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The interactions between bubbles of nearly equal size (size ratio less than 1.1 at Re= 100, and 
size ratio less than 1.07 at Re=200) in a suspension of bubbles rising due to gravity were 
analyzed under high Reynolds number, low Weber number conditions. The potential flow 
interaction between a pair of bubbles was studied using the equations of motion derived by 
Kumaran and Koch [Phys. Fluids A 5, 1123 (1993)]. If the horizontal distance between the 
bubbles is smaller than a critical value, the bubbles approach each other along the horizontal 
plane and collide. Previous studies suggest that in a collision, the bubbles could either coalesce 
or bounce off each other. If it is assumed that the bubbles bounce when they collide, they 
continue to collide repeatedly. The amplitude of the oscillations decrease due to viscous drag, 
and ultimately the bubbles rise as a horizontally aligned pair. In this configuration, scaling 
arguments indicate the bubbles coalesce in finite time. The coalescence frequency in a suspension 
of bubbles was calculated by averaging over pair interactions. This procedure is valid for 
V<18/Re, where Y is the volume fraction of the bubbles. The coalescence frequency is 
proportional to VRe-“’ in this limit. 

I. INTRODUCTION 

In this paper, we study the coalescence of bubbles in a 
suspension under high Reynolds number, low Weber num- 
ber conditions. Air bubbles of radius between 0.4 and 0.8 
mm rising under gravity in water satisfy these conditions, 
because the Reynolds number, Re=pUa/q, varies be- 
tween 50 and 350, and the Weber number, We=pU2a/y, 
varies between 7.6~ 10m2 and 2. Here, p and v are the 
liquid density and viscosity, a is the bubble radius, U is the 
terminal velocity, and y is the surface tension. The analysis 
is simplified in this limit because at high Reynolds numbers 
the fluid flow around the bubble can be analyzed using the 
potential flow approximation, and at low Weber numbers 
the deformation of the bubbles can be neglected (see 
Moore’ and Levich2). 

The potential flow interaction between a pair of non- 
deformable bubbles was analyzed by Kumaran and Koch,3 
who used a perturbation expansion in the parameter 
(a/R) for the velocity potential, where ai is the radius of 
bubble i and R is the distance between their centers. They 
found that the leading-order acceleration due to the poten- 
tial flow interaction decreases as ( 1/R)4. A perturbation 
analysis carried out by Kumaran4 indicated that the effect 
of surface deformation on the bubble motion is small for 
Weber numbers less than 1.0, and the effect of hydrody- 
namic interactions on the drag force can be neglected for 
Reynolds numbers larger than 100. 

The interaction between a pair of bubbles of different 
sizes rising due to gravity was also analyzed in Kumaran 
and Koch.3 A salient feature of the interaction is that the 
bubbles repel each other when oriented along the vertical 
direction, and their surfaces do not come into contact even 
when the larger bubble is directly below the smaller one. 
However, the interaction is qualitatively very different 
when the bubbles are of nearly equal size, i.e., when the 

ratio of the bubble radii is less than 1.1 at a Reynolds 
number of 100, and less than 1.07 at a Reynolds number of 
200. A numerical calculation of the interaction in Sec. II 
shows that the bubbles approach each other along the hor- 
izontal plane and “collide,” i.e., the bubbles have a finite 
velocity toward each other when their surfaces touch (see 
Fig. 2). The perturbation analysis does not converge when 
the distances between the surfaces are small, and the fluid 
velocity and pressure in the gap between the surfaces be- 
come large. 

A scaling analysis of the gap flow between two nonde- 
formable bubbles4 indicated that the dissipation of energy 
in the gap is O(Re-’ ) smaller than the kinetic energy of 
fluid flow. Therefore, a collision could cause the bubble to 
either coa&sce or bounce off each other. A numerical study 
of the gap flow between deformable bubbles with 
We < 10m2 by Chesters and Hofman’ showed that the flow 
in the gap is not sufficient to arrest the motion of the 
bubbles before the liquid film becomes unstable and rup- 
tures. At higher Weber numbers, the authors speculated 
that surface deformation could cause the bubbles to bounce 
off each other. The bouncing of bubbles at higher Weber 
numbers was observed by Kirkpatrick and Lockett.6 

