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The effect of viscoelasticity on the early stages of spinodal decomposition is examined. In addition
to the concentration and momentum equations for the fluid, the effect of viscoelasticity is included
using a linear Maxwell equation for the stress tensor. The growth in the amplitude of the fluctuations
depends on the transport coefficient, the viscosity of the fluid, and the relaxation time in the
Maxwell model. For simplicity, the nonlinearity due to the quartic term in the expression for the
Landau–Ginzburg expression for the free energy is neglected, as are the inertial terms in the
momentum conservation equation. The momentum and Maxwell equations are solved exactly to
obtain the velocity as a function of concentration, which is then inserted into the concentration
equation. There are two types of nonlinearities in the conservation equation—one proportional to
the cube of the concentration which leads to a four point vertex, and one proportional to the product
of the concentration and the random noise in the stress equation which leads to a three point vertex.
In the leading approximation, the renormalization of the transport coefficient due to these vertices
is determined using the Hartree approximation, and the renormalization of the noise correlation due
to the three point vertex is determined using a one-loop expansion. The renormalized transport
coefficient and noise correlation are inserted into the concentration equation to determine the effect
of the nonlinearities on the growth of the structure factor. It is found that an increase in the
relaxation time tends to increase the rate of growth of the structure factor, and tends to decrease the
wave number of the peak in the structure factor. ©1996 American Institute of Physics.
@S0021-9606~96!51040-8#

I. INTRODUCTION

Theories of spinodal decomposition in polymer blends
and other heterogeneous polymeric systems, e.g., block co-
polymers, have been of interest to the polymer science com-
munity for some time. Such theories attempt to describe the
temporal evolution of compositional order when an initially
homogeneous polymer melt is rapidly cooled into an un-
stable region of the phase diagram. The early studies of de
Gennes,1 Pincus,2 and Binder3 analyzed the demixing transi-
tion of binary blends of homopolymers. These linearized
theories are restricted to the early stages of structural evolu-
tion, and are capable of predicting only the wavelength of the
most unstable mode. These employ a simple diffusion equa-
tion for the concentration field which is similar to those for
the early stage spinodal decomposition in simple fluids or
metal alloys. However, polymer melts are more complex
than simple fluids because they exhibit viscoelastic behavior,
and the elasticity of the melt has not been taken into account
in previous studies. Moreover, recent experimental evidence
indicates that spinodal decomposition in a viscoelastic fluid
may be qualitatively different from that in a simple fluid.
Tanaka4 carried out experiments on the phase separation of
polystyrene-diethyl malonate mixtures, and observed that the
late stage coarsening dynamics is dominated by the vis-
coelastic effect due to the strong coupling between the stress
field and concentration diffusion. Wiltzius and Bates5 studied
the spinodal decomposition in a melt consisting of perdeu-

terated and protonated polybutadiene. They observed that the
decomposition process could be separated into four stages,
and the scaling laws in the intermediate stage is different
from that predicted by the current theories for spinodal de-
composition in binary fluids. These experiments suggest that
viscoelastic stresses could have a significant influence on the
spinodal decomposition process. In the present paper we
consider the role of viscoelasticity on the early stages of
spinodal decomposition.

The earliest theory for the very short time regime of
spinodal decomposition is the Cahn–Hilliard–Cook
theory,6–8 which predicts the growth of the structure factor
~equal-time pair correlation function of concentration fluc-
tuations! as a function of time. In this approach, a linear
stability analysis is applied to the one-phase system to deter-
mine the wavelength and the growth rate of the most un-
stable mode, but this theory cannot predict the coarsening of
the fluctuations due to the neglect of nonlinear effects. There
have been many theories that attempt to incorporate nonlin-
ear effects in the description of the spinodal decomposition
process. The most successful of these was devised by
Langer, Baron, and Miller9 ~LBM !. Here, the form of the
probability distribution function of the concentration is as-
sumed to be the sum of two Gaussian distributions with dif-
ferent means and variances. The closure is achieved by ex-
pressing thenth order correlation functionSn~k,t! as the
product of thenth moment of the probability distribution
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function with the ratio of the structure factor and the variance
of the distribution

Sn~r ,t !5
^cn&

^c2&
S~r ,t !. ~1!

Here, c~r ,t!5c~r ,t!2c0 is the departure from the average
concentration and the correlation functionSn~r ,t! is defined
as

Sn~r ,t !5^c~x1r ,t !n21c~x,t !&, ~2!

