization scheme in the func-

equation for the Ve|ocity field is assumed to be of the form tional integral formalism, satisfies the Stationarity condition
and the fluctuation—dissipation theorem. The causal discreti-

k«/j iy k+k'] zation scheme is convenient because the Jacobian is indepen-
K’ dent of the variableg andv,, and so this is used in com-
bination with the Ito formulation in the present case as well.
X (Ko (=K' ) +K.pg(—k', 1)} (16) In the Ito formulation, the following Langevin equation
is equivalent to Eq(17):

[?tv a(kit) = Taﬂ( k)

The transverse projection operafbys(k)=(5,5—K,Kg) en-

sures that the velocity fiela (k) is incompressible. The 0 o(K,1) =T, 5(k)
term on the right is the divergence of the shear stress, and in

this we have assumed that the bare viscosiig a function

of the local concentratiom(x,t). This term models the dy- +k;vﬁ(—k’,t))}
namical assymetry in the system, where regions with differ-

gnt concentrations have Qiffer_en.t viscosities. In order .to deThe random noisé, is assumed to be Gaussian white noise
rive the Langevin eqqatlon, It is necessary to .obFam. thEQ/vith zero mean and the following correlation to satisfy the
Fokker—Planck equation for the probability distribution fluctuation—dissipation theorem:

P[#,v,] which is consistent with the microscopic equations

for the concentration and velocity fields. The concentration (Ea(KDEGK 1)) ==2x, 8(t—t") T e(K) T, (K')

field does not have any dissipative nonlinearities, and the

Langevin equation for this is given by E¢L4). Here, we X(Kykg+ 8pekgky) nl{v} k+k'].
concentrate Fokker—Planck equation for the probability dis- (20)
tribution P[v,] of the velocity fluctuations, which is

[DyP[4,v,]. The Fokker—Planck equation consistent with Note that the noise correlation is a function of the variable

kyfk,{n({w},kJr k") (kgu (—k',t)

+&,(Kk,t). (19

the microscopic equatiofiL6) is itself, unlike in conventional mode coupling analyses where
the noise correlation is a constant. Further, there are addi-
aP S : . .
—= ———— | Dop(ihk,k) tional nonlinear terms due to the dependence of the noise on
at kJk v a(—K) the variableys which have to be taken into account while

SP SH determi_ning the reno_rmalized transport_ coefficier_ns. I_t_ is
—+P - ) ) (17 shown in the Appendix that these additional nonlinearities
v (k") v g(k") are necessary to ensure that the fluctuation—dissipation theo-
Note that there is no Streaming Ve|ocity in the above equa[em is satisfied. This will brlefly be discussed when the vis-
tion because the convective nonlinearity has been neglecte@0sity renormalizations are calculated, and it will be shown

X

The diffusion coefficienD ,5(¢k k') is that the fluctuation—dissipation theorem is satisfied for the
) , present case as well.
Daplthk k)= =Tap(K) nl{yh k k'] The concentration dependent viscosity is expressed as a
X (Kgk!,+ 85,k okp). (18)  Taylor series in the concentration field

The dependence of the diffusion coefficient on the concen-  y[{y},k+K']=nd(k+k')+ 7,

tration ¢ causes some ambiguity in determining equivalent

Langevin equation due to the following reason. The random xf S(k+kK' +k)p(—Ky,t). (21)
noise is a delta function in time, and so the concentration kq
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The first term on the right is the dynamical viscosity which is ¥ (ko) W (ko)
independent of the concentration, while the second term on Ve (=K) Ve K
the right side takes into account the concentration depen-
dence of the viscosity.

It is convenient to use the temporal Fourier transform of
the variables) andv , for the functional integral formalism

vp (k1) Oa(kp
(a) (b)

FIG. 1. Vertex functions for the determination of the renormalization in the

¥(q)= fw dt exp(i wt) (K, t), viscosity. (a) Vertex due to nonlinearity in the transport equatii. Noise
—® vertex.
22 1 0 ()
[~ . ©_= A _ S0 1| Vs
va(q)—J_wdt exp(i wt)v,(k,t), L, =5 fq[va( Duo(—DI[7,, ()] Uﬁ(q)},
(27)

whereg=(k,w). The generating functional for the Langevin

) . wher
equation is defined as ere

—270k2x, Tap(K)  —iw+ 7ok2T (k)
i+ 7ok2T o g(K) 0 :
(28
For future reference, the correlation and response functions
wherec is the normalization constant which is independentin the linear approximation, which can be easily calculated
of ¢y andv , in the causal discretization, and the Lagrangiansrom the above Lagrangians, are

