Early stage spinodal decomposition in viscoelastic fluids
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The effect of viscoelasticity on the early stages of spinodal decomposition is examined. In addition
to the concentration and momentum equations for the fluid, the effect of viscoelasticity is included
using a linear Maxwell equation for the stress tensor. The growth in the amplitude of the fluctuations
depends on the transport coefficient, the viscosity of the fluid, and the relaxation time in the
Maxwell model. For simplicity, the nonlinearity due to the quartic term in the expression for the
Landau—Ginzburg expression for the free energy is neglected, as are the inertial terms in the
momentum conservation equation. The momentum and Maxwell equations are solved exactly to
obtain the velocity as a function of concentration, which is then inserted into the concentration
equation. There are two types of nonlinearities in the conservation equation—one proportional to
the cube of the concentration which leads to a four point vertex, and one proportional to the product
of the concentration and the random noise in the stress equation which leads to a three point vertex.
In the leading approximation, the renormalization of the transport coefficient due to these vertices
is determined using the Hartree approximation, and the renormalization of the noise correlation due
to the three point vertex is determined using a one-loop expansion. The renormalized transport
coefficient and noise correlation are inserted into the concentration equation to determine the effect
of the nonlinearities on the growth of the structure factor. It is found that an increase in the
relaxation time tends to increase the rate of growth of the structure factor, and tends to decrease the
wave number of the peak in the structure factor. 1@96 American Institute of Physics.
[S0021-960606)51040-9

I. INTRODUCTION terated and protonated polybutadiene. They observed that the
decomposition process could be separated into four stages,
Theories of spinodal decomposition in polymer blendsand the scaling laws in the intermediate stage is different
and other heterogeneous polymeric systems, e.g., block c@om that predicted by the current theories for spinodal de-
polymers, have been of interest to the polymer science conomposition in binary fluids. These experiments suggest that
munity for some time. Such theories attempt to describe thgiscoelastic stresses could have a significant influence on the
temporal evolution of compositional order when an initially spinodal decomposition process. In the present paper we

homogeneous polymer melt is rapidly cooled into an un,nsider the role of viscoelasticity on the early stages of
stable region of the phase diagram. The early studies of d?pinodal decomposition

Gennes, Pincus? and Bindet analyzed the demixing transi-
tion of binary blends of homopolymers. These linearized
theories are restricted to the early stages of structural evol
tion, and are capable of predicting only the wavelength of th
most unstable mode. These employ a simple diffusion equ
tion for the concentration field which is similar to those for

The earliest theory for the very short time regime of
spinodal decomposition is the Cahn—Hilliard—Cook
Yheory=8 which predicts the growth of the structure factor
?equal-time pair correlation function of concentration fluc-
athations as a function of time. In this approach, a linear

the early stage spinodal decomposition in simple fluids Olstability analysis is applied to the one-phase system to deter-

metal alloys. However, polymer melts are more complexMin€ the wavelength and the growth rate of the most un-
than simple fluids because they exhibit viscoelastic behavioStable mode, but this theory cannot predict the coarsening of
and the elasticity of the melt has not been taken into accourihe fluctuations due to the neglect of nonlinear effects. There
in previous studies. Moreover, recent experimental evidencB2ve been many theories that attempt to incorporate nonlin-
indicates that spinodal decomposition in a viscoelastic flui¢@r effects in the description of the spinodal decomposition
may be qualitatively different from that in a simple fluid. Process. The most successful of these was devised by
Tanak4 carried out experiments on the phase separation dianger, Baron, and Millér (LBM). Here, the form of the
polystyrene-diethyl malonate mixtures, and observed that therobability distribution function of the concentration is as-
late stage coarsening dynamics is dominated by the vissumed to be the sum of two Gaussian distributions with dif-
coelastic effect due to the strong coupling between the stre§grent means and variances. The closure is achieved by ex-
field and concentration diffusion. Wiltzius and Batetudied  pressing thenth order correlation functior§,(k,t) as the

the spinodal decomposition in a melt consisting of perdeuproduct of thenth moment of the probability distribution
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function with the ratio of the structure factor and the varianceof both the transport coefficient and the noise correlation.

of the distribution The nonlinearities in the transport equations lead to fourth
n order vertices, and the renormalizations due to these vertices
Sn(r,t)=<¢2> S(r,t). (1)  are calculated using the “Hartree approximation.” In the
(¥%) Hartree approximation, the correction to the correlation and

Here, y(r,t)=c(r,t)—c, is the departure from the average response functions due to all bubble diagrams involving the

concentration and the correlation functi6q(rt) is defined —guartic nonlinearity are included, but higher-order loop dia-
as grams and more topologically complex diagrams are not

- included!* This approximation is exact to leading order in
Snl(r, ) =(g(x+r,H)" Th(x1), () the perturbation parameter, but higher order terms contained