S~r ,t! is used as a shorthand forS2~r ,t!. With the above
approximation, a closed set of equations is obtained and
these equations predict both the coarsening of the structure
factor and the formation of a bimodal distribution. The LBM
theory was first compared to Monte Carlo simulations of
spinodal decomposition in metals based on the kinetic Ising
model, and was found to be in good qualitative agreement
with the simulations. This theory was extended to binary
fluids by Kawasaki and Ohta,10 who compared their results
with the experiments of Goldburg, Shaw, Huang, and
Pilant11 and reported reasonable agreement.

In the present paper, a renormalized perturbation expan-
sion is used to analyze the early stage spinodal decomposi-
tion in a viscoelastic fluid. The equations for the fluid are
coupled equations of motion for the concentration field, the
velocity field, and the stress field. The Langevin equation for
the stress field is a novel feature of the present analysis and
invokes the time-dependent Maxwell model for a viscoelas-
tic fluid. The momentum equation is coupled to the equation
for the stress field due to the dependence of the stress on the
gradient of the velocity field. As a first step, we neglect the
effect of the quartic nonlinear term in the Landau–Ginzburg
free energy and focus instead on the viscoelastic convective
couplings. The dynamics of the resulting decomposition pro-
cess depends on quench depth, fluid viscosity, and the stress
relaxation timet of the Maxwell model. The effect of the
nonlinearity due to the quartic term in the free energy is
included in the Kawasaki–Ohta theory, so the present results
do not coincide with the Kawasaki–Ohta theory in the limit
t→0. However, the equations used here coincide with those
in the Kawasaki–Ohta theory if the quartic nonlinearities are
neglected andt is set to zero.

The approach adopted in the present paper is different
from the LBM theory and more closely resembles the analy-
sis of Grantet al.12 where a systematic perturbation expan-
sion was employed, and the Gaussian approximation of
Langer.13 However, in those analyzes, the renormalization of
the ~concentration! transport coefficient was due to the quar-
tic term in the Landau–Ginzburg free energy and this was
assumed to be wave number independent. Here, the renor-
malization is due to the combined action of the convective
term in the concentration equation and the elastic term in the
Maxwell equation, and the renormalization of the transport
coefficient is wave number dependent. In addition, the noise
correlation in the stress equation results in a renormalization
of the random noise correlation in the concentration equa-
tion. Therefore, in the present case, a diagrammatic pertur-
bation analysis is required to determine the renormalization

of both the transport coefficient and the noise correlation.
The nonlinearities in the transport equations lead to fourth
order vertices, and the renormalizations due to these vertices
are calculated using the ‘‘Hartree approximation.’’ In the
Hartree approximation, the correction to the correlation and
response functions due to all bubble diagrams involving the
quartic nonlinearity are included, but higher-order loop dia-
grams and more topologically complex diagrams are not
included.14 This approximation is exact to leading order in
the perturbation parameter, but higher order terms contained
in the bubble diagrams are also included. In addition, there
are cubic vertices that result in the renormalization of the
noise correlation in the Langevin equation. This renormaliza-
tion is calculated using a simple one-loop expansion.

II. ANALYSIS

The basic equations used for analyzing the dynamics of
spinodal decomposition in viscoelastic fluids are coupled
Langevin equations for the slow variables, which in the
present case are the concentration, velocity and stress fields.
The equations employed here are similar to the model-H
equations15 that have been used previously for describing the
demixing transition in incompressible binary fluids. In the
present case, however, it is necessary to write a separate
Langevin equation for the stress field, because the depen-
dence of the stress on the velocity field is nonlocal in time
due to elastic effects. The conservation equation for the con-
centration field is

] tc52va]ac1l]a
2 dF

dc
1z, ~3!

wherec5c~x,t! is the concentration field,va5va~x,t! is the
velocity field, ] t[(]/]t), ]a[~]/]xa!, and Greek subscripts
are used to denote vectors. The first term on the right is the
variation in concentration due to convective transport, the
second term is the divergence of the diffusive flux due to
gradients in the chemical potentialdF/dc, andl is an On-
sager transport coefficient describing the rate of collective
diffusion. The last term on the right-hand side is the thermal
noise required to satisfy the fluctuation–dissipation theorem,
whose statistics will be discussed later. The momentum con-
servation equation states that the transverse component of
the divergence of the stress is equal to the applied forces on
the system

F]bsab1]ac
dF

dcG
'

50, ~4!

where@•••#' represents the transverse component of the vec-
tor ~a consequence of the incompressibility constraint!. The
first term on the left side of the above equation is the diver-
gence of the stress tensor, which includes both viscous and
elastic stresses, while the second term is the reciprocal of the
convective term in the concentration Eq.~3! and represents
the osmotic force density. The inertial terms in the momen-
tum conservation equation have been neglected compared to
the viscous and elastic terms. This is a good approximation
in most circumstances of practical interest. For example, the
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magnitude of the fluctuating velocityV can be obtained by
comparing the energy of fluctuations with the thermal en-
ergy, i.e., (rV2L3);T ~L is a characteristic length!. This
givesV;(T/rL3)1/2, and the inertial terms can be neglected
compared to the viscous ones for~m2L/Tr!1/2@1 ~m is the
shear viscosity!. Insertingr5103 kg/m3 and a lower bound
of m51023 kg/m/s, we find that the inertial terms can be
neglected forL@4310212 m at room temperature. This con-
dition is always satisfied since 10212 m is an atomic length
scale.