Zyand.Z, are A i
Gy =((—a)y(a)),

Sy= [ M=ot Aot K@ - 0@, 1 29
a —iw+AgkZx(k)™t

- . ZO(q) 1=
2=c [ DLYIDLHIPLo,IDI3,Jexp— 7~ 7,),
@3

%quaa(—q){nﬁ(kn—imnoki]vﬁ<q>—§ﬁ<q> Gl @) =9~ ¢(a).
1 1
=X AR (0T Tt Ay (k)L

Gy () =(0 5(— DV 4(A)),

UaUB

+k1ﬁ0y(_Q1))5(q+Q1+Q2)]- (24) o Teek)

- nlkyfql qzlﬂ(_%)(klyvﬁ(_ch)

C—iw+ ks
In the above equationss, is obtained from Eq(14), while

7, is obtained by inserting E¢21) into Eq.(19). The hatted Gy o, = (va(—Dva(a)),
fields y(q) and v (q) are auxiliary fields which are intro- 1
duced while deriving the MSR generating functional for the =X Tap(K)| = 5+ - 5
Langevin equation® These hatted fields are also related to —lot ok, i+ k)
the response functions, which give the response of the fields  The second contribution("), due to the nonlinear terms
¢ andv,, due to a perturbation in the equations of motion. in the transport equation anddependent terms in the noise

The Gaussian nature of the random nalsd§, can be  ¢orrelation, is
used to average the Lagrangian over the distribution of the

random noise. The noise averaged Lagrandign(~ ) is vg (k) (S VgD VoK)
given by Ca(-k):_O__vﬂ) Yy EK) /-\ Vg (k)
Pk Y-k P (k") Sy (- k")

1 - ( W)
Ly=3 fq[e&(—q)w(—q)][-ﬁfg(q) 1]Lb(q)}, (29 (@ (®)

. (30

where

) —2A k2 —iw+ AgkZy(k) ! v ) ASY y g e (oK)
Pl D7k A g2y () ! 0 : i ® < >“ aw 0 < )t
(26) q.l(k") |+| (~k") y (k") Y (-x")

(c) (d)

The noise averaged Lagrangiap=(~,) is separated into
two cqntrlbutlons. The f"’SLS; ),.Whlf:h '§ que to the linear FIG. 2. One loop expansions for the correlation functighand response
terms in the momentum equation, is similar to E2f). function (b), (c), and(d) for the correlation function.
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3126 V. Kumaran: Viscosity of a random copolymer melt

w R , ’ second term is due to thg dependent terms in the noise
Ly :f f V(=D —Fap{¢},0,9)va(—0") correlation (20). Each of these gives rise to a three point
-4 vertex as shown in Fig. 1.
+2F ,5({¢},9,9")vg(—q")], (31 In the renormalized perturbation expansion, the effect of

the nonlinear terms is expressed as the self-energy for the

where correlation and response functions,, and %,,, and the
Faﬁ({zp},q,q’):Tag(k)TB,?(k’)(k,?ké+ L) renormalized Lagrangian for the velocity correlatidngsis
X 771] #(—a1)6(q+q"+4qp)|. (32 :E ~ _ @ _pqvp(@)

qi LU 2 q[va( Q)Uuz( Q)][’(UU(Q) ] Uﬁ(Q) ) (33)
In Eq. (31), the first term on the right side represents the
nonlinear terms in the transport equatiofi®), while the  where

|
.fg;vv(Q)_]': ( 7o yZX R (@) ,3( ) (—lo+n ¥ vo(d)) aB( ) . (34)
(lo+ nOky_zuu(_q))TaB(k) 0
|

It is shown in the Appendix that with the above choice of the " 5 , , , ,
noise correlationg20) and (21), the self-energieg,, and Sy =" ﬂlf [(Keky T 046K K0 (KK g+ 6, KoKp)
3., satisfy the Onsager reciprocal relations and the fluctua- a
tion dissipation theorem to all orders in the perturbation XTap(K)Tey(K)Gy(d—0q")G,,(q'). (38)

theory, and therefore the renormalized viscosity has the sa
value whether it is determined usig, or %, . The renor-
malized viscosity determined from the response and correl
tion functions is

M&om Eq.(30) for the correlation and response functions, it

can be easily verified that Eq&36) and (38) give identical

%orrections for the viscosity renormalization in the long time

limit w—0, and the formulation of the first order corrections
— o= lim k;Z(_iw): 1/2) . tlim k;zzvv_ (35) is consistent with the fluctuation—dissipation theorem.

