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The variation of the viscosity as a function of the sequence distribution in anA–B random
copolymer melt is determined. The parameters that characterize the random copolymer are the
fraction of A monomersf , the parameterl which determines the correlation in the monomer
identities along a chain and the Flory chi parameterxF which determines the strength of the
enthalpic repulsion between monomers of typeA andB. Forl.0, there is a greater probability of
finding like monomers at adjacent positions along the chain, and forl,0 unlike monomers are more
likely to be adjacent to each other. The traditional Markov model for the random copolymer melt is
altered to remove ultraviolet divergences in the equations for the renormalized viscosity, and the
phase diagram for the modified model has a binary fluid type transition forl.0 and does not exhibit
a phase transition forl,0. Amode coupling analysis is used to determine the renormalization of the
viscosity due to the dependence of the bare viscosity on the local concentration field. Due to the
dissipative nature of the coupling, there are nonlinearities both in the transport equation and in the
noise correlation. The concentration dependence of the transport coefficient presents additional
difficulties in the formulation due to the Ito–Stratonovich dilemma, and there is some ambiguity
about the choice of the concentration to be used while calculating the noise correlation. In the
Appendix, it is shown using a diagrammatic perturbation analysis that the Ito prescription for the
calculation of the transport coefficient, when coupled with a causal discretization scheme, provides
a consistent formulation that satisfies stationarity and the fluctuation dissipation theorem. This
functional integral formalism is used in the present analysis, and consistency is verified for the
present problem as well. The upper critical dimension for this type of renormalization is 2, and so
there is no divergence in the viscosity in the vicinity of a critical point. The results indicate that there
is a systematic dependence of the viscosity onl and xF . The fluctuations tend to increase the
viscosity forl,0, and decrease the viscosity forl.0, and an increase inxF tends to decrease the
viscosity. © 1996 American Institute of Physics.@S0021-9606~96!50506-0#

I. INTRODUCTION

There have been many studies of the thermodynamics
and dynamics of polymer melts in which the polymers con-
tain two or more types of monomers. The interest stems not
just from their practical applications, but also from the novel
structures that could be formed by these polymer mixtures
under certain conditions. The earlier studies1–3 focused on
the thermodynamics and dynamics of ‘‘homopolymers’’
which consisted of a mixture of two different type of poly-
mers. There is a certain temperature below which these mix-
tures undergo a demixing transition, and the transition tem-
perature is determined by a balance between the entropic
effects which favor mixing and the enthalpic interactions
which favor segregation of the monomers. The dynamics of
early stage phase separation has been analyzed1–3 using a
treatment similar to the mean field Cahn–Hilliard4–6 theory
for spinodal decomposition, and there has also been some
recent work on the adapting the Langer–Baron–Miller
theory,7 which includes nonlinear effects, for polymer mix-
tures. The late stage growth kinetics~Oswald ripening! of
homopolymer mixtures has also been studied.1,2

In the recent years, there has been much work on co-
polymeric materials with well defined structures, such as
block and star copolymers. These are prepared by anionic

polymerization of a mixture of ‘‘prepolymers’’ each of which
consists of different monomers. The phase separation of co-
polymers is very different from that of homopolymers, be-
cause the different types of monomers are chemically linked
on the same chain. As a result, they form ‘‘microphases’’
each of which is rich in one type of monomer. The shape of
these microphases depends on the compositionf ~overall
fraction of one of the monomers!, and various micro-
structures8 such as lamellar, cylindrical, spherical and or-
dered bicontinuous double diamond have been identified.
The phase diagram for block copolymers has been studied in
two limiting cases. In the weak segregation limit where,9,10

the interaction between the monomers is sufficiently weak
that the conformation of the individual polymers is not much
disturbed, and the fluctuations about the mean concentration
are small. In this limit, the composition fluctuation is ap-
proximately sinusoidal, and the period of the microdomains
scales asN21/2, whereN degree of polymerization. In the
strong segregation limit,11,12 narrow interfaces separate mi-
crodomains which are nearly pure in the two different types
of monomers, and the polymer conformation is significantly
perturbed from the equilibrium Gaussian shape. The renor-
malization of the transport coefficient near the order–
disorder transition has been studied,13 and the diffusion of
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polymers in the ordered phases has also been analyzed.14

There has been relatively less work on random copoly-
mers, where each polymer contains two different types of
monomers A and B distributed stochastically along a
chain.15–17 In addition to the volume fraction of typeA
monomersf and the Flory chi parameterxF , which repre-
sents the strength of the enthalpic repulsion between mono-
mersA andB, the phase diagram depends on a parameterl
which represents the correlation between the identities of the
monomers along the chain. The casel521 corresponds to
an alternating copolymer, where the monomersA andB al-
ternate along the chain, while the limitl51 corresponds to a
mixture of homopolymers of typeA andB. The intermediate
value l50 represents a truly random copolymer, whereA
andB are distributed at random along a chain. Fredrickson,
Milner, and Leibler17 ~FML! have shown that the phase dia-
gram for this system has a complex dependence on the pa-
rameter l, with a Lifshitz multicritical point at a value
l5lL . The valuelL depends on the microscopic model, but
is usually less than zero. Forl.lL , the transition is of the
binary fluid type and the two coexisting phases have a com-
position difference proportional toO(N21/2). Forl,lL , the
phase separation occurs at a finite wavelength, and is of the
‘‘microphase separation’’ type observed in block copolymers.

The anomalous behaviour of the transport coefficients in
the vicinity of a critical point was analyzed by Kumaran and
Fredrickson18 ~KF!. The dynamical equations for the melt
were similar to the Model H equations19,20used for studying
the critical dynamics of binary fluids. The divergence in the
Onsager coefficient and viscosity were determined as a func-
tion of the reduced temperaturee5(T2Tc)/Tc , the fraction
of A monomersf and the parameterl. Here,Tc is the critical
temperature. It was found that forl,lL , the viscosity di-
verges proportional toe23/2 near the critical point while the
Onsager coefficient remains finite. In the limitl.lL , the
divergence in the viscosity is weak while the Onsager coef-
ficient diverges proportional toe21/2 for e21~l2lL!@1, and
proportional toe23/4 for e21~l2lL!!1.

The above critical dynamics studies have focused on the
anomalous behavior of the transport coefficient near a critical
point. Here, the nonlinear effects originate from the convec-
tive terms in the conservation equation, and the effect of
these terms becomes significant only as the critical point is
approached. Here, we study another type of viscosity renor-
malization in a random copolymer, which is due to the de-
pendence of the viscosity on the local concentration. The
dependence of the viscosity renormalization on the sequence
distribution of the random copolymer is analyzed. This could
be of use in polymer processing applications, where the ki-
netics of the polymerization reaction could be adjusted to
obtain a copolymer whose viscosity is suitable for further
processing.

In the present study, the mode coupling technique is used
to study the effect of fluctuations in the concentration and
velocity fields on the viscosity. Since the local fluctuations
are related to the sequence distribution in the random copoly-
mer, this effectively provides the variation in the viscosity as
a function of the correlation in the monomer identities along

the chain. The type of nonlinearity considered here is present
when the two polymersA andB have very different viscosi-
ties in the pure form, so that the viscosity of the mixture
depends on the local concentration. This causes a ‘‘dissipa-
tive’’ nonlinearity in the conservation equations, since the
diffusion coefficient in the Fokker–Planck equation for the
probability distribution depends on the concentration. This is
in contrast to the conservative nonlinearity, which originates
from the convective streaming term in the Fokker–Planck
equation. In addition, the upper critical dimension for the
dissipative nonlinearity studied here is 2, in contrast to the
upper critical dimension of 4 for the convective nonlinearity
near a critical point. Therefore, the renormalization of the
viscosity is convergent near a critical point, and could be
important even at temperatures higher than the critical tem-
perature.

