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The transport properties of an A-B random copolymer melt near the order-disorder phase 

transition are examined by using a mode coupling approach. The key parameters of the model 

are the volume fraction of type A monomers, f, the Flory x parameter, and a parameter A 

that characterizes the monomer sequence distribution. The equilibrium phase diagram for this 

model of random copolymers contains a Lifshitz point at A = A,. For A <A,, composition 

fluctuations first become unstable at finite wavelength and the homogeneous phase separates 

into microphases, while for A > A, the fluctuations first become unstable at infinite wavelength 

giving a binary fluid type transition. Our analysis shows that for A <A, the Onsager coefficient 

remains finite as the phase transition is approached, while the viscosity diverges proportional 

to E-~‘*, where E = (T- 7’JIT is the dimensionless difference between the temperature and 

the critical temperature. For A > A,, there is a very weak divergence in the viscosity, but the 
Onsager coefficient diverges proportional to E-~” for E -‘( A - A,) % 1, and proportional to 
E m3’4 for E -l(A - AL) < 1. The dependence of the Onsager coefficient and viscosity on x, f 
and A are explicitly determined. 

1. Introduction 

We are delighted to contribute to this special issue of Physica A honoring 

Professor Kyozi Kawasaki on the occasion of his retirement from Kyushu 

University. Our article deals with a topic, the critical dynamics of random 

copolymer melts, that is closely aligned with Professor Kawasaki’s past and 

present research interests. In particular, the present mode coupling analysis is a 

natural extension of the beautiful framework developed by Professor Kawasaki 

in his thorough investigations of the critical dynamics of simple fluids. More 

recently, his pioneering studies of the thermodynamic and transport properties 

of block copolymers [l] have yielded important new insights into the behavior 

of these complicated polymeric fluids. We look forward to Professor 

Kawasaki’s continuing outstanding contributions to our field and aspire to his 

model of scholarship. 

In recent years, there has been much interest in the thermodynamics and 

dynamics of multicomponent polymer melts, including polymer blends and 

block copolymers [2]. The structure and dynamics of these materials are largely 
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determined by a competition between enthalpic interactions among the 
dissimilar monomers, which tend to segregate the monomers into different 
domains, and the entropic forces that promote mixing. An interesting aspect of 
these polymeric systems is that they can exhibit more than one type of phase 
transition from a disordered phase to a segregated phase upon lowering the 
temperature. For example, the familiar phase separation of a binary mixture of 
homopolymers results in two coexisting homogeneous phases and is of the 
binary liquid type [2,3]. In the case of block copolymers, where polymerized 
sequences of two or more distinct monomers are chemically linked together on 
the same macromolecule, the phase separation results in the formation of 
spatially periodic domains of mesoscopic extent (a so-called microphase 
separation). Such phase transitions are of the order-disorder type. A variety of 
domain geometries, such as lamellar, cylindrical, spherical, and certain bicon- 
tinuous structures have been observed experimentally, and most of these have 
also been predicted theoretically [4]. 

The thermodynamic properties of random copolymer melts, which contain 
monomers of more than one type distributed stochastically along each chain, 
have received much less attention [5,6]. Fredrickson, Milner and Leibler 
(FML) [6] recently investigated the mean-field phase diagram for a simple 
model of A-B random copolymer melts (linear chains constructed from two 
types of monomers, A and B). This model contains three key dimensionless 
parameters: the volume fraction of type A monomers, f, the Flory x 
parameter, xF, which determines the strength of the enthalpic repulsion 
between monomers of types A and B, and a parameter A (- 1 < A < 1) that 
describes the correlation among the locations of the A and B monomers along 
the chain. The case A = -1 corresponds to an alternating copolymer where A 
and B monomers alternate along the backbone of chain, while the opposite 
limit A = 1 corresponds to a mixture of type A and type B homopolymers 
where the monomers are only found adjacent to others of the same type. The 
intermediate case of A = 0 corresponds to a truly ‘random’ copolymer melt for 
which there are neither ferromagnetic nor antiferromagnetic correlations of A 
and B along the polymer backbones. For a large range of A, FML [6] have 
shown that the model exhibits a phase transition from a homogeneous to an 
inhomogeneous phase when the Flory x parameter is O(1). A particularly 
interesting feature of the phase diagram is the presence of a multicritical 
‘Lifshitz’ point at A = A,. (The value of A, is generally nonuniversal, but for 
one microscopic model investigated by FML was found to describe chains with 
a slight alternating tendency, A, = -0.268.) For A > A,, the phase transition is 
of the binary fluid type and the two coexisting phases have a composition 
difference that is characteristically of 0(N-“*) (N is the degree of polymerisa- 
tion). In contrast, for A < A, the phase separation occurs at a finite wavelength 
and is of the ‘microphase separation’ type observed in block copolymers. 
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The reptation dynamics of a highly entangled random copolymer in the melt 

were very recently considered by Bouchaud and Cates [7]. They found that the 

reptation time [2] increases in proportion to exp(N”2AF), where N is the 

number of monomers on a chain. Based on this result, they predict a dynamical 

crossover line for ,Y~ - N-’ ‘*, below which (in temperature) the self-diffusion 

of long chains in the melt is drastically slowed down. This line would normally 

be expected to preempt the equilibrium phase transition, which as noted above 

scales as xF - 0( 1). It is important to emphasize that the Bouchaud-Cates 

prediction of suppressed self-diffusion does not necessarily imply that micro- 

phase separation is arrested. Indeed, the collective diffusion events required to 

produce the typical microphase with a period that is smaller than a chain radius 

of gyration probably do not involve complete tube renewal. 