TR (12, 40 Equation (36) for 3()) can be simplified in the limit

) ) . w—0 to obtain
In the following analysis, we verify that the two renormal- ,
mk? k'2x (k")

izations are equal, and therefore the fluctuation—dissipation 2
theorem is satisfied. R 572 dk’ k Ax(K) 7K+ g0k’ 2
The leading order contribution to the self-energ}

due to theO(y) correction to the viscosity is due to the !N the liquid state, where the viscous relaxation is much
one-loop diagram shown in Fig(& faster than the molecular diffusion, the first term in denomi-

nator of the above integrand can be neglected compared to
the second term, and in the limit-0 we get

S(k) = (39)

2=t f (Kekl, Bk K (KKt 8, K ok)
q

21,2
~ (1) _ 71 rr2 ’
XTop(K)Te (k)G (a-0)Goy(q).  (36) 20y =57 nofd" KX (K. (40)

The leading order contribution &%) due to theO(y) cor-  Using Eq.(40), the renormalized viscosity due to the dy-
rection to the viscosity is given by the three diagrams showmamical assymmetry can be written as

in Figs. 2db), 2(c), and Zd). The first diagram is due to the
nonlinearity in the transport equati¢h9) and(21), while the

last two are due to the nonlinearities in the noise correlations
in Egs. (20) and (21) (the presence of two diagrams is be- . .

cause there is a degeneracy due to the presence of nonide-l;he above equation, together with E¢&1) and(12) for the

tical vertices. The contribution to the self-energies can bestructure factor, gives the variation in the viscosity due to the
simplified using correlations in the sequence distribution in the random co-

polymer. It is useful to discuss two important issues regard-
Gy (D=xu(Gy (@) +G

(—q) (37) ing the renormalizatiori4l) at this stage.

(1) The integral over the wave vector does not have any
from Eq. (30). Using this, it can easily be verified that the infrared (k—0) divergences above two dimensions, so the
diagram in Fig. &) is the negative of half the sum of the upper critical dimension for the viscosity renormalization is
diagrams in Figs. @) and Zd), and the total contribution to 2. This is in contrast to the renormalization due to convective
3., IS just half the sum of the last two diagrams nonlinearities, where the upper critical dimension is 4 and

2
A

—mo=—g=2— | Kk?Zx(K). 41

7R~ 70 5721, fk, x(K") (41

Uozvﬂ
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15 IQA) monomer identities along the chain. The model used here is
similar to that used in the previous studies of Fredrickson,
Helfand, and Milnel’ and Kumaran and Fredricksdf,
though a modification in the form of the structure factor was
Zv necessary to avoid ultraviolet divergences in the calculations.
1.0 Due to this, the thermodynamics of the present model is
PN different. There is a binary fluid type phase transition for
TN A>0 (where there is a greater probability of finding like
\ monomers adjacent to each other on the chand there is
15y no phase transition fok<<O (where it is more likely that
unlike monomers are adjacent on the chaifhe structure
factor determined in this fashion was then used in a mode
coupling calculation to determine the dependence of the vis-
FIG. 3. 1(\) as a function o for different values ofc=f(1—f )ys. (—)  COSity on the sequence distribution.
k=0; () k=0.2; (-+) k=0.5; (-.-.-) k=1.0). The model equations for the mode coupling calculation
are similar to the Model H equations used in critical dynam-
. . - . ics, but the momentum equation is modified to include the
there are divergences in the transport coefﬁqen_ts n thr?_Eossibility of the dependence of viscosity on the local con-
dimensions. Therefore, the present renormalization is co Sentration. This type of variation could be present if the vis-

ver?entt as thfe crfmcal tEomt_![s alp prqa}[cr:ed, d?jr']tq COltJr:d be 'Meosities of pureA andB polymers are very different, so that
portant even far from the critical point. In addition, there aréy, , .5 viscosity depends on the relative ratios of mono-

no ultraviolet divergences because the self-component of threners of typeA andB. The mode coupling calculations are

structure factor has been removed while determining th%ifferent in the present case; because the nonlinearity in the

equa;olrt\g f_or thetstrtutcture fﬁthﬂ) S\n?(tﬁz)' . it momentum equation is dissipative in nature. Due to this,
(2) Itis important to emphasize that the viscosi Y COMECpare is some ambiguity in the interpretation of the noise

tion is proportional torj, and so it is independent of the sign correlations; this is discussed in the Appendix. Here, we have

of 7 and depends only on the monomer sequence d'St”bLl]sed one particular interpretation of the noise correlation

tion. In other V\_/OI’dS: th_e re_normahzatlon 'S not_lnfluen_c_ed bywhich is consistent with the causal discretization method
whether the viscosity is higher for regions with positiye

L . . . SR used in the functional integral formalism, and it has also
(rich in monomerA) or regions with negative/ (rich in g

B) th iion d d I th deri been explicitly verified that the present formulation is con-
monomerB), the correction depends only on the orderNggisient and the fluctuation—dissipation theorem is satisfied.
sequence of the monomers on the chain.

