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Abstract. The stability of the interface between a gel of thickness HR and a Newtonian fluid of

thickness R subjected to a linear shear flow is studied in the limit where inertial effects are

negligible. The shear stress for the gel contains an elastic part that depends on the local

displacement field and a viscous component that depends on the velocity field. The shear flow at

the surface tends to destabilize the surface fluctuations, and the critical strain rate y~, which is the

minimum strain rate required for unstable fluctuations, is determined as a function of the

dimensionless quantities H, ~, (~~/~~), and T (r/ER ). Here ~~ and ~~ are the gel and fluid

viscosities, E is the gel elasticity, ris the surface tension of the gel fluid interface and the strain

rate y is scaled by (E/~~). In the limit H- oJ, we find that y~ decreases proportional to

H~' independent of ~, and T. But at finite H, y~ is strongly dependent on ~, and T. For

~, m I, the interface is stable for all values of the strain rate for H
<

/, while there are unstable

traveling waves for H~
/. For ~,= l and H- I, we find that y~oz (H-1)~'~~ for

T
=

o and y~ oz (H )~ ~~~ T'~~ for T , o. For ~, ~
l, the analysis indicates that

y~ oz (H /)~ ' independent of T for H
-

/. For ~, <
l, the onset of instability depends

strongly on the parameter T. For T=0, the critical strain rate is finite in the limit

H
-

0, while for T, 0 the critical strain rate diverges at a finite value of H. This minimum H

decreases proportional to ~, for large T. The instability is caused by the energy transfer from the

mean flow to the fluctuations due to the work done by the mean flow at the interface.

1, Introduction,

Recent experimental observations indicate that fluid flow past a flexible surface induces

oscillations in the surface, and these oscillations change the characteristics of the flow.

Silberberg [I] and coworkers studied the flow of a Newtonian fluid through tubes with gel
coated walls. They observed that the pressure drop required to maintain the flow is

significantly higher than that required for rigid walled tubes, even at Reynolds numbers well

below the transition Reynolds number at which the fluid becomes turbulent. This increased
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drag was attributed to an increase in the viscous dissipation of energy due to oscillations of the

walls of the tube. More recently, Klein, Perahia and Warburg [2] studied the effect of shear

flow on the surface of a polymer
«

brush », which consists of polymers end grafted onto a

solid surface. They used a surface force apparatus in which polymer molecules were grafted

onto the two surfaces, and the surfaces were sheared past each other. An anomalous normal

force between the surfaces was observed as the velocity of the surfaces was increased, and this

was interpreted as an increase in the brush thickness, which may be due to the growth of

Surface waves. In this paper, we use a linear Stability analysis to determine the Stability of the

interface between a linear viscoelastic gel and a Newtonian fluid under shear flow. A better

understanding of the factors that influence the interfacial stability would be useful for

explaining experimental observations, and would also be relevant for practical applications
such as polymer tribilogy and biotransport which involve flows past flexible surfaces.

It is well-known that the interface between two Newtonian fluids becomes unstable when the

Reynolds number exceeds a critical value. The fluid inertia is necessary to induce the

instability in Newtonian fluids, since the equations are not explicitly time dependent if the

inertial terms are neglected. The stability of a film of a second order model of a fluid flowing

down an inclined surface was studied by Gupta [3] and Shaqfeh et al. [4]. It was found that the

viscoelasticity destabilises the interface between the fluids, and the critical Reynolds number

for a second order fluid is lower than that for a Newtonian fluid. There has been considerable

work done on the instability due to viscosity or density stratification in a fluid. Yih [5] and

Hooper and Boyd [6] showed that there is an instability between two Newtonian fluids at non-

zero Reynolds number due to viscosity stratification, and Waters and Keely [7] and Renardy

j8] generalized this to Oldroyd-B and upper convected Maxwell fluids respectively. Chen [9]

subsequently showed that there is an elastic instability at the interface between the two non-

Newtonian fluids even in the absence of viscosity stratification due to a jump in the first normal

stress across the surface in the base flow.

Here we analyse the stability of the interface between an elastic gel and a Newtonian fluid

when a shear flow is applied to the fluid. The inertia of the fluid and gel are neglected in the

analysis, and there is no normal stress difference across the surface which causes the elastic

instabilities observed in previous studies [9]. We find that the interface becomes unstable when

the strain rate in the fluid exceeds a critical value which depends on the ratio of the gel and fluid

thickness H, the ratio of the fluid and gel viscosities ~
~

=

(~~/~ ~) and a dimensionless number

T
=

(r/RE) which is the ratio of the forces due to the surface tension r of the fluid gel
interface and the elastic stress in the gel. The instability is driven by the energy transfer from

the mean flow to the fluctuations due to the work done by the mean flow at the interface. We

find that there is much variety in the characteristics of the instability due to variations in

~~ and T. Specifically, the characteristics of the instability are independent of ~~ and T for

H » I, but for H l we find that the most unstable mode has qualitatively different features

for ~~ ~
l, ~~ =

l and ~~ <
l. This variety in the behaviour would not be captured by less

detailed analyses which represent the dynamics of the gel using a constitutive equation. The

theoretical predictions are in qualitative agreement the experimental observations of Krindel

and Silberberg [18] in the limit H »1.