The renormalization in the viscosity is determined using
the Martin–Siggia–Rose functional integral formalism for
the coupled Langevin equations for the concentration and
velocity fields, which has been used earlier for the study of
critical dynamics in simple fluids.19,20 However, there are
some additional difficulties encountered due to the dissipa-
tive nature of the nonlinearity. The correlation of the random
noise in the distribution function is related to the diffusion
coefficient for the probability distribution in the Fokker–
Planck equation. The dependence of the diffusion coefficient
on the concentration causes some ambiguity in the determi-
nation of the noise correlation. Since the noise correlation is
assumed to be a delta function in time, the concentration
field varies as a step function. Therefore, there is some am-
biguity about whether the value of the concentration in the
noise correlation is before or after the step, and this is called
the Ito–Stratonovich paradox.21,22 If the noise correlation is
incorrectly chosen, certain inconsistencies may arise in the
results; in particular, the stationarity condition and the fluc-
tuation dissipation theorem may not be satisfied. This issue is
considered in the Appendix, and it is found that the choice of
noise correlation depends on the discretization scheme in the
functional integral formulation. If the causal discretization is
used, then it is appropriate to use the value of the noise
correlation before the step change~Ito formulation!. In the
present analysis, the Ito formulation is used in conjunction
with the causal discretization scheme, and it is also explicitly
verified that the fluctuation dissipation theorem is satisfied.

The model for the random copolymer is presented in the
next section. This is very similar to that used by FML and
KF, though a minor modification is made to remove high
wave number divergences in the wave vector integrals for
the structure factor. The renormalization of the viscosity is
calculated using a functional integral formalism in Sec. III,
and the main conclusions are briefly summarized in Sec. IV.

II. MODEL

The system consists of an incompressible random co-
polymer melt containing two type of monomersA andB in
which the volumes of the monomers maintain a constant
value v. The polymers are considered to be monodisperse,
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each polymer containsN m monomers, and the volume frac-
tion of type A monomers isf . The location of monomers
along a chain are indexed by lower case indicesn,m,•••
while the different chains are identified by upper case indices
N,M ,••• . The correlation between the monomer identities at
different separations along the chain is obtained from the
Markov model of random copolymerization23 which was ear-
lier used by FML17 and KF.18 In this model, the reactivity of
a monomer and a polymer chain depends only on the iden-
tities of the monomer located at the end of the polymer and
the unreacted monomer itself, and four rate constants
kKL($K,L%5A,B) are sufficient to determine the growth ki-
netics. In addition, it is usually assumed that the monomer
concentrations are constant during the polymerization pro-
cess.

The correlation of monomer identities along a chain can
be expressed in terms of a conditional probability matrix
pKL($K,L%5A,B), which is the probability that a monomer
of typeL is followed by a monomer of typeK. These prob-
abilities follow two conservation conditions:

pAA1pBA51, pAB1pBB51, ~1!

and a third relationship can be obtained from the condition
that the relative concentrations of the two monomers remains
a constant during polymerization

f5pAAf1pAB~12 f !. ~2!

Using these three relations, the correlation in the identity of
the monomers can be expressed as a function of two param-
eters, i.e., the volume fractionf , and the nontrivial eigen-
value of thepKL matrix l, given by

l5pAA1pBB21. ~3!

The parameterl is a measure of the correlation in the mono-
mer identities along a chain. In the limitl51, the probabili-
tiespAA andpBB are 1, indicating that a monomer of typeA
is followed only by another of typeA, and similarly forB,
producing a mixture of homopolymers ofA andB. In the
limit l521, every monomer of typeA is followed by one of
type B, and vice versa, producing an alternating polymer.
The casel50 represents an ideal random copolymer, where
it is equally probable for a monomer of typeA to be fol-
lowed by typeA or B monomers. In general, the polymer
melt consists of chains that differ in composition and se-
quence distribution, and except in the limiting casesl51
andl521, there is no correlation between the identities of
monomers at a the same location on different chains. This is
in contrast ordered systems such as block copolymers, where
the identities of monomers on different chains are perfectly
correlated.

The monomer sequence distribution can be conveniently
expressed in terms of a random variableu(n,N), which is
11 if the monomer at positionn on chainN is typeA, and
21 if the monomer at positionn on chainN is typeB. The
moments of the variableu can be derived using the Markov
model for copolymerization described above. The calculation
of the structure factor requires the first two moments of the
variableu, which are derived in FML17

u~n,N!52 f21,

@u~n,N!2u~n,N!#@u~m,M !2u~m,M !

54 f ~12 f !l un2mudNM , ~4!

where the overbars represent averages over the sequence dis-
tribution.

The microscopic densities ofA and B monomers at a
positionx and timet are given by

fA~x,t !5 (
N51

N p

(
n51

N m S f~n,N;x,t !
~11u~n,N!!

2 D , ~5!

fB~x,t !5 (
N51

N p

(
n51

N m S f~n,N;x,t !
~12u~n,N!!

2 D , ~6!

where the microscopic density fieldf~n,N;x,t! of a mono-
mer at positionn on chainN is

f~n,N;x,t !5d~x2R~n,N,t !! ~7!

andR(n,N,t) is the monomer position. The interaction be-
tween the monomers is expressed using the Flory chi param-
eter which is an enthalpy penalty per monomer forA–B
contacts relative toA–A and B–B contacts. The Hamil-
tonian is the standard Edwards Hamiltonian modified to ac-
count for enthalpic interactions

H5
3

2b2 (
N51

N p

(
n51

N m

uR~n,N!2R~n11,N!u2

1E
k
fA~2k!xF~k!fB~k!, ~8!

where *k[~2p!23*dk. Here, b is the statistical segment
length of a monomer andxF~k! is the nonlocal Flory inter-
action parameter. This is related to the usual Flory chi pa-
rameter byxF5(x/v)(b/A6)3. In addition to the enthalpic
interaction, there is the incompressibility condition which
states that the sum of the monomer densities is a constant in
the melt. This condition is enforced using the random phase
approximation.

For a melt of ideal chains in the absence of interactions,
the equilibrium pair distribution is a Gaussian distribution24

which is given by

S0~n,N;m,M ;k!5
1

V
exp~2un2muk2!dNM . ~9!

Here, the wave vectork has been scaled by~A6/b!, whereb
is the statistical segment length of the monomers. There are
deviations from this behavior due to two reasons—the inter-
actions between the monomers which is represented by the
Flory chi parameterxF , and the incompressibility condition
which requires a constant density in the melt. The incom-
pressibility condition is enforced using the random phase
approximation, where an external potentialU~k,v! is applied
on the monomers to maintain constant density, and this po-
tential is determined in terms of the concentrations in a self-
consistent manner. The details of the calculation are given in
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KF, and the effective structure factor which includes the ef-
fect of the hardcore repulsions which render the melt incom-
pressible is

S8~k!5
1

4 (
n,N,m,M

S0~n,N;m,M ;k!

3@u~n,N!2u~n,N!#@u~m,M !2u~m,M !#.

~10!

At this point, we make a modification to the structure
factor used in earlier studies17,18 to avoid difficulties with
divergent integrals later on. The above structure factor con-
sists of two components—the self-component due to the per-
fect correlation in the identity of a single monomer atn5m,
and the distinct component (nÞm) due to the correlation in
the identities of different monomers located close together on
the same chain. The self-component causes ultraviolet diver-
gences in the convolution integrals over the wave vector,
since it does not decay to zero for largek. One method to get
around this difficulty is to use a largek ~ultraviolet! cutoff
kmax which is of the same magnitude as the inverse of the
segment length. In the present study, an alternative easier
method is used. Since the dynamical nonidealities are due to
the correlations between different monomers, the self-
component is neglected while calculating the structure factor.
This serves the same purpose as the ultraviolet cutoff, since
it removes from the integrals contributions due to correla-
tions over lengths smaller than the segment length. In addi-
tion, this formulation is also more realistic, because the ther-
modynamic and dynamical assymetries are due to the
interactions between different monomers mediated by the
correlation in their identities, and not due to the interaction
of a monomer with itself. With this modification, the struc-
ture factor~10! which includes the includes the effect of hard
core repulsions but not the enthalpic interactions, is

S8~k!52 f ~12 f !
l exp~2k2!