A , S . Another difference between the present calculation and ear-
The factor_l (A)= _fdk. k.ZX(k.)' which is proport|9nal © jier critical dynamics studies is thra)\t the upper critical dimen-
the viscosity ren'ormallza'uon, is shown as a fupctlpn of thesion for the present case is 2, in contrast to the UCD of 4 in
parametem for different values ofc=F(1—=f )xr in Fig. 3.‘ critical dynamics. Therefore, the renormalization in the vis-
In th's. case, we have a_ss_,umed that_ the Fbprparamet_er IS cosity remains finite in the vicinity of a phase transition.
local (independent ok); it is easy to include nonlocal inter-

. L. This fi h that there | ! . The results indicate that there is a systematic variation in
actions as wetl. This igureé snows that here IS an increase if, , viscosity with the parametar, and the fluctuations tend
the viscosity forA<1, and a decrease in the viscosity for

) LT . . to increase the viscosity fotr<<O and decrease the viscosit
A>1. Figure 3 also shows the variation in the viscosity as th y y

; ; . . Sor A>0. Further, the sign of the renormalization does not
enthalpic repulsion is varied. It can be seen that the mag- depend on whether an increase in the concentratioA of

) . fhonomers increases or decreases the viscosity, but on the
)\<0’_ r_:md increases for>0. The graphs fok(A) terminate at parameteh alone, because the renormalization in the viscos-
specific value ofA for x>0 because the model used here: .

dict h i i tthi int It b th ttl is proportional toz?, where 7, is the variation in the
predicts a pnase transition at this point. it can be seen tha scosity with concentration. This indicates that the renor-
renormalization in the viscosity remains finite at this point,

. ) . ) “malization in the viscosity is purely due to differences in the
as anticipated earlier, because the upper critical dImenSIoQorrelation in the monomer identities along the chain. The
for the dissipative nonlinearity is 2.

present renormalization could be important even far from a
phase transition, since the magnitude does not depend on the
difference between the temperature and the transition tem-
The effect of monomer sequence distribution on the dyperature. In addition, this could be the dominant effect even
namical viscosity of a random copolymer was considered imear a phase transition of the binary fluid type, because the
the present study using a simple model for a random copolyearlier critical dynamics study of KF showed that the renor-
mer consisting of two types of monomers, and B. The  malization due to convective effects has a very small diver-
usual Markov model was used, where the random copolymegence near a binary fluid type transition. Though the model
is specified by the fraction of typ& monomersf, the Flory  used here is rather crude, some very definite variations in the
chi parameter which gives the strength of the enthalpic reviscosity as a function of the correlation in the monomer
pulsion and the parametar which gives the correlation in identities and the temperature are predicted, and we feel that

25+

IV. CONCLUSIONS
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3128 V. Kumaran: Viscosity of a random copolymer melt

the present study captures qualitatively the essential dynanficients C; depend on the values of the variab{g$, but do

ics of random copolymers. This could provide a useful startnot depend explicitly on time. These are related to the trans-
ing point for more detailed analyses, where the microscopi@ort coefficients

dynamics of the polymer are taken into account,and could

also motivate experiments on the viscosity measurements on  Ci({#/},k)C;({y}.k") =T;({¢} .k, k") + T ({y} .k’ k).
random copolymers synthesized under controlled conditions. (A5)
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The author would like to thank Professor G. H. Fredrick-
son for useful discussions. (6(1))=0, (AB)

APPENDIX (6()6(t"))=8(t—t). (A7)

In this Appendix, a functional integral formalism is used In addition, for the Langevin equaticiA3) to mimic the FP

to shqw thqt the Ito formulatlon_for the nonlinear Langev.'nequation(Al), it is necessary to take the values{g} at the
equation, with the noise correlation given by the Ito prescr'p'beginning of the time interval while evaluati@ . The dis-

tion, when coupled with a causal discretization scheme, Sa'ifretized form of the Langevin equatidA3) is given by
isfies the stationarity condition, the fluctuation—dissipation