S(r.t) is used as a shorthand f@,(rt). With the above in the bubble diagrams are also included. In addition, there
approximation, a closed set of equations is obtained andre cubic vertices that result in the renormalization of the
these equations predict both the coarsening of the structufoise correlation in the Langevin equation. This renormaliza-
factor and the formation of a bimodal distribution. The LBM tion is calculated using a simple one-loop expansion.
theory was first compared to Monte Carlo simulations of

spinodal decomposition in metals based on the kinetic Isingl. ANALYSIS

model, and was found to be in good qualitative agreement The basic equations used for analvzing the dvnamics of
with the simulations. This theory was extended to binary q yzing y

fluids by Kawasaki and Oht? who compared their results spinodgl decom'position in viscoelasti'c fluids are cpupled
with the experiments of Goldburg, Shaw, Huang, andLangevm equations for the slqw varlabl_es, which in t_he
Pilant! and reported reasonable agreement. present case are the concentration, v_elo_cny and stress fields.
In the t lized perturbati The equations employed here are similar to the métel-
present paper, a renormalized perturbation expan

sion is used to analyze the early stage spinodal decompos‘?—quat'onés that have been used previously for describing the

L i . . . . demixing transition in incompressible binary fluids. In the
tion in a viscoelastic fluid. The equations for the fluid are . )

. . I resent case, however, it is necessary to write a separate
coupled equations of motion for the concentration field, th

velocity field, and the stress field. The Langevin equation fo daggzvé? tﬁgu;tr'ggsfg:] ttr;]ee ?/téfoscsit f'?ilgl’ d tzgcr?g:lictgleindz&?-
the stress field is a novel feature of the present analysis anéle ) y ! .
ue to elastic effects. The conservation equation for the con-

invokes the time-dependent Maxwell model for a viscoelas- S
tic fluid. The momentum equation is coupled to the equationcentratlon field is
for the stress field due to the dependence of the stress on the , OF

gradient of the velocity field. As a first step, we neglect the ¥~ ~Vaday + AT, w+ ¢ ©)
effect of the quartic nonlinear term in the Landau—Ginzburg ) o .

free energy and focus instead on the viscoelastic convectiVWherey=y(xt) is the concentration field,, = v .(xt) is the

couplings. The dynamics of the resulting decomposition proYelocity field, a=(a/dt), J,=(dldx,), and Greek subscripts

cess depends on quench depth, fluid viscosity, and the stre@€ used to denote vectors. The first term on the right is the
relaxation timer of the Maxwell model. The effect of the Variation in concentration due to convective transport, the

nonlinearity due to the quartic term in the free energy isS€cond term is the divergence of the diffusive flux due to
included in the Kawasaki—Ohta theory, so the present resuli@radients in the chemical potentiaF/éy, and is an On-

do not coincide with the Kawasaki—Ohta theory in the limit S29€T transport coefficient describing the rate of collective
7—0. However, the equations used here coincide with thosdiffusion. The last term on the right-hand side is the thermal

in the Kawasaki—Ohta theory if the quartic nonlinearities arg"0iS€ required to satisfy the fluctuation—dissipation theorem,
neglected and- is set to zero. whose statistics will be discussed later. The momentum con-

The approach adopted in the present paper is differergervation equation states that the transverse component of

from the LBM theory and more closely resembles the analy:‘he divergence of the stress is equal to the applied forces on

sis of Grantet al!2 where a systematic perturbation expan-tne System
sion was employed, and the Gaussian approximation of
Langer'® However, in those analyzes, the renormalization of
the (concentratioptransport coefficient was due to the quar-
tic term in the Landau—Ginzburg free energy and this wawhere[---], represents the transverse component of the vec-
assumed to be wave number independent. Here, the rendor (a consequence of the incompressibility constjaifihe
malization is due to the combined action of the convectivefirst term on the left side of the above equation is the diver-
term in the concentration equation and the elastic term in thgence of the stress tensor, which includes both viscous and
Maxwell equation, and the renormalization of the transportelastic stresses, while the second term is the reciprocal of the
coefficient is wave number dependent. In addition, the noiseonvective term in the concentration E8) and represents
correlation in the stress equation results in a renormalizatiothe osmotic force density. The inertial terms in the momen-
of the random noise correlation in the concentration equatum conservation equation have been neglected compared to
tion. Therefore, in the present case, a diagrammatic pertuthe viscous and elastic terms. This is a good approximation
bation analysis is required to determine the renormalizatioin most circumstances of practical interest. For example, the

oF

aﬂo-a/i’-‘raaw w 0, (4)