In the present paper, we use a mode coupling technique to study the effect 

of concentration and momentum density fluctuations on the collective transport 

properties of a random copolymer melt near its order-disorder or (depending 

on the value of A) liquid-liquid phase transition. This analysis is directly 

applicable to melts of relatively short chains where the diffusion of polymers is 

governed by Rouse dynamics rather than by reptation, so that the dynamical 

slowing down mechanism of Bouchaud and Cates is inoperative. Furthermore, 

because the Bouchard-Cates arguments do not necessarily impact collective 

diffusion phenomena even for long chains (and particularly for A < AL), we 

expect that our analysis may have even more general applicability. 

The dynamics of our model random copolymer melt are described by using a 

slight modification of the familiar model H equations that were earlier 

employed to study the binary fluid transition in simple liquids [8,9] and the 

microphase separation transition of diblock copolymers [lO,ll]. We also invoke 

the FML random copolymer model whose static properties have been investi- 

gated in detail elsewhere [6]. Our goal is to determine the dependence of the 

renormalized transport coefficients, namely the Onsager coefficient and the 

shear viscosity, on the fraction of A monomers, f, the parameter A, and the 

reduced temperature E = (T - T,)/ T,, where T is the temperature and T, is 

the critical temperature. Our main results are that for A < A,, the viscosity 

diverges proportional to E -3’2, while the Onsager coefficient remains finite as 

the critical temperature is approached. For A > A,, the divergence in the 

viscosity is weak, while the Onsager coefficient diverges proportional to e-1/2 

for E-‘(A - A,) * 1, and proportional to l -314 for E-‘(A -A,) G 1. 

2. Model 

We consider a cubical box of NP polymers, each of which has a total of N 

monomers. The melt is assumed to be incompressible and the monomer 
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volumes (denoted u) are taken to be the same; hence, the total volume of the 
system is given by V= uNN,. The average volume fraction of monomers of 
type A is denoted f, the location of monomers along a chain are indexed by 
Roman indices IZ, m, . . . , and different chains are identified by the Greek 
indices (Y, p, y, . . . We further invoke the traditional Markov model of 
random copolymerisation [12] that was earlier employed by FML [6]. In this 
model, the reactivity of an unreacted monomer with a polymer molecule 
depends only on the type of monomer at the end of the polymer, and four rate 
constants, k,, ({K, L) = A, B), suffice to determine the kinetics of the 
polymer growth. The analysis is further simplified by assuming that the 
concentrations of monomers and reactive species during the polymerisation 
process are constant. 

It is convenient to define a conditional probability matrix, pKL for {K, L} = 
A, B, which is the probability that a monomer of type L on the chain is 
immediately followed by a monomer of type K. It is easy to see that two of the 
probabilities can be expressed in terms of the other two by using the following 
conservation conditions: 

P*A+PBA=l, PAB+PPBB=l. (2.1) 

There is a third relationship among the conditional probabilities resulting from 
the assumption that the concentration of type A monomers remains constant 
during the growth process, and hence the probability of finding a monomer at 
any location is f: 

f=PAAf +PAB(l -f> . (2.2) 

The above three relations permit us to specify the sequence distribution of 
monomers in terms of just two parameters, the fraction of monomers, f, and 
the non-trivial eigenvalue of the pK,_ matrix, A, which is given by 

A=p,, +PBB -1. (2.3) 

Next, we introduce a random variable O(n, a) which is defined to be 1 if the 
monomer at location II on chain CY is type A, and -1 if the same monomer is 
type B. The moments of O(n, a) can be expressed in terms of the two 
parameters f and A. We do not go through the derivation of the moments, but 
refer the reader to FML [6] for further details. In the present analysis, we only 
require the first two moments, which are 

O(n, a) =2f- 1 ) (2.4) 

[f3(n, a) -e(n,a)][e(m, p> -O(w P>l = 4f(l -fWrn’& 7 (2.5) 
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where the overbars denote ensemble averages over the sequence distribution. 