theorem and the Onsager reciprocal relations. Consider a

general Fokker—Plancd equation for a system described byi(t+At) —¢;i(t) , oH
time dependent variableg (k.t) At - Jk,; -}k k") S0, (KD
5 [ )
g P= ——— T ({y}.k.K") ol (g} kK| -
' fk f S(—k,t) | + 505 (KD +Ci({g(H)}.k)
><( A i ” (A1) L
Sk’ b) Sy (k') |’ X1 t dt’ o(t"). (A8)

where the Hamiltonian is given by
The set of nonlinear Langevin equatiots3) with the
H{y})=> J' dk i (—K)xi(K) "L (k). (A2)  definition of the noise given by Eq$A5), (A6), and (A7)
[ have been shown to be formally equivalent to the nonlinear
Note that the above form of the Hamiltonian is quite general P equatior(Al) by Ito.~ Moreover, the FP equation satis-
and even if the Hamiltonian contains terms of the typefi€s the stationarity condition and the fluctuation dissipation
U (—k)x;; (k)2 (K), it can be reduced to the above form by theorem, and we would expect the Langevin equation to sat-
diagonalizing the matri;; (k). In Eq. (A1), we have explic- isfy these conditions as well. In this Appendix, we show
itly included the{y} dependence of the transport coefficients,analytically, independently of the FP equation, that &)
and neglected the convectivetreaming term for notational ~ Satisfies these conditions at all orders in perturbation theory.
simplicity. In the lto formulation, the nonlinear Langevin FOr this purpose, a functional integral formalism is used, and

equation is the renormalization due to the nonlinear terms in the Lange-

vin equations are determined using a diagrammatic perturba-

du(K t):j D [—T“({lﬁ} K.K') oH tion theory. Various discretization schemes have been used in
e k' g WAL T Sk 1) the functional integral approacf=2’ Of these, the causal

discretization scheme of Jeneis suitable for the present
formulation, since it gives the same interpretation of the
noise correlations as the Ito prescriptioh8). In addition,
this scheme has the advantage that the Jacobian in the gen-
(A3) erating functional is independent of the variab{e$, while

The transport coefficients;; are real because they representin the other schemes, the Jacobian is explicitly dependent on
dissipative effects, and are constrained by the Onsager recig} and the calculations are more complicatede Jensén
rocal relations for a detailed discussion

N , For the functional integral formalism, it is convenient to

Ik kD) =T ({41.k" k). AD " take the temporal Fourier transforms of the variables

Note that the transport coefficient is now dependent on the
time t, even though we have neglected memory effects, due .
to the variation of ¢} in time. The nonlinear Langevin equa- ‘pi(q):J’ dt exp(i wt) i(k,1), (A9)
tion (A3) differs from the linear Langevin equation due to
the presence of the ternd[;;/ 6¢;). In Eq. (A3), the noise  whereq=(k,w). A generating functional for the Langevin
has been written as a product of two components. The coekquation(A3) is defined as follows:

N ATi({w}.k,k")]

S (K7 1) +Ci({yh.k) o).
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== [ T orunstue| —iwn@=rytwninn  Tyduk)-rPskk+ 3 [ ik

SH  oTy({yhkk) X m(—0a1)8(q+q" +0dy)
Xéw](q’)_ 5‘/’](q,) CI({‘/I}vk)e(w) ’

+2 f f Tk k' k1 ko) Y — )
(AlO) m,n d1J A2
Xn(—02)0(q+q" +ar+0)+--- .
whereJ[ ¢;] is a Jacobian associated with the delta function, (A15)

a_nd en_forc_es the normalization co_nd|t|@1=1. In the ca_usal In Eq. (A15), the first term does not depend on time, because
discretization scheme, the Jacobian turns out to be indepen-

dent of {¢}, and this simplifies the calculation. The delta we have neglt_acteq_memor-y effects, but.the higher order
U . L . terms depend implicitly on time due to their dependence on
function in Eq.(A10) is transformed into its functional Fou- . L ) .
) {y}. Equation(A15) is inserted into the equation for the La-
rier transform ) S - . .
grangian, which is then divided into its Gaussian and pertur-
bative componentsl, and L,. The Gaussian component,

N Lo, can be written in symmetrized form as follows:
z:cf 1 Dy 1D gilexp — ), (Al11) .
| L=y [ - are @A)
2 Jq [¥(a)]
where the factoc contains the Jacobians that are indepen- (A16)
dent of{y}, and the Lagrangiar¥’'is Here, [§] and[#] are the column matrices/f, iy, ...,

and [y ,4y,...n ], respectively, and,  is the block diago-
nal matrix consisting of threBl X N blocks