12l exp~2k2!
, ~11!

where Eq.~4! has been used for the moments ofu(n,N) in
Eq. ~10!, and we have assumed, following KF, thatlN m

! 1, i.e., the number of monomers in the polymer is suffi-
ciently large that there is no correlation in the monomers
located at the ends of the chain. This structure factor is dif-
ferent from the Debye-like function for homopolymers and
block copolymers, because it lacks a correlation hole at the
origin. In block copolymers, the identities of monomers lo-
cated at identical positions on different chains are correlated,
and so if a monomer at positionn on chainN is located at
the origin, the probability of finding another monomer at
position n on chainM is reduced. However, in a random
copolymer the identities of the species at positionn on dif-
ferent chains are uncorrelated, and so there is no correlation
hole in the structure factor. Due to the lack of correlation in
the identities of monomers on different chains, the contribu-
tion to the structure factor due to the potential used to en-
force incompressibility turns out to beO~1/N p! smaller than

the contribution due to the correlation in the monomers along
a single chain, and the so the latter provides the dominant
contribution to the structure factor.

The structure factor which takes into account enthalpic
interactions can be easily calculated from the above18

S~k!5
S8~k!

122xFS8~k!
. ~12!

Since the form of the structure factor@Eqs. ~11! and ~12!#
used here is different from FML17 and KF,18 the phase be-
havior of the present model is also different. The present
model predicts a phase transition only forl.0, and the tran-
sition temperature is given byx5f (12 f )~12l!/4l. The
most unstable mode has a wave numberk50, indicating that
the transition is of the binary fluid type. Forl,0, there is no
transition in the present model. In contrast, the model of KF
and FML had predicted the presence of a Lifshitz point at a
valuel5lL where the phase transition crosses over from a
binary liquid type transition forl.lL to a microphase sepa-
ration transition forl,lL . However, this would not affect
the predictions of the present analysis, because we are focus-
ing on the effect of dynamical assymetries on the renormal-
ization of the viscosity far from the transition point. As men-
tioned earlier, the upper critical dimension for this type of
renormalization is 2, and there are no infrared divergences in
three dimensions. Therefore, the viscosity renormalization
remains finite in the vicinity of the phase transition.

III. RENORMALIZED TRANSPORT COEFFICIENTS

The renormalization of the viscosity due to the depen-
dence of the bare viscosity on the local concentration in the
random copolymer melt is determined here. The method
used is different from that for the renormalization due to the
convective nonlinearity near a phase transition,18,19,20 be-
cause the nonlinearity in the present case is dissipative. In
particular, the renormalization is due to nonlinear terms in
the transport equation as well as in the noise correlations,
and the nonlinearities in the noise correlation are essential to
ensure that the stationarity condition and the fluctuation–
dissipation theorem are satisfied. Therefore, the formulation
is discussed in some detail in the present analysis, and it is
shown explicitly that the fluctuation–dissipation theorem is
satisfied for the noise correlations used here.

The binary fluid is described by transport equations for
the concentration fieldc and the velocity fieldva . The
Hamiltonian for the system is assumed to be of the form

H5
1

2 E
k
@c~2k,t !x~k!21c~k,t !

1xv
21va~2k,t !va~k,t !], ~13!

wherexv5r21 is the susceptibility for the velocity field,*k
represents~2p!23*dk and Greek subscripts are used for the
velocity and the wave vector. The transport equation for the
concentration field is similar to that used in the Model H
system of equations. As mentioned in Sec. I, we consider
only the dissipative nonlinearity in the present analysis, and
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neglect the nonlinearity due to the convective terms. In this
case, the concentration equation is a linear equation

] tc~k,t !52L0ka
2 dH

dc~2k,t !
1u~k,t !, ~14!

whereL0 is the Onsager transport coefficient. The first term
on the right side of the above equation represents the con-
centration diffusion, and the second term is the random noise
which has a Gaussian distribution with zero mean and the
following variance to satisfy the fluctuation–dissipation
theorem:

^u~k,t !u~k8,t !&52k2L0d~k1k8!d~ t2t8!. ~15!

The equation for the velocity field is different from that
used earlier in the Model H equations due to the presence of
dissipative nonlinearities, and it is useful to examine the
derivation of this equation in greater detail. The microscopic
equation for the velocity field is assumed to be of the form

] tva~k,t !5Tab~k!FkgE
k8

h@$c%,k1k8#

3~kb8vg~2k8,t !1kg8vb~2k8,t !%G . ~16!

The transverse projection operatorTab~k!5~dab2k̂ak̂b! en-
sures that the velocity fieldva~k! is incompressible. The
term on the right is the divergence of the shear stress, and in
this we have assumed that the bare viscosityh is a function
of the local concentrationc~x,t!. This term models the dy-
namical assymetry in the system, where regions with differ-
ent concentrations have different viscosities. In order to de-
rive the Langevin equation, it is necessary to obtain the
Fokker–Planck equation for the probability distribution
P[c,va] which is consistent with the microscopic equations
for the concentration and velocity fields. The concentration
field does not have any dissipative nonlinearities, and the
Langevin equation for this is given by Eq.~14!. Here, we
concentrate Fokker–Planck equation for the probability dis-
tribution P[va] of the velocity fluctuations, which is
*DcP[c,va]. The Fokker–Planck equation consistent with
the microscopic equation~16! is

]P

]t
5E

k
E
k8

d

dva~2k! FDab~c,k,k8!

3S dP

dvb~k8!
1P

dH

dvb~k8! D G . ~17!

Note that there is no streaming velocity in the above equa-
tion because the convective nonlinearity has been neglected.
The diffusion coefficientDab~c,k,k8! is

Dab~c,k,k8!52Tag~k!h@$c%,k1k8#

3~kbkg81dbgkuku8!. ~18!

The dependence of the diffusion coefficient on the concen-
tration c causes some ambiguity in determining equivalent
Langevin equation due to the following reason. The random
noise is a delta function in time, and so the concentration

field c is a step function. Since the noise correlation is pro-
portional to the diffusion coefficientDab , there is some un-
certainty as to whether the value ofc to be inserted intoDab

is before or after the step change; this is called the Ito–
Stratonovich dilemma.21,22 In the Ito formulation, the value
of c before the step change is used, while in the Stratonovich
formulation the average of the initial and final values ofc is
chosen. Different results are obtained for the correlation and
response functions depending on the choice of the noise cor-
relation. If the noise correlation is incorrectly chosen, the
fluctuation–dissipation theorem may not be satisfied, and the
Langevin equation written in the classical fashion may not
satisfy the stationarity condition, which requires that the val-
ues of the concentration and velocity fluctuations relax to
zero in the absence of the noise. This issue is considered in
the Appendix, and it is shown that the Ito formulation, when
coupled with the causal discretization scheme in the func-
tional integral formalism, satisfies the stationarity condition
and the fluctuation–dissipation theorem. The causal discreti-
zation scheme is convenient because the Jacobian is indepen-
dent of the variablesc andva , and so this is used in com-
bination with the Ito formulation in the present case as well.

In the Ito formulation, the following Langevin equation
is equivalent to Eq.~17!:

] tva~k,t !5Tab~k!FkgE
k8

$h~$c%,k1k8!~kb8vg~2k8,t !

1kg8vb~2k8,t !!%G1ja~k,t !. ~19!

The random noiseja is assumed to be Gaussian white noise
with zero mean and the following correlation to satisfy the
fluctuation–dissipation theorem:

^ja~k,t !jb~k8,t8!&522xvd~ t2t8!Taj~k!Tbh~k8!