2. Model.

The system consists of an elastic gel of thickness HR fixed onto a surface at z =
HR, and a

layer of fluid of thickness R in the region 0
< z <

R. The fluid is bounded by a solid wall,

which moves at a constant velocity V in the x direction relative to the gel as shown in figure I.

Small perturbations to the interface are induced by spontaneous fluctuations, and we study the

effect of the fluid flow on the growth of these perturbations.
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Fig, I. Schematic of the configuration and fluid velocity field.

The gel is at rest in the unperturbed state, and the dynamical fluctuations in the gel are

characterized by a displacement field u which represents the displacement of the material

points from their equilibrium positions. The gel is considered to be incompressible and

impermeable to the fluid, so that the displacement field satisfies the following incompressibili-

ty condition

V-u
=

0. (I)

The momentum conservation equation for the gel is :

p
~ ~

=

Vp + E V~u
+ ~~ V~

~~
(2)~~

at

and the stress in the gel is given by :

a 3U, 3U~
W, =

p6 + E + ~g + (3)
J 'J at 3x~ ax,

where p is the density, E is the coefficient of elasticity and ~~ is the viscosity of the gel. In (2),

the left side is the rate of change of momentum, the first term on the right side is the gradient

of the pressure which is required to enforce incompressibility, the second term on the right side

is the elastic stress due to the strain an incompressible gel [10] and the last term is the usual

viscous stress due to the gradients in the velocity. Equation (2) has been used previously in

literature for polymer gels [I1, 13], and equations similar to this have been used in the studies

of flow past compliant media [14-16]. Since the gel is fixed to a solid surface, the appropriate
boundary conditions at z =

HR are

u~=o u,=o. (4)

The conservation equations, (I) and (2), along with the boundary conditions at the interface

and at z =

HR, can be solved to obtain the displacement and pressure fields in the gel.
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The flow of the fluid is govemed by the Navier-Stokes mass and momentum conservation

equations. In the absence of fluid inertia, the conservation equations are

v-v
=

o (5)

v.~
=

o (6)

where ~, the fluid stress tensor, has the usual form :

au, 3u~
~'J ~

P~'J + ~f $ + $ (7)

J i

where ~i is the fluid viscosity. Note that we use the symbol ~r for the stress tensor in the gel,
and the symbol ~ for the stress tensor in the fluid. No-slip boundary conditions are appropriate

at z =

R

u~=V u~=0. (8)

The mean flow in the fluid is a Couette flow with a no-slip boundary condition at the

surface :

and the boundary conditions at the interface between the fluid and the gel are the usual

continuity of velocity and stress :

au, aU~
= U~ =

U, (lo)
at at

3~uz
W~~ = T,~ W,- = T-, + r

-.

(I1)
3x~

The last term on the right side of the normal stress conservation equation is the stress due to the

surface tension when there is a small displacement u~ of the surface about its equilibrium state

z =

0. In previous studies of the interfacial instability between upper convected Maxwell fluids

[9] it has been pointed out that there is an additional term in the shear stress boundary condition

II due to the discontinuity in the first normal stress difference across the surface in the base

state. This term is proportional to the relaxation time and the square of the strain rate of the

fluids. In our system, the fluid in the channel is Newtonian and its relaxation time is zero,

while the gel has zero velocity in the base state, and therefore we do not have this additional

term in the stress balance equation.
The length scales in the conservation equations II and (2) are scaled by R and the time

scales by (~~/E). The scaled conservation equations for the displacement field in the gel :

V-u =0 (12)

Vp +
V~u

+ ~~ V~
~~

=

0 (13)
at

where ~~ =

(~~/~~) is the ratio of the gel and fluid viscosities, and the pressure p is non-

dimensionalised by E. The scaled shear and normal stresses in the gel are given by :

a au

"zz " P + 2 ' + ~r p
fl ('4)

a 3u~ 3u~
~"

~
~ ~~

at 3X
~

3z
~~~~
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The length scales in the fluid are non-dimensionalised by R, and the velocities by
(RE/~f)1

V.v
=

0 (16)
-Vp+V~v

=

0. (17)

The normal and shear stresses are scaled by the shear modulus, E

3u~

Tic = P + 2 t ('8)

au~ au,
~~~