If we assume that the first collision does not lead to 
coalescence, the bubbles collide repeatedly thereafter. The 
amplitude of the oscillations decreases due to viscous drag, 
and the bubbles rise as a horizontally aligned pair after a 
time period comparable to the viscous relaxation time. A 
scaling analysis of the gap flow in this configuration by 
Kumaran4 indicated that coalescence occurs in finite time, 
because the force in the small gap between the bubbles is 
small compared to the force exerted by the outer flow that 
tends to push the bubbles toward each other. Thus we 
conclude that even if the first collision does not result in 
coalescence, the pair of bubbles will coalesce after the en- 
ergy of their relative motion is dissipated by viscous drag. 
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The frequency of coalescence in a polydisperse suspension 
due to interactions between bubbles of nearly equal size is 
calculated in Sec. III using ensemble averaging. 

The authors recently became aware of theoretical and 
experimental studies of the interaction between a pair of 
equal sized bubbles by Kok.‘,’ He used an energy conser- 
vation formulation to derive equations for the motion of 
the bubbles. The trajectories calculated using these equa- 
tions are in agreement with those calculated in Sec. II. 
Kok’s experimental studies showed that the interaction be- 
tween a pair of equal sized bubbles in pure water leads to 
coalescence,’ a result which is in agreement with the the- 
oretical results of Sec. II. Kok also calculated the collision 
cross section for interactions between a pair of equal sized 
bubbles in the absence of gravitational and drag forces,* 
using a procedure similar to that used in Sec. III. 

II. INTERACTION BETWEEN A PAIR OF BUBBLES OF 
EQUAL RADII RISING DUE TO GRAVITY 

The acceleration of a bubble due to potential flow in- 
teraction with another bubble was calculated in Kumaran 
and Koch.3 The equations for the acceleration of a bubble 
i, having radius ai, are 

dU, 9a:s3 
--==z (cosf3 f+sineg, - 

( u&- uit> 
dt , (14 

rui 

dU, 942 
--=s (sine f-coseg) -2, dt (lb) 

where 

f = (Sin0 lJi=-COS0 UJ (sin0 Uh--COSd Ukx) 

-2(cosB u~z+sinbl UJ2, 

g= (cos0 U&-sin0 U,) (sin0 ~TJ~~--costJ U, 

+sine U,--sine U/J, 

k=3-i. 

Here R is the separation of the centers of the bubbles, 8 is 
the azimuthal angle between the vertical and the line join- 
ing the centers of the bubbles, s is the size ratio (as-/ai), 
Uit is the terminal velocity of a bubble of species i, and the 
viscous relaxation time 7,i is the ratio of the drag coefficient 
and the effective mass of the bubble. The effective mass of 
the bubble is half the mass of the fluid displaced by it, and 
the drag coefficient is given by ( 12qai) in potential flow. 
Thus the viscous relaxation time roi is 

pa’ Rei ai 
rui=~=~ vi,. (2) 

Here, p and VJ are the liquid density and viscosity, and Rei 
is the Reynolds number based on the bubble radius and its 
terminal velocity. 

Figure 1 shows the coordinate system used to analyze 
the interaction between a pair of equal sized bubbles which 
have radii a and terminal velocities UP In the initial con- 
figuration, the bubbles are rising at their terminal veloci- 

FIG. 1. Coordinate system for analyzing the trajectories of bubbles of 
equal size that were initially rising at their terminal velocities. 

ties, and the subsequent trajectories are generated by nu- 
merically integrating the equations for the bubble 
acceleration ( 1). 

The trajectories of a pair of identical bubbles, rising at 
a Reynolds number of 200 for different initial configura- 
tions are shown in Figs. 2 and 3. The initial distance be- 
tween them is (5a), and the initial orientation of the line 
joining the centers is 90” to the vertical in Fig. 2, 60” to the 
vertical in Fig. 3 (solid line), and 30” to the vertical in Fig. 
3 (broken line). The qualitative features of the trajectories 
are the same in all cases. The bubbles approach each other 
along the horizontal direction and collide. In Figs. 2 and 3, 
the trajectories were continued by assuming an elastic 
bounce after each collision. This will be discussed in detail 
later. 
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FIG. 2. Trajectories of equal sized bubbles rising due to gravity. The 
Reynolds number based on bubble radius and terminal velocity is 200. In 
the initial contiguration, the bubbles were horizontally aligned and rising 
at their terminal velocities, and the distance between their centers was five 
bubble radii. 
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FIG. 3. Trajectories of equal sized bubbles rising due to gravity. The 
Reynolds number based on bubble radius and terminal velocity is 200. In 
the initial configuration the bubbles were rising at their terminal velocity 
and the distance between their centers was five bubble radii. The initial 
azimuthal angle of the line joining their centers is 60” to the vertical for 
the solid trajectory, and 30” to the vertical in the broken trajectory. 

As the initial orientation of the line joining the bubbles 
comes closer to the vertical axis, the bubbles take far longer 
to approach each other. This can be qualitatively explained 
as follows. Assuming the two bubbles are rising at their 
terminal velocities, the direction of the acceleration of a 
bubble at a position x due to the presence of a bubble at the 
origin is shown in Fig. 4. The bubbles repel each other 
along the vertical direction and attract along the horizontal 
plane, and they also experience a rotational motion about 
each other which tends to align them horizontally. 

I 
I 

FIG. 4. Orientation of the acceleration of a bubble, whose center is lo- 
cated on the broken line, due to the presence of a bubble at the origin. The 
bubbles are of equal size, and both bubbles are rising at their terminal 
velocities. 

When the distance between the surfaces of the bubbles 
is small compared to their radius, a scaling analysis of the 
gap flow4 indicates that the viscous energy dissipation dur- 
ing a collision is O(Re-‘) smaller than the kinetic energy 
of fluid flow under high Reynolds number conditions. An 
earlier study of the gap flow between deformable bubbles 
by Chesters and Hofmar? suggested that the bubbles could 
bounce off each other during a collision if the Weber num- 
ber is greater than 0.5. At lower Weber numbers, a numer- 
ical analysis of the gap flow by Chesters and Hofman’ 
showed that the bubbles coalesce. In the analysis, we con- 
tinue the trajectories by assuming that the bubbles bounce. 
Because the energy dissipation in the gap is small, the 
bounce would conserve energy. In the horizontal orienta- 
tion, conservation of energy gives an exact reversal of ve- 
locities as in a bounce of elastic particles. In trajectories 
calculated for different initial conditions, the maximum de- 
viation of the line joining the centers from the horizontal 
plane at the point of collision was about 2’, and the error 
due to the elastic collision assumption is small. 

After the first bounce, the bubbles collide repeatedly 
due to the attraction between horizontally aligned bubbles, 
as shown in Figs. 2 and 3. The amplitude of the oscillation 
decreases due to the viscous drag over time scales compa- 
rable to the viscous relaxation time T,, and the bubbles rise 
as a horizontally aligned pair. A scaling analysis of the gap 
flow in this configuration4 indicted that coalescence occurs 
within a time period of O(a/U,), which is 0( 18/Re) 
smaller than the viscous relaxation time. Thus, coalescence 
may be expected to occur eventually even if the speed of 
the initial collision is large enough to cause a bounce. 

The qualitative nature of the interaction between equal 
sized bubbles is significantly different from the nature of 
the interaction between unequal sized bubbles, which was 
analyzed in Kumaran and Koch.3 In the former, the bub- 
bles approach each other along the horizontal plane and 
collide repeatedly, whereas in the latter the bubbles repel 
and their surfaces never come into contact during an in- 
teraction. This difference can be qualitatively explained as 
follows. Potential flow interactions cause repulsion be- 
tween vertically oriented bubbles and attraction between 
horizontally oriented bubbles (see Fig. 4). Bubbles of 
equal size, which have equal terminal velocities, eventually 
come together along the horizontal plane and collide with 
a finite velocity toward each other (see Figs. 2 and 3). 