3~khkj81dhjkuku8!h@$c%,k1k8#.

~20!

Note that the noise correlation is a function of the variablec
itself, unlike in conventional mode coupling analyses where
the noise correlation is a constant. Further, there are addi-
tional nonlinear terms due to the dependence of the noise on
the variablec which have to be taken into account while
determining the renormalized transport coefficients. It is
shown in the Appendix that these additional nonlinearities
are necessary to ensure that the fluctuation–dissipation theo-
rem is satisfied. This will briefly be discussed when the vis-
cosity renormalizations are calculated, and it will be shown
that the fluctuation–dissipation theorem is satisfied for the
present case as well.

The concentration dependent viscosity is expressed as a
Taylor series in the concentration field

h@$c%,k1k8#5h0d~k1k8!1h1

3E
k1

d~k1k81k1!c~2k1 ,t !. ~21!
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The first term on the right is the dynamical viscosity which is
independent of the concentration, while the second term on
the right side takes into account the concentration depen-
dence of the viscosity.

It is convenient to use the temporal Fourier transform of
the variablesc andva for the functional integral formalism

c~q!5E
2`

`

dt exp~ ivt !c~k,t !,

~22!

va~q!5E
2`

`

dt exp~ ivt !va~k,t !,

whereq[~k,v!. The generating functional for the Langevin
equation is defined as

Z5cE D@c#D@ĉ#D@va#D@ v̂a#exp~2Lc2Lv!,

~23!

wherec is the normalization constant which is independent
of c andva in the causal discretization, and the Lagrangians
Lc andLv are

Lc5E
q
ĉ~2q!$@2 iv1L0x~k!21ka

2 #c~q!2u~q!%,

Lv5E
q
v̂a~2q!HTab~k!@2 iv1h0kg

2#vb~q!2jb~q!

2h1kgE
q1
E
q2

c~2q2!~k1gvb~2q1!

1k1bvg~2q1!!d~q1q11q2!J . ~24!

In the above equations,Lc is obtained from Eq.~14!, while
Lv is obtained by inserting Eq.~21! into Eq.~19!. The hatted
fields ĉ~q! and v̂a~q! are auxiliary fields which are intro-
duced while deriving the MSR generating functional for the
Langevin equations.25 These hatted fields are also related to
the response functions, which give the response of the fields
c andva due to a perturbation in the equations of motion.

The Gaussian nature of the random noiseu andja can be
used to average the Lagrangian over the distribution of the
random noise. The noise averaged LagrangianLc5^Lc& is
given by

Lc5
1

2 E
q
@ĉ~2q!c~2q!#@G cc

~0!~q!21#F ĉ~q!

c~q!G , ~25!

where

G cc
~0!~q!215F 22L0ka

2

iv1L0ka
2x~k!21

2 iv1L0ka
2x~k!21

0 G .
~26!

The noise averaged LagrangianLv5^Lv& is separated into
two contributions. The firstLv

(0), which is due to the linear
terms in the momentum equation, is similar to Eq.~26!.

Lv
~0!5

1

2 E
q
@ v̂a~2q!va~2q!#@G vv

~0!~q!#21F v̂b~q!

vb~q!G ,
~27!

where

G vv
~0!~q!215F22h0kg

2xvTab~k!

iv1h0kg
2Tab~k!

2 iv1h0kg
2Tab~k!

0 G .
~28!

For future reference, the correlation and response functions
in the linear approximation, which can be easily calculated
from the above Lagrangians, are

Ĝcc~q!5^ĉ~2q!c~q!&,

5
1

2 iv1L0ka
2x~k!21 , ~29!

Gcc~q!5^c~2q!c~q!&,

5x~k!F 1

2 iv1L0ka
2x~k!21 1

1

iv1L0ka
2x~k!21G ,

Ĝvavb
~q!5^v̂b~2q!va~q!&,

5
Tab~k!

2 iv1h0ka
2 ,

Gvavb
5^vb~2q!va~q!&,

5xvTab~k!F 1

2 iv1h0kg
2 1

1

iv1h0kg
2G . ~30!

The second contributionLv
(1), due to the nonlinear terms

in the transport equation andc dependent terms in the noise
correlation, is

FIG. 1. Vertex functions for the determination of the renormalization in the
viscosity.~a! Vertex due to nonlinearity in the transport equation.~b! Noise
vertex.

FIG. 2. One loop expansions for the correlation function~a! and response
function ~b!, ~c!, and~d! for the correlation function.
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Lv
~1!5E

q
E
q8
v̂a~2q!@2Fab~$c%,q,q8!vb~2q8!

12Fab~$c%,q,q8!v̂b~2q8!#, ~31!

where

Fab~$c%,q,q8!5Taj~k!Tbh~k8!~khkj81dhjkuku8!

3Fh1E
q1

c~2q1!d~q1q81q1!G . ~32!

In Eq. ~31!, the first term on the right side represents the
nonlinear terms in the transport equations~19!, while the

second term is due to thec dependent terms in the noise
correlation ~20!. Each of these gives rise to a three point
vertex as shown in Fig. 1.

In the renormalized perturbation expansion, the effect of
the nonlinear terms is expressed as the self-energy for the
correlation and response functions,Svv and Ŝvv , and the
renormalized Lagrangian for the velocity correlationsLv is

Lv5
1

2 E
q
@ v̂a~2q!va~2q!#@G vv~q!21#F v̂b~q!

vb~q!G , ~33!

where

G vv~q!215F ~22h0kg
2xv2Svv~q!!Tab~k!

~ iv1h0kg
22Ŝvv~2q!!Tab~k!

~2 iv1h0kg
22Ŝvv~q!!Tab~k!

0 G . ~34!

It is shown in the Appendix that with the above choice of the
noise correlations~20! and ~21!, the self-energiesSvv and
Ŝvv satisfy the Onsager reciprocal relations and the fluctua-
tion dissipation theorem to all orders in the perturbation
theory, and therefore the renormalized viscosity has the same
value whether it is determined usingSvv or Ŝvv . The renor-
malized viscosity determined from the response and correla-
tion functions is

hR2h05 lim
q→0

ka
22~2Ŝvv!5~1/2!xv

21 lim
q→0

ka
22Svv. ~35!

In the following analysis, we verify that the two renormal-
izations are equal, and therefore the fluctuation–dissipation
theorem is satisfied.

The leading order contribution to the self-energyŜvv
(1)

due to theO~c! correction to the viscosity is due to the
one-loop diagram shown in Fig. 2~a!

Ŝvv
~1!5h1

2E
q8

~kjka81dajkgkg8 !~khkb81dbhkuku8!

3Tab~k!Tjh~k8!Gcc~q2q8!Ĝvv~q8!. ~36!

The leading order contribution toSvv
(1) due to theO~c! cor-

rection to the viscosity is given by the three diagrams shown
in Figs. 2~b!, 2~c!, and 2~d!. The first diagram is due to the
nonlinearity in the transport equation~19! and~21!, while the
last two are due to the nonlinearities in the noise correlations
in Eqs. ~20! and ~21! ~the presence of two diagrams is be-
cause there is a degeneracy due to the presence of noniden-
tical vertices!. The contribution to the self-energies can be
simplified using

Gvavb
~q!5xv~Ĝvavb

~q!1Ĝvavb
~2q!! ~37!

from Eq. ~30!. Using this, it can easily be verified that the
diagram in Fig. 2~b! is the negative of half the sum of the
diagrams in Figs. 2~c! and 2~d!, and the total contribution to
Svv is just half the sum of the last two diagrams

Svv
~1!52h1

2E
q8

~kjka81dajkgkg8 !~khkb81dbhkuku8!

3Tab~k!Tjh~k8!Gcc~q2q8!Gvv~q8!. ~38!