3X
~

3z
~~~~

This completes the derivation of the conservation equations for the fluid and the gel, and the

appropriate boundary conditions. In the next section the scaled mass and momentum

conservation equations, II 2), (13), (16) and (17), along with the boundary conditions ( IO) and

(I I), are used to analyse the stability of small perturbations at the interface. From this point
onwards, all the variables are scaled unless it is explicitly stated that they are dimensional.

3. Stability analysis.

In this section, we use a linear stability analysis to calculate the growth rate of small

perturbations to the interface between the elastic medium and the fluid. The perturbation to the

gel displacement field u and the fluid velocity field v are of the form :

u
=

6(z) exp(ikx + at v =
V(z) exp(ikx + at (20)

where k is the wave number and
a

is the growth rate, and the eigenfunctions B(z) and

V(z) are determined from the conservation equations. Substituting the above expression for u

into the conservation equations (12) and (13), we get the following linearised equations :

DR= + ikk~
=

0 (21)

D@ + (I + ~r a
)(D~ k~)

R~ =

0 (22)

ikfi + (1 + ~~ a
)(D~ k~) R~ =

0 (23)

where D represents al az, and is the perturbation to the pressure field in the gel. The linearised

equation for the fluid velocity field is calculated by substituting (20) into (16) and (17) :

Db~ + iku~
=

0 (24)

Dfi + (D~ k~) b~ =

0 (25)

ik@ + (D~ k~) b,
=

0. (26)

The perturbations to the stress fields in the gel, &, and fluid, +, are calculated from (14), (15),

(18) and (19) :

&,,
=

fi + 2(1 + ~~ a
Dk, &~~ =

(l + ~~ a
)(ikR~ + Dk~) (27)

f-~
=

fi + 2 Db, f~~
=

(ikb~ + Db~). (28)

Finally, the boundary conditions for the perturbations to the velocity field (10) at the interface

(z
=

h (x)) is :

b~
=

aR~ b~ + yR,
=

ak~. (29)
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There is a term proportional to the non-dimensional strain rate in the fluid, y m
(V ~~/(ER ), in

the boundary condition for u~ due to the mean flow velocity gradient in the fluid at the

interface. In this tirm,
we have approximated the height of the interface, h(x), by the

displacement q~ at
/<= 0, which is permissible for small perturbations. This term is the only

connection between the base flow and the perturbations, and is responsible for inducing the

surface instabilities that we discuss further on. Finally, we have the matching stress conditions

at the interface ill ) :

f_ Tk~
&~ =

&_ f~=
= &~~ (30)

where T
=

(r/ER) is the ratio of the surface tension and elastic stresses.

The eigen functions 6(z) for the displacement field u are calculated by solving the

conservation equations, (21), (22) and (23) :

exP(kz)

U=
~

~t
(kz) exp (kz)

~~~~
p exp (- kz)

~ (kz) exp(- kz)

where A is a 2 x 4 matrix of complex coefficients. In this matrix there are four independent
coefficients the others are fixed by the conservation equations. Two of the coefficients are

determined from the displacement boundary conditions at z =

HR (4), while the others are

determined from the matching conditions at the interface between the fluid and the gel.
The eigen functions for the fluid flow above the interface are determined from the fluid

conservation equations (24), (25) and (26), and are similar to the eigen functions for the

displacement field :