The equation for the stress tensor is given by the simple
linear Maxwell model16

~t] t11!sab5m~]avb1]bva!1uab , ~5!

wheret is a stress relaxation time that can be expressed as
the ratio of a shear viscositym to a shear modulusG, t5~m/
G!. In the above equation, we have neglected the convected
derivatives present in the corotational Maxwell model, since
these represent higher-order nonlinear contributions to the
stress field. The free energyF is given by the usual Landau–
Ginzburg expression with additional contributions due to the
kinetic energy of the fluid and the elastic strain energy

F5E dxFK2 ~]ac!22
r

2
c~x,t !21

u

4
c~x,t !4

1
r

2
va~x,t !21

1

4G
sabsbaG , ~6!

whereK and r are positive constants when the system is
below the transition temperature. The first three terms in the
above equation represent the standard Landau–Ginzburg free
energy, the fourth term is the kinetic energy due to the ve-
locity fluctuations, and the last term is the elastic strain en-
ergy. By neglecting cubic terms inc, we restrict consider-
ation to systems at the critical composition. We also note that
r is the parameter proportional to the depth of the quench
below the critical temperature.

The analysis is conveniently carried out in Fourier space,
where the components of the concentration and velocity
fields are

c~k,t !5E dx exp~ ikaxa!c~x,t !,

~7!

vb~k,t !5E dx exp~ ikaxa!vb~x,t !.

The transformed equations are

] tc52lk2~Kk22r !c~k,t !1z~k,t !1c~k,0!d~ t !

1 i E
k1
E
k2
va~k2 ,t !k1ac~k1 ,t !d~k11k22k!

2luk2E
k1
E
k2
E
k3

c~k1 ,t !c~k2 ,t !c~k3 ,t !

3d~k11k21k32k!, ~8!

T ab~k!F2 ikgsbg2 i E
k1
E
k2
k1bc~k1 ,t !

3Kk2
2c~k2 ,t !d~k11k22k!G50, ~9!

~t] t11!sab~k,t !52 im@kavb~k,t !1kbva~k,t !#

1uab~k,t !1sab~k,0!d~ t !, ~10!

where*k[~2p!23*dk and T ab~k!5dab2k̂ak̂b is the trans-
verse projection operator. In the concentration and stress
Eqs.~8! and ~10!, the initial condition has been included as
an inhomogeneous term on the right-hand side. Also, in these
and all subsequent equations, an implicit factor of~2p!3 is
absorbed into the definition of each Dirac delta function with
wave vector arguments. In going from Eq.~4! to ~9!, the last
term on the left-hand side has been simplified as follows.
The terms arising from (dF)/~dc! that are proportional tor
andu do not contribute to the momentum equation, because
these can be transformed into gradient terms that vanish
when contracted with the transverse projection operator.
Thus, the only osmotic stress term that survives in the mo-
mentum equation is the square gradient term proportional
to K.

The random noisesz anduab are assumed to be Gauss-
ian and white with zero mean and the following second mo-
ment to satisfy the fluctuation dissipation theorem:

^z~k,t !z~k8,t !&52Tlk2d~k1k8!d~ t2t8!, ~11!

^uab~k,t !ugj~k8,t8!&52Tmd~k1k8!d~ t2t8!

3~dagdbj1dajdbg!. ~12!

Equation~11! is the standard noise correlation for the con-
centration equation, but Eq.~12! is novel to the present
study, so it is useful to discuss the derivation in some detail.
The equation for the stress field can be rewritten as

] tsab52t21sab1G~]avb1]bva!1t21uab

52Gt21~dajdbh1dahdbj!
dF

dsjh

1G~]avb1]bva!1t21uab , ~13!

where Eq.~6! has been used for the free energyF andt5~m/
G!. Since the above equation is now written in canonical
form,15 it is evident that the noise correlation is

t22^uab~k,t !ujh~k8,t8!&52TGt21d~k1k8!d~ t2t8!