The microscopic density field, +(n, (Y ; x, t), of a monomer on chain (Y at 

backbone location n is defined as follows: 

where R(n, (Y, t) is the monomer position. Similarly, the microscopic densities 

of A and B monomers are given by 

(2.7) 

(2.8) 

In the present analysis, we use the standard microscopic model for co- 

polymer melts [13] and neglect the difference in the segment lengths of the two 

monomers. The interactions among the monomers are described in terms of a 

generalized Flory ‘chi’ parameter [2,6], which is the enthalpy penalty per 

monomer of A-B contacts relative to A-A and B-B contacts. The Hamilto- 

nian for the melt can be written as 

+ 
I I 

d-x d.d +A(4 XF(IX - 4) 43(x’) (2.9) 

In this expression, b is the statistical segment length of a monomer and x,(r) is 

a non-local Flory interaction parameter [6]. The quantity subsequently denoted 

by xF is proportional to the spatial integral of x~(I) and is related to the usual 

Flory parameter x by the expression (~lu)(b/fi)~. Our assumption that the 

melt is incompressible implies that the local concentrations of A and B are 

permitted to fluctuate, but the sum of the concentrations of the two species is a 

constant at all points in the melt. This incompressibility condition is conveni- 

ently enforced by means of the random phase approximation [2]. 

3. Mean field calculation of transport coefficients 

In the present section, we calculate the dependence of the static and dynamic 

structure factors and the Onsager transport coefficient on the parameters f, A, 

and xF of the random copolymer model by using a mean field approximation; 

the effect of fluctuations is analysed in the next section by means of a 
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mode-coupling approach. The static and dynamic structure factors of interest 
are the equal time and time-displaced density correlation functions: 

S(n,a;m,p;X)=(6~(n,(Y;X,O)6~,(m,p;O,O)), (3.1) 

S(n,cu;m,P;x,t)= (s~(n,a;x,t)s~(m,p;O,O)). (3.2) 

For future reference, we also define the Fourier-Laplace transforms of the 
static and dynamic structure factors: 

S(n,(~;m,p;k)= drexp(ik.x)S(n,cu;m,P;x), 
I (3.3) 

m 

S(n,a;m,p;k,w)= dxexp(ik.x+iwt)S(n,(y;m,P;x,t). (3.4) 
0 

In the present analysis, we do not actually prescribe a microscopic dynamics, 
but simply assume that at long times and for transport over large distances the 
dynamics of a free (non-interacting) chain can be represented by a single 
diffusion coefficient, Do. With this assumption, the static and dynamic structure 
factors for a free chain are related as follows: 

(3.5) 

In a melt where the chains follow Rouse dynamics [2,14], this formula is valid 
for k2Nb2 4 1 and when the time scale under consideration is large compared 
to the relaxation time of the internal modes, which is 6’(,$oN2b2/T). The 
diffusion coefficient, Do, in this regime is of order (TIN(,). In the above 
expressions, T is the product of the temperature and the Boltzmann constant, 
and 5, is the monomer friction coefficient. In a highly entangled melt for which 
the reptation model is applicable, the above assumption requires that k2Nb2 4 
1 and that the time scale is large compared to the reptation time, which is 
B(b2toN3/TNe), where N, is the number of monomers between entanglements. 
The diffusion coefficient in the reptation regime is 0(TNe/[,N2). 

For a melt of ideal chains in the absence of interactions, the equilibrium pair 
distribution function is Gaussian, and the static structure factor is given by 

S,(n, a; m, p; k) = + exp(-)n - m]k2) & . (3.6) 

Here, the wave vector k has been scaled by (V&/b), where b is the statistical 
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segment length of the monomers, and V is the total volume of the system. 

Note that in the subsequent analysis, all lengths are scaled by b/6. 

There are two types of interactions in the melt that cause deviations from the 

ideal behaviour - the enthalpic interactions between the monomers of different 

types, which are modeled by using the non-local Flory ‘chi’ parameter of (2.9), 

and the repulsive hard-core interactions among the monomers that are crudely 

accounted for by requiring the total density at any point to be a constant: 

2 h#l(n,a;k,w)=O. (3.7) 
n.o! 

In this expression the index n is summed from 1 to N along a chain, and the 

index (Y from 1 to N,. The structure factor in the presence of interactions is 

calculated by a linear response procedure as follows. Consider weak perturbing 

potentials VA and V, (respectively conjugate to the densities of type A and B 

monomers) applied to the monomer at location m of chain p at the position x’ 

and time t’. The change in the density caused by this potential is to linear order 

given by 

x 

&b(n,a;x,t)=- dx’~(n,a;m,~;x-x’,t-t’)V(m,P;x’,t’), 

where we have used the Einstein notation for summation over the repeated 

indices, and the potential V(m, p; x’, t’) is given by 

V(m, p; cc’, t’) = +{[l + O(m, p)]V,(x’, t’) + [l - O(m, p)]VB(x’, t’)} . (3.9) 

The response function, x(n, LY ; m, p ; x - x’, t - t’), depends only on the 

relative distance (X -x’) due to translational invariance. Moreover, the 

response function is causal and thus is non-zero only for t > t’. It is convenient 

to write the above equation in terms of the Fourier-Laplace transforms of the 

density and potential: 

6~(n,a;k,w)=-x(n,a;m,p;k,o)V(m,p;k,w). (3.10) 