1
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magnitude of the fluctuating velocity can be obtained by
comparing the energy of fluctuations with the thermal en-7as(K)
ergy, i.e., pV2L3)~T (L is a characteristic length This
givesV~(T/pL%)2 and the inertial terms can be neglected
compared to the viscous ones fQr’L/Tp)Y%>1 (u is the
shear viscosity Insertingp=10® kg/m® and a lower bound
of u=10"2 kg/m/s, we find that the inertial terms can be (7d,+ Do pkt)=—iu[kwg(k,t) +kgv (k)]
neglected fol. >4x10"? m at room temperature. This con-
dition is always satisfied since 18 m is an atomic length + 0.5k, 0+ 0,5(k,0) (1), (10
scale. where [, =(2m) 3[dk and.?aﬁ(k)zéaﬁ—ﬁaﬁﬁ is the trans-
The equation for the stress tensor is given by the simplgerse projection operator. In the concentration and stress
linear Maxwell modef® Egs.(8) and (10), the initial condition has been included as
an inhomogeneous term on the right-hand side. Also, in these
and all subsequent equations, an implicit factor(@#)° is

wherer is a stress relaxation time that can be expressed aagbsorbed into the definition of each Dirac delta function with

the ratio of a shear viscosity to a shear modulu&, 7= (u/ wave vector arguments._ln going from E(_@}) to. (9)’ the last
G). In the above equation, we have neglected the convect rm on the left-hand side has been simplified as follows.

derivatives present in the corotational Maxwell model, since he terms arising _from(i(F)/(&p) that are proport_lonal to
ndu do not contribute to the momentum equation, because

these represent higher-order nonlinear contributions to th§1 be t ¢ d4 int dient t that ish

stress field. The free energyis given by the usual Landau— Ese cant et r('jans.tc;]rrr:ﬁ Itn 0 gradien grrrF a vartus

Ginzburg expression with additional contributions due to the\_/rv en contracted with Ihe Iransverse projection operator.
hus, the only osmotic stress term that survives in the mo-

kinetic energy of the fluid and the elastic strain energy - . .
mentum equation is the square gradient term proportional

F=J dx 0 (9,0)2— 5 P(x,1) 2+ 2 P(x, )4 The random noise$ and 6,5 are assumed to be Gauss-
p , 1
+ v (X)) + 2G TaB9Bals (6)

ian and white with zero mean and the following second mo-
2

—ikyaﬁy—if f Kypp(Ky,t)
ke ko

><Kkglp(kz,t)a(kﬁkz—k)}:o, 9)

(10t +1)0 5= (0 + dgvo) + Oup, (5)

ment to satisfy the fluctuation dissipation theorem:
(LD LK D)) =2TNK?S(k+K') 8(t—t"), (12)

where K andr are positive constants when the system is (Bop(K,1) 0,(K' 1)) =2T pd(k+k') S(t—t')
below the transition temperature. The first three terms in the 7
above equation represent the standard Landau—Ginzburg free X (8ayOpet 6aedp,). (12

len(.atrgill, ﬂ:e ftgurth ter(;ntrl]s tlhetktlnetlg e?hergyl dl:,e tot the VeEquation(ll) is the standard noise correlation for the con-
ocity fluctuations, and ne 1ast term 1S e elastic strain eNng.q 4o equation, but Eq12) is novel to the present

eray. By neglecting cubl_c_terms i, we restrict consider- study, so it is useful to discuss the derivation in some detail.
ation to systems at the critical composition. We also note thaq-he equation for the stress field can be rewritten as
r is the parameter proportional to the depth of the quench

below the critical temperature. G0 ap=—T *0ap+ (0 5+ Ip0a) +7 L0,g
The analysis is conveniently carried out in Fourier space, SF
where the components of the concentration and velocity = —G7 (0Bt Sundse)
fields are K K o0 ¢,
+G(00p+dg0a) + 7 10,5, (13

k= f dx explik o Xa) ¥(x.1), where Eq.(6) has been used for the free enefgwand = (u/

(7) G). Since the above equation is now written in canonical
form,’® it is evident that the noise correlation is

T X 0,5(K,1) O (K' 1)) =2TGr 18(k+K')S(t—t")
X(84e05y+ Oundps), (14)

vﬁ(k,t)zf dx exp(ik X ,)v g(X,1).

The transformed equations are

dep=— NKP(KK?>= 1) gh(k,t) + £ (K, t) + ¢(K,0) 5(t) which reduces to Eq(12) becauser=(u/G). It can also be
verified that the coupled equatio8), (9), and(10) reduce
+if J Uo(Ko UK otp(Ky 1) (ki +Ko—k) to the modelH equations for a binary fluid in the limit—0.
ki /ka In this limit, the equation for the stress tensor can be inserted

into the momentum equation to obtain
_)\Usz f J’ l//(kllt)l//(kZIt)lrlj(kSlt)
kyJkpJk3

5 oF
M(&Bva+o"aaﬁvﬂ)+§a+&a¢ O, (15)

X&(k1+k2+k3_k), (8) 6_lllL_
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where the random noisg, is given by &,=[dg0,4], . The Y (kppt)
correlator for this new random noiggom Eq.(12)] is given - Ouplkast)
by k Y (ksst) k
(€alk,D)Ep(K 1))
g P (kgt) Y (ky,t)
= (T 0 (K)ke0,:7 5, (K" VK50, 5(k'
(T ay (KK, o7 5, (K K8,k ') b krvkae ) Vgl b k)
=2Tuk?S(k+Kk')8(t—t").7 ,5(K). (16) (a) (b)

The above noise correlation is identical to that used in the
modelH equations for binary fluids, indicating that the FiG. 1. The four point vertexa) and three point vertexb) due to the
present formulation is consistent with earlier ones used fononlinear terms in the concentration equation.
binary fluids in the limitr—0.
In the general case of finite stress relaxation time, the

momentum and stress equations can be combined and solv\évcfi1 ere the Oseen tensor,y(k) is

to obtain
(k)= 1 (5(13 kak,;) 19
va<k,t>=Taﬂ<k>{‘iky%<k,t>—i<rat+1> o 8wk K
Subsequently, we scale all wave vectors ky(r/K)¥2
X J J klﬁl//(kl,t)Kkg,p(kz,t) scale all times by(A«r)™*, and scale the concentration
ky Jka Y(k,t) by (T/«°r)¥2 which is the amplitude of the concen-
tration fluctuations due to thermal effects. The equation for
S(kq+ kz—k)”, (17)  the concentration field now becomes

(k) === Dk, + L0+ 309k e | [ [ ptkatution v
1 2 3
X&(kl+k2+k3_k)+fk fk klal//(kllt)g(kl—’_kz_k)Taﬁ(kZ)

X1 €%, 05,(Ka )+ (73 +1)

. fks fk4k3B¢<k3,t>kiw<k4,t)6<k3+k4—k2>H, (19

whereey= (uT«3/r?) is the dimensionless parameter multi- In the present study, we restrict our attention to the ef-
plying the nonlinearity arising from the quartic term in the fect of the convective nonlinearity on the spinodal decompo-
Landau—Ginzburg free energy, agg=(T«/\ur) is the pa-  sition processi.e., we sete;=0). A diagrammatic perturba-
rameter that multiplies the convective nonlinearity. In thetion theory is employed in the small parametgr There is a
early stages of spinodal decomposition, the nonlinear termfur point vertex and a three point vertex associated with the
are small and se; ande, can be treated as small parametersnonlinear terms shown in Fig. 1. The bare four point vertex
for controlling the perturbation expansion. The dimension-function is

less Oseen tensor is now
Va(k,Kq,kz,kq,t)= ecklaTaB(kz)kwkﬁ&(ker ks—k>y)

K.k _
Taﬁ(k)=877k2(5aﬁ— kzﬁ)’ 20 X 8(ky+kp—K)(rd+1), (23

while the three point vertex is

and the dimensionless noise correlations are Vaap(k, Ky, Kp) = e%’zkl,/Tm/(kz)kZ,B&(kﬁ ko,—Kk). (29
(C(kD K 1)) =2k28(k+K') S(t—t") (21) Note that in the three point vertex, we explicitly draw #g
' ' ' correlation line, since this is necessary for calculating the
K.t K' A )NV=2[8.,55.+85..8 renormalization of the transport coefficient and noise corre-
(Oap(k1) Oyl ))= 20008y SayOpel lation. However, the correlation line faf is not explicitly
X o(k+k")o(t—t). (22 drawn. In Eq.(23), the operatofd,+1) acts on the product
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Pk, (K1)
(a)
= —x +
FIG. 2. Dyson equation for the Hartree approximation for the transport edn(hz,t) 0 9("52,'()
coefficient. B
3]
(b)

of the two legsi(ks,t)¢(k,,t), and the chain rule is used to
calculate the partial derivatives with respect to time.

In the present case, the nonlinear terms in the concentra-
tion equation result in the renormalization of both the trans-
port coefficient and the noise correlations. The Hartree ap-
proximation(Fig. 2) is used to determine the renormalization
of the transport coefficient, and the renormalized transport
coefficient is given by Y Ckyt)

Gdn ('Kz,t) 989(52 ,t)

Y (k1)