When the difference in the radii of the bubbles is 
smaller than a critical value, we observe the qualitative 
features discussed above when the horizontal distance be- 
tween their centers is lower than a critical distance prior to 
the interaction. The interaction between bubbles whose 
size difference exceeds the critical value is driven by the 
difference in their terminal velocities, and takes place 
within the finite time period required for the bubbles to 
translate past each other. The interaction is strongest when 
the horizontal distance between the bubbles is small, and in 
this configuration the interaction is repulsive. Due to this 
repulsion the bubbles are pushed apart as the larger bubble 
translates past the smaller one. The bubbles do experience 
some attraction farther downstream along the trajectory 
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FIG. 5. Interaction between bubbles of nearly equal size. The size ratio s 
is 1.05, the Reynolds number based on the smaller bubble is 200, and the 
trajectory of the larger bubble is tracked in a reference frame moving with 
the smaller one. The broken line shows a surface of radius (s+ 1); the two 
bubbles are in contact when the center of the larger bubble touches this 
surface. The critical impact parameter for this case, calculated from (Sb), 
is 5.9. 

when the line joining their centers is oriented closer to the 
horizontal. However, this attraction is insufficient to cap- 
ture them in closed trajectories before they have translated 
past each other. 

The results of this section are in agreement with the 
results of a study of Kok.’ That author used an energy 
conservation equation to derive the equations of motion for 
a pair of equal sized bubbles rising due to gravity. The 
numerical calculations of the bubble trajectories indicated 
that the bubbles approach each other along the horizontal 
plane. The author’s experimental studies showed that the 
interaction between a pair of equal sized bubbles of 1 mm 
diameter in pure water does lead to coalescence. 

Our numerical calculations indicate that the interac- 
tion between bubbles of nearly equal size (size ratio less 
than about 1.07 at Reynolds number of 200, and less than 
1.1 at a Reynolds number of 100) also involve repeated 
collisions if the horizontal distance between the centers of 
the bubbles is smaller than a critical value when the larger 
bubble approaches the smaller one. Figure 5 shows an in- 
teraction in which the radius of the larger bubble is 1.05 
times that of the smaller one, and the Reynolds number 

based on the radius and terminal velocity of the smaller 
bubble is 200. The bubbles collide if the horizontal distance 
between their centers is less than about 6 radii when their 
separation is large. Empirical relations for this critical dis- 
tance are derived later. The evolution of the size distribu- 
tion in a slightly polydisperse suspension due to interac- 
tions between bubbles of nearly equal size is analyzed in 
Sec. III. Interactions in a bidisperse suspension, where the 
size ratio is larger, do not lead to collisions. However, these 
interactions cause velocity fluctuations and spatial dis- 
placements of bubbles in the suspension. The moments of 
the velocity distribution in a uniform suspension and the 
hydrodynamic diffusivities in a nonuniform suspension due 
to these interactions were analyzed in Kumaran and 
Koch.3 

III. EFFECT OF INTERACTIONS ON SIZE 
DISTRIBUTION 

In this section, we estimate the frequency of coales- 
cence between bubbles of nearly equal size in a suspension 
due to pair interactions, assuming that every collision leads 
to coalescence. This assumption is valid if the viscous re- 
laxation time, rub which is the maximum time required for 
the coalescence between a pair of bubbles, is small com- 
pared to the time between successive interactions. In a 
polydisperse suspension, the frequency of interactions be- 
tween a pair of bubbles scales as ( VU,/a>, where V is the 
volume fraction, and the viscous relaxation time is given by 
(2). Therefore, the viscous relaxation time is small com- 
pared to the time between successive interactions in the 
limit V< 18/Re, and results obtained in this section are 
valid in this limit. At higher volume fractions, the interac- 
tion between a pair of bubbles may be disturbed by the 
approach of a third bubble before coalescence. Coalescence 
in dilute suspensions of drops in the atmosphere has been 
widely studied and is typically expressed in terms of an 
evolution equation for the size distribution.’ 

The size distribution function n(a) is defined as fol- 
lows: n(a) da is the number of bubbles having radii in the 
interval da about a per unit volume. Note that n(a) has 
units of (number/volume/radius), and is not a number 
density of bubbles. The conservation equation for the size 
distribution is 

dn(a) 
--z-= (I* s 

da1 ~(QMQ~) - 
s 

da3 d~Ma,a3). 
=3 

(3) 

Here ai=a3-a:, and v(a,al)dal is defined as the fre- 
quency of collisions of a bubble of radius a with other 
bubbles having radii in the interval da, about a,. Note that 
~(a,ai) has units of collision frequency per unit radius. 