exp(kz)~
~

~~j~~~~~~~
~~~~

~ (kz) exp (- kz )

where B is a 2 x 4 matrix of complex coefficients, in which all but four of the coefficients

are determined by the conservation equations. Two of the coefficients can be expressed in

terms of the other two using the boundary conditions at z =

R, (8). After applying the boundary
conditions at z =

HR and z =

R, we are left with four independent coefficients in the

matrices A and 'B. One of these is arbitrary, because only the relative magnitude of the

perturbations is relevant to the analysis, while the other three and the growth rate a are

determined from the velocity and stress conditions at the surface of the gel, (29) and (30). After

eliminating three of the coefficients, we arrive at a complex characteristic equation which is a

quadratic equation for the growth rate a. The detailed calculation of the characteristic equation
for the simple case ~~ =

l is given in the Appendix. This equation is rather complicated and it

is difficult to write down the analytical solutions for the two roots, but it is quite easy to

calculate them numerically. The behaviour of the more unstable root that has the larger positive
real part is analysed in the next section. We note that the behaviour of this root in the different

asymptotic regimes (small and large y and H I « I and H » I) were determined by
evaluating the root numerically in these regimes, and the scaling laws were obtained from

these values. This procedure was found to be simpler than directly expanding the root in a

perturbation series due to the complexity of the algebra involved. The stability of the system
depends on three dimensionless quantities the ratio of the gel and fluid thickness H, the ratio

of the gel and fluid viscosities ~~ =

(~~/~~) and the dimensionless number T
=

(r/ER ). We

derive the results for the case ~~ =

l in some detail to illustrate the procedure involved in

arriving at the critical strain rate, and state the important results for ~~ ~
l and ~~ <

l.
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4. Results.

4,1 ~~ =

l. First, we present consider the case ~~ =

l and T
=

0. The growth rate of the

perturbations, a, depends on the ratio of the thicknesses of the fluid and elastic medium, H,

and the non-dimensional strain rate at the surface, y, which is (V~~/RE). We find that in the

limit H » I there always exist unstable modes for y ~
0, whereas for H

<
I there are no

unstable modes even in the limit y - cc. The growth rate, frequency and wave number of the

fluctuations have the following behaviour in the limits H » I, H
=

I and in the intermediate

regime.

ii In the limit H » I, we set H
=

cc in the equations of motion, and retain only the modes

that decay exponentially into the gel. The real part of the growth rate of the fastest growing
mode, a~, is shown as a function of the wave number k for different values of yin figure 2.

The most unstable mode has a zero growth rate at y =

0 and a positive maximum growth rate

for all non-zero values of y, indicating that there always exist unstable modes in this limit.

Figure 3 shows k~~,, the wave number of the fastest growing mode as a function of y. We find

that k~~~ increases proportional to 0.5 y for y -0, reaches a maximum of 0.615 at

y
=

6.42, and then decreases as 1.333 y~~/~ for y - cc. The growth rate of the fastest

growing mode, a~, which is shown in figure 4, increases as
4,1667x10~~y~ for

y -
0, and reaches a maximum value of + I for y - cc. The frequency of the fastest growing

mode, -aj, is shown as a function of y in figure 5. The frequency increases as

0.25 y~ for y -
0, and shows a iiluch Slower increase of 1.732 y~'~ for y - cc.

ii) For H
=

I, the system is marginally stable in the limit y - cc. The wave number of the

mode with the slowest decay rate, k~~~ (Fig. 6), is zero for y <
4.38, and increases to a

maximum value of 0.919 in the limit y -cc. Of greater interest is the growth rate,

a~, which is shown in figure 7. This is 0.06699 for y< 4.38, and increases as

4.415/y~ in the limit y - cc. The frequency of the fastest growing mode, a~, is zero for

y <
4.38, and increases as 0,1723 y in the limit k

- cc, as shown in figure 8. The scaling of

4

z

OR 0

2

4

o 5 1 1.5 z

k

Fig. 2. -Real part of the growth rate, a~, as a function of the wave number k for H» I for

~, =
l and T

=
0. y is the mean fluid strain rate.
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Fig. 3. Wave number of the fastest growing mode, k~~~, as a function of the mean fluid strain rate, y

for H » 1, ~~ =
l and T

=

0.

Fig. 4. Growth rate of the fastest growing mode, a~, as a function of the mean fluid strain rate, y for

H » 1, ~~ =
l and T 0.
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Fig. 5. Frequency of the fastest growing mode,
a j,

as a function of the mean fluid strain rate, y for

H » 1, ~, =

l and T
=

0.

Fig. 6. Wave number of the mode with the slowest decay rate, k~~~, as a function of the mean fluid

strain rate, y, for H
=

1, ~, =
l and T 0.

the wave number, growth rate and frequency of the fastest growing modes are summarized in

table I.

iii) In the intermediate regime we find that the system is unstable when the strain rate, y, is

greater than a critical value, y~. The critical shear rate is shown as a function of the parameter

(H I in figure 9 (solid line). The critical strain rate increases as 3.47 (H )~ ~'~ in the limit

H
-

I, and decreases as 3.2 H~ in the limit H » I. The wave number of the marginally stable

mode at the critical strain rate, k~ (solid line in Fig. 10), is 1.05 for H
-

I, and decreases as

1.6 H~ in the limit H i> I. The frequency of the.marginally Stable mode, ai, increases as
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Fig. 7. Decay rate of the mode with the slowest decay rate. a~, as a function of the mean fluid

strain rate, y, for H
=

1, ~, l and T
=

0.

Fig. 8. Frequency of the mode with the slowest decay rate, a
~,

as a function of the mean fluid strain

rate, y, for H 1, ~~ =
l and T

=

0.

Table I. The stability, wave number k~~~, gro»,th i-ate a~ and fi.equency aj of the fastest
growing mode as a

function of the strain rate, y, for ~~
=

l and T
=

0.

Regime Stability k~~~ aR "i

H » I Unstable 0.5 y 4,1667 x 10~ ~ y~ 0.25 y~