From Eq.~30! for the correlation and response functions, it
can be easily verified that Eqs.~36! and ~38! give identical
corrections for the viscosity renormalization in the long time
limit v→0, and the formulation of the first order corrections
is consistent with the fluctuation–dissipation theorem.

Equation ~36! for Ŝvv
(1) can be simplified in the limit

v→0 to obtain

Ŝvv
~1!~k!5

h1
2k2

5p2 E dk8 k82
k82x~k9!

lx~k9!21k921h0k8
2 . ~39!

In the liquid state, where the viscous relaxation is much
faster than the molecular diffusion, the first term in denomi-
nator of the above integrand can be neglected compared to
the second term, and in the limitk→0 we get

Ŝvv
~1!5

h1
2k2

5p2h0
E dk8 k82x~k8!. ~40!

Using Eq. ~40!, the renormalized viscosity due to the dy-
namical assymmetry can be written as

hR2h052
h1
2

5p2h0
E
k8
k82x~k8!. ~41!

The above equation, together with Eqs.~11! and~12! for the
structure factor, gives the variation in the viscosity due to the
correlations in the sequence distribution in the random co-
polymer. It is useful to discuss two important issues regard-
ing the renormalization~41! at this stage.

~1! The integral over the wave vector does not have any
infrared ~k→0! divergences above two dimensions, so the
upper critical dimension for the viscosity renormalization is
2. This is in contrast to the renormalization due to convective
nonlinearities, where the upper critical dimension is 4 and
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there are divergences in the transport coefficients in three
dimensions. Therefore, the present renormalization is con-
vergent as the critical point is approached, and could be im-
portant even far from the critical point. In addition, there are
no ultraviolet divergences because the self-component of the
structure factor has been removed while determining the
equations for the structure factor~11! and ~12!.

~2! It is important to emphasize that the viscosity correc-
tion is proportional toh1

2, and so it is independent of the sign
of h1 and depends only on the monomer sequence distribu-
tion. In other words, the renormalization is not influenced by
whether the viscosity is higher for regions with positivec
~rich in monomerA! or regions with negativec ~rich in
monomerB!, the correction depends only on the ordering
sequence of the monomers on the chain.
The factorI (l)52*dk8 k82x~k8!, which is proportional to
the viscosity renormalization, is shown as a function of the
parameterl for different values ofk5f (12 f )xF in Fig. 3.
In this case, we have assumed that the Floryx parameter is
local ~independent ofk!; it is easy to include nonlocal inter-
actions as well. This figure shows that there is an increase in
the viscosity forl,1, and a decrease in the viscosity for
l.1. Figure 3 also shows the variation in the viscosity as the
enthalpic repulsionxF is varied. It can be seen that the mag-
nitude of the renormalization in the viscosity decreases for
l,0, and increases forl.0. The graphs forI ~l! terminate at
specific value ofl for xF.0 because the model used here
predicts a phase transition at this point. It can be seen that the
renormalization in the viscosity remains finite at this point,
as anticipated earlier, because the upper critical dimension
for the dissipative nonlinearity is 2.

IV. CONCLUSIONS

The effect of monomer sequence distribution on the dy-
namical viscosity of a random copolymer was considered in
the present study using a simple model for a random copoly-
mer consisting of two types of monomers,A and B. The
usual Markov model was used, where the random copolymer
is specified by the fraction of typeA monomersf , the Flory
chi parameter which gives the strength of the enthalpic re-
pulsion and the parameterl which gives the correlation in

monomer identities along the chain. The model used here is
similar to that used in the previous studies of Fredrickson,
Helfand, and Milner17 and Kumaran and Fredrickson,18

though a modification in the form of the structure factor was
necessary to avoid ultraviolet divergences in the calculations.
Due to this, the thermodynamics of the present model is
different. There is a binary fluid type phase transition for
l.0 ~where there is a greater probability of finding like
monomers adjacent to each other on the chain!, and there is
no phase transition forl,0 ~where it is more likely that
unlike monomers are adjacent on the chain!. The structure
factor determined in this fashion was then used in a mode
coupling calculation to determine the dependence of the vis-
cosity on the sequence distribution.

The model equations for the mode coupling calculation
are similar to the Model H equations used in critical dynam-
ics, but the momentum equation is modified to include the
possibility of the dependence of viscosity on the local con-
centration. This type of variation could be present if the vis-
cosities of pureA andB polymers are very different, so that
the local viscosity depends on the relative ratios of mono-
mers of typeA andB. The mode coupling calculations are
different in the present case; because the nonlinearity in the
momentum equation is dissipative in nature. Due to this,
there is some ambiguity in the interpretation of the noise
correlations; this is discussed in the Appendix. Here, we have
used one particular interpretation of the noise correlation
which is consistent with the causal discretization method
used in the functional integral formalism, and it has also
been explicitly verified that the present formulation is con-
sistent and the fluctuation–dissipation theorem is satisfied.
Another difference between the present calculation and ear-
lier critical dynamics studies is that the upper critical dimen-
sion for the present case is 2, in contrast to the UCD of 4 in
critical dynamics. Therefore, the renormalization in the vis-
cosity remains finite in the vicinity of a phase transition.

The results indicate that there is a systematic variation in
the viscosity with the parameterl, and the fluctuations tend
to increase the viscosity forl,0 and decrease the viscosity
for l.0. Further, the sign of the renormalization does not
depend on whether an increase in the concentration ofA
monomers increases or decreases the viscosity, but on the
parameterl alone, because the renormalization in the viscos-
ity is proportional toh1

2, whereh1 is the variation in the
viscosity with concentration. This indicates that the renor-
malization in the viscosity is purely due to differences in the
correlation in the monomer identities along the chain. The
present renormalization could be important even far from a
phase transition, since the magnitude does not depend on the
difference between the temperature and the transition tem-
perature. In addition, this could be the dominant effect even
near a phase transition of the binary fluid type, because the
earlier critical dynamics study of KF showed that the renor-
malization due to convective effects has a very small diver-
gence near a binary fluid type transition. Though the model
used here is rather crude, some very definite variations in the
viscosity as a function of the correlation in the monomer
identities and the temperature are predicted, and we feel that

FIG. 3. I ~l! as a function ofl for different values ofk5f (12 f )xF . ~—!
k50; ~---! k50.2; ~•••! k50.5; ~-.-.-! k51.0!.
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the present study captures qualitatively the essential dynam-
ics of random copolymers. This could provide a useful start-
ing point for more detailed analyses, where the microscopic
dynamics of the polymer are taken into account,and could
also motivate experiments on the viscosity measurements on
random copolymers synthesized under controlled conditions.
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APPENDIX

In this Appendix, a functional integral formalism is used
to show that the Ito formulation for the nonlinear Langevin
equation, with the noise correlation given by the Ito prescrip-
tion, when coupled with a causal discretization scheme, sat-
isfies the stationarity condition, the fluctuation–dissipation
theorem and the Onsager reciprocal relations. Consider a
general Fokker–Plancd equation for a system described by
time dependent variablesci~k,t!

] tP5E
k
E
k8

d

dc~2k,t ! FG i j ~$c%,k,k8!

3S dH

dc j~k8,t !
P1

dP

dc j~k8,t ! D G , ~A1!

where the Hamiltonian is given by

H~$c%!5(
i
E dk c i~2k!x i~k!21c i~k!. ~A2!

Note that the above form of the Hamiltonian is quite general,
and even if the Hamiltonian contains terms of the type
ci~2k!xi j ~k!21cj ~k!, it can be reduced to the above form by
diagonalizing the matrixxi j ~k!. In Eq. ~A1!, we have explic-
itly included the$c% dependence of the transport coefficients,
and neglected the convective~streaming! term for notational
simplicity. In the Ito formulation, the nonlinear Langevin
equation is

] tc i~k,t !5E
k8
(
j

F2G i j ~$c%,k,k8!
dH

dc j~k8,t !