(c)

t
F(k,t)t=1“0(k)t—k2f dt’ (t'), (25
0 FIG. 3. The self-energy due to the four point vertex function which renor-
whereTl, is the bare transport coefficient. The details of theMalizes the transport coefficietd), the three point vertex function which
. . . . . renormalizes the transport coefficigh), and the noise renormalization due
approximation are given in the Appendix. The method useq
here for obtaining the renormalized transport coefficient
I'=T,—k? is very similar to the Gaussian approximation of
Langer'® a simple “mass renormalization”. However, the tions made in simplifying the momentum equation. Previ-
calculations of the self energy in earlier studies were simpliously it was assumed that the inertial term is negligible
fied by the fact that the self energy arising from the quarticcompared with the viscous term. This assumption is not valid
term in the Landau—Ginzburg free energy is independent ofvhen the wave vector is zero, however, because the viscous
wave vectork and time in the Gaussian approximation, term is proportional t&2 Physically, this is because inertial
whereas in the present case the self energy depenkisind  terms become important when the wavelength of the fluctua-
contains time derivatives. tions is large. In principle, the equation for the velocity field

The self-energy. can be written as a sum of two com- should be modified to take into account inertial effects. How-
ponents X, due to the four point verteiFig. 3@] and>, ever, a detailed calculation is not necessary, since it can eas-
arising from the three point verte¥ig. 3b)]. The self en- ily be seen that/,(k,k,k’,—k’,t) and V,(k,k,—k’k’,t) are
ergy 3, is given by equal in magnitude and opposite in sign for any valué of
and k’, and therefore, the sum of these two contributions
vanishes.

Because of the operate#;+1 contained inv,, the self
energy2, contains a viscous contribution proportional to the
+Va(k, =K’ k" K, ) +Vy(k,k' K, —k',t) bare correlation functioiy(k,t) and an elastic contribution

, , that involves the time derivative of the concentration field.
FValk, =k KK D HVa(k kKT =k 1) The time derivatives,#/(k,t) contains two terms:

+Va(k,k, =k, k" 1) ][Sp(k", )], (26) (i) The first proportional to the concentration field

1) — ’ ! : : - Qb(k,,t) and lﬁ(k,t)
whereSO(k. ’t)_.w’(k D~k ’t»o. is the gorrelatlon n the. rgii) A second due to the random noise and the initial
concentration field calculated using the linear approximatio S f

! ! : . concentration: ¢(k,t)+¢#(k,008(t) and (k'.t)
and neglecting the nonlinear terms in the transport equation. + K 0)ca(t)
The evaluation of the last two terms in the above integral, ' '
proportional to V,(k,kk',—k’t) and V,(kk,—k'k't) is  The first contribution can be lumped in with the viscous
complicated by the fact that they contain the Oseen tensaontribution to the self-energ};(k,t), since it just gives an
evaluated at zero wave numbe,z(k’—k’), which is infi-  additional contribution proportional toy(k,t) and
nite. In this case, it is necessary to re-examine the assumpty(k’,t). These terms can be expressed as

o the three point vertex functioft).

2k, )= eck*ZJ’ [V4(k,k',— k' ,Kk,1)
k/
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FIG. 4. The self-energ¥, (k) as a function ok for O (t=2.5); A (t=5.0);
O (t=7.5; ¢ (t=10). FIG. 5. The self energ..(k) as a function ok for O (t=2.5; A (t=5.0);

O (t=7.5; ¢ (t=10).

ies, this issue has been resolved by using an upper wave
number cutoff. However, here a simpler procedure is em-
, , ployed by recognizing that the divergent contributions to the

X[1=7To(k") = 7L o(k)]Sp(k", )} (27) self-energy are independent of time, and hence, can be ab-
The other elastic contribution to the self energy arising fromsorbed in the definition of the bare transport coefficient. The
the termZ(k’ t)+y(k’,004t) is expression foi; in Eq. (27) contains the factor

So(k’,t)=x(k") +exp(—Lot)[So(k’,0) — x(k")], (30)

wherey(k')=(k'? —1)"! andS, is the bare correlation func-
X[(Z(k' D~k D) +Sp(k',0)8(D)]. (28 t|9n. In.the above expression, the last tgrm on the .rlght §|Qe
. ’ s gives rise to convergent wave vector integrals, since it is
It can be easily verified that the latter contribution to theproportional to exp-k?(k?—1)t] at largek. The divergence
self-energy is independent of time, and is not dynamicallyof the wave vector integrals is due to the first term on the
Significant. Therefore, this can be absorbed in the def|n|t|0r|||ght, which is independent of time. Therefore, the contribu-
of the bare transport coefficient and neglected in the analysigion to the self energy due to this term can be included in the
In addition, there is a contribution arising from the term gefinition of the bare transport coefficient, and can be ne-
{(k,t)+y(k,004(t). For t>0, this term is proportional to glected while evaluating the time dependent corrections to
{(k,t), and appears as a renormalization of the correlation ofhe self-energy. With this redefinition of the transport coef-
the random noisg(k,t). Therefore, this is coupled with the ficient, all wave vector integrals in the self-energy are con-
renormalization of the noise correlation, and is calculated iergent.
Eq. (33) later on. o _ The resulting self-energ¥, =%, can be separated into
The self-energy contribution from the three point vertexyyo components, one due to the viscous and the second due

functions is given by the one loop diagram in FigbB This  tg the elastic contributions to the convective nonlinearity
evaluates to

2kt = eck‘sz,{zkauﬁ(m k')kg(k'2—k?)

