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The growth of random interfaces during the late stage spinodal decomposition for a near symmetric
quench of a binary fluid is analyzed. Inertial effects are neglected, and the motion of the interface
is determined by a balance between the surface tension, which tends to reduce the curvature, and the
viscous stresses in the fluid. The interface is described by an “area distribution funéidtt),

defined so thaf(K,t)dKdx is the area of the interface with curvature in the inteiV&l aboutk

in the volumedx at timet. Here, K= (K§+ K%)l/2 is the magnitude of the curvature, akigd andK,

are the principal curvatures. There is a change in the area distribution function due to a change in
the curvature, and due to the tangential compression of the interface. Phenomenological relations for
the change in curvature and surface area are obtained using the assumption that the only length scale
affecting the dynamics of the interface at a point is the radius of curvature at that point. These
relations are inserted in the conservation equation for the interface, and a similarity solution is
obtained for the area distribution function. This solution indicates that the area of the interface
decreases proportional to! in the late stages of coarsening, and the mean curvature also decreases
proportional tat ~*. The effect of the motion of the interface on the interfacial concentration profile
and interfacial energy is analyzed using a perturbation analysis. The diffusion equation for the
concentration in the interfacial region contains an additional source term due to the convective
transport of material caused by the motion of the interface, and this causes a correction to the
equilibrium concentration profile of the interface. The excess interfacial energy due to the
nonequilibrium motion of the interface is calculated using the Cahn—Hilliard square gradient free
energy for a near-critical quench. It is found that the variation in the concentration causes an
increase in the interfacial energy which is proportional to the curvdduséthe interface. ©1998
American Institute of Physic§S0021-9608)51906-X]

I. INTRODUCTION The rate of coarsening of random interfaces for nearly
o . symmetric quenches is less well understood. The Ohta, Jas-
The rate of coarsening in the late stage spinodal deconly,,, kawasaki theory for the rate of growth of a random
position of binary fluids depends on the relative concentrasy e face in the order—disorder transition in solids was based

tion of the two species. For a near symmetric quench, th%n a constitutive equation for the normal velocity at a point
system consists of a random interface, and the coarseni a function of the radius of curvature at that point. This

occurs due to a reduction in curvatu_re caused by the surfa ﬁeory predicted that the characteristic length for the quench
tension of the interface. A suspension of droplets in a con—]c random interfaces has a scaling l4wt(¥?, and the re-

tinuous matrix is observed for an off-symmetric quench, and’ . : .

the coarsening in this case occurs due to the convective ariq”ts of this th_eory was found to be in agreement with the
diffusive transport of the minority phase from the matrix into onte. Carlo simulations of Humayun and Br%f.or asys-
the droplet. The classical Lifshitz—SlyoZotheory predicts tem Wlth c<()1r)3s)erved ordgr parameter, the equivalent scaling
that the average radius of the droplets grows proportional t(gelatlonloct . was obtained by .Bra§/. ) ) .

t(3) in the late stages of spinodal decomposition, and this The theor_les for th_e coarsening _of mterfacgs in fluids are
scaling law has been observed in the late stage decompodiore approximate. Siggiaused a simple qualitative argu-
tion in solid alloys. In fluids, the convective transport of Ment, regarding the time required for the breakup of an in-
material from the fluid to the droplets due to the Brownianterface due to a capillary instability, to obtain a scaling law
motion of the droplets could influence the rate of growth. itl <t for the characteristic length of the interface. Furukdwa
is found that the convective effects have only a minor effectobtained a similar scaling relation based on the balance be-
on the scaling exponent, and the growth law is given bytween surface tension and viscous dissipation. This scaling
Rmct®1%) or R,,=t(619) depending on the boundary condi- law has also been observed in experiments of near symmetric
tion for the fluid velocity field at the surface of the droplet. quenches:*