3~dajdbh1dahdbj!, ~14!

which reduces to Eq.~12! becauset5~m/G!. It can also be
verified that the coupled equations~8!, ~9!, and ~10! reduce
to the model-H equations for a binary fluid in the limitt→0.
In this limit, the equation for the stress tensor can be inserted
into the momentum equation to obtain

Fm~]b
2va1]a]bvb!1ja1]ac

dF

dcG
'

50, ~15!
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where the random noiseja is given by ja5@]buab#' . The
correlator for this new random noise@from Eq.~12!# is given
by

^ja~k,t !jb~k8,t !&

52^T ag~k!kjugjT bh~k8!kd8uhd~k8,t8!&

52Tmk2d~k1k8!d~ t2t8!T ab~k!. ~16!

The above noise correlation is identical to that used in the
model-H equations for binary fluids, indicating that the
present formulation is consistent with earlier ones used for
binary fluids in the limitt→0.

In the general case of finite stress relaxation time, the
momentum and stress equations can be combined and solved
to obtain

va~k,t !5Tab~k!H 2 ikgubg~k,t !2 i ~t] t11!

3F E
k1
E
k2
k1bc~k1 ,t !Kk2

2c~k2 ,t !

d~k11k22k!G J , ~17!

where the Oseen tensorTab~k! is

Tab~k!5
1

8pm S dab

k2
2
kakb

k4 D . ~18!

Subsequently, we scale all wave vectors byk5(r /K)1/2,
scale all times by~lk2r !21, and scale the concentration
c~k,t! by (T/k3r )1/2, which is the amplitude of the concen-
tration fluctuations due to thermal effects. The equation for
the concentration field now becomes

] tc~k,t !52k2~k221!c~k,t !1z~k,t !1d~ t !c~k,0!2edk
2E

k1
E
k2
E
k3

c~k1 ,t !c~k2 ,t !c~k3 ,t !

3d~k11k21k32k!1E
k1
E
k2
k1ac~k1 ,t !d~k11k22k!Tab~k2!

3H ec
1/2k2gubg~k2 ,t !1~t] t11!FecE

k3
E
k4
k3bc~k3 ,t !k4

2c~k4 ,t !d~k31k42k2!G J , ~19!

whereed5(uTk3/r 2) is the dimensionless parameter multi-
plying the nonlinearity arising from the quartic term in the
Landau–Ginzburg free energy, andec5(Tk/lmr ) is the pa-
rameter that multiplies the convective nonlinearity. In the
early stages of spinodal decomposition, the nonlinear terms
are small and soed andec can be treated as small parameters
for controlling the perturbation expansion. The dimension-
less Oseen tensor is now

Tab~k!5
1

8pk2 S dab2
kakb

k2 D , ~20!

and the dimensionless noise correlations are

^z~k,t !z~k8,t8!&52k2d~k1k8!d~ t2t8!, ~21!

^uab~k,t !ugj~k8,t8!&52@dajdbg1dagdbj#

3d~k1k8!d~ t2t8!. ~22!

In the present study, we restrict our attention to the ef-
fect of the convective nonlinearity on the spinodal decompo-
sition process~i.e., we seted50!. A diagrammatic perturba-
tion theory is employed in the small parameterec . There is a
four point vertex and a three point vertex associated with the
nonlinear terms shown in Fig. 1. The bare four point vertex
function is

V4~k,k1 ,k3 ,k4 ,t !5eck1aTab~k2!k3bk4
2d~k31k42k2!

3d~k11k22k!~t] t11!, ~23!

while the three point vertex is

V3ab~k,k1 ,k2!5ec
1/2k1gTag~k2!k2bd~k11k22k!. ~24!

Note that in the three point vertex, we explicitly draw theuab

correlation line, since this is necessary for calculating the
renormalization of the transport coefficient and noise corre-
lation. However, the correlation line forz is not explicitly
drawn. In Eq.~23!, the operator~t]t11! acts on the product

FIG. 1. The four point vertex~a! and three point vertex~b! due to the
nonlinear terms in the concentration equation.
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of the two legsc~k3,t!c~k4,t!, and the chain rule is used to
calculate the partial derivatives with respect to time.

In the present case, the nonlinear terms in the concentra-
tion equation result in the renormalization of both the trans-
port coefficient and the noise correlations. The Hartree ap-
proximation~Fig. 2! is used to determine the renormalization
of the transport coefficient, and the renormalized transport
coefficient is given by

G~k,t !t5G0~k!t2k2E
0

t

dt8 S~ t8!, ~25!

whereG0 is the bare transport coefficient. The details of the
approximation are given in the Appendix. The method used
here for obtaining the renormalized transport coefficient
G5G02k2S is very similar to the Gaussian approximation of
Langer,13 a simple ‘‘mass renormalization’’. However, the
calculations of the self energy in earlier studies were simpli-
fied by the fact that the self energy arising from the quartic
term in the Landau–Ginzburg free energy is independent of
wave vectork and time in the Gaussian approximation,
whereas in the present case the self energy depends onk and
contains time derivatives.