y -
0

H » I Unstable 3 3 3 y
~/~ l 0 73 2 y

"~

y - Cc

H
=

I Stable 0.0 0.06699 0.0

y w 4.38

H
=

I Stable 0.919 (- 4.415 y~~) 0,1723 y

y - Cc

0.626(H 1)~ '/~ in the limit H
-

I, and decreases as 2.56 H~ ~ in the limit H » I, as Shown

by the Solid line in figure II.

The effect of variation in the surface tension is shown by the broken lines in figures 9, lo

and II. The surface tension does not affect the behaviour of the critical strain rate in the limit

H » I, because the unstable modes have wave number k
-

0 in this limit and the effect of

surface tension decreases as the wavelength increases.

There is a qualitative change in the power law dependence of y~ on H for H l. The critical

strain rate y~ increases proportional to T~'~(H )~ ~'~ (instead of (H 1)~ ~/~ for T
=

0), and

the critical Strain rate required to destabilize the surface waves increases as T increases. In

addition, we find that the wave number of the marginally stable mode
£.~ cc T~ ' (H -1)"~

(broken lines in Fig, lo), while the frequency of the most unstable mode
a j

is found to be
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Fig. 9. The critical strain rate, y~, required for unstable modes as a function of (H- I) for

~, =
l. (o) T

=

0 (D) T
=

jO) T =10 (x) T =100.

Fig. lo. Wave number of the marginally stable mode, k~~~, as a function of (H-11 and

~, =
l. (cl T 0 ; (Z) T

=
I (O) T

=

lo (x) T
=

loo.

10~

lo°

~h

10"~

~j4
10'~ 10° lo~ 10~

(H~1)

Fig. ii. Frequency of the marginally stable mode, a j,
as a function of (H I ) and ~, l. (Solid

line) T
=

o ; (Broken line) T loo.

independent of T in this limit. The behaviour of the critical strain rate, wave number and

frequency are summarized in table II.

4.2 ~~ ~
l. The critical strain rate, y~, is shown as a function of H at T

=

0 and for various

values of ~~ in figure12. For ~~~ l, we see that the critical strain rate diverges at

H
=

/,
and the fluctuations are always stable for H

<

/.
To analyse this in further

detail, we consider the case ~~ =

10 and T
=

0. The critical Strain rate y~, the wave number of

the fastest growing mode k~ and the frequency of the fastest growing mode
a j are Shown as a

function of (H /) by the solid lines in figures13, 14 and 15. It can be seen that the

characteristics of the most unstable mode in the limit H» I are identical to those for

~~ =
l. The gel viscosity does not affect the Stability characteristics for H » I because the

dissipation of energy in the gel in this limit is small compared to the dissipation in the fluid.
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Table II.

Regime H~,~ y~ k~ aj

~ ~ j ~~ i ~~ j ~-2

~
~

=
l I (H I j~ 1/~ l.05 (H I j~ '/~

T=0

~~ =
l T"~(H )~ ~" T~ ' (H )~" (H )~ '/~

T
~

0

~r ~
l

/ (H fi)- (H /~~)~'~ (H /)~ ~/~

T
~

0

~r <1 0 Finite (Fig, 19) H~ ' (Fig. 20) Finite

T
=

0

nr ~
l Fig. 21 (H H~,n )~ ~~~ T~ ~~~ (Fig. 22) (H H~,~ )~ ~~~

T
- cc

1
DE F G J

~°
C lo~

B

~
10~

Y~ y ~~o

10'~

~ ~

10"~
~lo IO lo" lo lo~

~
(H Id")

Fig. 12. Fig. 13.

Fig. 12. Critical strain rate y as a function of H. (Al ~, o ; (B) ~, =

0.3 ; (Cl ~, o.7 (D)

~, =
l,o ; (E) ~, =

3.o ; (F) ~, lo-o (Gl ~, 30,o (J) ~, loo-o-

Fig. 13. The critical strain rate, y~, required for unstable modes as a function of (H lo"?) for

~~ lo. (Solid line) T
=

o ; (Broken line) T
=

loo.

In the limit H
,§

« I, the critical strain rate y~ increases proportional to (H /)~
~,

while the critical wave number k~ is proportional to (H /)'~~, and the critical wave

number decreases to zero for H
- ~~. The frequency of the most unstable mode aj is

proportional to (H -,~)~ ~'~ in this limit.
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Fig. 14.- Wave number of the marginally stable mode, k~~,, as a function of (H-10'~~) and

n, lo. (cl T
=

o (Z) T I (O) T
=

lo (x) T
=

loo.

Fig. 15.- Frequency of the marginally stable mode, -cry, as a function of (H-10'~~) and

~, =

lo. (Solid line) T
=

o (Broken line) T
=

loo.

The effect of surface tension on the properties of the most unstable mode is shown by the

broken lines in figures 13, 14 and 15. We see that surface tension does not affect the stability

characteristics in either limit H » I or (H /)
« I because the wave number of the most

unstable mode approaches zero in both limits. In the intermediate regime, an increase in the

surface tension tends to increase y~ and decrease k~ and aj. The results for ~~~ l are

summarized in table II.

4.3 ~~ <
l. Retuming to figure 12, we see that the critical strain rate approaches a finite

value in the limit H
-

0 for ~~ <
l and T

=

0. To examine this further, the solid lines in

figures 16, 17 and 18 show the critical strain rate y~, the critical wave number k~ and the

frequency of the most unstable mode aj as a function of H at ~r
=

I and T
=

0. The

characteristics of the most unstable mode in the limit H» I are identical to those for

~~ m
I for the reasons mentioned in the previous section. In the limit H « I, we see that the

critical strain rate approaches a finite value y~o and the critical wave number k~o increases

q~ O I
i~

'

~
~x

Ox

Y~

1@~ 1@' id Id
H

Fig. 16. -The critical strain rate, y~, required for unstable modes as a function of H for

~, =

o.I. (o) T
=

o jai T (O) T
=

lo (xl T
=

loo.
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I
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'

S

~ - tg

~
I

,
~

'X~
,

iu2 io° io~ id if
H H

Fig, 17. Fig- 18.

Fig, 17. Wave number of the marginally stable mode, k~~~, as a function of H and ~, =
o.I. (o)

T o (D) T I (O) T
=

lo (xl T
=

loo.

Fig, 18. -Frequency of the marginally stable mode, cry, as a function of H and ~, =
o.I. (o)

T o ; (Ii T
=

I ; (O) T lo ; xi T
=

loo.

proportional to H~~. The critical strain rate y~o, which is shown as a function of

(1- ~~) in figure19, is 8.219 at ~~ =

0 and increases proportional to (1- ~~)~~~~ for

~~ -
l. The product of the critical wave number and the gel thickness, Hk~o, shown in

figure 20, is 1.515 at ~~ =

0, and increases proportional to log (1 ~~) for ~~ -
l. Finally,

we observe that the frequency of the most unstable mode -a~ is proportional to

y~ for ~
~

<
l and (H/R

-
0.

lo~ lo~

~~4

y Hk

10"~ 10~~ 10"~ l 10"~ 10"~ l
~~~