1
d@G i j ~$c%,k,k8!#

dc j~k8,t ! G1Ci~$c%,k!u~ t !.

~A3!

The transport coefficientsGi j are real because they represent
dissipative effects, and are constrained by the Onsager recip-
rocal relations

G i j ~$c%,k,k8!5G j i ~$c%,k8,k!. ~A4!

Note that the transport coefficient is now dependent on the
time t, even though we have neglected memory effects, due
to the variation of$c% in time. The nonlinear Langevin equa-
tion ~A3! differs from the linear Langevin equation due to
the presence of the term (dG i j /dc j ). In Eq. ~A3!, the noise
has been written as a product of two components. The coef-

ficientsCi depend on the values of the variables$c%, but do
not depend explicitly on time. These are related to the trans-
port coefficients

Ci~$c%,k!Cj~$c%,k8!5G i j ~$c%,k,k8!1G j i ~$c%,k8,k!.
~A5!

The termu represents the rapidly fluctuating component of
the noise which has the following averages:

^u~ t !&50, ~A6!

^u~ t !u~ t8!&5d~ t2t8!. ~A7!

In addition, for the Langevin equation~A3! to mimic the FP
equation~A1!, it is necessary to take the values of$c% at the
beginning of the time interval while evaluatingCi . The dis-
cretized form of the Langevin equation~A3! is given by

c i~ t1Dt !2c i~ t !

Dt
5E

k8
(
j

F2G i j ~$c~ t !%,k,k8!
dH

dc j~k8,t !

1
dG i j ~$c~ t !%,k,k8!

dc j~k8,t ! G1Ci~$c~ t !%,k!

3
1

Dt Et
t1Dt

dt8 u~ t8!. ~A8!

The set of nonlinear Langevin equations~A3! with the
definition of the noise given by Eqs.~A5!, ~A6!, and ~A7!
have been shown to be formally equivalent to the nonlinear
FP equation~A1! by Ito.21 Moreover, the FP equation satis-
fies the stationarity condition and the fluctuation dissipation
theorem, and we would expect the Langevin equation to sat-
isfy these conditions as well. In this Appendix, we show
analytically, independently of the FP equation, that Eq.~A3!
satisfies these conditions at all orders in perturbation theory.
For this purpose, a functional integral formalism is used, and
the renormalization due to the nonlinear terms in the Lange-
vin equations are determined using a diagrammatic perturba-
tion theory. Various discretization schemes have been used in
the functional integral approach.25–27 Of these, the causal
discretization scheme of Jensen25 is suitable for the present
formulation, since it gives the same interpretation of the
noise correlations as the Ito prescription~A8!. In addition,
this scheme has the advantage that the Jacobian in the gen-
erating functional is independent of the variables$c%, while
in the other schemes, the Jacobian is explicitly dependent on
$c% and the calculations are more complicated~see Jensen25

for a detailed discussion!.
For the functional integral formalism, it is convenient to

take the temporal Fourier transforms of the variablesci

c i~q!5E dt exp~ ivt !c i~k,t !, ~A9!

whereq5~k,v!. A generating functionalZ for the Langevin
equation~A3! is defined as follows:
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Z5E )
i
D@c i #J@c i #dS 2 ivc i~q!1G i j ~$c%,k,k8!

3
dH

dc j~q8!
2

dG i j ~$c%,k,k8!

dc j~q8!
2Ci~$c%,k!u~v! D ,

~A10!

whereJ[c i ] is a Jacobian associated with the delta function,
and enforces the normalization conditionZ51. In the causal
discretization scheme, the Jacobian turns out to be indepen-
dent of $c%, and this simplifies the calculation. The delta
function in Eq.~A10! is transformed into its functional Fou-
rier transform

Z5cE )
i
D@c i #D@ĉ i #exp~2L!, ~A11!

where the factorc contains the Jacobians that are indepen-
dent of $c%, and the LagrangianL is

L5E
q
ĉ i~2q!F2 ivc i~q!1E

q8
S G i j ~$c%,k,k8!x j

21~k8!

3c j~2q8!2
dG i j ~$c%,k,k8!

dc j~q8! D 2Ci~$c%,k!u~v!G ,
~A12!

where*q is ~2p!24*dk *dv. The Gaussian nature of the ran-
dom noise can be effectively utilized to explicitly average
the Lagrangian over the noise distribution. The noise aver-
aged generating functional is

Z5^Z&5cE )
i
D@c i #D@ĉ i #exp~2L !, ~A13!

where

L5E
q
ĉ i~2q!F2 ivc i~q!1E

q8
S G i j ~$c%,k,k8!x j

21~k8!

3c j~2q8!2
dG i j ~$c%,k,k8!

dc j~q8!
1@G i j ~$c%,k,k8!

1G j i ~$c%,k8,k!#ĉ j~2q8! D G . ~A14!

Equation ~A13! for the generating functional with the La-
grangian given by Eq.~A14! serves as a starting point for the
perturbation analysis.

The transport coefficient is expanded in a Taylor series
in the $c% as follows:

G i j ~$c%,k,k8!5G i j
~0!~k!d~k1k8!1(

m
E
q1

G i jm
~1! ~k,k8,k1!

3cm~2q1!d~q1q81q1!

1(
m,n

E
q1
E
q2

G i jmn
~2! ~k,k8,k1 ,k2!cm~2q1!

3cn~2q2!d~q1q81q11q2!1••• .

~A15!

In Eq. ~A15!, the first term does not depend on time, because
we have neglected memory effects, but the higher order
terms depend implicitly on time due to their dependence on
$c%. Equation~A15! is inserted into the equation for the La-
grangian, which is then divided into its Gaussian and pertur-
bative components,L0 and Lp . The Gaussian component,
L0, can be written in symmetrized form as follows:

L05
1

2 E
q
@@ĉ~2q!#T@c~2q!#T#@G~0!~q!#21F @ĉ~q!#

@c~q!#G .
~A16!

Here, [ĉ] and @c# are the column matrices [ĉ1 ,ĉ2 ,...,cN]
and @c1,c2,...,cN#, respectively, andG0

21 is the block diago-
nal matrix consisting of threeN3N blocks

@G~0!~q!#21

5F2@G~0!~k!#2@G~0!~2k!#T

@ ivI1L~0!~2k!#T
@2 ivI1L~0!~k!#

0 G ,
~A17!

whereI is the identity matrix andLi j
(0)~k!5Gi j

(0)~k!xj
21~k!.

In the Gaussian approximation, the statistical average of
an analytical functionA($ĉ%,$c%) can be expressed as

^A~$ĉ%,$c%!&05cE )
i
D@ĉ i #D@c i #A~$ĉ%,$c%!

3exp~2L0!, ~A18!

where the subscript0 implies that this is the Gaussian aver-
age. Of particular interest are the correlation and response
functions,Gi j

(0)~q! andĜi j
(0)~q!, which are defined as

Ĝi j
~0!~q!5^ĉ j~2q!c i~q!&05@2 ivI1L~0!~k!# i j

21, ~A19!

Gi j
~0!~q!5^c j~2q!c i~q!&0

5@2 ivI1L~0!~k!# i l
21

3@G lm
~0!~k!1Gml

~0!~2k!#@ ivI1L~0!~2k!# jm
21.

~A20!

It can be easily verified from Eqs.~A19! and ~A20! that the
correlation and response functions are related as follows:

Ĝi j ~q!x j~k!5Ĝji ~q!x i~k!, ~A21!

Gi j ~q!5Ĝi j ~q!x j~k!1Ĝji ~2q!x i~k!. ~A22!

The first equation~A21! is a due to the Onsager reciprocal
relations, while the second equation~A22! is a consequence
of the fluctuation dissipation theorem.
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There are two rules to be adhered to while computing
averages in the causal discretization scheme. The first is that
the averages of products containing the factorsĉi(t) vanish
if t is the latest time in the average. In particular, an average
containing two response functions is always zero

^ĉ~q!ĉ~q8!&050. ~A23!