The self-energyS can be written as a sum of two com-
ponents -S1 due to the four point vertex@Fig. 3~a!# andS2
arising from the three point vertex@Fig. 3~b!#. The self en-
ergyS1 is given by

S1~k,t !5eck
22E

k8
@V4~k,k8,2k8,k,t !

1V4~k,2k8,k8,k,t !1V4~k,k8,k,2k8,t !

1V4~k,2k8,k,k8,t !1V4~k,k,k8,2k8,t !

1V4~k,k,2k8,k8,t !#@S0~k8,t !#, ~26!

whereS0~k8,t!5^c~k8,t!c~2k8,t!&0 is the correlation in the
concentration field calculated using the linear approximation
and neglecting the nonlinear terms in the transport equation.
The evaluation of the last two terms in the above integral,
proportional to V4~k,k,k8,2k8,t! and V4~k,k,2k8,k8,t! is
complicated by the fact that they contain the Oseen tensor
evaluated at zero wave numberTab~k82k8!, which is infi-
nite. In this case, it is necessary to re-examine the assump-

tions made in simplifying the momentum equation. Previ-
ously it was assumed that the inertial term is negligible
compared with the viscous term. This assumption is not valid
when the wave vector is zero, however, because the viscous
term is proportional tok2. Physically, this is because inertial
terms become important when the wavelength of the fluctua-
tions is large. In principle, the equation for the velocity field
should be modified to take into account inertial effects. How-
ever, a detailed calculation is not necessary, since it can eas-
ily be seen thatV4~k,k,k8,2k8,t! and V4~k,k,2k8,k8,t! are
equal in magnitude and opposite in sign for any value ofk
and k8, and therefore, the sum of these two contributions
vanishes.

Because of the operatort]t11 contained inV4, the self
energyS1 contains a viscous contribution proportional to the
bare correlation functionS0~k,t! and an elastic contribution
that involves the time derivative of the concentration field.
The time derivative]tc~k,t! contains two terms:

~i! The first proportional to the concentration field
c~k8,t! andc~k,t!.

~ii ! A second due to the random noise and the initial
concentration: z~k,t!1c~k,0!d(t) and z~k8,t!
1c~k8,0!cd(t).

The first contribution can be lumped in with the viscous
contribution to the self-energyS1~k,t!, since it just gives an
additional contribution proportional totG0~k,t! and
tG0~k8,t!. These terms can be expressed as

FIG. 2. Dyson equation for the Hartree approximation for the transport
coefficient.

FIG. 3. The self-energy due to the four point vertex function which renor-
malizes the transport coefficient~a!, the three point vertex function which
renormalizes the transport coefficient~b!, and the noise renormalization due
to the three point vertex function~c!.
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S1~k,t !5eck
22E

k8
$2kaTab~k1k8!kb~k822k2!

3@12tG0~k8!2tG0~k!#S0~k8,t !%. ~27!

The other elastic contribution to the self energy arising from
the termz~k8,t!1c~k8,0!d(t) is

S18~k,t !5eck
22E

k8
@2kaTab~k1k8!kb~k822k2!

3@^z~k8,t !z~2k8,t !&1S0~k8,0!d~ t !#. ~28!

It can be easily verified that the latter contribution to the
self-energy is independent of time, and is not dynamically
significant. Therefore, this can be absorbed in the definition
of the bare transport coefficient and neglected in the analysis.
In addition, there is a contribution arising from the term
z~k,t!1c~k,0!d(t). For t.0, this term is proportional to
z~k,t!, and appears as a renormalization of the correlation of
the random noisez~k,t!. Therefore, this is coupled with the
renormalization of the noise correlation, and is calculated in
Eq. ~33! later on.

The self-energy contribution from the three point vertex
functions is given by the one loop diagram in Fig. 3~b!. This
evaluates to

S2~k,t !5eck
22E

k1
E
k2
k1atag~k2!k1bTbj~k2!k2h

3k2u^uah~k2 ,t !ubu~2k2 ,t !&d~k11k22k!.

~29!