ii qj (I qj

Fig, 19. Fig. 20.

Fig. 19. Critical strain rate y~ as a function of (1 ~,) at H
=

o and T
=

0.

Fig. 20. Hk~ as a tunction of (1 ~,) in the limit H
-

o and T
=

o.

The broken lines in figures 16, 17 and 18 show that a variation in the surface tension has a

dramatic effect on the characteristics of the most unstable wave for ~~ <
l. The critical strain

rate diverges at a finite value of H~,~ which depends on the Surface tension T for

T # 0, while the critical wave number approaches a finite value at H~,~. The frequency of the
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most unstable mode aj increases proportional to y~ near H~,~. It is of interest to determine

the minimum value of the gel thickness required for unstable modes, H~~~, in the limit of high
surface tension T

- cc, since the stabilising effect of the surface tension is maximum in this

limit. This was found by calculating H~~~ for increasing values of T, usually up to

10~, until the variation in H~,~ was less than 0.01 of its value when T was increased by a factor

of lo. The results of this calculation, which are shown in figure 21, indicate trim,

H~,~ approaches I for ~~ -
l (as might be expected from the results for ~~ =

l), and it

decreases proportional to ~/~~ for ~~ -
0. The critical strain rate y and the frequency of the

most unstable mode aj increase proportional to (H H~,~)~ '~~ for H
-

H~,~, but the wave

number of the most unstable mode, k~, remains finite in this limit. The limiting value of

k~ decreases proportional to T~ '~~ for T~ cc, and figure 22 shows T'~~ k~ as a function of

~~. This increases proportional to ~/ ~'~ for ~~ -
0, and decreases to zero at ~~ =

l. The above

results are summarized in table II.

10°

B-

~Ji~~

lo"~ l«~ lo'~ I 1>~ l>~ lo~~ I

n~ n~

Fig. 21. Fig. 22.

Fig. 21. H~,~, the minimum gel thickness required for the presence of unstable modes, as a function of

~, in the limit T
- oJ.

Fig. 22. T'~~ k~ as a function of ~, in the limit T
- oJ.

5. Discussion.

In this section, we first recall some interesting qualitative aspects of the instability, and then

compare the results with some experimental observations. One interesting feature is that the

inertia of the fluid or elastic medium is not required to produce unstable modes. In Newtonian

fluids the instabilities are associated with the fluid inertia, since in the absence of inertia the

Navier-Stokes equations are quasi-steady and do not explicitly depend on time. The instability
of the interface between two viscoelastic fluids [9] has been attributed to a jump in the first

normal stress at the surface. In the present case, however, we observe an instability at an

interface between an elastic medium and a fluid in the absence of inertia and normal stress

discontinuities. The time dependence enters through the elastic term in the constitutive

equation of the gel, and the interplay of the elastic and viscous effects is responsible for

inducing interfacial instabilities.

The interface becomes unstable when the strain rate in the fluid increases beyond a critical

value. The mean flow and perturbation fields are coupled through the boundary condition for
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the velocity in the x direction (29). The term proportional to yin (29) causes a transport of

energy from the mean flow to the velocity perturbations, which tends to destabilise the

interface. The rate of transport of energy is proportional to the product of y and the normal

displacement at the interface. The coupling between the mean flow and perturbation field in

this case is Similar to that in the case of vertically stratified inviscid fluids in relative horizontal

motion, which gives rise to the Kelvin-Helmoltz instability II 7], though in the present case the

instability is caused by a discontinuity in the strain rate in the mean flow and not the velocity
itself.