The collision frequency is estimated as follows. Con- 
sider an interaction between two bubbles having radii a and 
al, respectively. The occurrence of a collision between the 
bubbles depends on the impact parameter b, which is the 
horizontal distance between the bubbles before the advent 
of the interaction (see Fig. 1). If the impact parameter is 
large, the acceleration due to the interaction is insufficient 
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FIG. 6. The maximum size difference at which collisions were observed, 
o,,,, as a function of the Reynolds number, Re. The dotted line shows the 
power-law relation (5) for cS= 1.73. 

to cause a collision in the time period required for the 
bubbles to translate past each other. If the impact param- 
eter is smaller than a critical impact parameter b,, how- 
ever, the interaction causes repeated collisions, and coales- 
cence. The frequency of collisional interactions of a bubble 
of radius a with others of radius in the interval (da*) about 
al is given by 

v(a,al)dal=n(al) (?rbz)AU,dal, (4) 

where AU, is the difference in the terminal velocities of the 
bubbles, and the factor (rbz) is commonly referred to as 
the collision cross section. 

Equations (3) and (4) may be simplified by exploiting 
the fact that the difference in the radii of the bubbles that 
coalesce is small. The dimensionless size difference is de- 
lined as n=(lal -a 1 /a). The maximum size difference, 
a,, at which collisions were observed in the trajectory cal- 
culations is plotted in Fig. 6. The results are well repre- 
sented by the power-law relationship: 

a,,,=c3 ReV315, (5) 

where the constant c3 for the best fit is 1.73. The difference 
in the sizes of two coalescing bubbles is asymptotically 
small for large Reynolds numbers, so that the source term 
in (3) comes primarily from collisions of two bubbles with 
nearly half the volume of a bubble of radius a and the sink 
comes from collisions of two bubbles with radii close to a. 
Thus, the number densities in (3) can be expanded in a 
Taylor series about al= (a/21’3), a2= (a/21’3), and a3=a, 
giving to leading order: 

(6) 

where 

v(a) =n(a> 
I 

um da(?rb;) 1 AU,!, (7) 
-cm 

The critical impact parameter was determined numer- 
ically for various values of the size difference v at Re = 100, 
200, and 300. In the numerical procedure, the initial ve- 
locities of the bubbles were set equal to their terminal ve- 
locities when the center of the larger bubble was a large 
distance below the smaller one. The trajectories of the bub- 
bles were calculated by integrating the acceleration equa- 
tions ( 1) for various impact parameters. The critical im- 
pact parameter b, was determined as the maximum impact 
parameter for which collisions occurred, and was calcu- 
lated correct to *O.O5a. The critical impact parameter is 
plotted as a function of the size difference u in Fig. 7. The 
data show the expected transition from a slope of - l/4 for 
(bJAU,> r,) to a slope of -2/3 for (bJAU, < 7,). The 
dotted lines were obtained using ci=O.85 in (8a) and 
c2=0.8 in (8b), and these fit the data quite well. 

and AU, is the difference in the terminal velocity between We can now proceed to calculate the frequency of col- 
a bubble of radius a and one of radius a ( 1 + a). lisions, v(a), using (7). The difference in the terminal ve- 

In (7), there are two undetermined parameters-the 
critical impact parameter b,, and the domain of integration 
for the variable (T. These are estimated using scaling argu- 
ments in the following analysis. From the scaling of the 
terms in the equations for the acceleration ( 1 ), we derive 
power-law relations that express the coalescence frequency 
as a function of the difference in the radii and the Reynolds 
number. The coefficients in the relations are calculated 
from numerical calculations of the trajectories of the bub- 
bles during an interaction. 