The above contribution to the self-energy provides a constant
correction to the transport coefficient, which remains sub-
dominant for all time. Therefore, this contribution can also
be lumped in the definition of the bare transport coefficient
and does not enter into the analysis. Hence, the only time
dependent contribution to the self energy is due to the four
point vertex functionV4.

It is necessary to address one further issue before pro-
ceeding to evaluate the self-energy, which is the ultraviolet
divergence of certain wave vector integrals. In previous stud-

ies, this issue has been resolved by using an upper wave
number cutoff. However, here a simpler procedure is em-
ployed by recognizing that the divergent contributions to the
self-energy are independent of time, and hence, can be ab-
sorbed in the definition of the bare transport coefficient. The
expression forS1 in Eq. ~27! contains the factor

S0~k8,t !5x~k8!1exp~2G0t !@S0~k8,0!2x~k8!#, ~30!

wherex~k8!5~k82 21!21 andS0 is the bare correlation func-
tion. In the above expression, the last term on the right side
gives rise to convergent wave vector integrals, since it is
proportional to exp@2k2(k221)t# at largek. The divergence
of the wave vector integrals is due to the first term on the
right, which is independent of time. Therefore, the contribu-
tion to the self energy due to this term can be included in the
definition of the bare transport coefficient, and can be ne-
glected while evaluating the time dependent corrections to
the self-energy. With this redefinition of the transport coef-
ficient, all wave vector integrals in the self-energy are con-
vergent.

The resulting self-energyS5S1 can be separated into
two components, one due to the viscous and the second due
to the elastic contributions to the convective nonlinearity

S~k,t !5Sv~k,t !1tSe~k,t !. ~31!

We have explicitly extracted the linear dependence ont from
the elastic contributionSe~k,t!. The self-energiesSv~k,t! and
Se~k,t! are shown as a function of~dimensionless! k at vari-
ous ~dimensionless! times in Figs. 4 and 5. The self-energy
Sv has a maximum atk50, and is positive fork,0.75. It
then decreases to a minimum atk51.02, and increases pro-
portional to k22 in the limit k@1. This indicates that the
convective nonlinearity tends to amplify concentration
modes withk,0.75, and dampen modes withk.0.75. This
is in contrast to the nonlinearity due to the quartic term in the
free energy, which tends to damp modes at all wave
numbers.12 The self-energySe is negative in the interval 0.75
,k,1.15 and positive outside this interval, indicating that
the modes in the interval 0.75,k,1.18 are dampened, while
all other modes are amplified. The self-energySe diverges

FIG. 4. The self-energySv~k! as a function ofk for s ~t52.5!; n ~t55.0!;
h ~t57.5!; L ~t510!. FIG. 5. The self energySe~k! as a function ofk for s ~t52.5!; n ~t55.0!;

h ~t57.5!; L ~t510!.
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proportional tok2 in the limit k@1, indicating that modes
with higher wave numbers are amplified faster.

In addition to the renormalization of the transport coef-
ficient, the nonlinear terms also produce a renormalization of
the concentration noise correlation. This renormalization is
caused by the one-loop diagrams shown in Fig. 3~c!. It is
useful to note that the three point vertex is proportional to
ec
1/2, while the four point vertex is proportional toec . The
renormalization of the noise correlation due to the one-loop
diagram involving the three point vertex@which contains the
product of two three point vertices, cf. Fig. 3~c!# is of the
same order inec as the renormalization of the transport co-
efficient due to a bubble diagrams@which contains one four
point vertex, cf. Figs. 3~a! and 3~b!#. However, the renormal-
ization of the noise correlation due a one loop diagram in-
volving the four point vertex isO(ec) smaller than that due
to the noise correlation, and is neglected in the analysis. The
contribution to the self energy of the noise correlation due to
the one-loop expansion,P1~k,t!, shown in Fig. 3~c!, is

P1~k,t !5eck
22E

k1
E
k2
kaTab~k2!Tbg~k2!kg~2k2

2!

3S0~k1 ,t !d~k11k22k!. ~32!

In addition to the above, there is an additional contribu-
tion to the noise correlation due to the term proportional to
z~k,t! which appears due to the time derivative in the elastic
nonlinearity @see the discussion just after Eq.~28!#. This is
given by

P2~k,t !5ectk
22@2k21S~k,0!d~ t !#E

k8
2ka

3Tab~k1k8!kb~k822k2!S0~k8,t !

5t@2k21S~k,0!d~ t !#Sv~k,t !. ~33!