The critical strain rate y~, which is the minimum strain rate for the onset of instability,
depends on the ratio of the thickness of the gel and fluid, H, the ratio of the gel and fluid

viscosities, ~~, and the ratio of the surface tension and elastic forces, T
=

(r/ER ), where r is

the surface tension of the gel-fluid interface. In the limit H
- cc, the characteristics of the most

unstable mode are independent of T and ~~. The critical strain rate y~ and the wave number of

the most unstable mode k~ decrease proportional to H~ ' in this limit, while the frequency of the

most unstable mode decreases proportional to H~ ~. The reason for the universal nature of the

instability can be understood as follows in the limit H » I, the strain rate and the viscous

dissipation in the fluid are large compared to that in the gel, so the rate of dissipation of energy

is controlled by the fluid dynamics alone and independent of the gel viscosity. Also, the

properties of the most unstable mode are independent of T because the wavelength of the

fastest growing mode increases proportional to H for H » I, and the stress due to surface

tension decreases as the wavelength increases.

For H l, the most unstable mode has qualitatively different characteristics for the cases

~~ ml, ~~ =

l and ~~~ l. For ~~~ l, we find that the interface is alwa s stable for

H
<

fi, while there are unstable modes for H
~

/.
In the limit H

-

/,
the wave

number of the most unstable mode, k~, decreases proportional to (H- /)~~~, and

consequently the effect of surface tension becomes negligible in this limit. The critical strain

rate y~ diverges proportional to (H /~)~ ' and the frequency of the most unstable mode

diverges proportional to (H /)~ "~. In between the two limits, an increase in the surface

tension tends to reduce the wave number k~ and the frequency of the most unstable mode

aj, and increase the critical strain rate y~.
When the gel and fluid viscosities are equal (~~

=

l ), the surface is always stable for

H
<

I. Though this minimum value of H for unstable modes is independent of surface tension,

the characteristics of the unstable modes are a strong function of T. In the limit

H
-

I, we find that y~ cc (H 1)~ "~, k~ -
1.05 and a j cc (H 1)~ ~'~ for T

=

0 and

y~ cc T~'~(H )~ ~'~, k~ cc T~ ' (H I )'" and
a j cc (H )~ ~'~. The presence of surface

tension increases the rate of divergence of the critical strain rate, and reduces the wave number

of the most unstable mode from a finite value for T
=

0 to T~ ' (H 1)~'~ for T
~

0. Surface

tension has little effect on the frequency of the most unstable mode.

For ~~< l, the surface tension changes H~,~, the minimum value of H required for the

presence of unstable modes. In the absence of surface tension (T
=

0), there are unstable

modes even in the limit H
-

0, and the critical strain rate y~ remains finite in this limit. The

wave number of the most unstable mode, k~, diverges proportional to H~ ' and the frequency of

the most unstable mode remains finite. In the presence of surface tension (T
~

0 ), the critical

strain rate diverges at a finite value of H
=

H~,~, and the rate of divergence is proportional to

(H H~,~)~ "~. In this case, the wave number of the most unstable mode is finite, but its

frequency diverges proportional to (H H~,~ )~ ~'~

Thus, we see that though the qualitative effect of an increase in the viscosity ratio

~~ and surface tension T is to increase the critical strain rate and reduce the wave number of the

most unstable modes, there is a rich variety in the characteristics of the instability that would
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not be captured by less detailed analyses which do not include the gel and fluid dynamics in an

essentially exact fashion. We are not aware of any experiments for H~ I that could be

compared with the theory, but the experiments of Krindel and Silberberg [18] are in qualitative

agreement with our results in the limit H » I. Krindel and Silberberg [18] studied the flow of a

Newtonian fluid through a tube whose walls were made of a polymer gel, and the thickness of

the walls was large compared to the radius of the tube. They observed that there was an

anomalous increase in the drag force for Re
~

Re~, and this increase was attributed to a

transition from a laminar to a turbulent flow, where Re~
=

(ER~ pm H~~). Our analysis

predicts an instability for y ~
3.2 H~ ~, which is equivalent to Re

m
3.2 Re~ in the notation of

Krindel and Silberberg. Thus, we see that our prediction of the transition Reynolds number is

in agreement with the observation of Krindel and Silberberg, except for the constant prefactor.
This difference may be due to the difference in the geometry. We note that the difference in the

mean flow profile does not affect the results of our analysis, because the only coupling
between the mean flow and the fluctuations is via the strain rate at the wall. Therefore, the

results for a Poiseuille flow (used by Krindel and Silberberg) will be the same as that for the

Couette flow studied here as long as the strain rate at the surface is the same.
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Appendix A.

In this appendix, we present the detailed derivation of the characteristic equation for the

growth rate of perturbations at the interface between the elastic medium and the fluid for the

case ~~ =

l and T
=

0. The eigenfunctions for the displacement field,
&~

and &,, are calculated

from the mass and momentum equations (21), (22) and (23). The eigen functions that are

consistent with the boundary conditions at z =

H (4) are :

k~
=

Aj (exp(kz ) [1 + 2 k(z + H)] exp (- 2 Hk kz )) +

+ A~ [kz exp (kz ) + [k(2 Hk(H + z) z )] exp(- 2 Hk kc )) (A, I)

&, =
iAj (exp (kz) + [- + 2 k(z + H )] exp (- 2 Hk kz )) +

+iA2(11 +kz]exp(kz)- [1+2Hk(Hk+kz- I)-kz]exp(-2Hk-kz)). (A.2)

