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The fluctuations in the height of the free surface of a polymer gel of finite thickness are 
analyzed in the limit where the period of elastic oscillations is small compared to the viscous 
relaxation time. In this limit, the dominant forces in the momentum conservation 
equation are the elastic and surface tension forces; the viscous forces enter as a subdominant 
correction. Zero stress boundary conditions are applied at the free surface, while two 
different types of boundary conditions are considered at the other surface- for “grafted” gels 
zero displacement conditions are applied, while for “adsorbed” gels the displacement 
normal to the surface is zero but the surface is permitted to move in the lateral direction. 
There are multiple frequencies of oscillation, all of which are consistent with the 
boundary conditions, and it is found that the frequency and the decay rates of the oscillations 
are lower for the adsorbed gels. The static structure factor is calculated from the energy 
storage due to the elastic strain, surface deformation, and kinetic energy of motion. The 
structure factor has a peak at a nonzero value of the wave number for a grafted gel, 
while the maximum occurs at zero wave number for an adsorbed gel. An increase in the surface 
tension reduces the magnitude of the peak, and shifts it to lower values of the wave 
number. 

I. INTRODUCTION 

The surface properties of grafted polymers and gels are 
important in many applications. Surface oscillations pro- 
vide a mechanism for energy dissipation in polymer tribol- 
ogy applications. In biological systems, fluids are trans- 
ported through tubes with compliant walls that are made 
of gels, and oscillations of the walls are thought to be 
responsible for increasing the drag force in these tubes.’ 
Although the bulk properties of polymers have been exten- 
sively studied,2*3 the surface properties have received less 
attention. However, recent advances in experimental meth- 
ods such as surface light scattering techniques have made it 
possible to probe the surface modes of polymer gels.4 

The majority of the previous theoretical analyses have 
used single fluid models to analyze the surface modes. In 
this approach, the polymer is treated as a viscoelastic fluid 
described by the non-Newtonian Navier-Stokes equations, 
in which the shear stress is a nonlinear function of the 
strain rate.5-7 A different approach was used by Harden, 
Pleiner, and Pincus8 to calculate the surface modes on an 
infinite gel. They wrote coupled equations for the fluid 
velocity field and the displacement field of the polymer 
network. In addition to the shear stress due to the fluid 
flow, their description included an elastic stress due to the 
straining of the polymer network. This additional stress 
gives rise to features not present in classical fluids, where 
only the viscous and surface tension forces are present. In 
addition, this elastic term can give rise to surface instabil- 
ities even in the absence of inertia,g whereas the surface 
instabilities of viscoelastic fluids are inertial in nature.6 

In this paper we analyze the surface modes on polymer 
gels of tinite thickness, and we find that these can be sig- 
nificantly different from the modes on semi-infinite gels 
analyzed by Harden et al..8 Zero stress boundary condi- 

tions are appropriate at the free surface of the gel, while 
two types of boundary conditions are applied at the other 
surface: for “grafted gels” which are fixed to a flat surface, 
zero displacement conditions are applied at this surface; 
while for “adsorbed gels” which are bounded by a flat 
surface, the displacement in the direction normal to the 
surface is zero, but the surface is permitted to move freely 
in the tangential direction and zero shear stress conditions 
are applied at this surface. We find that there are multiple 
resonant frequencies at a given wave number, all of which 
are consistent with the boundary conditions imposed at the 
two surfaces. In addition, the surface modes in the capil- 
lary regime, in which the surface tension forces are large 
compared to the viscous and elastic forces, are qualitatively 
different for finite gels. In this limit, there exist nontrivial 
solutions for the frequency spectrum of finite gels which 
are not permissible in gels of infinite extent. Another inter- 
esting observation is that the frequency and decay rate of 
the surface modes for grafted gels are very different from 
those for adsorbed gels. 

There are two important time scales in the problem- 
the elastic oscillation time for the strain field of the poly- 
mer network, and the viscous relaxation time for the fluid 
velocity field. Here we analyze the limit where the elastic 
time is small compared to the viscous relaxation time. A 
scaling analysis in Sec. II indicates that this assumption is 
valid when the gel thickness is large compared to about 1 
pm for typical values of gel elasticity and fluid viscosity. In 
this limit, there is a balance between the elastic and surface 
tension forces at leading order. Since both these forces are 
conservative, the surface modes propagate undamped over 
time intervals comparable to the elastic time; the viscous 
damping becomes significant over much larger intervals 
comparable to the viscous relaxation time. The high fre- 
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The interaction force per unit volume between the sol- 
vent and the polymer, fr(u,v), is treated as a local fiic- 
tional force that is proportional to the difference in the 
local polymer and solvent velocities: 

-- z=-H 
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FIG. 1. Gel configuration and coordinate system used in the analysis. 

quency elastic oscillations could have a significant effect in 
applications where there is fluid flow past a polymer gel, 
since the oscillations change the nature of the flow at the 
surface of the gel. 

The separation of time scales facilitates an asymptotic 
approach in which there is a balance between the elastic 
and surface tension forces at leading order, and the viscous 
terms enter as a first order correction. The mass and mo- 
mentum conservation equations are derived in Sec. II and 
the dispersion relation is calculated from the linearized 
equations of motion in Sec. III. The surface mode structure 
factor is calculated from the energy storage spectrum in 
Sec. IV. We end with a brief discussion of the important 
results in Sec. V. 

II. EQUATIONS OF MOTION 

The system, shown in Fig. 1 consists of a gel of fmite 
thickness Hand infinite lateral extent occupying the region 
H<z< h(x), where h(x), the equation of the surface of 
the gel, is equal to zero in the unperturbed state. The 
z > h(x) space is occupied by vapor, and zero stress bound- 
ary conditions are applied at the surface h(x). The bound- 
ary conditions at the surface, at z= -H will be discussed 
shortly. The polymer network is modeled as an elastic me- 
dium of density pP, shear modulus E, and compressional 
modulus K, and the fluid is an incompressible Newtonian 
fluid with viscosity r~ and density pP We iirst derive the 
momentum conservation equations for the network and the 
solvent, and return later to the appropriate form of the 
mass conservation condition. 

The momentum conservation equations for the fluid 
velocity and polymer displacement field are 

Pf(~+v*vv)=v*uf+fIw9, 
2 

pp f$ =V*d-J;(u,v). 
( ) 

Here, aP and u f, the polymer and fluid stress tensors, are 
of the usual form:‘O*ll 

(3) 

The form of the proportionality constant x has been dis- 
cussed previously in literature,8”2 and there is general 
agreement that it scales as q/p, where 6 is the character- 
istic mesh size of the polymer network. This can be shown 
by a simple scaling argument.’ The polymer network may 
be viewed as a collection of close packed capillaries of cross 
section (l/c”), and the resistance of each capillary to the 
solvent flow scales as (v/g). Thus the resistance of the 
network per unit area, which is the friction constant x, 
scales as (7j/g2). 

The mesh size in polymer gels is 0( 100 A> or less, and 
is much smaller than any macroscopic length scale of in- 
terest in the problem. In the bulk of the gel, the divergence 
of the polymer and fluid stresses scale as (vp/H2) and 
(Eu/H2>, where v and u are the orders of magnitude of the 
velocity and displacement fields while the frictional force 
per unit area scales as ( qAv/c2), where Au is the difference 
in the polymer and fluid velocities. Therefore, the force 
balance condition in the gel requires the difference in the 
fluid and network velocities to be 0( g/H)2 smaller than 
the velocity of the gel, and at leading order we can assume 
that the polymer and fluid velocities are equal: 

au 
-=v at * (6) 

The limit in which this condition is valid is called the 
“infinite coupling limit,” which was studied by Harden 
et al.’ Following Harden, we make the infinite coupling 
approximation in this paper. In this limit, the equations of 
motion reduce to 

a2u 
p Jp i ) 

au 
=-vp+m2n+qv2 z ) ( ) 

where p is the sum of the densities of the polymer and the 
fluid ( pP+ pf) . In the infinite coupling limit, the mass con- 
servation equation has the same form as that for an incom- 
pressible medium: 

v-u=o. (8) 

At the surface of the gel at z=h(x), we require the 
total normal and shear stresses to be zero: 

At z=h(x): a,=&h(x), a,=O. (9) 

Here, a, and a, are the sum of the stresses in the fluid and 
the polymer, y is the surface tension, and Vf is the trans- 
verse Laplacian operator. As mentioned in the Introduc- 
tion, we distinguish between two types of gels based on the 
boundary conditions at the surface z= -HZ gels which are 
fixed to a rigid surface, referred to as “grafted gels;” and 
gels which are bounded normal to the surface but free to 
move in the tangential direction, which are termed ‘fad- 
sorbed gels.” 
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FIG. 2. Antisymmetric (a) and symmetric (b) modes of oscillation of a 
finite gel subjected to zero stress conditions at both surfaces. 

For grafted gels, we apply zero displacement condi- 
tions: 

At z=-H: u,=O, u,=O. (10) 

The above boundary conditions are also valid at the mid- 
plane of a gel of thickness 2H which has two free surfaces, 
and whose oscillations are antisymmetric about the mid- 
plane [U,(Z) = -u,( -z) and u,(z) = -u,( -z)] as shown 
in Fig. 2(a). 

For adsorbed gels, the following 
are appropriate: 

au, 
Atz= --H: u,=o, Z=O. 
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elastic forces in the gel for H$20 pm. The ratio of the 
elastic and viscous forces is given by the dimensionless 
number E= [q2/( PEH~)]“~. For a typical value of 
r]= 10m3 Ns/m2, the elastic forces are large compared to 
the viscous forces and E( 1 for H> 1 pm. In this limit the 
elastic and surface tension forces balance each other at 
leading order, and the viscous forces can be treated as a 
subdominant correction in an asymptotic scheme in small 
E. We should also point out that the gravitational force has 
been neglected in the momentum equations. The ratio of 
the gravitational and elastic forces is given by the dimen- 
sionless number ( pgH/E) , where g is the acceleration due 
to gravity. It can easily be verified that for the typical 
values of the density and elasticity listed above, the gravi- 
tational forces are important only for H- 0.1 m, and there- 
fore we can neglect gravity for gels with thickness between 
1 ,um and 1 mm, which are considered here. 

We nondimensionalize the length scales in the conser- 
vation equations (7) and (8) by the thickness of the gel H 
and time scales by the elastic time ( pH2/E) 1’2. The result- 
ing equations are 

v*u=o, (12) 

a% 
-gT=-vp+ l+e& Vu, 

( ) 
where the pressure p is nondimensionalized by E, and 
E= [v2/( PEH~>]“~, is a small parameter. The nondimen- 
sional boundary conditions at the free surface are 

Atz=h(x): a,=l?Vfh(x), a,,=O, ( 14) 

where the stresses are nondimensionalized by E and the 
dimensionless parameter I’ is [y/(EH)]. 

Ill. SURFACE MODE GROWTH RATE AND 
FREQUENCYSPECTRA 

A. Dispersion relations 

boundary conditions To determine the frequency spectra, we impose small 
perturbations on the displacement and velocity field of the 
form: 

(11) 

The above boundary conditions are also appropriate at the 
midplane of a gel of thickness 2H with two free surfaces, 
whose surface oscillations are symmetric about the mid- 
plane [U,(Z) = -u,( -z) and u,(z) =uX( -z)] as shown in 
Fig. 2(b). Since any perturbation can be expressed as the 
sum of a symmetric and an antisymmetric component, the 
boundary conditions studied here can be used to analyze 
all perturbations in a gel of finite thickness with zero stress 
boundary conditions at both surfaces. 

At this point, it is useful to determine the regimes 
where the viscous, elastic, and surface tension effects dom- 
inate. The dimensionless number [y/(HE)] is a measure of 
the ratio of the surface tension and elastic forces in the gel. 
For typical values of E=103 N/m2 and y=20~ 10m3 
N/m, the surface tension forces are large compared to the 

1 
u(z,x,t) =(2rr>2 s 

dk i?(z,k) exp(zlc*x+at), (15) 

where, a! is the growth rate, and x and k are the (two- 
dimensional) position vector and wave vector in the x-y 
plane, respectively. Since the gel is isotropic in the x-y 
plane, in the remainder of the section we assume that the 
wave vector is directed along the x axis without loss of 
generality. The eigenfunction in the z direction, iT(z,k), is 
determined from single fluid conservation equations ( 12) 
and ( 13). To facilitate an asymptotic analysis in small e, 
the growth rate and the perturbations to the displacement 
field are expressed as an expansion in E: 

a=a(o)+Eaw, ~=p)+~w* (16) 

In the leading order approximation we neglect the viscous 
dissipation term in the momentum conservation equation, 
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and the linearized mass and momentum conservation equa- 
tions can be simplified to the following form: 

D$O’ + iki$O’ = 0, z x (17) 

-Dp’+ [ -(a’“‘)2+02-k2]~o)=o, (18) 

-ik~“‘+[-(a’o’)2+02-~]~~o)=o. (19) 
Here, D represents the derivative (a/&). The conservation 
equations for the O(E) correction to the displacement field 
contain viscous terms: 

D$“+ik$“-0 z x -, (20) 

-D$‘)+[-( a(O))2+ DLP] p 

+[ -2a(o)a(‘)+cr(O)(D2-#)]~O)=o, (21) 

-ikpll’+ [ -(a(“))2+d-k2]~x1) 

+ [ -2a(O)cY(‘)+cr(O)(~-k2)]~0)=0. (22) 
The equations for the perturbations to the stresses in gel 
are 

$2) = -j(O) +2Dg0’, $2) = D$” +&go’, (23) 

~~)=-~“+2D~‘)+2a(0)D~o), 

~~~)=D~~‘)+ik~‘)+cr(“)(D~~o)+ik~o’). (24) 

The O( 1) and O(E) contributions to the zero stress bound- 
ary conditions (14) are 

At z=h(x): gx;‘=O, $z)= -I-rk2G”‘, (25) 

gJL0, $y=-rpp, (26) 
These are argumented by the appropriate boundary condi- 
tions at z=-H, (10) or (11). 

The eigenfunctions for the 0( 1) and O(E) mass and 
momentum equations can be expressed in the following 
compact form: 

I exp(k.4 \ 

(gi)=AY[ 22;; J, (27) 

where the decay rate of perturbations in the gel, il, is 

A= JPT-@T. (28) 
In (27), n=O refers to the solutions of the leading order 
equations (17), (18), and (19), and n=l refers to the 
solutions of the O(E) equations (20), (21), and (22). Af) 
is a 2 X4 matrix of complex amplitudes of the perturba- 
tions fields. This contains four independent coefficients, 
while the other four can be determined from the mass 
conservation condition ( 17). One of the four constants can 
be chosen arbitrarily, since only the relative amplitudes of 
the modes are relevant to the analysis. The dispersion re- 
lation for the leading order growth rate a(‘) is obtained 
after solving for the remaining three constants using the 

0 2 
4k6 ’ lo 

FIG. 3. Frequency spectrum of the first few harmonics for a grafted gel 
in the limit r-0 (solid lines) and lY+ m (broken lines). 

zero stress conditions at z=h(x), (25), and the appropri- 
ate conditions at z= -H, ( 10) or ( 11). The matrix of 
coefficients for the O(E) correction to the displacement 
field A#’ also contains four independent constants, and the 
dispersion relations for the first correction to the growth 
rate a(‘) is obtained by a procedure identical to that de- 
scribed above. 

The dispersion relation is more complex than those for 
semi-infinite media, due to the nontrivial boundary condi- 
tions at z= -H, and we do not write it out in full detail 
here. However, it is useful to note that in the limit H-P CO, 
our dispersion relation is identical to that obtained by 
Harden et ai.,8 and this serves as a check on the accuracy 
of our calculations. 

B. Results 

We first note that the leading order growth rate (Y(O) is 
purely imaginary, since there is no viscous dissipation in 
the leading order equations ( 17)) ( 18)) and ( 19). The 
imaginary part of (r(O) is termed the leading order fre- 
quency 0 . (‘I The dispersion relation admits many solutions 
for the frequency, corresponding to the different modes of 
oscillation of the gel. The characteristics of these modes for 
grafted and adsorbed gels are described below. The first 
correction to the growth rate a(‘) is real and negative, 
since the viscous dissipation of energy dampens the fluctu- 
ations in the system. Note that the leading order frequency 
w(O) is O[E/(~H2)]‘“, whereas decay rate of the pertur- 
bations, ( -a *) ), is O( E/v). Thus the decay of the per- 
turbations occurs over time scales that are O( l/e) larger 
than the time period of the elastic oscillations. We present 
results for the frequency and growth rate in two asymp- 
totic limits, I + 0 and I’ -+ 00, as well as the behavior of the 
lowest harmonic in the intermediate regime. 

The frequencies of oscillation w(O) for a grafted gel 
[boundary condition (lo)] have the following characteris- 
tics. In the limit k+O, the permitted frequencies are ?r/2, 
3~/2, ST/~, . . . . The first three harmonics are shown as the 
solid lines in Fig. 3. The lowest harmonic increases pro- 
portional to 0.955313k in the limit k-+ 00, while the higher 
harmonics converge to the solution w(O) =k in this limit. 
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k 

FIG. 4. Decay rate of the first few harmonics for a grafted gel in the limit 
r-0 (solid lines) and I’-+ 00 (broken lines). 

The solid lines in Fig. 4 show the decay rates, (-a(i)), of 
the first three harmonics. In the limit k-+0, the decay rate 
(-a(*)) is proportional to (~(‘))~/2. Thus the higher har- 
monics have much faster decay rates, and their persistence 
time is significantly shorter. In the limit k-+ CO, the decay 
rate of the lowest harmonic increases as 0.456312, whereas 
the decay rates of the higher harmonics increase as 0.5k2. 

In the limit lY -t CO, we once again have multiple solu- 
tions for the frequency. The frequencies w(O) of the first 
two harmonics, which are shown as broken lines in Fig. 3, 
assume values of 4.493 and 7.725 in the limit k-+0, and 
converge to k[l - ( nr/k)2] in the limit k-t 03. Here, y1 is 
an integer that denotes the order of the harmonic, and is 1 
for the lowest harmonic. The decay rates of these harmon- 
ics are shown as broken lines in Fig. 4. These increase as 
(w’O’)~/~ for k+O, and converge to 0.5k2 for k-+ 03. 

The frequency and decay rates of the lowest harmonic 
for intermediate values of I’ are shown in Figs. 5 and 6. In 
the limit k-*0, all the solutions converge to the l? -SO so- 
lution, whereas in the limit k-t CO the solutions for differ- 
ent values of l? collapse onto the I’+ CO curve. We note 
that even for l? as large as 100, the frequency and decay 
rates diverge significantly from the I+ CO solution for 

10 

8 

oo; 2 4 6 8 10 

k 
FIG. 5. Frequency spectrum of the lowest harmonic for a grafted gel in 
the intermediate I? regime. 0-l?=O.O; q -I’=O.l; O-r=l.o; x-l? 
=IO.O; h-r=ioo.o; o-r= Q). 

k 

FIG. 6. Decay rate of the lowest harmonic for a grafted gel in the inter- 
mediate r regime. 0-lY=O.o; q -r=O.l; O-r=l.O; x-r=lO.O; 
a-r=ico.o; o-r= oo. 

k < 1, whereas for I’=O.Ol, the frequency does not show 
significant deviation from the I’ = 0 solution even for k as 
large as 10. Thus the solution in the limit I’=0 is more 
robust, and could be used for moderately small values of r, 
whereas the solution for I+ CO will not be valid for mod- 
erately large values of I’ if k is small. 

The solutions for the frequency and decay rate for an 
adsorbed gel [boundary condition ( 1 1 )] for I’-+0 are 
shown as the solid lines in Figs. 7 and 8. The frequency 
w(O) assumes values 0, G-, 27r, . . . in the limit k-0, and the 
decay rate, ( -a (l)), is proportional to (~(‘))~/2. The bro- 
ken lines in Figs. 7 and 8 show the frequency and decay 
rate for I’-+ CO. The frequency w(O) assumes values of n-, 
2rr,..., for k+ 0, and the decay rate ( -a(‘)) is proportional 
to (cB”‘>~/~ as before. In the limit k-t 03, the length scale 
of the perturbations is much smaller than the gel thickness 
and the choice of boundary conditions at z= -H does not 
affect the solution. Therefore, the behavior of the frequency 
and decay rate for k+ 00 is the same as that for a grafted 
gel. The frequency and decay rate of the lowest harmonic 
for intermediate values of l?, which are shown in Figs 9 
and 10, have the same qualitative features as those for a 
grafted gel. The asymptotic behavior of the frequency and 

k 

FIG. 7. Frequency spectrum of the first few harmonics for an adsorbed 
gel in the limit r-0 (solid lines) and l?- m (broken lines). 
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FIG. 8. Decay rate of the first few harmonics for an adsorbed gel in the 
limit r-0 (solid lines) and l?+ m (broken lines). 

decay rate are listed in Table I for a grafted gel, and in 
Table II for an adsorbed gel. 

Finally, we compare these results with those of 
Harden, Pleiner, and Pincus* for a semi-infinite gel. In the 
elastic limit r+O, we recover the lowest harmonic in the 
limit k-t CO by solving the dispersion relation derived by 
Harden et al. However, in the capillary regime, which cor- 
responds to the limit I’+ 00, the authors found that the 
frequency increases as k312, which is very different from the 
o(O) -k behavior predicted by our analysis. This difference 
can be explained as follows. For a semi-infinite gel, the 
relevant length and time scales are (y/E) and [E3/ 
(pYw2, respectively. A simple dimensional analysis in- 
dicates that the dimensional frequency increases propor- 
tional to k3’2(y/p) . 1’2 Also, for a semi-inikite gel, the 
boundary conditions imposed are zero displacement con- 
ditions for z--t - CO, and purely imaginary values of the 
spatial decay rate of perturbations, [/z in (27) and (28)] 
are not permitted. If we impose zero displacement condi- 
tions at a fixed distance H, however, imaginary values of/z 
are permitted, and the equations admit solutions for the 
dimensional frequency that increase as k(E/p) 1’2. The ra- 
tio of the permitted frequencies for a semi-infinite and finite 

10 

8 

0 
0 2 4 6 8 10 

FIG. 10. Decay rate of the lowest harmonic for an adsorbed gel in the 
intermediate r regime. 0-r=O.O; q -r=O.l; O-r=l.Q x--T 
=IO.O; a-r=loo.o; l -r=m. 

gel is (rkH) 1’2, which is always large for I’> 1 and kHg 1. 
Thus in the large k limit the frequency and decay rate 
permitted by the dispersion relation for a finite gel are 
small compared to those for a semi-infinite gel. Conse- 
quently, the modes with the longest persistence times are 
those obtained from the finite gel dispersion relations. 

IV. STRUCTURE FACTOR 

The structure factor for a semi-infinite gel was calcu- 
lated from a Langevin equation for the velocity field in the 
gel by Harden et al* This equation included a random 
stress tensor, whose autocorrelation is proportional to the 
viscosity of the gel. It turns out that this procedure is not 
appropriate for calculating the structure factor for our sys- 
tem for the following reason- if we neglect the viscosity of 
the gel at leading order in small e, the autocorrelation of 
the random stress tensor is zero at this level of approxima- 
tion, and consequently the structure factor obtained by this 
procedure is identically zero. Here, we use an alternate 
procedure for calculating the static and dynamic structure 
factors. The energy storage in the displacement field is 
expressed as a quadratic function of the amplitude of the 
surface displacement, and the static structure factor is read 
off from this relation. The dynamic structure factor is eas- 

TABLE I. Asymptotic behavior of the frequency o(O) and decay rate 
-a(‘) of a grafted gel. 

Regime @(O) -a(‘) 
- 

r+o n/2 (cP)2/2 
k-+0 3d2, 5d2, . . . 

r-0 0.955313k 0.456312 
k--a k 0.5k2 

0 2 4 6 8 10 
k 

rdrn 
k-0 

4.493, 7.725, ,.. (o'O')2/2 

FIG. 9. Frequency spectrum of the lowest harmonic for an adsorbed gel 
in the intermediate r regime. 0-r=O.O; Cl-l?=O.l; &?C’=l.o; 
x-r=io.o; A-r=ioo.o; l --rcoo. 

- 
rem @l-(1/2) (ndk)2] 0.5# 
k-m 
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TABLE II. Asymptotic behavior of the frequency CO(‘) and decay rate 
-a(‘) of an adsorbed gel. 

Regime 

l--+0 
k-0 

l-+0 
k+m 

JO) 

0 
7T, 27r, ,.. 

0.955313k 
k 

-(p 

(o’“‘)z/2 

0.4563# 
0.92 

r-+03 
k-0 

7r, 2r, . . . (dy/2 

0.5P 

ily calculated since the perturbations decay as a single ex- 
ponential with a characteristic frequency and decay rate. 

It is convenient to define the Fourier transforms of the 
displacement fields as follows: 

u(z,k,w) = r” dt (dx exp( --ik*x+iwt)u(z,x,t), 
J-co J 

where x and k are the (two-dimensional) position vector 
and wave vector in the x-y plane. It can be easily verified 
that u(z,k,t) and u(z,k,w) are related to the displacement 
field, iT(z,k) in Sec. III as follows: 

u(z,k,r) =ii(z,k)exp(at), 

u(z,k,w) =2aii(z,k)/(w2+a2). (30) 

The static structure factor for the surface height S(k) 
is defined as the equal time correlation function for the 
height of the surface h(k) : 

S(k) =(h(k,t)h*k~)) =(u,(z,k,t)uf(z,k,t)) lza. 
(31) 

The above definition is similar to the definition of the static 
structure factor in a fluid as the equal time density corre- 
lation function.13 In the second equality in the above ex- 
pression, we approximate that the surface height by the 
displacement at z=O, which is permissible for small per- 
turbations. Since the static structure factor is an equal time 
correlation function, we can replace u(z,k,t) in the above 
equation by E(z,k) while calculating the averages. 

The static structure factor is calculated from the 
change in the free energy of the gel due to an externally 
imposed displacement field. The free energy F is related to 
the displacement field as follows: 

F=$ [ j” dx Jyl dz( $$+~~‘+;l$‘) 

++~$~I’], 
where T is the product of the temperature and the Boltz- 
mann constant, there is a factor of (E/T) on the left side 
of the above expression because free energy is expressed in 
units of T, and a factor of H3 because the length scales are 
nondimensionalized by H. The first integral on the right 

(32) 

side contains the standard expression for the elastic energy 
due to the strain in the gel” and the kinetic energy. The 
second integral is the change in the free energy due to the 
deformation of the surface.*’ To derive the structure fac- 
tor, it proves convenient to express the free energy in terms 
of the Fourier components of the displacement field using 
(30). After some algebraic manipulations, which include 
expressing & in terms of ii= using ( 17), we get 
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F=g ( J;, dzldk k-2{(p+k2)u,(D2+k2>q 

++kk’i%*), (33) 

where the variables with superscript * are the complex 
conjugates of the variables without the superscript, and zis 
the Fourier transform of the displacement ‘ii, at z=O. 

The structure factor for the surface modes can be re- 
lated to the free energy of the fluctuations using the fluc- 
tuation dissipation theorem in the linear regime. The 
change in the height of the interface h(x) due to an applied 
potential ,u(x) which is conjugate to the surface height, is 
given by 

h(x) = dx’ x(x-x’),u(x’), z(k)=X(k)/dk), 
s 

(34) 
where the response function x(k) is related to the struc- 
ture factor S(k) via the fluctuation-dissipation theorem:2 

X(k) =TS(k). (35) 

The increase in the energy due to a small perturbation 
about the equilibrium state is equal to the product of the 
change in the surface height and the conjugate potential, 
and it is easy to see that the leading order contribution to 
the energy is quadratic in the surface height. In real space, 
the change in the energy can be expressed as 

FE; dx 
s s 

dx’X(x-x’)-‘h(x)h(x’). (36) 

Expressing the height h(x) and the response function x(x) 
in terms of the Fourier components h(k) and x(k), and 
using (35) to relate the response function to the structure 
factor, we end up with the standard expression for the 
change in the free energy F of the gel due to a small change 
in the variable h(k) about equilibrium: 

F=& 
I 

dkS(k)%(k)hY’(k), (37) 

where F is nondimensionalized by T. Note that the change 
in the free energy in (33) has the same form as that in (37) 
once the integral over the z coordinate is carried out. 
Therefore, our method of solution involves carrying out 
the integral over the z coordinate in (33) and expressing 
the resulting equation in terms of the displacement h (k) . 
Once this is done, the structure factor is just equal to the 
inverse of the prefactor in the resulting expression. 
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FIG. 11. The scaled structure factor [S(k)T/(EH3)], for the lowest FIG. 12. The scaled structure factor [S(k) T/(@)], for the lowest har- 
harmonic of the surface modes on a grafted gel. 0 -r=O.O; q -r=O.l; monic of the surface modes on a grafted gel. 0 -I’= 1.0; O-l?= 10.0; 
o-r=l.o; x-r=io.o; n-r=ioo.o. o--r=ioo.o; x-km. 

The dynamic structure factor S(k,w) is the temporal 
Fourier transform of the memory function G( k,t) which is 
defined as 

G(k,t)=(h(k,t)h*(k,O))=(a,(sk,t)u~(sk,O)) Iso. 
(38) 

The static structure factor and memory function are re- 
lated to the rate of dissipation of energy via the fluctuation 
dissipation theorem. However, in the linear regime, the 
perturbations decay exponentially and the memory func- 
tion is easily expressed in terms of the static structure fac- 
tor: 

G(k,t) =S(k)exp( --(rl tj ). (39) 
The dynamic structure factor is calculated by taking the 
temporal Fourier transform of the above expression: 

S(k,o) =2cwS(k)/(w2+ar2), (40) 

where (r is (~u(‘)+Q(~)), and o(O) and o?) are shown in 
Figs. 2-10. If we neglect viscous dissipation, the dynamic 
structure factor is a delta function at the vibrational fre- 
quency 0 (‘I. The decay rate -CL(‘) causes a small spread in 
the dynamic structure factor. 

In this section, we present calculations of the static 
structure factor of the lowest harmonic, which has the 
lowest frequency of oscillation, for grafted and adsorbed 
gels. The kinetic energy and the strain energy penalty for 
this harmonic are smaller than those for the higher har- 
monics, and consequently this has the largest amplitude of 
surface fluctuations. Also, the decay rate of this harmonic 
is smaller than those for the higher harmonics, and so this 
is likely to be the easiest to observe in experiments. The 
static structure factor S(k) is proportional to (EH3/T) 
[see (33)], and Fig. 11 shows the scaled structure factor 
[S(k) T/(EH3)] for the lowest harmonic of a grafted gel 
[boundary condition (lo)]. The structure factor increases 
proportional to k2 in the limit k-0, and rises to a maxi- 
mum before decreasing to zero for large k. The decrease in 
the structure factor for large k is due to the excessive en- 
ergy required for maintaining perturbations of small wave- 

k 

length, while the small k behavior can be explained as 
follows. The boundary conditions (10) do not permit lat- 
eral displacement at z= -H, and therefore perturbations 
having amplitudes h and wavelengths k< 1 induce displace- 
ments of O(h/k) in the x direction [see (17)]. Thus the 
lateral strain due to these perturbations (&,/a~) is O(h/ 
k), and the elastic strain energy is O( h/k)2, giving the 
O(k) 2 behavior of the structure factor for small k. Both the 
position and the height of the peak decrease as I’ is in- 
creased, since an increase in the surface tension preferen- 
tially damps out smaller wavelength (larger k) fluctua- 
tions. 

The structure factor has an interesting behavior in the 
limit of large r. In this limit, the interfacial energy is large 
compared to the elastic strain energy, and it is appropriate 
to define the scaled structure factor as [S(k) T/(yH2>]. If 
the elastic energy is neglected in the limit r = CO, it can be 
easily seen from (33) that [S(k) T/(yH2)] is just km2. This 
structure factor is divergent in the limit k-0 because the 
excess-surface area decreases proportional to k2 for long 
wavelength fluctuations, and consequently the energy pen- 
alty also decreases to zero. If J? is large but finite, however, 
the elastic energy cost becomes significant for small k, and 
the structure factor decreases to zero at small values of k as 
shown in Fig. 12. Thus the long wavelength behavior of the 
structure factor for large I? deviates significantly from the 
asymptotic behavior in the limit I’-+ CO. We also note in 
passing that the singularity in the structure factor at small 
k for r+ CO would be modified by the effect of gravity, and 
we would expect, based on scaling considerations, that the 
effect of gravity is significant for (kH) - ( pgH2/y) 1’2. The 
dimensionless quantity ( pgH2/y) 1’2 varies between 0.7 at 
H= 1 mm, 0.7 X 10m3 for H= 1 ,um for p= lo3 kg/m3 and 
7=20X 10M3 N/m. 

The scaled structure factor for the lowest harmonic of 
an adsorbed gel boundary condition ( 11 )], shown in Fig. 
13, is qualitatively very different from that for a grafted gel. 
The structure factor has a finite value at k=O, and de- 
creases as we increase k. The nonzero value of the struc- 
ture factor at k=O is rather surprising in view of the sole- 
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FIG. 13. The scaled structure factor [S(k)T/(EH3)], for the lowest 
harmonic of the surface modes on an adsorbed gel. 0 -I’=O.O; 0-r 
=O.l; O-r=1.o; x--r=lO.o; A-r=100.0. 

noidal condition ( 17) imposed on the displacement field, 
and the reason for this is the unconstrained lateral dis- 
placement at z= -H. As in the case of a fixed gel, a per- 
turbation with wave number kg1 and amplitude h induces 
a lateral displacement u, that is O(h/k). However, due to 
the zero shear stress boundary condition at z= -H, the 
lateral strain rate (&.JJz) is only O(h), and is O(k) 
smaller than the strain we would expect from a naive scal- 
ing argument. Therefore, the energy required to produce 
the strain is O(h’) in the limit k-+0 and the structure 
factor assumes a finite value in this limit. Also, the elastic 
energy required for maintaining the perturbations in an 
adsorbed gel is smaller than that for a grafted gel, due to 
the zero shear stress condition at z= -H. Therefore, the 
magnitude of the structure factor is larger for the adsorbed 
gel. We should also note that our analysis has neglected 
boundaries in the x-y plane. These boundaries would be 
present in any experimental system, and would limit the 
permissible wavelengths of the fluctuations. 

V. DISCUSSION 

In this paper, we analyzed the surface modes on the gel 
in the limit where the ratio of the elastic oscillation time 
and viscous relaxation time E= [q2/( pEH2)] 1’2 is small, 
using an asymptotic approach in the limit E< 1. A scaling 
analysis in Sec. II showed that this assumption is valid 
when the thickness of the gel is large compared to 1 ,um for 
normal values of the gel elasticity and viscosity. In this 
limit, there is a balance between the elastic and surface 
tension forces at leading order, while the viscous dissipa- 
tion enters as an O(E) correction in the equations of mo- 
tion. Since there are no dissipative forces in the leading 
order equations, the leading order decay rate of the fluc- 
tuations is purely imaginary, indicating that the surface 
modes propagate undamped over time scales comparable 
to the elastic oscillation time. The viscous damping takes 
place over time scales comparable to the viscous relaxation 
time, which is O( l/e) larger than the elastic time. 

The dynamics of the gel was analyzed using coupled 
equations for the polymer network and the fluid (two-fluid 

model), and we made the “infinite coupling approxima- 
tion,” which sets the local velocity of the network equal to 
that of the fluid. This approximation is valid when the 
mesh size of the gel, which is usually 100 A or less, is small 
compared to the length scales of interest in the problem. 
Zero stress boundary conditions were applied at the free 
surface of the gel [z=h(x)], while two different types of 
boundary conditions were studied at the other bounding 
surface at z= -H; for “grafted gels” zero displacement 
conditions were applied at this surface; while for “adsorbed 
gels” the surface was bounded in the normal direction, but 
was free to move in the tangential direction, and the shear 
stress was set equal to zero at this surface. 

For both grafted and adsorbed gels, we observe the 
presence of multiple frequencies for the surface oscilla- 
tions, all of which are consistent with the boundary condi- 
tions at z= -H. In the limit of large wave number (k& 1 ), 
the frequencies of the surface oscillations increase propor- 
tional to k and the decay rates of the perturbations increase 
proportional to k2. The frequencies and decay rates are 
finite in the limit k-+0, and their value depends on the 
boundary conditions applied at z= -H; these are summa- 
rized in Tables I and II. The frequencies of oscillation and 
the decay rates are lower for adsorbed gels than for grafted 
gels, and an increase in the surface tension increases the 
frequency and the decay rates of the perturbations in the 
limit k-0. We also note that in the surface tension dom- 
inated regime, the frequency increases proportional to the 
wave number k in the limit k-t CO, which is different from 
the k312 dependence semi-infinite gels. This qualitative dif- 
ference can be explained as follows- only modes that de- 
cay exponentially in the direction normal to the surface are 
permissible for semi-infinite gels, whereas solutions that 
have an oscillatory behavior in this direction are allowed 
for finite gels. The frequency and decay rate of the expo- 
nentially decaying solution for semi-infinite gels increases 
proportional to k3’2 and k3, respectively, in the surface 
tension dominated regime, whereas the frequency and de- 
cay rate of the oscillating solutions permitted for finite gels 
have a much slower increase proportional to k and k2 for 
large k. Hence, for finite gels we obtain certain solutions 
that cannot be recovered from an analysis of semi-infinite 
gels in the surface tension dominated regime, and these 
solutions may be important from an experimental point of 
view because they have much lower decay rates than the 
modes for semi-infinite gels. 

The structure factor for the lowest harmonic of the 
surface modes was calculated from the energy storage in 
the elastic strain field, the surface deformation, and the 
kinetic energy of the gel. A simple dimensional analysis 
indicates that the magnitude of the surface factor is pro- 
portional to ( EH3/T). For a grafted gel, the structure fac- 
tor decreases proportional to h? for k-0, because the 
strain in the x direction due to a surface displacement h is 
proportional to (h/k), and the elastic energy required to 
maintain the strain field increases proportional to (h/k) 2. 
The structure factor has a peak at a finite value of k, and 
then decreases at large k because of the large energy re- 
quired to sustain small wavelength perturbations. 
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The structure factor for the lowest harmonic of an 
adsorbed gel is very different from that for a grafted gel. 
The strain in the x direction due to a surface displacement 
of magnitude h, is O(h), because the surface is not con- 
strained in the x direction at z= -H. This is O(k) smaller 
than the strain we would expect from a naive scaling ar- 
gument. Due to this, the elastic energy in the strain field is 
&rite for k+O, and the structure factor has a peak at this 
value. We also note that the magnitude of the structure 
factor for an adsorbed gel is greater than that for a grafted 
gel, because the adsorbed gel is unconstrained in the x 
direction at z= -H, and the strain energy required for a 
displacement h is smaller than that required for an equal 
displacement in a grafted gel. 

An increase in the surface tension decreases the max- 
imum value of the structure factor due to the higher energy 
required to produce perturbations of the same magnitude. 
The surface tension also preferentially dampens the large 
wave number perturbations, and shifts the peak in the 
structure factor to lower wave numbers. Our analysis 
shows that even at large values of the parameter I, the 
elastic effects are important for small wave numbers, since 
the elastic energy becomes greater than the surface energy 
in the limit k-+0. 

The above analysis indicates that there are significant 
qualitative differences between the modes for a semi- 
inhnite and a finite gel in the surface tension dominated 
regime. The dynamics of the gel is also sensitive to the 
boundary conditions applied at the other bounding surface 
of the gel, and the structure factor for an adsorbed gel is 
qualitatively different from that for a grafted gel. This dif- 
ference should be observable in experiments. The above 
analysis also provides us with some understanding about 
the surface modes on finite gels with two free surfaces. In 
Sec. II we showed that the boundary conditions for grafted 

and adsorbed gels are identical to those at the midplane of 
a gel with two free surfaces having antisymmetric [Fig. 
2(a)] and symmetric [Fig. 2(b)] perturbations, respec- 
tively. Since the structure factor for an adsorbed gel is 
larger in magnitude than that for a grafted gel, the sym- 
metric perturbations are likely to be larger in magnitude 
than the antisymmetric ones in a gel with two free surfaces. 
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