[GO>a)] ™!
oo STk _[AIrO001- MO k] [—iel+AOk)]
X'JIJ( q ) W) C,({l/l},k)e(w)}, —[ [iw|+A(o)(—k)]T 0 ,
(A12) (A17)
wherel is the identity matrix and\{?(k)=T{"(k)x; (k).
In the Gaussian approximation, the statistical average of
analytical functiorA({«},{¢}) can be expressed as

F= fq%(—q){—iwwi(qHL,

Ty (kKD x; (k')

where[, is (2m) *fdk [dw. The Gaussian nature of the ran- an
dom noise can be effectively utilized to explicitly average

the Lagrangian over the noise distribution. The noise aver- - _ f ” . -
aged generating functional is (Adghtuho=c | 11 proIprwIAdu{vh)
xexp(—Lo), (A18)
Z=<£>=CJ H D[ ]D[ ilexp(—L), (A13)  where the subscripgimplies that this is the Gaussian aver-

age. Of particular interest are the correlation and response

functions,G{*(q) and G{)(q), which are defined as

where R R
GP(@=(g(—De(@)o=[-iwl +AO (K] (AL9)
. _ _ GIY (@) =(¢(— D i(@))o
L=f¢i<—q> —|w¢i<q>+J, Ty (b Kk x; M) ! : |
a a =[—iwl+AQK)];*?
oyl k) , X[TR(K)+TR (=Kol + AQ(=K) ]
Xgi(=q") = — 5 T ({whkok) " ™ "
$i(q (A20)
. It can be easily verified from Eq$A19) and (A20) that the
+Fji({¢}lk/;k)]¢j(_q/))}- (A14)  correlation and response functions are related as follows:
Gij(@)x; () =Gji(a)xi(k), (A21)
Equation(A13) for the generating functional with the La- - A
grangian given by EqA14) serves as a starting point for the Gij(@)=Gij(Ax; (k) +Cji(=axi(k). (A22)
perturbation analysis. The first equation(A21) is a due to the Onsager reciprocal
The transport coefficient is expanded in a Taylor serieselations, while the second equatioh22) is a consequence

in the {y} as follows: of the fluctuation dissipation theorem.
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§jt-qp (k" §j6-q")

%
]
B-type ; % 5:
fi Anct) '\/\fl\,(/-q\)/\i in-1)

A 9 g () (b)
b -q;) N /n legs S0 legs Pitap /n legs TYPE A VERTEX TYPE C VERTEX
ol-type \ Y-type o-type ¥-type '/ §-type

Pi¢-q
a-type © @

Yjt-ajp)
p-type

A1
i1, . (iK1 dn) Xy “Tjton (Kiokgkgekn) =y lkiskkykend 58 kjtk)
TYPE A VERTEX TYPE B VERTEX TYPE C VERTEX o +
Pi-a) -
@ (b) ©

fi-a)
wj(-q')x‘}(ié fit-a"

(@ (h)

FIG. 4. Types of vertices due to nonlinear terms in the diagrammatic per-
turbation expansion.

a1 "\
xy;
[0}

There are two rules to be adhered to while computing
averages in the causal discretization scheme. The first is that
the averages of products containing the factgf$) vanish
if t is the latest time in the average. In particular, an average
containing two response functions is always zero

(@) ¥("))o=0. (A23)
The second rule is that the averages of products
<¢i(k,t)¢j(k’,t)>o are interpreted as if the time arguments of FIG. 5. Diagrammatic representations of Rules 1 to 6 in the Appendix.
the hatted fields are displaced to infinitesimally later times,

and therefore average to zero. In particular, the followingang the fluctuation—dissipation theorem. The stationarity

relation will be useful in the subsequent analysis: condition requires that the average value of a variablbe
. % . equal to its equilibrium value
G (kb =J do G;i(q)=0. (A24) )
e LT (y=()=0. (A25)

Before proceeding to the perturbation analysis, it is useNote that the averages in the above equation are not the bare
ful to discuss the objective of this analysis. Our objective isaverages, but include the effect of the nonlinearities. The
to show that the Langevin equatiof&3), when combined second consistency condition follows from the fluctuation
with the causal discretization scheme, give results for thelissipation theorem. For this, consider the coefficient matrix
first and second moments which are consistent with the rdG'®]* in the equation for the bare Lagrangiag (A17).
guirements of stationarity, the Onsager reciprocal relationdhe nonlinear terms renormalize this coefficient matrix

~[TOM]- [T [Z(@D] [—iwl+AOK)]T-[3(q)]

where[I1], the self-energy matrix, has a block diagonal formsis to show that Eq$A25), (A27), and(A28) are satisfied by
similar to[G'%]™%. For the fluctuation dissipation theorem to the self-energies for a Langevin equation of the typ8)

be satisfied® the elements of the diagonal blo&k and the  with the noise correlation given by EqéA5), (A6), and
off-diagonal blockX;; of the self-energy matrix have to be (A7),

i imi 0)7-1 . . . . . .
related in & manner similar to those of the mafi&”] It is convenient to classify the nonlinear vertices into