The second rule is that the averages of products
^ĉi~k,t!cj ~k8,t!&0 are interpreted as if the time arguments of
the hatted fields are displaced to infinitesimally later times,
and therefore average to zero. In particular, the following
relation will be useful in the subsequent analysis:

Ĝi j ~k,t !u t505E
2`

`

dv Ĝi j ~q!50. ~A24!

Before proceeding to the perturbation analysis, it is use-
ful to discuss the objective of this analysis. Our objective is
to show that the Langevin equations~A3!, when combined
with the causal discretization scheme, give results for the
first and second moments which are consistent with the re-
quirements of stationarity, the Onsager reciprocal relations

and the fluctuation–dissipation theorem. The stationarity
condition requires that the average value of a variableci be
equal to its equilibrium value

^c i&5^ĉ i&50. ~A25!

Note that the averages in the above equation are not the bare
averages, but include the effect of the nonlinearities. The
second consistency condition follows from the fluctuation
dissipation theorem. For this, consider the coefficient matrix
@G~0!#21 in the equation for the bare LagrangianL0 ~A17!.
The nonlinear terms renormalize this coefficient matrix

@G~q!#215@G~0!~q!#212@P#5F2@G~0!~k!#2@G~0!~2k!#T2@S~q!#

@ ivI1L~0!~2k!#T2@Ŝ~2q!#T
@2 ivI1L~0!~k!#2@Ŝ~q!#

0 G , ~A26!

where@P#, the self-energy matrix, has a block diagonal form
similar to @G~0!#21. For the fluctuation dissipation theorem to
be satisfied,28 the elements of the diagonal blockSi j and the
off-diagonal blockŜi j of the self-energy matrix have to be
related in a manner similar to those of the matrix@G~0!#21

@see Eq.~A17!#

S i j ~q!1Ŝi j ~q!x j~k!1Ŝj i ~2q!x i~k!50 ~A27!

and

Ŝi j ~q!x j~k!5Ŝj i ~q!x i~k!. ~A28!

In the remainder of this section, we use a perturbation analy-

sis to show that Eqs.~A25!, ~A27!, and~A28! are satisfied by
the self-energies for a Langevin equation of the type~A3!
with the noise correlation given by Eqs.~A5!, ~A6!, and
~A7!.

It is convenient to classify the nonlinear vertices into
three categories. The first, called typeA, is due to the non-
linearity in the transport coefficient in the Langevin equation
~A3!. If the transport coefficient is proportional tocn, this
vertex hasn12 legs, as shown in Fig. 4~a!. The typeA
vertices have the following symmetries, the first due to the
Onsager reciprocal relations and the second due to the invari-
ance of the irreversible term in the transport coefficient under
spatial inversion

FIG. 4. Types of vertices due to nonlinear terms in the diagrammatic per-
turbation expansion.

FIG. 5. Diagrammatic representations of Rules 1 to 6 in the Appendix.
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G i j 1...n~k,k8,k1 ,...kn!5G j i 1...n~k8,k,k1 ,...kn!,
~A29!

G i j 1...n~k,k8,k1 ,...kn!5G i j 1...n~2k,2k8,2k1 ,...2kn!.

The second type of vertex, typeB, is due to the nonlinearity
in the noise correlations. This also hasn12 legs, as shown in
Eq. ~A3!, but two of the legs are of the hatted type. The third
type of vertex, typeC, is due to the term (dG i j /dc j ) in Eq.
~A3!. This vertex hasn legs, one of which is the hatted type.
It is also useful to classify the legs in the typeA vertex into
three categories. The hatted leg is called thea leg, while the
unhatted leg due to the functional derivative of the free en-
ergy @the j leg in Fig. 4~a!# is called theb leg and all the
other legs areg legs. In the typeB vertex, thea andb legs
are both of the hatted type. In the diagrammatic perturbation
analysis, it will be convenient to refer to the topological fea-
tures in terms of these classifications.

At this point, it is necessary to specify certain rules
which simplify the determination of the values of the dia-
grams. The first two are fairly simple and common to all
diagrammatic perturbation expansions, but we list them here
for completeness.

Rule 1.A graph having a bubble of the type shown in
Fig. 5~a! is identically zero. This is because this bubble rep-
resents equation~A24!.

Rule 2.A graph having a loop of the type shown in Fig.
5~b! is zero due to causality. This is also true for renormal-
ized vertices in general, provided we adhere to the conven-
tion that time increases from left to right or vice versa.

Rule 3.A graph having a bubble which involves a typeA
vertex with ab leg @Fig. 5~c!# is exactly canceled by another
graph with a typeC vertex @Fig. 5~d!#. This can be easily
seen by writing down the values of the two graphs. The value
of the graph 5~c! is

G i j 1...n~k,k8,k1 ,...kn!x j~k8!21E dv8 Gjl ~2q8!

5G i j 1...n~k,k8,k1 ,...kn!d j ld~k81k l ! ~A30!

which is just the negative of the value of the graph 5~d!
containing a typeC vertex~see the relation between the type
A andC vertices in Fig. 4!.

Rule 4.A graph in which one of the vertices@at position
I in Fig. 5~e!# is connected to a second vertex by a loop as
shown in Fig. 5~e! is canceled by another graph containing a
typeB vertex at position I shown in Fig. 5~f!. The value of
graph 5~e! is

G i j 1...n~k,k8,k1 ,...,kn!x j~k8!21Ĝai~q!Gbj~q8!F,
~A31!

whereF contains all the other factors due to theg type legs.
Since the vertex I represents interactions at earlier time than
vertex II, the above expression can be rewritten as

G i j 1...n~k,k8,k1 ,...,kn!Ĝai~q!Ĝb j~q8!F ~A32!

which is the negative of the value of a similar graph with a
type B vertex shown in Fig. 5~f! ~see the relation between
typeA andB vertices in Fig. 4!. This rule is applicable even

when the vertex at position II is a renormalized vertex, be-
cause it is always possible to choose the vertex at position I
to have the earliest time index.

Rule 5.A vertex of typeA in which thea andb legs are
directed towards increasing time@Fig. 5~g!# is canceled by a
vertex of typeB shown in Fig. 5~h!. This rule can be easily
verified in a manner similar to Rule 4. A graph with a typeA
vertex where theb leg is directed towards decreasing time is
not canceled by a typeB vertex because the latter is zero due
to Rule 2.

Rule 6.A graph containing a loop with opposingb ver-
tices as shown in Fig. 5~i! is canceled by two other graphs
with type B vertices shown in Fig. 5~j! and 5~k!. Here, we
have used three relations in Figs. 5~i!, 5~j! and 5~k!

Gia~q!xa~k!21Gjb~q8!x j~k8!21

5Ĝia~q!Ĝjb~q8!x j~k8!21xb~k8!1Ĝai~2q!

3xa~k!21x i~k8!Ĝb j~2q8!,

Ĝia~q!Gjb~q8!x j~k8!21

5Ĝia~q!Ĝjb~q8!x j~k8!21xb~k8!,

Ĝb j~2q8!Gai~2q!xa~k!21

5Ĝb j~2q8!Ĝai~2q!xa~k!21x i~k8!. ~A33!

Using the above relations, as well as the fact that the coeffi-
cient of the typeB vertex is the negative of that of the type
A vertex~see Fig. 4!, it can be easily verified that the sum of
the three diagrams 5~i!, 5~j!, and 5~k! is zero. Rule 6 is also
valid for renormalised vertices of the type shown in Fig. 5~l!
if we take the legb to be the one with the earliest time index
on side I that is connected to ab leg on side II, and legi to
be the one with the earliest time index on side II that is
connected to ab leg on side I.