Finally, we note that the linear response function is related to the correlation 

function (structure factor) describing the spontaneous fluctuations in a system 

at equilibrium by invoking the fluctuation-dissipation theorem: 

x(k, 0) = T-‘[S(k) + iwS(k, w)] . (3.11) 
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In the random phase approximation [2], the response function is approxi- 
mated by the ideal (non-interacting) chain response function, but the potentials 
VA and V, are separated into three components: external potentials V,, and 
V,,,; an interaction potential due to the enthalpic interactions among mono- 
mers of different species; and a self-consistent potential U(k, 0) that acts 
uniformly on all monomers and enforces incompressibility. This separation can 
be written explicitly as 

+:TxFz [1-8(m,p)8(1,y)lS~(l,y;k,o)+U(k,w), 
1.Y 

(3.12) 

where the external potential V&z. p ; k, w IS related to the potentials V,, and ) 
V,, in a manner analogous to (3.9) and we employ the shorthand ,yF = ,yF(k). 
The above potential is next substituted into (3. lo), and the self-consistent 
potential is calculated by imposing the incompressibility condition (3.7). At 
this stage, we also perform an average over the possible arrangements of the 
monomers along the chains by using the correlation functions for the variable 
19(n, CY) given in (2.4) and (2.5), the details of which are provided in appendix 
A. The end result of these steps is expressions for the fluctuations in the 
densities of species A and B as a function of the applied potentials: 

W.+i(k WI= -x’(k 0) [V:(k, 0) - V;(k, w)] , (3.13) 

W,,(k, 0) = -x’(k w> [V&k, w) - Vi@, w)l . (3.14) 

Here, the effective response function, x’(k, w), which includes the effect of 
hardcore repulsions that make the melt incompressible, but not the enthalpic 
interactions among the monomers of different species, is given by 

(3.15) 

where 

x0@, a; mz, P; k, a) = T-‘[S,( n,a;m,p;k)+ioS,(n,cr;m,p;k,w)]. 

(3.16) 

These ideal chain structure factors are in turn given by (3.5) and (3.6). Finally, 
the effective potentials Vi and VL appearing in (3.12) and (3.13) are 
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Vk(k w) = I/,@, w) + TX, W,(k w) 3 (3.17) 

V;(k, w) = V,(k w> + Tx,z W,(k ~1. (3.18) 

The response function, ~‘(k, w), simplifies considerably for cases of IAl N 4 1, 

where the identities of the monomers are uncorrelated at separations compar- 

able to the degree of polymerisation. In this situation (which is typical for 

commercial random copolymers), we have 

1 + A exp(-k2) 
x’(k+)=T-‘f(l-f) l_hexp(_kz) (I+ iw 

-iw + D,k2 >. (3.19) 

An interesting feature of the above response function is that it is different in 

form from the Debye-like functions for homopolymers and block copolymers 

and it lacks a correlation hole at k = 0. There is a correlation hole in a block 

copolymer melt because the different types of monomers are located at 

identical positions on different chains, and if we have a monomer located at 

position n on chain (Y at the origin, the probability of finding a monomer at 

position n on a different chain p near to the origin is reduced. However, in a 

random copolymer, the identities of the chemical species at the same location n 

on different polymers are uncorrelated and this eliminates the correlation hole 

in the structure factor. 

The response function that takes into account the effect of enthalpic 

interactions is easily calculated from (3.13), (3.14), (3.17), and (3.18): 

x’(k ~1 
X(k’ w, = 1 - 2TxF,y’(k, w) 

(3.20) 

The static and dynamic structure factors can be derived from the above 

expression as follows. We insert the value of ,y’(k, w) from (3.19), carry out a 

Taylor expansion for small w and retain terms up to quadratic order. The 

resulting expression is recast in a form similar to (3.5), and the following static 

structure factor and generalized diffusion coefficient are read off from this 

expression: 

S’(k) 
S(k) = 1 - 2/+!?‘(k) ’ D(k) = D,[l - 2,@‘(k)] , (3.21) 

where 
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(3.22) 

The advent of a phase transition is signaled by a divergence in the static 

structure factor. It can be seen from (3.21) that there is a phase transition for 

S’(k) = T/(2xr); this result is identical to that of FML [6] for our choice of the 

form of the enthalpic interaction. It is also interesting to note that the diffusion 

coefficient goes to zero as the structure factor diverges, indicating the familiar 

Van Hove-type critical slowing down. 

To study the relaxation rate of fluctuations, it is convenient to identify the 

Onsager coefficient A(k) that relates the flux of monomers of either species to 

the gradient in the respective chemical potential: 

JA-JB= A(k) . 
Tlk(V, -V,) . (3.23) 

The Onsager coefficient is related to the static structure factor and the diffusion 

coefficient by the expression 

A(k) = IX(k) = &S’(k) , (3.24) 

where we have used (3.21) for the diffusion coefficient and the structure factor 

in the second equality. It is interesting to note that the Onsager coefficient is 

identical to that for a melt in which there are no enthalpic interactions between 

the monomers because the dependences of the diffusion coefficient and the 

structure factor on the Flory parameter xr cancel each other. Also, the 

Onsager coefficient is simple in form, and does not diverge or vanish near the 

critical point in the present mean field approximation. 