2ik)= 6ck‘2fk,[2kaTaﬂ(k+ K')kg(k'2—k?)

S(k,t)=3,(kt)+ 2 (k,t). (31

So(k,t)= eck‘zf f Kiatay(K2)KigT ge(K2)Kz, We have explicitly extracted the linear dependence from
kilke the elastic contributiol4(k,t). The self-energieg, (k,t) and

X Koo Oap(K2,1) 05—k 1)) 8(ky+ko— k). 2.(k,t) are shown as a function ¢flimensionlessk at vari-

ous (dimensionlesstimes in Figs. 4 and 5. The self-energy
(29 3, has a maximum ak=0, and is positive fok<0.75. It
The above contribution to the self-energy provides a constarthen decreases to a minimumlat1.02, and increases pro-
correction to the transport coefficient, which remains subportional tok 2 in the limit k>1. This indicates that the
dominant for all time. Therefore, this contribution can alsoconvective nonlinearity tends to amplify concentration
be lumped in the definition of the bare transport coefficientmodes withk<0.75, and dampen modes wik»0.75. This
and does not enter into the analysis. Hence, the only timés in contrast to the nonlinearity due to the quartic term in the
dependent contribution to the self energy is due to the foufree energy, which tends to damp modes at all wave
point vertex functionv,. numberst? The self-energg, is negative in the interval 0.75
It is necessary to address one further issue before pro<k<1.15 and positive outside this interval, indicating that
ceeding to evaluate the self-energy, which is the ultraviolethe modes in the interval 0.#%<1.18 are dampened, while
divergence of certain wave vector integrals. In previous studall other modes are amplified. The self-eneftyy diverges
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0.024

oo (k0 =k ? | ) I KeTeska) Ty (kaky (246)

0.018 X So(ky,t) 8(Ky+ko—K). (32)
0.015
0.012 In addition to the above, there is an additional contribu-
(k) tion to the noise correlation due to the term proportional to
0.009 £(k,t) which appears due to the time derivative in the elastic
0.006 nonlinearity[see the discussion just after E&8)]. This is
0.003 | given by
0.000 e ] oo
00 02 04 06 08 1.0 12 1.4 16 1.8 20 Io(k,t) = e 7k™ [ 2k“+ S(k,0) 5(t)]fk,2ka

k

XTap(k+ k’)kﬁ(k’z—kz)so(k’,t)
FIG. 6. The renormalization of the noise correlatidpk) as a function of 2
k for O (t=2.5): A (t=5.0;: O (t=7.5); ¢ (t=10). =1[2k"+ S(k,0)6(1) ]2, (K, ). (33
As illustrated in Fig. 6, the renormalization of the noise
correlationll, is positive for allk and decreases proportional
to k~* at largek. Therefore, the renormalization of the noise
proportional tok? in the limit k>1, indicating that modes correlation also tends to amplify the structure fadtee Eq.
with higher wave numbers are amplified faster. (35)]. The variation in the structure factor is showntat10
In addition to the renormalization of the transport coef-for various values ofe, and at7=0 in Fig. 7. The initial
ficient, the nonlinear terms also produce a renormalization ofalue of the structure factor a=0 was assumed to be a
the concentration noise correlation. This renormalization issimple LorentzianSy(k)=1/(k’+1). The calculation clearly
caused by the one-loop diagrams shown in Fi@).3lt is  shows that the structure factor is amplified due to the con-
useful to note that the three point vertex is proportional tovective nonlinearity, in contrast to the nonlinearity due to the
'?, while the four point vertex is proportional te.. The  quartic term in the free energy, which damps modes at all
renormalization of the noise correlation due to the one-loogvave numbers. Further, the effect of the nonlinearity tends to
diagram involving the three point vertgwhich contains the coarsen the system and the peak wave number decreases as
product of two three point vertices, cf. Fig(c3] is of the ¢, increases. This is shown in Figs. 8 and 9, where the wave
same order ire; as the renormalization of the transport co- number of the peak of the structure fackgy,, and the peak
efficient due to a bubble diagrariwhich contains one four value S, are shown as a function of time for different
point vertex, cf. Figs. @) and 3b)]. However, the renormal- values ofe,. Note that the value ok, is not shown near
ization of the noise correlation due a one loop diagram int+=0 because it depends in this region on the initial form of
volving the four point vertex i©(e.) smaller than that due the structure factor. For the Ornstein—Zernicke form as-
to the noise correlation, and is neglected in the analysis. Theumed here, the maximum is lat0, and a nonzero maxi-
contribution to the self energy of the noise correlation due tanum appears only at a time net=0.5. In addition, the
the one-loop expansioil,(k,t), shown in Fig. &), is initial value of the maximum differs from the value
Kmax=1/2 predicted by the Cahn—Hilliard theory due to the
presence of the noise correlatio(see, for example, Grant
et al1?). Figure 10 shows the integral of the structure factor