[see Eq(A17)] three categories. The first, called typeis due to the non-
linearity in the transport coefficient in the Langevin equation
(A3). If the transport coefficient is proportional ', this
vertex hasn+2 legs, as shown in Fig.(d. The typeA
vertices have the following symmetries, the first due to the

iij(q)Xj(k):iji(q)Xi(k)- (A2g)  Onsager reciprocal relations and the second due to the invari-

ance of the irreversible term in the transport coefficient under

In the remainder of this section, we use a perturbation analyspatial inversion

35 () + 25 (@) x; (K + 55 (—q)xi(k) =0 (A27)

and
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Fi-l___n(k,k',kl,...kn)=r-il___n(k’,k,kl,...kn), A"‘ .
i j (A29) NN
(b) (c) (d)

I-‘ijl...n(k!k,!kla"'kn)zrijl...n(_k!_ k’!_kla"'_kn)' @

The second type of vertex, tyfi® is due to the nonlinearity
in the noise correlations. This also has 2 legs, as shown in
Eq. (A3), but two of the legs are of the hatted type. The third
type of vertex, typeC, is due to the termdl’;;/ ¢;) in EQ.
(A3). This vertex has legs, one of which is the hatted type.
It is also useful to C|assify the |egs in the tyAe\/erteX into when the vertex at position Il is a renormalized vertex, be-
three categories. The hatted leg is called dheg, while the ~ cause it is always possible to choose the vertex at position |
unhatted leg due to the functional derivative of the free enio have the earliest time index.
ergy [the j leg in Fig. 4a)] is called theB leg and all the Rule 5.A vertex of typeA in which thea and g legs are
other legs arey legs. In the typeB vertex, thea and 3 legs  directed towards increasing tinfEig. g)] is canceled by a
are both of the hatted type. In the diagrammatic perturbatioivertex of typeB shown in Fig. $h). This rule can be easily
analysis, it will be convenient to refer to the topological fea-Verified in @ manner similar to Rule 4. A graph with a type
tures in terms of these classifications. vertex where theg leg is directed towards decreasing time is
At this point, it is necessary to specify certain rulesnot canceled by a typ@ vertex because the latter is zero due
which simplify the determination of the values of the dia- to Rule 2.
grams. The first two are fairly simple and common to all ~ Rule 6.A graph containing a loop with opposing ver-
diagrammatic perturbation expansions, but we list them heréices as shown in Fig.(B is canceled by two other graphs
for completeness. with type B vertices shown in Fig. ) and 5k). Here, we
Rule 1.A graph having a bubble of the type shown in have used three relations in Figsi)55(j) and k)
rFég.eHS(tz) ;sq:j(;?ir;téizléll);.zero. This is because this bubble rep Gia(q) xa(K) lGjb(Q’)X;(k') 1
Rule 2.A graph having a loop of the type shown in Fig.

FIG. 6. Types of diagrams that are identically zero due to Rules 1 to 6 in the
Appendix.

5(b) is zero due to causality. This is also true for renormal- = Gia(@Gjb(a")x; (k") *xu(k") +Gai( —a)
ized vertices in general, provided we adhere to the conven- v (K I (kB (—
tion that time increases from left to right or vice versa. xa(K) " “xi(k")Gpi(=a'),

Rule 3. A graph having a bubble which involves a type |
vertex with ag leg[Fig. 5(c)] is exactly canceled by another Gia(@)Gjp(a’)x;(k")~*
graph with a typeC vertex [Fig. 5(d)]. This can be easily
seen by writing down the values of the two graphs. The value =éia(Q)éjb(Q')Xj(k')_l)(b(k'),
of the graph &) is
Gj(—9")Gai( — @ xalk) ™
o (kKK (K) 7 [ do’ G (=01 oil 74 Cail m DXl

= Gpj(— ") Gail — D xalk) (k") (A33)
Using the above relations, as well as the fact that the coeffi-

cient of the typeB vertex is the negative of that of the type
A vertex(see Fig. 4, it can be easily verified that the sum of

=Tj1. n(K,K"Kq,.. Kp) 8 0(K" +k;) (A30)

which is just the negative of the value of the graptu)5
containing a typeC vertex(see the relation between the type

A andIC vertices ir’: _Fig.h}. A o , o the three diagrams(B, 5(j), and 5k) is zero. Rule 6 is also
Rule 4.A graph in which one of the verticdat position 44 for renormalised vertices of the type shown in Fig) 5

i Fig: 5(97)] is cpnnected to a second vertex by a I.ogp 3¢ we take the lech to be the one with the earliest time index
shown in Fig. %e) is canceled by another graph containing a5 side | that is connected to@leg on side II, and leg to

type B vertex at position | shown in Fig.(B. The value of be the one with the earliest time index on side Il that is

graph %e) is connected to @8 leg on side I.
T. KK Ky k)i (k' “1G..(a)Gri(q’ D, Using these rules, it is quite easy to show that the sta-
itk ! DX Cal@)Gala’) (A31) tionarity condition(A25) is identically satisfied. The self-
) energy for the averageg; and ; consists of “tadpole” dia-
where® contains all the other factors due to theéype legs. grams as shown in Fig. 6. All tadpole diagrams involving

Since the vertex | represents interactions at earlier time thagpples of the type in Fig.(8) are identically zero because
vertex I, the above expression can be rewritten as of Rule 3, while those containing loops as in Figbpare
I KK Ky . k)G ()G D A3D zero because_of Rule 4. The tadpole d|agramapf0nvolv—.
i2..n( ! n)Gai(@)Gpi(d") (A32) ing bubbles[Figs. Gc) and &d)] are zero due to causality
which is the negative of the value of a similar graph with a(Rule 1 and 2 Therefore, the Langevin equatio@3)
type B vertex shown in Fig. §) (see the relation between coupled with a causal discretization scheme satisfies the sta-
type A andB vertices in Fig. 4. This rule is applicable even tionarity condition.
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FIG. 8. Diagrammatic representation of the fluctuation—dissipation theorem.
Wbl %0 Ybt-a) el _ _
rwsrr_Yebd _ NN effect, g;——q;). Under this transformation, the propagators
N 4 N containing typea, B8 and y legs are transformed as follows
G (@) X (k) Xl K) Gebla) [see Fig. T0)]
~ -1 ~ -1
© Gha(@) xp (k)= Gan(a) x5 ~(k),

FIG. 7. Diagrammatic representation of the Onsager reciprocal relations.éca(q)ﬁxa(k)_1Gac(q) :Xa(k)_léac(q))(c(k), (A35)

Xb 2(K)Gpe( @) = xp 2(K)Gpe( @) xc(K)—Gep(Q).

In the above equation, the correlation function involving a
type B leg, Gy,.(q) has been replaced I6¥,.(q) x.(k) because
the B leg is directed towards decreasing time. Further, the
above transformation also changes the verticgs as fol-

Next, we consider the consistency conditions for the On
sager reciprocal relation@28). The graph for the self en-
ergy3;; is a “tree”?® with side bubbles of the type shown in
Fig. 7(a). Note that all diagrams with side loops are zero by
Rule 4, and so all the vertices have to be positioned along th@Ws*
main tree. In this, all thex type legs are directed towards T;; (k,k'ky,....kp)
increasing time, and th@ type legs are constrained to lie
along the main tree due to Rule 3, and directed towards —Tjiz.a(=K'\ =k —kg,...,=Kp). (A36)
decreasing time due to Rule 4. The value of the diagréan 7 |t can be easily verified from EqA21) that the values of all
can be written compactly as the response and correlation functions on the right and left

side of Eq.(A35) are unchanged by the above transforma-
iia(q) =Ty (—kq,—k,.. -)Xa(k)_lrij (K, Ky,..)®. f[ion, and Eq(A29) shows that the values of the vertidés
(A34)  in Eq.(A36) also remain unchanged. Therefore, the fadtor
due to the internal vertices and propagators remains un-
changed due to the transformation, and the self energy for

For every diagram of the type shown in Figa), there exists the diagram in Fig. (b) is

another of the type in Fig.(B) where the positions of the A
andg legs are interchanged, all wave vectors are transformed  3,i(q) =T (K.kq,.. )T} (—ka, —K,...) xi(k) "*®.
ask;——k; and time progresses in the opposite direcfion (A37)
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Thus there is a one-to-one correspondence between the diand (A40), it can be easily verified that the fluctuation dissi-

grams for3,;(q) and2,,(q), and from Eqs(A34) and(A37)

pation theorem(A27) is satisfied at each order in perturba-

it can be seen that the following Onsager reciprocal relatiortion theory.

is identically satisfied at all orders in perturbation theory:

Sai( @ xi(K)=Zia(@) xa(K). (A38)

This completes the proof of the Onsager reciprocal relations

(A28).
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