Using these rules, it is quite easy to show that the sta-
tionarity condition ~A25! is identically satisfied. The self-
energy for the averageci and ĉi consists of ‘‘tadpole’’ dia-
grams as shown in Fig. 6. All tadpole diagrams involving
bubbles of the type in Fig. 6~a! are identically zero because
of Rule 3, while those containing loops as in Fig. 6~b! are
zero because of Rule 4. The tadpole diagrams forĉi involv-
ing bubbles@Figs. 6~c! and 6~d!# are zero due to causality
~Rule 1 and 2!. Therefore, the Langevin equation~A3!
coupled with a causal discretization scheme satisfies the sta-
tionarity condition.

FIG. 6. Types of diagrams that are identically zero due to Rules 1 to 6 in the
Appendix.
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Next, we consider the consistency conditions for the On-
sager reciprocal relations~A28!. The graph for the self en-
ergy Ŝi j is a ‘‘tree’’

28 with side bubbles of the type shown in
Fig. 7~a!. Note that all diagrams with side loops are zero by
Rule 4, and so all the vertices have to be positioned along the
main tree. In this, all thea type legs are directed towards
increasing time, and theb type legs are constrained to lie
along the main tree due to Rule 3, and directed towards
decreasing time due to Rule 4. The value of the diagram 7~a!
can be written compactly as

Ŝia~q!5Gba...~2k1 ,2k,...!xa~k!21G i j ...~k,k2 ,...!F.
~A34!

For every diagram of the type shown in Fig. 7~a!, there exists
another of the type in Fig. 7~b! where the positions of thea
andb legs are interchanged, all wave vectors are transformed
ask i→2k i and time progresses in the opposite direction~in

effect,qi→2qi!. Under this transformation, the propagators
containing typea, b andg legs are transformed as follows
@see Fig. 7~c!#

Ĝba~q!xb
21~k!→Ĝab~q!xa

21~k!,

Ĝca~q!→xa~k!21Gac~q!5xa~k!21Ĝac~q!xc~k!, ~A35!

xb
21~k!Gbc~q!5xb

21~k!Ĝbc~q!xc~k!→Ĝcb~q!.

In the above equation, the correlation function involving a
typeb leg,Gbc~q! has been replaced byĜbc~q!xc~k! because
the b leg is directed towards decreasing time. Further, the
above transformation also changes the verticesGi j ... as fol-
lows:

G i j 1...n~k,k8,k1 ,...,kn!

→G j i 1...n~2k8,2k,2k1 ,...,2kn!. ~A36!

It can be easily verified from Eq.~A21! that the values of all
the response and correlation functions on the right and left
side of Eq.~A35! are unchanged by the above transforma-
tion, and Eq.~A29! shows that the values of the verticesGi j ...
in Eq. ~A36! also remain unchanged. Therefore, the factorF
due to the internal vertices and propagators remains un-
changed due to the transformation, and the self energy for
the diagram in Fig. 7~b! is

Ŝai~q!5Gab...~k,k1 ,...!G j i ...~2k2 ,2k,...!x i~k!21F.
~A37!

FIG. 7. Diagrammatic representation of the Onsager reciprocal relations.

FIG. 8. Diagrammatic representation of the fluctuation–dissipation theorem.
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Thus there is a one-to-one correspondence between the dia-
grams forŜai~q! andŜia~q!, and from Eqs.~A34! and~A37!
it can be seen that the following Onsager reciprocal relation
is identically satisfied at all orders in perturbation theory:

Ŝai~q!x i~k!5Ŝia~q!xa~k!. ~A38!

This completes the proof of the Onsager reciprocal relations
~A28!.

Finally, we come to the fluctuation dissipation theorem
~A28!. The self-energySai has a double tree structure,28

joined by at least twob type legs from opposite directions as
shown in Fig. 8~a!. The internal vertices along the two trees
are all typeA vertices; typeB vertices cancel other typeA
vertices according to Rule 5. Moreover, all diagrams involve
a loops of the kind shown in Fig. 5~l!, and therefore the total
contributions of these diagrams is zero. However, typeB
vertices can be placed at the terminal positions, and typical
diagrams obtained in this manner, involving the same verti-
ces as Figs. 7~a! and 7~b!, are shown in Figs. 8~b! and 8~c!.
The contribution of the diagram Fig. 8~b! that is not canceled
by another diagram with a terminal typeA vertex is

S ia~q!52Gba...~2k1 ,2k,...!G i j ...~k,k2 ,...!F, ~A39!

where the factorF is the same as that in Eq.~A34!. The
diagram in Fig. 8~c! has the same structure as that in Fig.
7~c!, though the wave vectors and frequencies are trans-
formed asq→2q. The value of this diagram is

S ia~q!52Gab...~2k,2k1 ,...!G j i ...~k2 ,k,...!F* ,
~A40!

whereF* is the complex conjugate ofF, and is obtained by
the transforming all wave vectors and frequenciesq→2q in
Eq. ~A37! @Fig. 7~b!#. Comparing Eqs.~A34!, ~A37!, ~A39!,

and~A40!, it can be easily verified that the fluctuation dissi-
pation theorem~A27! is satisfied at each order in perturba-
tion theory.

1P. G. DeGennes, J. Chem. Phys.72, 4756~1980!.
2P. Pincus, J. Chem. Phys.75, 1996~1981!.
3K. Binder, J. Chem. Phys.79, 6387~1983!.
4J. W. Cahn and J. E. Hilliard, J. Chem. Phys.28, 258 ~1958!.
5J. W. Cahn and J. E. Hilliard, J. Chem. Phys.31, 668 ~1958!.
6H. E. Cook, Acta Metall.18, 297 ~1970!.
7J. S. Langer, H. D. Bar-on, and M. Miller, Phys. Rev. A11, 1417~1975!.
8F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem.41, 525
~1990!.

9L. Leibler, Macromolecules13, 1602~1980!.
10G. H. Fredrickson and E. Helfand, J. Chem. Phys.89, 5890~1988!.
11E. Helfand and Z. R. Wasserman, Macromolecules9, 879 ~1976!.
12A. N. Semenov, Soviet Phys. JETP61, 733 ~1985!.
13G. H. Fredrickson and E. Helfand, J. Chem. Phys.93, 2048~1990!.
14J.-L. Barrat and G. H. Fredrickson, Macromolecules27, 832 ~1992!.
15E. I. Shakhnovich and A. M. Gutin, J. Phys.~Paris! 50, 1843~1989!.
16G. H. Fredrickson and S. T. Milber, Phys. Rev. Lett.67, 835 ~1991!.
17G. H. Fredrickson, S. T. Milner, and L. Leibler, Macromolecules25, 6341

~1992!.
18V. Kumaran and G. H. Fredrickson, Physica A204, 378 ~1994!.
19E. D. Siggia, B. I. Halperin, and P. C. Hohenberg, Phys. Rev. B13, 2110

~1976!.
20P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435 ~1977!.
21N. van Kampen,Stochastic Processes in Physics and Chemistry~North-
Holland, New York, 1981!.

22R. L. Stratonovich,Topics in the Theory of Random Noise~Gordon-
Breach, New York, 1963!.

23G. Odian,Principles of Polymerisation~Wiley-Interscience, New York,
1981!.

24P.-G. de Gennes,Scaling concepts in Polymer Physics~Cornell University,
New York, 1991!.

25R. V. Jensen, J. Stat. Phys.25, 183 ~1981!.
26H. K. Janssen, Z. Phys. B23, 377 ~1976!.
27R. Phythian, J. Phys. A10, 777 ~1977!.
28U. Deker and F. Haake, Phys. Rev. A11, 2043~1975!.

3133V. Kumaran: Viscosity of a random copolymer melt

J. Chem. Phys., Vol. 104, No. 8, 22 February 1996

Downloaded¬06¬Apr¬2005¬to¬128.111.9.167.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp


