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The hydrodynamic interaction between a pair of nondeformable bubbles (low Weber number
limit) in potential flow (high Reynolds number limit) was analyzed. The velocity potential was
determined using twin spherical expansions, and the equations of motion were calculated by
enforcing the zero net force condition on the surface of the bubbles. The acceleration due to the
interaction is expressed in a perturbation series in the parameter (a 1/R), where al is the radius
of bubble i, R is the distance between the bubbles, and the leading-order acceleration was found
to decrease as (a 1/R )4. The effect of potential flow interactions on the trajectory of a pair of
bubbles of different sizes (size ratio greater than 1.07 at a Reynolds number of 200) rising due
to gravity was studied. A salient feature of the trajectories is that the surfaces of the bubble do
not come into contact during the interaction, except when the smaller bubble radius is less than
0.233 times the larger bubble radius when the Reynolds number based on the larger bubble is
200. In the latter case, however, the Reynolds number based on the radius of the smaller bubble
is not large enough to justify the potential flow approximation. For interactions where collisions
do not occur, the mean-square fluctuating velocity in a uniform suspension and the
hydrodynamic diffusivities in a nonuniform suspension were calculated by performing an
ensemble average over pair interactions. The pair averaging procedure is valid for dilute
suspensions (V.< 18/Re, where V is the volume fraction of the bubbles and Re is the Reynolds
number based on the bubble radius and its terminal velocity).

1. INTRODUCTION

In this paper, we study the dynamics of a suspension of
bubbles in the high Reynolds number, low Weber number
limit. For air bubbles of diameter 0.4-0.8 mm rising in
water, the Reynolds number, Re= p Uoa/'q, varies between
50 and 350 and the Weber number, We=ppU2a/y, varies
between 7.6X l0-4 and 2. Here p and q are the fluid den-
sity and viscosity, a is the bubble radius, U0 is a charac-
teristic velocity, and r is the surface tension. This limit is of
interest even though it only occurs for a small range of
bubble sizes because the analysis of bubble interactions is
sufficiently simple that the average properties of a suspen-
sion can be investigated in some detail.

The motion of a single bubble under high Reynolds
number and low Weber number conditions has been stud-
ied extensively. In the absence of surfactants, there is a slip
boundary condition at the surface of the bubble due to the
small viscosity of the gas. It has been shown (Moorel and
Levich2 ) that the flow around the bubble is inviscid and
irrotational to leading order, and the correction to this base
flow is O(Re-1 /2 ) in the boundary layer and wake. The
boundary layer has a thickness of O(Re- 1/2), and the
wake has a thickness of O(Re 1/4) smaller than the bubble
radius. In the limit of high Reynolds number, the flow
around the bubble is adequately described by the potential
flow approximation. The deformation of a rising bubble
under low Weber number conditions was examined by
Moore.3 Assuming that the shape of the bubble is an oblate
spheroid, Moore found that the ratio of the major and
minor axes is ( 1 + y9,We). Numerical studies by Ryskin and

Leal4 showed that the bubble deformation is small when
the Weber number is less than about 2. For Weber num-
bers greater than 4, boundary-layer separation occurs and
the potential flow approximation is no longer valid.

The interactions between nondeformable bubbles were
analyzed by Biesheuvel and van Wijngaarden,5 who used
the method of twin spherical expansions to calculate the
velocity potential in the absence of external forces. The
bubbles were originally at rest in a container of liquid in
the absence of external forces, and this container was in-
stantaneously accelerated to a finite velocity. The zero net
force condition was enforced using Lagally's theorem, and
the equation for the bubble accelerations were derived. The
authors recently became aware of a theoretical study of the
interaction between a pair of equal sized bubbles by Kok.6' 7

In this analysis, the equations of motion were calculated
using an energy balance formulation, and the interaction
between a pair of equal sized bubbles rising due to gravity
was studied.

The interaction between a pair of nondeformable bub-
bles in potential flow is analyzed in Sec. II. The velocity
potential is calculated using the method of twin spherical
expansions, which was earlier used to study the interac-
tions between equal sized bubbles in the absence of external
forces by Biesheuvel and van Wijngaarden.5 The present
analysis is more general, however, and we describe the
interaction between a pair of bubbles of different sizes in
the presence of external forces. The equation for the accel-
eration of the bubbles is derived as an asymptotic series in
(a/R). Here a1, for i= I and 2, are the radii of the bubbles
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and R is the distance between the centers of the bubbles.
The Bernoulli equation, which is used to calculate the pres-
sure on the surface of the bubble, is a nonlinear equation,
and is explicitly dependent on time. This makes the anal-
ysis of bubble interactions more difficult than the analysis
of interactions between low Reynolds number particles,
which are described by the linear and quasisteady Stokes
equations. However, the calculation of average properties
is simpler in the present case, because the leading-order
acceleration decreases as (1R )4, and therefore we do not
encounter divergent integrals.

The result of an interaction between a pair of bubbles
rising due to gravity in potential flow depends on the ratio
of the bubble sizes. The interaction between bubbles of
nearly equal size (radius ratios between 0.93 and 1.07 at
Re= 200) is analyzed in Kumaran and Koch.8 In this case,
the bubbles approach each other along the horizontal plane
and collide. If we assume that the result of the initial col-
lision is an elastic bounce, the bubbles collide repeatedly
thereafter. The amplitude of the oscillations decreases due
to viscous drag, and the bubbles rise as a horizontally
aligned pair. Based on the scaling of the pressure and ve-
locity fields in the small gap, we expect coalescence to
occur. The frequency of coalescence in a dilute suspension
of bubbles is calculated by doing an ensemble average over
pair interactions.

For larger size ratios, the surfaces of the bubbles do not
come into contact during an interaction, so the possibility
of coalescence does not arise. In Sec. III, we use the po-
tential flow solution from Sec. II to analyze this type of
interaction. The mean and mean-square velocities and the
hydrodynamic diffusivities of bubbles in a bidisperse sus-
pension are calculated in Sec. IV. Most previous treat-
ments of the average behavior of bubble suspensions have
not included any detailed description of bubble interactions
(see, for example, Drew9 and Wallisl). Studies that have
included hydrodynamic bubble interactions have generally
focused on the concentration dependence of the added
mass or drag coefficient in a static array of bubbles (van
Wijngaarden and Biesheuvel," Kok,6 and Sangani
et aL 12). By including the bubble dynamics, we are able to
determine the variance of the bubble velocity and the bub-
ble's hydrodynamic diffusivity as well as the changes in the
mean velocity.

11. POTENTIAL FLOW INTERACTIONS BETWEEN
NONDEFORMABLE BUBBLES

The problem configuration consists of two spherical
bubbles of radii a, and a2, which are centered at positions
xi and x2 and have velocities U1 and U2 as shown in Fig. 1.
The velocity of the fluid u is expressed as the gradient of
the velocity potential q:

u=Vo. (1)

The velocity potential satisfies the Laplace equation:
V2 =O. (2)

The liquid pressure is given by the Bernoulli equation:
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FIG. 1. Definition of coordinate system for analyzing the interactions
between nondeformable bubbles.

p_ 8o-I2.
p at 2 (3)

The bubbles are not deformable, so the velocity of the fluid
normal to the surface of the bubble is equal to the velocity
of the bubble in that direction,

u-n=U1 -n. (4)

Since the gas density is 0( 10-3) smaller than the density
of the liquid, we assume that the mass of the bubble is zero
and therefore the net force acting on the bubble is zero,

(5)
-fAipn' dA1+F1 =0.

Here Ai is the surface of bubble i, ni is the outward unit
normal to the surface, and Fj is the sum of the external
forces on the bubble. In addition to the above conditions,
the fluid velocity and pressure are zero at large distances
from the bubble. Equations (1)-(5) are solved to calculate
the acceleration of the bubbles due to interactions.

To simplify the analysis, we express the velocities of
the bubbles in terms of the common velocity V and the
difference velocity W:

(6a)

W=12(U1-U2). (6b)

The coordinate systems used in analyzing this problem are
shown in Fig. 1. A Cartesian coordinate system fixed in the
stationary frame tracks the absolute displacement of the
bubbles in space. In addition we use two spherical coordi-
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nate systems at the centers of the bubbles. Here eai is the
unit vector directed from the center of bubble i to the
center of the other bubble ( 3-i), and serves as the axis for
the spherical coordinates. The two unit vectors perpendic-
ular to this axis are ebi and e&1 Note that eaj and ea2 are
opposite in direction to each other, whereas the other two
unit vectors are in the same direction. The radial and the
azimuthal coordinates in the coordinate system centered at
bubble i are ri and Qj, respectively, and the common me-
ridional angle for the two systems is [t. The relations be-
tween the unit vectors in the spherical and Cartesian co-
ordinate systems are

er!-cos 0 evasion Oi cos ju ebi+sin 0i sin [t ec1, (7a)

eqi= -sin 0 eai+cos Oi cos tu ebi+cos Oi sin At e,
(7b)

eL-= -cos jA ebi+ Sin [ ecu (7c)

The velocity potential is expressed as a function of the
bubble velocities and separation using the method of twin
spherical expansions. Since the Laplace equation and the
boundary conditions are linear, the velocity potentials oVk

and Owh driven by the components of the common and
difference velocities Vk and Wk in the three directions (k
=a,b,c) can be evaluated independently and then super-
imposed to give the velocity potential. The Laplace equa-
tion is solved in spherical coordinates using the method of
separation of variables. Since the velocity of the fluid de-
creases to zero at large distances from the bubbles, only the
decaying harmonics are retained. The solutions for the
contributions to the velocity potential are

Cok= g Vka [.1a, y

sbVk= XVkaIgi.(r, I (01,Y,)
n=1rl 

(8)

Co F/a\f+1
OWk= E Wkajt fm nt r n(°t14)

n=1 r )]

+f'm( a2) ]

where

Globe) =Pn)(COS hi;) 

fn(04-0p =P,1(COS Od)COS jt

Y', (0iji ) = Pn, ( cos 0s) sin tu .

Here m=O for k=a and m= 1 for k=b and c.
The constants f'mn and g9'mn are evaluated using

normal velocity condition at the surface of the bubbles
The Legendre polynomials in the coordinate system
tered at one bubble can be expressed in terms of ti
centered at the other bubble using the following expres
derived by Hobson:'3

( I )n+1 ( I )n+' ' (n+q)

P7 (Cos 0j) = - I q+m
r, R q=m

X (r,_, y n (Cos 03-')
R 1"q

for r3-i<R. (10)

The constants f im and g'm, in (8) and (9) are expanded in
a polynomial series in the parameter (a1 /R) as follows:

2 P=0 P\R 

AM L'M ~i-
2 P=O 'lPR

(lla)

(1 lb)

The condition on the normal velocity at the bubble surface
(4) is used to obtain the constants Knp and Lmnp

K .0 = (-n

( 12a)

I n ) p-n-I nn~ 

K'n __ K2.~q~p nq-")S p \n+m)

K~nnzn(l ~p-n-1

2 ~= ( -

Lmno== -S51n, (12b)
n p-n-1 n~'

Lp= ( nZP~i )q) 
)q=O

( p- nn+m)

(9) Here, s is the ratio of bubble sizes (a2 /aj).
The leading-order correction to the velocity potential

around a bubble due to the motion of a second bubble
decreases as (11R ) because of the following reason. The
potential due to the motion of the second bubble decreases
as (l/r)2 , and this can be expanded in a Taylor series
about the center of the first bubble using (10). The leading
term in this expansion, which decreases as (UR )2, is in-
dependent of spatial coordinates, and does not cause a dis-
turbance to the fluid flow. Therefore, the leading correction
to the potential which causes a velocity disturbance de-

the creases as (UR ) 3.

(4). The pressure on the surface of each bubble is calcu-
cen- lated by substituting the expression for the potential, (9),
hose (11), and (12), into the Bernoulli equation (3). This pres-
sion sure is used in the force balance equation (5) to obtain six

equations for the evolution of the bubble velocities:
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r ax 1 k analysis; (ii) the effect of hydrodynamic interactions on
JA t I(0jy)d+J At2- u2yk (0oU) the drag forces is neglected; and (iii) the bubbles are con-

sidered to be nondeformable.
1 The higher-order corrections in the expansion for the

+- Fi. ekj=0 (13) acceleration are difficult to calculate for the general case of
two bubbles moving with arbitrary velocities. Kumaran14

for i= 1,2 and k=a,b,c. Note that the components of the explicitly calculated these corrections for the simpler case
unit normal in (13) have been written as spherical har- of two bubbles approaching each other with equal veloci-
monics. ties along their line of centers. Due to the symmetry of the

The time derivative of the velocity potential on the configuration, the change in the velocities of the bubbles
surface of bubble i is expressed in terms of the velocities of can be calculated using just the energy balance equation. In
the bubbles and the distance between them: Kumaran's calculations, the bubbles were given an initial

anp aq~ dR atb d~k ap dark velocity of magnitude U0 toward each other when theirao aoR k=U bK 'k -+ )~ V -v~ u1 separation was (10a1 ), and terms up to 0(a 1 /R)l0 were
at dR t + ~a~bc ( Vkdt a Wk dt ) retained in the expansion for the acceleration. As the bub-

(14) bles approached each other, their velocities decreased to
The last term in the expression above compensates for the 0.83UO due to the potential flow interaction when their
motion of the spherical coordinate system with the bubble. surfaces touched. The error made by retaining only the
Note that, whereas the spatial coordinates are defined in a leading-order term in the expansion was less than 0.015U 0
coordinate system moving with the bubble, the velocities at the point of contact. The asymptotic expansion could
are relative to a fixed reference frame. Equations (1) and not be. used when the gap between the surfaces became
(14) were substituted into the force balance equations small compared to the bubble radius, because the series
( 13) to derive equations for the acceleration of the bubbles does not converge at small separations.
in the three coordinate directions. The surface integrals The effect of hydrodynamic interactions on the viscous
were first simplified by exploiting the symmetries of the drag was analyzed using the same configuration and in-
Legendre polynomials about the coordinate axes, and then cluding an additional viscous dissipation term for potential
solved to obtain the following expressions for the acceler- flow in the energy balance. The change in the viscous drag
ations of the bubbles correct to 0(a 1/R )4: due to interactions was calculated correct to 0(al/R )6, and

dU. 9aFt-3 the error made by neglecting the higher-order terms was
a (U=_ U -- UU-2U) I+ F_ pai examined. It was found that including the effect of inter-

dt 2R Ia L'(2 3c) rap+a actions on the drag force changed the velocity at the point
(15a) of contact by 5% or less at Reynolds numbers of 100 and

93 200.
dUik Ua( Uj+ U-) e+- The effect of small deformations of the shape of the
dt 2R (2/3)irpa; bubble was also studied using an energy balance formula-

for k=b~c. (15b) tion, taking into account the possibility of the conversion
for *~b~c. (15b) of kinetic energy of flow into potential energy for surface

Here j = 3-i. Note that the acceleration of the bubble due expansion. The bubbles were given a velocity U0 when the
to the external force is equal to the force on the bubble distance between their centers was 10al, and the difference
divided by its added mass, which is half the mass of the in the velocity at contact between nondeformable and de-
fluid displaced by it. The external force F, is the sum of the formable bubbles was 0.02UO at We=0.5, and 0.05UO at
buoyancy and drag forces and is given by [(U1,-Uj)/' ], We= 1.0.
where Ujt, is the terminal velocity, and -ri is the viscous The above calculations indicate that the approxima-
relaxation time [pal/(l8i7)]. Although the first effect of tions used here will not cause significant errors when the
bubble interactions on the fluid velocity decays as (1/R 3 ) Reynolds number is greater than 100 and the Weber num-
this term does not contribute to the bubble acceleration. ber is less than 0.5. Note that these conclusions are only
The leading-order acceleration, which decays as (1/R 4 ), valid when the distance between the bubbles is comparable
results from the next correction to the fluid velocity. to the bubble radius. In addition, it should be noted that

the analysis mentioned above did not take into account the
effects of deformation and the change in the drag due to

III. INTERACTION BETWEEN BUBBLES OF interactions on the center of mass motion, which may be
DIFFERENT SIZES RISING DUE TO GRAVITY significant.

In this paper, we analyze a bidisperse suspension of
Before proceeding to study the interactions between bubbles having a relatively large size difference, in which

bubbles rising due to gravity, we briefly examine the valid- there are no collisions between the bubbles during an in-
ity of three approximations that are used in the calculation teraction. The interactions between bubbles of nearly equal
of the average properties of a suspension of bubbles in Sec. size which do involve collisions are analyzed in Kumaran
IV: (i) only the leading-order term in the expansion for the and Koch.8 The interaction between a pair of bubbles in a
acceleration, which decreases as (h1R )4, is retained in the dilute suspension is initiated by the approach of the larger
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FIG. 2. Configuration of bubbles of different sizes rising due to gravity. In
the initial configuration, the bubbles are rising at their terminal velocities,
and the distance between their centers is large enough that the effect of
interactions is negligible. The impact parameter b is the horizontal dis-
tance between their centers in the initial configuration.

bubble from below. This configuration is shown in Fig. 2,
where the smaller bubble (bubble 1 ), which has a radius at
and a terminal velocity Ul, is approached from below by a
larger bubble (bubble 2) with radius a2 and terminal ve-
locity U2,. Since the terminal velocity of bubble i is given
by [a~pgl(977)], the ratio of the terminal velocities,
( U,1 9,,), is s2 if the ratio of the bubble radii, (a/lal ), is

s. Initially, the distance between the bubbles is large

enough that the effect of the interaction on the trajectories
is negligible. However, the horizontal distance between the
bubbles in the initial configuration, which is referred to as

the impact parameter b, is comparable to the bubble ra-

dius. The trajectories are generated by numerically inte-

grating the equations for the bubble accelerations (15),

where F is the sum of the buoyancy and drag forces, and is

given by [(UstaUl)/Tlru . All lengths are nondimensional-
ized by at and velocities by Ulf

The trajectories of the larger bubble in a reference
frame moving with the smaller bubble are shown in Figs.
3-7 for several values of the impact parameter b. In Fig. 3,
the Reynolds number Rea is 200, the size ratio is 1.2, and
the positions of the bubbles are (0,b) and (b, -20) in the
initial configuration. Here, the Reynolds number Rei is
based on the size and terminal velocity of bubble bL In Fig.
4, the size ratio is maintained at 1.2, but the Reynolds

16

X

FIG. 3. Trajectories of bubbles of different sizes rising due to gravity for
different values of the impact parameter. The position of the larger bubble
is tracked in a reference frame moving with the smaller one. The radius of
the larger bubble is 1.2 times that of the smaller one, and the Reynolds
number, based on the radius and terminal velocity of the smaller bubble,
is 200. In the initial configuration, the bubbles were rising at their termi-
nal velocity, and vertical distance between the centers of the bubbles was
20 times the radius of the smaller one. All length scales are nondimen-
sionalized by the radius of the smaller bubble.

number is reduced to 100. At a lower Reynolds number the
bubbles relax to their terminal velocity faster due to vis-
cous drag, and the displacement of the bubbles is smaller.
The effect of the variation of the size ratio at a Reynolds

(N

z(0 

co

V I _ I ... .

0 4 8 12 16

FIG. 4. Trajectories of bubbles of different sizes rising due to gravity for
different values of the impact parameter. The position of the larger bubble
is tracked in a reference frame moving with the smaller one. The radius of
the larger bubble is 1.5 times that of the smaller one, and the Reynolds
number, based on the radius and terminal velocity of the smaller bubble,
is 200.
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FIG. 5. Trajectories of bubbles of different sizes rising due to gravity for
different values of the impact parameter. The position of the larger bubble
is tracked in a reference frame moving with the smaller one. The radius of
the larger bubble is 1.2 times that of the smaller one, and the Reynolds
number, based on the radius and terminal velocity of the smaller bubble,
is 100.

number of 200 can be seen by comparing Fig. 3 and Fig. 5,
where the larger bubble is 1.5 times bigger than the smaller
one. As the size ratio is increased, the displacement of the
smaller bubble increases due to an increase in the inertia of
the fluid flow driven by the larger one. The displacements
of the bubbles are large compared to their radii because the
time required for a bubble to relax to its terminal velocity
is O(Re/18) when scaled by the radius and terminal ve-
locity of the bubble.

The surface indicated by the broken line around bubble
1 is a hemisphere of radius (s+ 1); if the center of bubble
2 is on this hemisphere, the surfaces of the bubbles touch.
As can be seen from the figures, the surfaces of the bubbles
never come into contact. Even when the bubbles are ini-
tially in the same vertical line (b=0), the relative velocity
decreases to zero as they approach each other. This is
shown in Fig. 6, which is a plot of the vertical distance
between the bubbles as a function of time, when the larger
bubble is directly below the smaller one. The size ratio is
1.5, the Reynolds number based on the size and terminal
velocity of the smaller bubble is 200, and the vertical dis-
placement of bubble 2 is traced in a reference frame mov-
ing with bubble 1. The potential flow interaction between
the bubbles is repulsive for vertically oriented separations.
The combined effects of the attractive buoyancy force, the
repulsive potential flow interactions, and the added mass
inertia, lead to an oscillation of the separation, which is
eventually damped due to viscous drag. The separation and
velocity of the bubbles at steady state for this configuration
can be calculated from the equation for the acceleration
(15). The rise velocity U is

FIG. 6. The vertical distance between a pair of bubbles of different sizes
rising along the same vertical line, as a function of time. The radius of the
larger bubble is 1.2 times that of the smaller one, and the Reynolds
number based on the radius and terminal velocity of the smaller bubble is
200. In the initial configuration, the bubbles were rising at their terminal
velocities, and the distance between their centers was 20 times the radius
of the smaller bubble.

u=(Sl~l) ( 16a)

and the distance between the centers of the bubbles at
steady state is

R =(Re U ) /4. (16b)

In the above calculation, we have neglected the effect
of the wake below the smaller bubble. For an isolated bub-
ble rising in a liquid, it was shown by Moorel that the near
wake (R -a) has a thickness of O(Re-1"4 ), and the per-
turbation to the velocity due to viscous forces in the wake
is O(Re-"/2 ). The viscous forces in the far wake (R>a)
are small compared to the inertial forces at downstream
distances less than (a Re1/ 2 ), and therefore we neglect the
effect of the wake in the limit Re> 1. Moore showed that
the first correction to the drag force on the bubble due to
wake effects was (- 2.211 Re"-/2 ) times the leading-order
drag force. Subsequently, Harper' 5 calculated the higher-
order correction to the drag force of a bubble when it rises
in the wake of another bubble of the same size, obtaining
(-4.345 Re- 1/2) times the leading-order drag force.
Thus, the variation in the drag force due to wake effects is
small for Re> 1.

When the size ratio s is much smaller than 1, the bub-
bles "collide" with each other repeatedly during the inter-
action. Here we have used "collide" to indicate that a cal-
culation based on nondeformable bubbles gives the result
that the bubbles touch while still moving at a finite relative
velocity. Figure 7 shows the trajectory of the smaller bub-
ble (bubble 1) in a reference frame moving with the larger
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tal plane and collide with a finite velocity toward each
other. The interaction between bubbles of different sizes is
driven by the difference in their terminal velocities, and
takes place within the finite time period required for the
bubbles to translate past each other. The interaction is
strongest when the distance between the bubbles is small
and the orientation of the line of centers is closer to the
vertical, and in this configuration the interaction is repul-
sive. Due to this repulsion, the horizontal distance between
them increases as the larger bubble translates past the
smaller one. The bubbles do experience some attraction
farther downstream along the trajectory when the line join-
ing their centers is oriented closer to the horizontal (see
Figs. 3-5). However, this attraction is insufficient to cap-
ture them in closed trajectories before they have translated
past each other.

FIG. 7. Trajectories of bubbles of different sizes rising due to gravity. The
position of the smaller bubble is tracked in a reference frame moving with
the larger one. The ratio of the radii of the bubbles is 0.2 and the Reynolds
number, based on the radius and terminal velocity of the larger bubble, is
200. In the initial configuration, the bubbles were rising at their terminal
velocity, and the distance between their centers was 20 times the radius of
the larger bubble.

bubble (bubble 2), where the size ratio is 0.2 and the Rey-
nolds number of the larger one is 200. The bubbles collided
for (a 1/a 2 )<0.233 at Re2=200 and (a 1/a 2 )<0.365 at
Re2 = 100.

However, it should be noted that since Re, is
0(al/a2 )3 smaller than Re2 , the Reynolds number of the
smaller bubble is 0(1), and the potential flow equations
cannot be used to describe its motion. Although the tra-
jectories in Fig. 7 are not quantitatively accurate for low
Reynolds number, it is of interest to know whether bubble
coalescence may still be expected. For Re1 l~1 and a1 <a2 ,
the small bubble will approximately follow a streamline in
the flow relative to the large bubble until the separation is
0(al). The streamlines converge toward the surface of the
large bubble on its upstream side, and the flow drives the
small bubble into the surface. The lubrication analysis of
Davis et al.16 indicates that the lubrication forces are too
weak to slow the coalescence process significantly at low
Reynolds number. Thus, the coalescence time is much
smaller than the time it takes for one bubble to translate
past the other.

The result of the interaction between a pair of bubbles
whose size ratio is between 0.9 and 1.1 is qualitatively
different from that discussed in this section. The bubbles
approach each other along the horizontal plane and collide
repeatedly. This type of interaction is discussed in detail in
Kumaran and Koch,8 and from the scaling of the pressure
in the gap between the bubbles, we expect coalescence to
occur in finite time. This difference can be qualitatively
explained as follows. Potential flow interactions cause ver-
tically oriented bubbles to repel, and horizontally oriented
bubbles to attract. Thus, bubbles of equal size, which have
equal terminal velocities, come together along the horizon-

IV. AVERAGE PROPERTIES OF A BIDISPERSE
SUSPENSION

In this section, we use pair averaging to determine the
properties of a bidisperse suspension of bubbles. The dy-
namics of the suspension is governed by two time scales:
(i) the interaction time, -a,, which is the time between suc-
cessive interactions of a bubble and (ii) the viscous relax-
ation time, ri,, which is the time it takes a bubble of species
i to relax to its terminal velocity after an interaction. The
viscous relaxation time is the ratio of the drag coefficient
and the added mass of the bubbles:

pa, Re, a,

Ta 8n1iU,-18 uj, (17)

The time between successive interactions is the inverse of
the interaction frequency:

,rc l/{ni[ir(al +a2 )2
1 Uit}. (18)

The ratio of the viscous relaxation time to the interaction
time, (ro,/'r), is 0( V Re/18). Here V is the volume frac-
tion of the bubbles and Re is the Reynolds number based
on the bubble radius and terminal velocity. Thus, the bub-
bles relax to their terminal velocities between successive
collisions in the limit V< 18/Re, and the pair averaging
procedure is valid in this limit.

In a polydisperse suspension, the frequency of interac-
tions between bubbles of two different sizes is inversely
proportional to the difference in their terminal velocities in
the limit Va4 18/Re. Interactions between bubbles of nearly
equal size, which lead to coalescence, are analyzed in Ku-
maran and Koch.8 The interactions between bubbles hav-
ing a larger size difference, which occur with a higher fre-
quency, do not lead to coalescence. However, these
interactions cause velocity fluctuations and a spatial trans-
port of bubbles in the suspension. The mean-square fluc-
tuating velocity and diffusion coefficients in the suspension
are calculated in this section. For simplicity, we analyze a
bidisperse suspension in which the bubbles have two dis-
tinct sizes, but the procedure can be quite easily modified
for calculating the fluctuating velocities and diffusion co-
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efficients in a polydisperse suspension. The latter would
involve one additional step, which is an average over the
size distribution in the suspension.

If we neglect interactions in the leading-order approx-
imation, the bubbles of the two species rise at their respec-
tive terminal velocities. A perturbation analysis about this
base state is used to calculate the first correction to the
mean and mean-square velocities in a spatially uniform
suspension in Sec. IV A. The diffusion coefficients in a non-
uniform suspension are calculated in Sec. IV B.

A. Mean and mean-square velocities in a uniform
suspension

In this section, we calculate the averages of the follow-
ing quantities in a uniform suspension: (1) the difference
between the mean velocity and terminal velocity,
(U&- U1t); (ii) the square of the fluctuating velocity in the
vertical direction, ( Ui tUit)2; and (iii) the square of the
fluctuating velocity along any direction in the horizontal
plane, U~i, Note that these velocities are nonzero only dur-
ing an interaction. The moments are calculated by doing
an ensemble average over all relative configurations of the
bubbles during an interaction:

fi ObIi[Uj(b~l) Pj(b,1)2,rbdb d1, ( 19)

where b is the impact parameter of the trajectory of the
bubble of the other species j and 1 is the coordinate of the
bubble along this trajectory, as shown in Fig. 3. Here
13i[Ui(b,l)] is the value of 8i due to the presence of the
second bubble (bl) moving with a velocity Up. The condi-
tional Pj(b,l) is the probability of finding the bubble of
species j which has traveled along the trajectory having
impact parameter b and is located at (bl). If the time scale
of the interaction is large compared to the viscous relax-
ation time, the velocity fluctuation decreases as (1hR )4.

Since the moments calculated here are nonzero only for the
period of the interaction, the integral in (19), evaluated
over all space, is convergent.

The conditional probability, Pj(b,l), is equal to the
number density of bubbles of species j, nj, when the dis-
tance between the bubbles is large. As- the bubbles come
closer together, however, the interaction between the bub-
bles causes a change in this probability. The divergence of
the flux of the conditional probability is zero. Since the
impact parameter does not change during an interaction,
this reduces to the condition that the flux, ( I U1 -U1 I Pj),
along the trajectory is independent of 1. Initially, the dis-
tance between the bubbles is large enough that the effect of
interactions is negligible. In this configuration, the proba-
bility of finding a bubble of species j in the differential
volume dx is (nj dx), and the bubbles are moving at their
respective terminal velocities. Therefore at any point along
the trajectory, the probability of finding a bubble of species
j is given by

(uf- U1 )
P1(b,l)=nj IUiUjlI (20)

0-

<Ulz- Ult> 0

0
c'J

0.7 0.8 0.9

FIG. 8. [(C U.- Ut,))/nIjJ plotted as a function of size ratio, s= (a2/al).
The Reynolds number based on the radius and terminal velocity of species
I is 200.

The ensemble averages are calculated using a finite-
difference scheme in a reference frame moving with the
bubble of species i. The trajectory of a bubble having an
impact parameter b is divided into a finite number of in-
tervals of length Al=( U- UjIAt), where At is a small
time interval. From (20), the number of bubbles of species
j in each differential volume is [nj27rb db(Ui- Uj,)At].
The integrand in (19) is weighted by this probability and
numerically integrated over the b and I coordinates to give
the ensemble average (13). This ensemble average is pro-
portional to np, the number density of the other species j,
since the probability Pj(b,l) is proportional to n1. Figures
8-11 show the variation of ((,8 1 )/n2 ) as a function of Rey-
nolds number and size ratio.

Figure 8 is a plot of ((Ul.,- Ul,)/n 2 ) as a function of
size ratio at a Reynolds number of 200. At a size ratio
between about 0.7 and 0.9, the interaction slows down the
larger bubble, and the difference between the mean velocity
and the terminal velocity is negative. As the size ratio is
decreased, however, the average effect of interactions re-
sults in an increase in the velocity of the larger species.
This rather surprising result can be qualitatively explained
as follows. If we assume the two bubbles are traveling at
their terminal velocities, the acceleration of the larger bub-
ble in the vertical direction is given by

dU1 ~,_ 9U1 (a, 4 s (s2 +2) sin2 G_2S2 cos2OI 
dt 2 a, \R

(21)

This interaction is repulsive when the azimuthal angle of
the line joining the centers of the bubbles satisfies the fol-
lowing criterion:

tan2 0<2sl/(s2+ 2). (22)
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FIG. 9. [((U,- U1,)
2 )In2J and ((U',,)/n 2 ) as a function of size ratio,

s= (a2 /a 1). The Reynolds number based on the radius and terminal ve-
locity of species 1 is 200. -: [((U,,z-Ui,) 2 )/n2]; - - ((U1j,)/n 2 ).

FIG. 10. [((U,,- Ul,) )/n 2 ] as a function of the Reynolds number, Re,
based on the radius and terminal velocity of species 1. The size ratio,
(a2/al), is 1.25.

As the size ratio s is decreased the domain of repulsion
decreases and the mean velocity of the larger species in-
creases and eventually becomes greater than its terminal
velocity.

The quantities [((UUl- Ul,) 2 )/n2 ] and ((U2r)/n 2) are
plotted as a function of size ratio for a Reynolds number of
200 in Pig. 9. The mean-square velocity fluctuations in the
vertical direction are greater than those in the horizontal
direction for a size ratio greater than about 0.7. For smaller
size ratios, the two variances are approximately equal.
There is an increase in the velocity moments as the size
ratio approaches 1 because the difference in the terminal
velocities decreases, and the bubbles interact for longer
periods of time. Note that the graphs have not been ex-
tended beyond a size ratio greater than about 0.9. The
interactions between bubbles having a greater size ratio
result in collisions and coalescence, and this results in a
change in the size distribution of the suspension. This phe-
nomenon is analyzed in another publication.7 However, the
properties remain finite as we approach the critical size
ratio at which collisions occur.

The quantity ((Ul.- Ul,)/n 2 ) is shown as a function
of Reynolds number for a size ratio of 1.25 in Fig. 10, and
the quantities [((Ul-_Ult) 2)/nj and ((U2r,)/n 2 ) are
plotted for the same size ratio in Fig. 11. These three quan-
tities increase linearly at large Reynolds numbers, since the
viscous relaxation time is proportional to (Re/18). The
mean-square velocity in the vertical direction is about 1.2
to 1.5 times that in the horizontal direction. In the above
figures, the number density n2 is nondimensionalized by
(l/a3). In the limit of small volume fraction, the mean and
mean-square velocities are proportional to the product of
the abscissas in the figures and the volume fraction.

B. Diffusion of bubbles in a nonuniform suspension

The interaction between bubbles causes a spatial trans-
port in a reference frame moving at their respective termi-
nal velocities, and this drives a flux in a nonuniform sus-
pension. In this section, we use ensemble averaging to
calculate diffusion coefficients that relate the flux to the
gradients in the number densities of the bubbles as follows:

an. a i nji nj
(xax zz 

Here J." and J., are the flux of bubbles of species i in the
horizontal and vertical directions, respectively, and Dxi and

< n.2U1)2
n2

I

0 100 200 300
Re

FIG. 11-. [((U,,-Ul,)2 )/n 2 ] and ((Uf2,)/n 2 ) as a function of the Rey-
nolds number, Re, based on the radius and terminal velocity of species 1.
The size ratio, (a2/al), is 1.25. -: [((U,,-U,,)2 )/n 2 ]; _-:
( ( U',) /n 2 ) .

(23)
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D'i are the diffusion coefficients. Note that in this analysis
we include cross-diffusion coefficients which relate the flux
of species i to gradients in the number density of species j.
This flux results from the dependence of the interaction
frequency of bubbles of species i on nj.

The diffusion coefficients scale as (AI/r ), where Ai, the
transport length, is the displacement of the bubble during
an interaction. To calculate a diffusion coefficient that de-
pends only on the instantaneous number density gradient,
we need to satisfy two conditions: (i) the transport length

li should be small compared to the length scale of the
number density gradients L, i.e., Ai.<L; and (ii) the time
scale of the variation of number density gradients should
be large compared to the time period of an interaction,
which is the viscous relaxation time, rrn. The transport
length Ai scales as (Uir,1), since the perturbation to the
velocity of the bubble during an interaction is O( Ui) and
the time it takes a bubble to relax to its terminal velocity is
O(,i-,,). Therefore, Ai is O(a1 Rei/18), which is about ten
times the bubbles' radius for Reynolds numbers of 0(200),
and the first condition is satisfied for L > 10a, A charac-
teristic time scale for the number density variations is
(L 2 rIA?), which is large compared to rVi for
L/A> V Re/1 8. In the limit V Re/ 1 8<1 the first condi-
tion is more stringent, and this analysis is valid in the limit
(L/a>->Re,/18).

An interaction causes a horizontal displacement x,1
and a vertical displacement zci of the bubble of species i in
a reference frame moving at its terminal velocity. These
displacements are functions of the impact parameter of the
interaction, the size ratio of the bubbles, and the Reynolds
number.

To calculate the horizontal flux, consider a vertical
plane at x=0, across which the variation in the number
density is given by the following linearized equation over
length scales of O(Ai):

ni x) =ni(O) +n(O)x. (24)

The transport of bubbles across this plane is caused by
interactions in a region of width X,1 on either side of the
plane, where Xci is the maximum deflection caused by the
interactions. Consider a differential length dt about the
point x = t in this region. The deflection of a bubble in the
x direction due to an interaction with impact parameter b
is given by [xci(b)cos 1]. Here x 1(b) is the magnitude of
the deflection due to an interaction with impact parameter
b, and A is the meridional angle, which is the angle between
the projection into the x-y plane of the line joining the
centers of the bubbles and the x axis. The number of in-
teractions per unit area in the y-z plane per unit time in the
region ¢ to t+dT, having an impact parameter in the in-
terval db about b and a polar angle in the interval dyz about
ui, is given by

number of interactions/area/time

z=ni(~)n2(~)b db dut d~l U2t-Uitj, (25)

where the number densities n1 (t) and n2 (t) are given by
(24). For an impact parameter b, the interaction results in

a transport across x=0 if the deflection (xc1 cosyu) is
greater in magnitude than A, and directed toward the x = 0
plane. To calculate the net flux, we integrate (25) in the ¢

coordinate from 0 to (-xei cos ji), in the p[ coordinate
from 0 to 27r, and over all values of the impact parameter
b,

2r 0

bx= L r r n1(¢)n2(O I U1 --U 211x y=0 d =-X cosb

X do d1L b db

-- [n1(0)n'+n2(0)nI II U1t-U 2 1I fx~b db. (26)

In the above expression, ft is in the intervals (0,ir/2)and
(31r/2,2ir) for bubbles transported in the positive x direc-
tion, and in the interval (ir/2,3ir/2) for bubbles trans-
ported in the negative x direction. The diffusion coefficient
calculated from the above equation is

(27)

The diffusion coefficient in the vertical direction is cal-
culated in a similar manner. Consider a horizontal plane at
z=0 in the suspension which is moving at the terminal
velocity of species i. The number density across this plane
is assumed to be linear in the z coordinate over length
scales comparable to the transport length Ai:

(28)

There is a flux of bubbles due to interactions in the region
within a distance Z.1 about the plane z=0, where Zci is the
maximum deflection due to an interaction. The flux is in-
dependent of the meridional angle Au in this case, since the
configuration is axisymmetric. The frequency of interac-
tions in an interval d; at a distance 4 below z=0, per unit
area in the x-y plane per unit time, that have an impact
parameter in the differential width db about b, is given by

number of interactions/area/time

~n JM2(0I Ult-U2 A. libb db)dg. (29)

The above interaction causes a flux through the surface
z=0 if the deflection Zi is greater than A. Therefore, the
total flux is calculated by integrating the above expression
in z from 0 to zi and over all values of b:

X.= fb flZC n1 (g)n2(~) I U1t-U-2t (2-rrb)d~db

=nl (0)n2 (O) I U11- U2 1j z,(2irb)db
fb

-i[Xn(0)n'+n2 (0)nl' I Ult- U2tJ f fc4b db. (30)

The first term in the above expression is a flux in a uniform
suspension due to the difference between the mean velocity
and the terminal velocity, and is the same as that calcu-
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FIG. 12. [D<',]n,_j(0)] and [DY/n 3 -j(0)] as a function of the Reynolds
number, Re, based on the radius and terminal velocity of species 1. The
size ratio, (a2 /al), is 1.25. - -: [D!1/n 3 -j(0)]; a: [D.J/n 3 -j(0)].

lated in Sec. IV A. The second term represents the diffu-
sion in a nonuniform suspension, and the coefficient of
diffusion calculated from this term is

D"=lrrn3 j(O) IUlt- U2t| r 2i db. (31)

From (27) and (31), D'i and D'> are proportional to
the number density n3orj(0). Here D,//n3 _.j(0) and
Dz'/n 3 -j(0) are shown as a function of Reynolds number
for (a 3 .-/a 1) = 1.25 in Fig. 12. Here, the number density
n3 -jJ(0) has been nondimensionalized by (a 3_j)3 . The dif-
fusion coefficients are quadratic functions of Re at high
Reynolds numbers, and the coefficients in the horizontal
and vertical directions are about equal for a size ratio of
1.25. In Figs. 13 and 14, D'4/n3 -(0) and D'/n 3 _ j(0). are
plotted as a function of size ratio at a Reynolds number of
200. As expected, the diffusion coefficients increase as the
size ratio increases. The diffusion coefficients in the two
directions are almost equal for (a 3 .-,/ai) > 1.1, and the dif-
fusion coefficient in the vertical direction is greater than
that in the horizontal direction for (a 3 -l/ai) <0.9. The
diffusion coefficients have not been calculated for values of
the size ratio between 1.1 and 0.9, because interaction be-
tween bubbles in this size range results in coalescence.
Since the diffusion coefficients are always positive, interac-
tions may be expected to have a damping effect on number
density variations.

V. CONCLUSIONS

The interactions between a pair of unequal sized non-
deformable bubbles in potential flow were studied in Sec.
II. A perturbation solution in the parameter (a,/R) was
obtained, and it was shown that the leading-order bubble
acceleration decreases as (a/R )4 at large separations.
While calculating the trajectories of bubbles rising due to

FIG. 13. [D,{/n3 -. (0)] and [D91 /n3 _.(0)] as a function of size ratio
s= (a 2/al). The Reynolds number based on the radius and terminal ve-
locity of species 1 is 200. - -:[DI n _ j(0)l; - : [D"/- (03

gravity, the bubbles were assumed to be nondeformable,
only the leading-order term in the expression for the accel-
eration due to the potential flow interaction was retained,
and the effect of the interaction on the bubble drag was
neglected. A brief summary on the previous work on the
validity of these approximations was provided at the be-
ginning of Sec. III.

In Sec. III, we analyzed the interaction between a pair
of bubbles rising due to gravity, when the size ratio of the
bubbles was greater than about 1.1. The surfaces of the
bubbles did not come into contact during the interaction,
and therefore there was no possibility of coalescence. There
are repeated collisions between bubbles having a size ratio

0
u~2 

n3.J(O) 

0~
tr)

0-

1.04 1.12 1.20 1.28

FIG. 14. [D'j/n3 _j(0)] and [Di'/n 3 _j(0)] as a function of size ratio
s= (a2 /a1). The Reynolds number based on the radius and terminal ve-
locity of species I is 200. - -: [DY/n 3 .J(0)]; -: [D,{/n3 _.(0)]-
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between 0.9 and 1.1 at a Reynolds number of 100, and
between bubbles having a size ratio between 0.93 and 1.07
at a Reynolds number of 200. The analysis of this interac-
tion is presented in Kumaran and Koch.8 Collisions were
also observed when the larger bubble was rising at Re
=200 and the smaller bubble was less than 0.233 times the
larger one. In this case, the Reynolds number based on the
smaller bubble is not large enough to justify a potential
flow approximation, but it was conjectured that coales-
cence would occur.

The average properties of a bidisperse suspension of
bubbles rising due to gravity were calculated by performing
an ensemble average over pair interactions in Sec. IV. An
ensemble averaging procedure, which takes into account
the change in the pair distribution due to interactions, was
used to calculate the mean and mean-square velocities in a
uniform suspension. The interactions cause a spatial dis-
placement of the bubbles in a reference frame moving at
the terminal velocity, and this drives a flux of bubbles in a
nonuniform suspension. The diffusion coefficients in a non-
uniform suspension were calculated by relating the spatial
displacement of the bubble to the impact parameter of the
interaction. Since the diffusion coefficients are positive, the
interactions drive a flux of bubbles from regions of higher
number density to regions of lower number density. This
mechanism tends to damp out number density variations,
and has a stabilizing influence on a uniform suspension.
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