As illustrated in Fig. 6, the renormalization of the noise
correlationP1 is positive for allk and decreases proportional
to k24 at largek. Therefore, the renormalization of the noise
correlation also tends to amplify the structure factor@see Eq.
~35!#. The variation in the structure factor is shown att510
for various values ofec and att50 in Fig. 7. The initial
value of the structure factor att50 was assumed to be a
simple LorentzianS0~k!51/~k211!. The calculation clearly
shows that the structure factor is amplified due to the con-
vective nonlinearity, in contrast to the nonlinearity due to the
quartic term in the free energy, which damps modes at all
wave numbers. Further, the effect of the nonlinearity tends to
coarsen the system and the peak wave number decreases as
ec increases. This is shown in Figs. 8 and 9, where the wave
number of the peak of the structure factorkmax and the peak
value Smax are shown as a function of time for different
values ofec . Note that the value ofkmax is not shown near
t50 because it depends in this region on the initial form of
the structure factor. For the Ornstein–Zernicke form as-
sumed here, the maximum is atk50, and a nonzero maxi-
mum appears only at a time neart50.5. In addition, the
initial value of the maximum differs from the value
kmax51/& predicted by the Cahn–Hilliard theory due to the
presence of the noise correlations~see, for example, Grant
et al.12!. Figure 10 shows the integral of the structure factor

s5E
0
dk k2S~k!, ~34!

where the upper cutoffl was assumed to be two in the
present calculations. This figure indicates that the magnitude
of the fluctuations is amplified due to the convective nonlin-
earity.

The effect of variation in the relaxation timet on the
spinodal decomposition process is also shown in Figs. 7–10.
An increase in the relaxation time tends to increase the mag-
nitude of the structure factor and decrease the wave number
of the peak value of the structure factor, as shown in Figs. 8,
9, and 10. The effect of the elastic nonlinearity is very simi-
lar to that of the convective nonlinearity. However, there is
one significant difference associated with thek4 increase in
the elastic self energy at largek. The increase in the self
energy at largek is caused by a reduction in the coefficient

FIG. 6. The renormalization of the noise correlationP1~k! as a function of
k for s ~t52.5!; n ~t55.0!; h ~t57.5!; L ~t510!.

FIG. 7. The structure factorS(k) as a function ofk at t510. ~solid line!
~e50.0,t50.0!; ~broken line! ~e52.0,t50.0!; ~dotted line! ~e52.0,t52.0!;
~dot-dashed line! ~e52.0, t55.0!.
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of the O(k4) term in the transport coefficient due to the
self-energySe . This feature is unique to viscoelastic fluids—
the nonlinearity arising from the quartic term in the Landau–
Ginzburg free energy alters only theO(k2) term in the trans-
port coefficient, while the self-energy associated with the
viscous convective nonlinearity decreases ask22 at largek.

III. CONCLUSIONS

The effect of viscoelasticity on the early stages of spin-
odal decomposition was analyzed. The model employed in
our study consisted of coupled Langevin equations for the
concentration, velocity, and stress fields. Novel to the present
study was the use of a linear Maxwell model for the stress
field. Because of this change in constitutive relation, the
phase transformation kinetics depend on the stress relaxation
time t in the Maxwell model as well as the strength of the
convective nonlinearityec associated with the usual viscous
stresses. The nonlinearity arising from the quartic term in the
Landau–Ginzburg free energy was neglected for simplicity;
its effect has been examined in many earlier studies.

A perturbation expansion was used to calculate the
renormalization of the transport coefficient for collective dif-
fusion and the noise correlation. The renormalization of the
transport coefficient, which was calculated using the Hartree
approximation, depends on the wave numberk, in contrast to
the renormalization in the usual~nonmode-coupled! solid
model which is independent ofk. The renormalized transport
coefficient contains one contribution due to the elastic term
in the stress equation,Se , that is dependent on the relaxation
time t, and one due to the convective nonlinearity,Sv ,
which is independent of the relaxation time. At lowk, the
forms of Se andSv are similar, and the renormalization of
the transport coefficient tends to amplify disturbances with
wave number less than about 0.75 and dampen disturbances
with wave number greater than 0.75. However, at largek the
elastic contribution is positive and diverges proportional to
k2 while the convective contribution is negative and de-
creases proportional tok2. Therefore, there is an amplifica-

tion of the largek modes due to the elastic contribution to
the transport coefficient, but not due to the convective term.