Our final task in the present section is to discuss the static properties of the 

model copolymer melt on the basis of the interacting structure factor just 

computed. This discussion is similar to that in FML, but we include it here for 

completeness and for reference in the following sections. The expressions for 

the response function (3.20) and structure factor (3.21) give us the following 

criterion for phase transition in the melt: 

Ml - f)x&) 
1 + A exp(-k2) 

1 - A exp(-k2) = ’ ’ 
(3.25) 

The above expression is identical to the phase transition criterion obtained by 

Fredrickson and Milner [6]. Following their lead, it proves convenient to 

expand the Flory parameter in a Taylor series in the wave number k: 
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xF(k) = xp’ - $‘k* . (3.26) 

The wave number at which the homogeneous phase first becomes unstable 

depends on the value of A relative to a critical value, A,, which can be 

identified as an isotropic ‘Lifshitz point’. The critical value is given by 

A, = -1 + [(I + 2K2)1’2 - 1]/K2 , (3.27) 

where K* = 2f(l -f)xf’. Note that A, is generally less than zero. For A > A,, 

the homogeneous phase first becomes unstable at k = 0, signaling a binary 

liquid phase transition. The spinodal condition for this phase separation is 

1-A 
Ko =l$-h (3.28) 

where Kg = 2f(1 -f)xF . (“) The static susceptibility x(k) can be approximated 

near the phase transition by the following Lorentzian form: 

X(k) = [ -2 + $ + Ck4 ) 

x,=2~-1~(1-f)K,~~((l_A~~l+A) +z -I ’ 

l+A l-h 

i 

2A K2 
-1 

[-*=l-n l+--O (l-A)(l+A) +x, ’ 

(3.29) 

(3.30) 

(3.31) 

2~,h 
-1 

Ko(l + A)(1 -A) + (1 - A;;1 + A) + 2 ’ 

(3.32) 

We note that it is necessary to include the 6(k4) term in the denominator of the 

response function because the correlation length 5 decreases to zero at A = A,, 

while x0,$* and c.$’ remain finite. As will become apparent below, the 6(k4) 

term makes a significant contribution to the transport properties for A+ A,. 

Near the phase transition, we can set ~~ = (1 - A)/(1 + A) - E, where E is a 

small (positive) parameter that is proportional to the difference between the 

temperature and the critical temperature. For this situation, x0 and 5 have the 

following expressions that are correct to leading order in E: 

x~=~-‘f(~-f) 
2A 

(l+A)(l-A) +K2 ) (3.33) 
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5=Epl/2 2h 

( 

)l’2. 

(1 + /q2 + K2 
(3.34) 

For A < A,, the instability occurs at a non-zero value of k = k,, indicating a 

microphase separation transition: 

exp(-kt) = + 

and the spinodal condition for this phase transition is 

(3.35) 

(3.36) 

where K;, = K. - K2kz. Near the phase transition, we find that the susceptibility 

has the following form: 

x(k)= 52+;_k0)2) 

where 

(-2= :, ;L Kr)(-":P":':,"')-'] 

[( L L 

(3.37) 

(3.38) 

(3.39) 

and where we have used ~~ = -2A,~,l[(l+ A,)(1 - AL)]. The parameter A, is 

less than zero, and therefore the above expressions for x0 and 5 are always 

positive in the homogeneous phase. When the system is very close to the phase 

transition, we have K: = (1 - A,)/(1 + AL) - E, where E is again an appropriate 

reduced temperature. In this case, the parameter x0 is still given by (3.38), 

while 5 reduces to 

(3.40) 
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4. Renormalised transport coefficients 

Near the line of critical points at f = l/2 and parameterized above for 

different h, the Onsager coefficient and the viscosity of the melt may be 

significantly modified by nonlinear couplings between concentration fluctua- 

tions and transverse momentum density fluctuations. This coupling is studied 

by using the model H system of equations of Hohenberg and Halperin [8], 

which were previously employed to study the critical dynamics near the 

gas-liquid and binary fluid critical points. These equations describe the 

variation in the concentration field I+!+, t) and the transverse momentum 

density, j(x, t). In the present case of a random copolymer melt, @(I, t) is the 

difference in the concentrations of the two species (6+,(x, t) - S#&, t)), and 

we replace the momentum density by the velocity field of the incompressible 

melt U(X, t). A calculation similar to ours was carried out by Sachdev [15] for 

viscous relaxation in metallic glasses, but in his case the order parameter is not 

a conserved quantity, and therefore the results are slightly different. In Fourier 

representation, the model H equations are 

W(k t> SH 
~ = - A,k* 6+(-k) + ip 

-1 
at I 

Sk’. s,c;: k) W’) + 5@> t) > 

(4.1) 

_ ip-’ I $+W4-k’) S$$) (4.2) 

Here, A,, and v,, are the bare transport coefficients; the A and f dependence of 

A, were derived in the previous section. It should be noted that Q, as defined 

here, is (~,,/p), where V, is the kinematic viscosity and p is the mass density, 

while the transport coefficient A, has units of xD,, where x is the susceptibility 

and D, is the diffusion coefficient. The effective Hamiltonian of the system, H, 
can be adequately represented by a quadratic approximation near equilibrium: 

H2 
2 I $$ [@C-k) x -’ (9 0) + d-k) - 4k)l . (4.3) 

The transverse projection operator, (Tk)ij = S,j - &$,, appearing in (4.2) 

selects the transverse component of the vector in the brackets, since the 

component of u(k) in the direction of k is zero due to incompressibility. The 

Gaussian white noise sources for the concentration and momentum density 
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fields, < and p, have zero mean, and their autocorrelations are chosen so as to 
satisfy the fluctuation-dissipation theorem: 

(J(k, t) @‘, t’)) = 2T(21T)3k2A,6(k + k’) s(t - t’) ) (4.4) 

(cL,(k, t) /Aj(k’, t’)) = 2T(2n)3k2n,S(k + k’) 8(t - t’) 6, . (4.5) 

The model H equations ((4.1) and (4.2)) have been approximately solved by 
Siggia, Hohenberg and Halperin [9] using a self-consistent one-loop expansion, 
and neglecting the frequency dependence of n and A (Kawasaki approxi- 
mation). The renormalised transport coefficient and viscosity are given by 

A(k) = A, + Tp-2k-2 I dk’ 
(2v)3 x(k’) 

k. Tkt Sk 

v(k’ - k) (k’ - k)’ + A(k’) ,y -‘(k’) k’2 ’ 

(4.6) 

v(k) =qo + Tp;k-2 1% 
5-r 

,y(k’ - k)[,f’(k’) - X-‘(k’ - k)](k’ . Tk Sk’) 

x [A(k’) x -l(k’) kr2 + A(k’ - k) x-‘(k’ - k) (k’ - k)2] ’ (4.7) 

First, we consider the case A < A,, where the phase separation occurs at a 
finite value of k. In this regime, the susceptibility x(k) has a peak at k,, and 
can be approximated by the Lorentzian form in (3.37). Close to the phase 
transition, this Lorentzian has a narrow width and it is a good approximation to 
replace A(k) by its value at k = k, and the viscosity n by its value at k = 0. With 
this simplification the above equations reduce to a pair of simultaneous 
equations for A(k,) and v(k = 0): 

A = A, +!‘T Tp-2k-2q-’ 
I 

dk’ k. Tk, .k 

-0 0” X(k’) (k’ - k)2 ’ 
(4.8) 

77 =qo +lim Tpize2 J-S (k~2~~~,~;_2 [X-l(P) -X-l(k’ -k)I 
k-0 7T 

The above equations can be reduced to one-dimensional 
inserting the Lorentzian form of the susceptibility (3.37): 

(4.9) 

quadratures by 
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n=n,+ W2x05 m dx 
4V27j I o l+(X-/)2 

x (X+1)2(X-1)2 
C 4l3x 

Tp m2x0t 1 
77 = rlo + hOT2A 

z+ 

(5 + I’)(n + 2 arctan 2) 
4 

(4.10) 

(4.11) 

where 1= k,[ and x = k’.$. We note that the integrand in (4.10) is proportional 
to x-’ for x+ ~0, so no high wave number cut-off proves necessary. 

The expressions for the transport coefficients (4.10) and (4.11) can be 
written more compactly as two simultaneous equations of the form 

A-A,=+. 9-170=;. (4.12) 

where the constants A and B can be read off from (4.10) and (4.11). The 
above equations can solved for the renormalised transport coefficients: 

A = A, + + [-(B - A + 7oAo) ? j/(B - A + qoAo)2 + 4Av,A,] , (4.13) 
0 

A - B + AOqo) ? q(A - B + AOqo)’ + 4BA0qo] . (4.14) 

In the limit of small A,, the above equations can be simplified to the following 
form: 

forB>A 
Ano B-A 

A-AO=B_A> T-TO= ~0 y 

forB<A 
A-B 

A-A,=- BrlO 

70 
9 77_rlo=~_B. 

(4.15) 

(4.16) 

In the above expressions, both A and B are proportional to the correlation 
length 5 (at fixed I), but the ratio (B/A) remains finite, and therefore only the 
terms proportional to A - B diverge near the critical line. We see that A has a 
critical contribution for B < A, while the renormalized viscosity is of the same 
magnitude as the bare viscosity in this regime. On the other hand, for B > A 

we find that the viscosity 77 is significantly modified by slow concentration 
fluctuations, while the Onsager coefficient remains close to its bare value. A 
numerical integration of (4.10) and (4.11) shows that B > A for k,E > 2.02. 
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Since the correlation length 5 diverges at the transition temperature, the 
regime k,t > 2.02 is the important regime near the phase transition, and in this 
regime the Onsager coefficient remains close to its bare value while the 
divergence in the viscosity can be calculated by inserting (3.38) and (3.40) for 
x0 and 5 into (4.11): 