500 o= fodk KCS(k), (34
4001 where the upper cutofi was assumed to be two in the
present calculations. This figure indicates that the magnitude
S(k)300 I of the fluctuations is amplified due to the convective nonlin-
earity.
2001 The effect of variation in the relaxation timeon the
spinodal decomposition process is also shown in Figs. 7—10.
100 - An increase in the relaxation time tends to increase the mag-
nitude of the structure factor and decrease the wave number
0.0 T4 of the peak value of the structure factor, as shown in Figs. 8,

9, and 10. The effect of the elastic nonlinearity is very simi-
lar to that of the convective nonlinearity. However, there is
FIG. 7. The structure factd®(k) as a function ok at t=10. (solid line) one Slgm.flcant difference associated \.Nlth ﬁ‘em.crease n
(e=0.0,7=0.0); (broken ling (e=2.0,7=0.0): (dotted ling (e=2.0,~=2.0:  the elastic self energy at larde The increase in the self
(dot-dashed line(e=2.0, 7=5.0). energy at largék is caused by a reduction in the coefficient
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FIG. 8. The wave number of the peak value of the structure fagtgras a
function of t. (solid line) (e=0.0, 7=0.0); (broken ling (e=2.0, 7=0.0);
(dotted ling (e=2.0, 7=2.0); (dot-dashed line(e=2.0, 7=5.0).

FIG. 9. The peak value of the structure fac8y,, as a function ot. (solid
line) (¢=0.0, 7=0.0); (broken ling (e=2.0, 7=0.0); (dotted ling (¢=2.0,
7=2.0); (dot-dashed ling(e=2.0, 7=5.0).

of the O(k* term in the transport coefficient due to the ) o
self-energy, . This feature is unique to viscoelastic fluids— tion of the largek modes due to the elastic contribution to
the nonlinearity arising from the quartic term in the Landay—the transport coefﬂmentl, b_ut not due to the convective term.
Ginzburg free energy alters only tigk?) term in the trans- The present analysis indicates tha}t growth of t_he struc-
port coefficient, while the self-energy associated with thefure factor in the presence of convective and elastic nonlin-

viscous convective nonlinearity decreaseka$at largek. ~ €arities is faster than that in the linear regime, and an in-
crease in the relaxation time tends to increase the growth

rate. Moreover, coarsening to smaller wave numbers with
11l. CONCLUSIONS time is produced by the inclusion of these nonlinearities. The
qualitative effect of the elastic nonlinearity in the linear

The effect of viscoelasticity on the early stages of spin-\axwell model, however, is similar to that due to the con-
odal decomposition was analyzed. The model employed ijective nonlinearity. Overall, we are hopeful that the results
our study consisted of coupled Langevin equations for thgys the present study will shed light on the complex phase

concentration, velocity, and stress fields. Novel to the preseRfansformation kinetics of viscoelastic fluids, such as poly-
study was the use of a linear Maxwell model for the stressper blends.

field. Because of this change in constitutive relation, the
phase transformation kinetics depend on the stress relaxation
time 7 in the Maxwell model as well as the strength of the
convective nonlinearity. associated with the usual viscous ACKNOWLEDGMENT
stresses. T_he nonlinearity arising from the quartic tgrm in .the This work was partly supportets.H.F) by the MRL
!_andau—szburg free energy was neglegted for .S'mp“C'tybrogram of the National Science Foundation under Award
its effect has been examined in many earlier studies. No. DMR-9123048.

A perturbation expansion was used to calculate the
renormalization of the transport coefficient for collective dif-
fusion and the noise correlation. The renormalization of the
transport coefficient, which was calculated using the Hartre&PPENDIX
approximation, depends on the wave numkeén contrast to

the renormalization in the usuahonmode-coupledsolid " ) TR

model which is independent &f The renormalized transport port coeff|c_:|ent using the Hartree approxmanonlls d|§cussed.
coefficient contains one contribution due to the elastic termThe equation fo.r the structure factor can be erttgn In terms
in the stress equatioli,, that is dependent on the relaxation qf the renormalized transport coefficient and noise correla-
time 7, and one due to the convective nonlinearid,, nas
which is independent of the relaxation time. At ldw the L2 2, 12
forms of ¥, and 3, are similar, and the renormalization of Sk, )= ~[To= k2 (k,D]S(k, 1) + [2k*+ K°TT(k, 1)
the transport coefficient tends to amplify disturbances with +4(1)S(k,0), (A1)
wave number less than about 0.75 and dampen disturbances

with wave number greater than 0.75. However, at l&rgge  where 2, and I1 are the “self-energies” for the transport
elastic contribution is positive and diverges proportional tocoefficient and the noise correlation ang(k), the bare
k? while the convective contribution is negative and de-transport coefficient, i%?(k?®—1) in scaled variables. The

creases proportional te®. Therefore, there is an amplifica- solution of Eq.(A1) is

In this section, the derivation of the renormalized trans-
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80 , exq—Fo(k)t]ftdt’ exd oK)t JAk,t,t")
0
t
=ex;{—1‘0(k)t]Hdt' exd o(k)t']
0

t "
+f dt” A(k,t,t”)kZE(t”)Jt dt’ exr[l“o(k)t’]}
0 0

=exg — Fo(k)t]( fotdt’ exg I'o(k)t']

t '[”
+f dt” kZE(t”)f dt’ exr[FO(k)t’]A(k,t”,t’)},
FIG. 10. The amplitude of the concentration fluctuationas a function of 0 0
t. (solid line) (¢=0.0, 7=0.0); (broken ling (e=2.0, 7=0.0); (dotted line
(e=2.0, 7=2.0); (dot-dashed ling(e=2.0, 7=5.0). (A6)

where thek dependences of the self-enefyhas been sup-
pressed for simplicity. The quantity®S(t”) represents the
t loop integral in Fig. 2 and the explicit factor &f in the
S(k,t)=exp[ —[Fot—sz dt’ 2(k,t')H ( S(k,0) self-energy is consistent with the concentration field being a
0 conserved dynamical variable. Equatiof0) can be rear-
t
+ J dt” exp[
0

x[2k2+ kZH(k,t")]). (A2)

s (U s / ranged by changing the order of the integratiort'odndt”,
[t —JO dt’ k"X (k,t") } and can be further simplified to derive the following integral
equation forA(k,t,t’):

t
A(k,t,t")= 1+f dt” A(k,t,t")k?3(t")
t,

Thus, the renormalized structure factor can be calculated if .
the self-energies for the transport coefficient and noise cor- = 1+f dt” A(k,t",t")kZ(t"). (A7)
relation are known. t

In the linear approximation, the concentratigtk,t) IS Thjs integral equation can be easily solved to express the

expressed as unknown functionA(kt,t’) in terms of the self-energ}(t),
(K, 1) =Uo(K,t,t")[{(K,t") + (k,0)6(t") ], (A3) ¢
(A 2
where, by convention, the Dirac delta functiét’) is de- Ak Lt )—exp{k ft,dT (7). (A8)

fined so that the integral af(t") from zero to infinity is one.

The time propagatot),(k,t,t’), which is an integral opera- Using the above expression fa(k,t,t'), the propagator

tor, is given by U(k,t,t") (renormalized to include the nonlinear terms in the
Hartree approximationis now given by

t
Uo(k,t,t’)zexp:—l“o(k)t]f dt" exg[o(k)t']. (A4) t
0 U(k,t,t')=exq—I‘(k,t)t]f dt’ exgd I'(k,t")t'],
. . 0
The presence of the nonlinear terms leads to a renormaliza- (A9)
tion of the kinetic coefficienti’(k,t), which can be repre-
sented by using a time-dependent Dyson equation for thevhere
response function. Here, we make a simple “Hartree ap- .
proximation” for the response function. The Dyson equation F(k,t)t=F0(k)t—k2J dt’ S(t'). (A10)
for this approximation can be expressed as shown in Fig. 2. 0
The thick lines represent the renormalized response function
U(k,t,t") which includes the effect of the nonlinear terms in 1p G ge Gennes, J. Chem. Phyg, 4756(1980.

the Hartree approximation 2pP. Pincus, J. Chem. Phyg5, 1996(1981).
. 3K. Binder, J. Chem. Phyg/9, 6387(1983.
4H. Tanaka, Phys. Rev. Leff1, 3158(1993.
U(k,t,t")=exd —o(k)t] fodt' exd I'o(K)t" JA(K,t,t"), 5p. Wiltzius and F. Bates, J. Chem. Phg4, 3258(1989.
6J. W. Cahn, Metall. Soc. AMIE242, 166 (1968.
(A5) 7J. E. Hilliard, inPhase Transformationgdited by T. RistéPlenum, New

where the renormalization factok(k,t,t’) is to be deter- sﬁot’ é?;i Acta Metall18, 297 (1970

mined using the Dyson equation. This equation can be writ-s; g Langer, M. Bar-on, and H. D. Miller, Phys. Rev1A 1417(1975.
ten as 10K, Kawasaki and T. Ohta, Prog. Theor. Phgg, 147 (1982.
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