The present analysis indicates that growth of the struc-
ture factor in the presence of convective and elastic nonlin-
earities is faster than that in the linear regime, and an in-
crease in the relaxation time tends to increase the growth
rate. Moreover, coarsening to smaller wave numbers with
time is produced by the inclusion of these nonlinearities. The
qualitative effect of the elastic nonlinearity in the linear
Maxwell model, however, is similar to that due to the con-
vective nonlinearity. Overall, we are hopeful that the results
of the present study will shed light on the complex phase
transformation kinetics of viscoelastic fluids, such as poly-
mer blends.
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APPENDIX

In this section, the derivation of the renormalized trans-
port coefficient using the Hartree approximation is discussed.
The equation for the structure factor can be written in terms
of the renormalized transport coefficient and noise correla-
tion as

] tS~k,t !52@G02k2S~k,t !#S~k,t !1@2k21k2P~k,t !#

1d~ t !S~k,0!, ~A1!

where S and P are the ‘‘self-energies’’ for the transport
coefficient and the noise correlation andG0~k!, the bare
transport coefficient, isk2(k221) in scaled variables. The
solution of Eq.~A1! is

FIG. 8. The wave number of the peak value of the structure factorkmax as a
function of t. ~solid line! ~e50.0, t50.0!; ~broken line! ~e52.0, t50.0!;
~dotted line! ~e52.0, t52.0!; ~dot-dashed line! ~e52.0, t55.0!.

FIG. 9. The peak value of the structure factorSmax as a function oft. ~solid
line! ~e50.0, t50.0!; ~broken line! ~e52.0, t50.0!; ~dotted line! ~e52.0,
t52.0!; ~dot-dashed line! ~e52.0, t55.0!.
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S~k,t !5expH 2FG0t2k2E
0

t

dt8 S~k,t8!G J SS~k,0!

1E
0

t

dt9 expH FG0t92E
0

t9
dt8 k2S~k,t8!G J

3@2k21k2P~k,t9!# D . ~A2!

Thus, the renormalized structure factor can be calculated if
the self-energies for the transport coefficient and noise cor-
relation are known.

In the linear approximation, the concentrationc~k,t! is
expressed as

c~k,t !5U0~k,t,t8!@z~k,t8!1c~k,0!d~ t8!#, ~A3!

where, by convention, the Dirac delta functiond~t8! is de-
fined so that the integral ofd~t8! from zero to infinity is one.
The time propagatorU0~k,t,t8!, which is an integral opera-
tor, is given by

U0~k,t,t8!5exp@2G0~k!t#E
0

t

dt8 exp@G0~k!t8#. ~A4!

The presence of the nonlinear terms leads to a renormaliza-
tion of the kinetic coefficientG~k,t!, which can be repre-
sented by using a time-dependent Dyson equation for the
response function. Here, we make a simple ‘‘Hartree ap-
proximation’’ for the response function. The Dyson equation
for this approximation can be expressed as shown in Fig. 2.
The thick lines represent the renormalized response function
U~k,t,t8! which includes the effect of the nonlinear terms in
the Hartree approximation

U~k,t,t8!5exp@2G0~k!t#E
0

t

dt8 exp@G0~k!t8#A~k,t,t8!,

~A5!

where the renormalization factorA~k,t,t8! is to be deter-
mined using the Dyson equation. This equation can be writ-
ten as

exp@2G0~k!t#E
0

t

dt8 exp@G0~k!t8#A~k,t,t8!

5exp@2G0~k!t#H E
0

t

dt8 exp@G0~k!t8#

1E
0

t

dt9 A~k,t,t9!k2S~ t9!E
0

t9
dt8 exp@G0~k!t8#J

5exp@2G0~k!t#H E
0

t

dt8 exp@G0~k!t8#

1E
0

t

dt9 k2S~ t9!E
0

t9
dt8 exp@G0~k!t8#A~k,t9,t8!J ,

~A6!

where thek dependences of the self-energyS has been sup-
pressed for simplicity. The quantityk2S(t9) represents the
loop integral in Fig. 2 and the explicit factor ofk2 in the
self-energy is consistent with the concentration field being a
conserved dynamical variable. Equation~40! can be rear-
ranged by changing the order of the integration oft8 and t9,
and can be further simplified to derive the following integral
equation forA~k,t,t8!:

A~k,t,t8!511E
t8

t

dt9 A~k,t,t9!k2S~ t9!

511E
t8

t

dt9 A~k,t9,t8!k2S~ t9!. ~A7!

This integral equation can be easily solved to express the
unknown functionA~k,t,t8! in terms of the self-energyS(t),

A~k,t,t8!5expFk2E
t8

t

dt S~t!G . ~A8!

Using the above expression forA~k,t,t8!, the propagator
U~k,t,t8! ~renormalized to include the nonlinear terms in the
Hartree approximation! is now given by

U~k,t,t8!5exp@2G~k,t !t#E
0

t

dt8 exp@G~k,t8!t8#,

~A9!

where

G~k,t !t5G0~k!t2k2E
0

t

dt8 S~ t8!. ~A10!
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