The displacement field at the interface z =

0 can be expressed in the following compact form :

R- Aj
p' =

Mug
~

(A.3)

1
2

where the matrix M~~ is given by :

M~~j
=

l [1 + 2 Hk] exp (- 2 Hk ))

M~~j~ =

[2(Hk)~ exp (- 2 Hk))

M~~~j =

I (1 + [2 Hk I exp(- 2 Hk))
~~'~~

M~~~~ =

(I [1 2 Hk + 2 (Hk)~] exp (- 2 Hk ))

The shear stress and normal stress at the interface z =

0 are calculated using (27). These can be
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expressed in the following form

la ~~

IA
j

= M~~ ~
(A.5)

«< 2

where

M~~ j j =

2 k ( I + a
I + (1 + 2 Hk exp (- 2 Hk

~~)~
=

2 i~~~~
[~~~~l~~~~k

)~~(~~ 2 Hk
~~'~~

M~~~~ =

2 ik(I + a
)[ I + (1 2 Hk + 2 (Hk)~) exp(- 2 Hk)]

The eigen functions for the fluid velocity field are determined from the linearised Stokes

equations (24), (25) and (26). The eigen functions that are consistent with the boundary

conditions at z =

1(8) are

b~
=

Bj (exp (kz ) [1 2 k(I z )] exp (2 k kz )) +

+ B~ ( [kz] exp(kz) + [k(2 k(I z ) z )] exp (2 k kz )) (A.7)

b~
=

iB~ (exp(kz) [1 + 2 k(I z)] exp(2 k kz)) +

+ iB~ ( I + kz] exp (kz) [1 + 2 k(I + k kz ) kz exp(2 k kz )) (A.8)

The fluid velocity at the interface z =

0 can be expressed in the following compact form

Ii
B

_~
=

M~~ (A.9)
~~ ~~

where

M~~j
j =

I [1 2 k exp (2 k

M~~j2
"

2 k~ exp (2 k
(A. lo)

M~~~
=

I jj II + 2 k] exp(2 k))

M~~2
"

i I II + 2 k + 2 k~l ~XP(2 ~~)

The shear and normal stresses due to the fluid flow can be calculated using (28), and these have

the following values at the interface z =

0 :

~"
I= M~~

~~
(A. II)

Txz 82

where

M~~jj
=

2k+2k[1-2k]exp(2k)

Msfi2
=

4 k~ eXP12 k)
(A.12)

M~~~
=

I (2 k + 2 k[1 + 2 k] exp(2 k))

M~~~
=

I (2 k + 2 k II + 2 k + 2 k~] exp (2 k))

The matching conditions for thi velocity and stress at the interface, (29) and (30), give us the

following relations :

"
(~ug

II
~

l
+ ~ug12 ~2)

"

~vfl ~l- + ~vf12 ~2
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" (~ug21 ~ + fifug22 ~2) Y (~ugl1 ~ + ~iug12 ~2)
"

~vf2l ~l + fifvf22 ~2
~ j~~

fifsgl ~l + fifsg12 ~2
"

fifstll ~l + fifsf12 ~2

fifsg21~ + fifsg22 ~2
~

fits©1 ~
l

+ fifsf22 ~2

After solving the above equations for the four constants A
j,

Ai, B and Bi, we get the following
characteristic equation

an
~

+ (b~ + I yb~)
a + cj + I yc~ =

0 (A,14)

where

a
=

4 II exp(2 k(I + H)) + 2 k(I + H) exp(k(I + H))]

x II exp(2 k(I + H)) 2 k(I + H) exp(k(I + H))] (A,15)

hi
=

4 (- exp (4 k (I + H)) + [1 + 2 k~] [exp (2 k) + exp(2 k + 4 Hk)]

[1 + 2 (Hk )~ [exp (2 Hk ) + exp (4 k + 2 Hk )]

+ 2 [1 + 2 k~ + 4 Hk~
+ 2 (Hk)~] exp (2 k + 2 Hk )) (A.16)

b~
=

4 (k~ [exp (2 k) exp (2 k + 4 Hk )] + (Hk )~ [exp (2 Hk) exp (4 k + 2 Hk +

+ 4 Hk~ [I + Hi exp (2 k + 2 Hk )) (A,17)

c~ =
I exp (2 k) + 2 k exp (k)] [- I + exp (2 k + 2 k exp (k x

x [I + exp(4 Hk + (2 + 4 (Hk )~) exp (2 Hk)] (A,18)

ci =
4 k~ (exp (2 k + 4 Hk exp (2 k +

H~[exp(4 k + 2 Hk) exp(2 Hk)]

4 Hk [I + Hi exp (2 k + 2 Hk )) (A,19)

Though the analytical expressions for the solutions of this quadratic equation are unwieldly,
the roots can be numerically calculated quite easily, and the characteristics of the root with the

larger real part are discussed in section 4.
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