The critical impact parameter b, is a function of the 
size difference between the bubbles, o, and the Reynolds 
number Re. This is determined from the scaling of the 
terms in the acceleration equations ( 1) . For an interaction 
with impact parameter b, the time required for the larger 
bubble to translate past the smaller one is O(b/AU,). If 
this time period is large compared to the viscous relaxation 
time, ru, the horizontal velocity U, is O[rJ @a) (a/b)4] 
from ( lb). The interaction could result in a collision if the 
displacement of the bubble during the interaction, which 
scales as ( UJI/AU,), is of the same order of magnitude as 
the impact parameter 6. Thus, the critical impact param- 
eter b, is O{a[Re/( 18~)]“~} for an interaction whose time 
period is long compared to the viscous relaxation time. 

If the period of interaction, (b/AU,), is small com- 
pared to the viscous relaxation time, the fluctuating veloc- 
ity U, during the interaction scales as [(b/AU,) 
X (@a) (a/b)4]. The interaction could lead to a collision 
if the displacement of the bubble, which scales as 
( U.&AU,), is comparable to b. This indicates that the 
critical parameter b, is proportional to a-2’3 for interac- 
tions whose time period is small compared to 7,. Thus 
there are two power-law regimes depending on the relative 
magnitudes of the viscous relaxation time and the time 
period of the interaction: 

bc==c, (Re/a) 1’4 for (bJAU,) > r,, (84 

be=cp-2/3 for (bJAU,) CT, (8b) 

Here, the constants cl and c2 are to be determined from the 
trajectory calculations. 
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FIG. 7. The critical impact parameter 6, as a function of size difference (T 
for different Reynolds numbers: 0, Re=loO; A, Re=UX); 0, Re=300. 
The dotted lines show the power-law relations [(8a) and (8b)] for 
c,=O.85 and cs=O.8. 

locities is expanded in a Taylor series in a, and only the 
first nonzero term, U,=2oU, is retained. The following 
expression is obtained by substituting cl =0.85,. c,=O.8, 
and c, = 1.73 in (8) and (5)) and carrying out the integra- 
tion in (7): 

v(a) = 11.207 Ree2” n(a)a3UP (9) 

Both the inertia dominated collisions, (8a), and the vis- 
cous relaxation dominated collisions, ( 8b), produce 
0( Re-2’5) contributions to the collision frequency in (9). 
Errors proportional to Re- ’ na3 U, and Re-“’ a5 d2n/da2 
are produced by truncating the Taylor series expansions 
for the difference in terminal velocities, AU, and the num- 
ber density, n[a( 1 +a)], respectively. 

This completes the derivation of the evolution equation 
for the number density distribution. As indicated at the 
beginning of this section, the above analysis is valid in the 
limit V< 18/Re. At higher volume fractions, the interac- 
tion between a pair of bubbles is likely to be disturbed by a 
third bubble before coalescence takes place. 

IV. CONCLUSIONS 

The effect of interactions on the motion of a pair of 
equal sized bubbles rising due to gravity was analyzed us- 
ing the acceleration equations derived in Kumaran and 
Koch.3 The interaction causes the bubbles to approach 
each other along the horizontal plane. If we assume the 
initial collision does not lead to coalescence, the bubbles 
collide repeatedly thereafter. The oscillations are damped 

due to the viscous forces, and the bubbles eventually rise as 
a horizontally aligned pair whose separation is small com- 
pared to their radius. Based on the scaling analysis of the 
pressure and velocity in the gap between the bubbles by 
Kumaran,4 we expect coalescence to occur within a time 
period that is small compared to the viscous relaxation 
time. 

The repeated collisions and coalescence were also ob- 
served when the ratio of the bubble radii is less than 1.1 at 
a Reynolds number of 100, and less than 1.07 at a Rey- 
nolds number of 200, when the impact parameter b is less 
than a critical value bC Here the impact parameter is the 
horizontal distance between the centers of the bubbles 
when their separation is large. The frequency of coales- 
cence in a polydisperse suspension was calculated in Sec. 
III, assuming that every interaction with b <b, leads to 
coalescence. This assumption is valid for V< 18/Re, where 
two bubbles that approach each other coalesce before the 
interaction is disturbed by the approach of a third bubble. 
The dependence of the critical impact parameter on the 
difference in bubble sizes and the Reynolds number was 
deduced from the acceleration equations, and the coeffi- 
cients in the scaling laws were determined from numerical 
calculations of bubble trajectories. The leading-order co- 
alescence frequency is proportional to V Rem2”. 
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