V=9u+f(l-/)p-2’-3’z -2k$A,(l-A,) l’* 
12oWI, ( ) (1+q3 ’ 

(4.17) 

where ki = log( A /AL). 
The broken line in fig. 1 shows the variation of the function c, 0~ (7 - 

%)&3’2 with A. Here, the Lifshitz point has been fixed at A, = -0.268 in 
accordance with the results of FML for a specific random block copolymer 
model [6], and the ordinate has been scaled so that c, = 1 at A = -1. From 
(4.17) we see that c, is 0 at A = A,, and increases in proportion to [log(Al 

A,)13’* for A<A,. 
At this point, it is useful to compare the above results with those obtained by 

Fredrickson and Helfand [lo] for the rheology of diblock copolymers near the 
microphase separation transition. Near the critical temperature the parameter 
A0 does not diverge, while the mean field correlation length 5 increases in 
proportion to E _ ’ ‘*, where E is the reduced temperature introduced earlier. 
From the above calculations, we see that the Onsager coefficient does not 
diverge as the transition temperature is approached, while the viscosity 
diverges in proportion to E -3’2. Both of these results are consistent with the 
findings of Fredrickson and Helfand [lo] for diblock copolymer melts. Indeed, 
apart from numerical factors, the critical transport properties of a diblock 

h 

Fig. 1. The variation of the functions c,, a E”*Q~ -A,) and cV a c3”A,,(~ - 7”) with the sequence 

distribution parameter A. The Lifshitz point has been fixed at A,_ = -0.268 and the ordinate has 

been normalised so that c,, = 1 at A = 0, and c,, = 1 at A = -1. 
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copolymer melt are very similar to those of a random copolymer melt with a 

strong tendency for alternation, A G A,. 

Next, we analyze the dynamical behavior of a random copolymer melt with 

A > A,. For such monomer correlations, the system first becomes unstable at 

k = 0 and the phase transition is in the same universality class as a binary liquid 

transition. The renormalised transport coefficient and viscosity for this type of 

transition have been calculated previously [a], and it has been found that the 

divergence in the viscosity is very weak (7 m (T - TC))r’i9), while there is a 

strong divergence in the Onsager coefficient as the critical temperature T, is 
approached. It has been observed in experiments [9] that the value of n never 

rises by more than 20%-30% above its bare value Q, and as a result it is a 

reasonably good approximation to neglect the divergence in the viscosity and 

replace it by a constant when calculating the divergence in the Onsager 

coefficient. With this approximation, the renormalised Onsager coefficient is 

given by 

(4.18) 

where we have substituted the Lorentzian form for the susceptibility (3.29) into 

(4.6) and have neglected the second term in the denominator of the latter 

expression due to the strong divergence in the structure factor. The term 

proportional to k4 in the expression for the susceptibility (3.29) has also been 

neglected in deriving (4.18). It can be easily seen that (4.10) for the transport 

coefficient reduces to the above equation in the limit k, -+ 0 or I+ 0. Inserting 

(3.33) and (3.34) for x,, and 5 respectively, we obtain 

A=A +f(l-f)p_V”2 2A 
0 

f5vo li 
--+KJ’;2+$]. 
(1 + A)2 

(4.19) 

The above equation predicts that the Onsager coefficient increases as E -1’2 

as the critical point is approached, consistent with the mean-field value of the 

correlation length exponent employed here, v = 112. The solid line in fig. 1 is a 

plot of the A dependence of (4.19). The function plotted in the figure, 

c, x E”‘T,,(A - A,,), is defined as the quantity in the square brackets of (4.19). 

The renormalisation of the Onsager coefficient apparently vanishes at A = 1 

(which corresponds to homopolymers), because the value of the Flory chi 

parameter at the phase transition is proportional to (1 - A)/(1 + A) (see 3.28) 

and this vanishes at A = 1. However, we have neglected terms proportional to 

AN in calculating the correlation functions, which is not valid in the extreme 
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vicinity of A = 1. By retaining the neglected terms, the factor of (1 - A)/( 1 + A) 

in (4.19) is replaced by a finite quantity that is 0’( l/N) for A = 1. 

A more interesting behaviour is exhibited in the limit A--, A,, where the 

Onsager coefficient appears to diverge. This is because the correlation length 5 

in (3.34) is proportional to l “*(A -A,)“*, and the value of the Onsager 

coefficient depends on the nature of the two limiting processes E-+ 0 and 

A--+A,. For E-‘(A -A,)% 1, (4.19) g’ Ives the correct value for the Onsager 

coefficient, but for l ‘( A - AL) % 1 the term proportional to c in the expression 

for the susceptibility (3.29) (which was neglected in deriving (4.19)) becomes 

important and (4.19) is no longer valid. In this limit, we can neglect the B(k*) 

term in the expression for the susceptibility, and obtain the following expres- 

sion for the Onsager coefficient: 

n = n 
0 

+ f(I -f)p-*~-~‘~ 1 -A, 

6fi~o 
1 + A, 

(4.20) 

In deriving the above equation, we have set A = A,, ~~ = (1 - A,)/(1 + A,) + E 

and K~ = -2A,~,/[(l - A,)(1 + AL)] in (3.33), (3.34) and (3.32) and neglected 

the 6(k2) term in the denominator of (3.29). Thus, we find that the Onsager 

coefficient increases proportional to E -3’4 for E -‘(A - AL) G 1, implying that 

the collective diffusion coefficient should exhibit an unusual critical slowing 

down, D - c114, very near the Lifshitz point. 

5. Discussion 

In the present paper we have analysed the critical dynamics of a simple 

model of random copolymer melts. An unusual feature of this model is the 

existence of an isotropic Lifshitz point that delineates competing tendencies for 

liquid-liquid separation or microphase separation. Our analysis is based on a 

mean-field description of the static properties of the model and on a Kawasaki- 

type approximation for the mode-coupled dynamics. 

For A < A,, which corresponds to copolymers with a tendency for alternation 

of type A and B monomers, the phase transition is of the order-disorder type 

(microphase separation). In such cases we find, in accordance with previous 

work [lO,ll], that the shear viscosity exhibits a strong critical anomaly, 

77 -E P3’2, while the Onsager coefficient for collective diffusion is essentially 

unaffected by mode couplings. We note that in principle one should also 

incorporate the effects of fluctuations on the static properties of the model, 

which for A < A, is in the Brazovskii universality class [16]. However, as 

fluctuations can be shown to induce a weak first order character to the phase 
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transition, the primary effect of such corrections are simply to cut-off the 

viscosity anomaly at the transition [lo]. 

In the case of A > A,, describing copolymers with a tendency for blockiness, 

two types of critical dynamics are possible. Not too near the Lifshitz point, i.e. 

E-‘( A - AL) + 1, we find critical dynamics essentially identical with that 

predicted for binary fluids (model H) [8]. I n such cases the Onsager coefficient 

has a power law divergence, which in the present mean-field description of the 

statics is given by A-E-~‘*, and the shear viscosity has a very weak power law 

divergence that we have not bothered to reproduce [9]. 

Finally, in the close vicinity of the Lifshitz point, E -‘( A - A,) + 1, we find 

the unusual prediction that the Onsager coefficient has an even stronger 

divergence, A - E m3’4, when computed within the Kawasaki approximation. 

This would imply an anomalous diffusivity of the form D - E”~, which could 

be tested in various types of time-resolved scattering experiments. 

While our model is still quite crude and the analysis somewhat over- 

simplified, we believe that the calculations summarized here should capture the 

qualitative dynamical behavior of real laboratory random copolymers. We look 

forward to the availability of high quality experimental data on this fascinating 

class of complex disordered fluids. 
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Appendix A 

The equations for the dynamics of the two species in a random copolymer 

melt are derived by averaging the dynamical equations for the microscopic 

concentration fields over the sequence distributions of the monomers. We start 

with the linear response formula for the fluctuation in the density as a function 

of the applied potential, (3.10). In the random phase approximation [2], the 

response function is that for a non-interacting, Gaussian chain, but the 

potential consists of three parts - the applied potential Vo(m, p; k, w), which is 

given by a formula similar to (3.9), an external potential U(k, w) to enforce 
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incompressibility and an additional component due to enthalpic interactions 

between the monomers (3.12): 

$(n, CX; k, W) = - c x&w; m, P; k, 0) V&F P; ke) + u(k, w) 
m-0 

(A.1) 

The self-consistent potential U(k, 0) is calculated from the above equation by 
enforcing the incompressibility condition, (3.7): 

u(O)=-( z {x(n,a;m,p;k,o)(V(~,P;k,w) n,a,m,o 

I c x(n,a;m,D;kw), 
n,o,m,p 

(A.21 

where we have dropped the zero subscripts for simplicity. The above potential 
is next inserted into (Al), and we multiply this by [l/2] [l + O(n, cr)] and [l/2] 
[l - @I, (Y)] and trace over (II, CX) to derive equations for the densities of 
species A and B respectively, which are given in (3.13) and (3.14). The 
response function x’ is the sum of two contributions - the first, x1, is a natural 
consequence of the correlations in an ideal, non-interacting melt, 

(A.3) 

while the second, x2, emerges from the incompressibility constraint: 

When the above contributions are averaged over the distributions of 
monomers, the terms that are either independent of O(n, CY), or that are 
dependent on the first moment, e(n, a), sum to zero, and we are left 
with the terms that are proportional to the second cumulant, 

[e(n, a) -e(n, a)][e(m, p) -e(m, P)]. It can easily be verified that the term 
proportional to the second cumulant in x2 is O( l/N,) smaller than the 
equivalent term in x1, and can therefore be neglected in the thermodynamic 
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limit. This leaves us with the term in ,y, that is proportional to the second 

cumulant of 8, which is given in (3.15). 
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