However, the rate of growtkwhich is the prefactor in the The rate of coarsening of an interface in a near symmet-
scaling law could be considerably higher in fluids. This is in ric quench is the subject of the present analysis. This analysis
agreement with experimental resdftsvhich observe a scal- augments the previous work on the subject in two ways. The
ing close to the’® predicted by the Lifshitz—Slyozov theory. first is to provide a more quantitative description of the
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coarsening of the interface. An area distribution functionsteady” approximation, there is a balance between the diver-
A(K,t) is defined such that(K,t)dxdK is the area of the gence of the diffusive flux and the rate of change of concen-
interface with the magnitude of the curvature in the intervaltration due to interface motion. This balance equation is
dK aboutK in the volumedx at timet, and the area distri- solved to obtain the correction to the interfacial concentra-
bution function is independent of the positimrbecause the tion profile due to interface motion, and the correction to the
system is considered homogeneous. There is a change in thiderfacial energy(excess free energy per unit area of the
area distribution function due to a change in the curvaltyre interfacg is determined. It is found that the correction to the
as well as due to the contraction of the area due to the tarinterfacial energy is positive and proportional to the curva-
gential motion of the interface. Constitutive equations for theture K, indicating that sections of the interface with higher
change in curvature and change in area are obtained based eurvature have a higher interfacial energy and coarsen faster
dimensional analysis and the assumption that the only lengtthan sections with a lower curvature.
scale affecting the dynamics of the interface at a point is the
radius of curvature of the interfadé ! at that point. These
constitutive relations are obtained in the limit where the req; coOARSENING OF A RANDOM INTERFACE
gime where hydrodynamic effects are dominant, and the ef-
fect of diffusion on the interface motion is neglected. In ad- A nearly symmetric quench of a binary liquid in the late
dition, it is possible to obtain simple forms of the constitutive stages of spinodal decomposition is considered, where the
relation only for the case of a conserved order parametéwo phases form a bicontinuous pattern separated by sharp
fluid system, and the reasons for this are discussed in thigterfaces of random orientation. Due to the bicontinuous
next section. These are incorporated into a conservationature of the system, the pressure in the two phases are
equation for the change in the area distribution function. Aequal. In addition, the dilute limit is considered where the
similarity solution is obtained for this conservation equationinterface is “noninteracting,” so that the motion of one sec-
for the case where the area distribution function is indepention of the interface does not affect another section. The rate
dent of curvature at the start of the coarsening process, arf coarsening is determined by a balance between the surface
expressions for the evolution of the mean curvature and arei&nsion, which tends to reduce the curvature of the surface,
density (interface area per unit volumere derived. The and the viscous stresses, which offer frictional resistance to
mean curvature decreases proportionaﬂib, in agreement the motion of the interface. The shape of the interface is
with previous results, and the area density also decreas&gtermined by the “principal curvatureX; andKj, which
proportiona| tot ™! in the late stages. A similar ana|ysis is are the extrema of the curvatures at any point on the surface,
carried out for solid the order—disorder transition in solids,0f by the magnitudeK=(K+K%)Y? and the angle
and it is found that the curvature decreases proportional t§n(6) = (K2/K,). For the present purposes, an “area distri-
t~12 in agreement with the predictions of Ohta, Jasnow, andpution function” for the interface curvature\(K,6,t), is
Kawasali and simulation results. defined such tha#(K, 6,t)dKdedx is the area with curva-
The previous studies have assumed that the interface fgre in the intervadK aboutK anddé abouté in the dif-
of infinitesimal thickness and has a constant surface tensiof¢rential volumedx about the positiox at timet. There are
This approximation is applicable in the late stages of coarstWo reasons for a change in the area distribution function—a
ening, when the interface concentration profile is close to th€hange in the area due to the tangential motion of the mate-
equilibrium concentration profile. The motion of the inter- fial points along the surface, and a change in the curvature of
face causes a change in the curvature of the interface, andt3 surface. The difference equation relating the area distri-
contraction due to the tangential motion along the interfacebution function at times andt+At is
This contraction could alter the concentration profile at the  A(K, ¢,t+At)=A[K—(At)dK, 60— (At)d,6,t]
interface, which in turn changes the interfacial energy. The
first correction to the interfacial energy due to the interface +AA[K—(At)dK, 60— (At)d,6,t],
motion, which is the second objective of the present analysis, (1)

is calculated in Sec. Ill. The method of analysis is very simi- .
. wheredK andd;# are the rates of change of the position
lar to that used by Langer and Seketkar the mobility of an u N . SR
(K,0) in “curvature space,” and\ A is the variation in the

interface in the spinodal decomposition in a solid. However, . X .
. ) : . “area due to tangential compression along the interface. The
convective transport is also included in the present analysis

. . - . A . dbove conservation equation is a ‘“Lagrangian” equation

since the motion of an interface in a fluid is considered. In" =~ . . .

- . : ) o which incorporates the fact that the area occupying the posi-
addition, the primary interest in the present analysis is th

variation of the interfacial energy due to dynamical effects(%ion (K,0) ~at ftime t+At was at the nposition

. ergy y TK—(At)d,K,0—(At)d,d] at the timet. The differential
while the focus of the analysis of Langer and Sek&rkas . o - .

: . . . form of the conservation equation in the lindit—O0 is

the change in the mobility of the interface due to nonequi-
librium effects. The Cahn—Hilliard square gradient approxi- dA dK A dO oA A
mation is used for the dependence of the free energy on the gt dt 9K _di a8 + E’ 2
concentration, and a diffusion equation is written for the
variation of the concentration. This diffusion equation con-where @ A/dt) is the rate of change of surface area due to
tains an additional source term, which is the change in théhe tangential motion along the interface. The above conser-

interface concentration due to interface motion. In the “quasivation equation is further simplified by averaging over the
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coordinate, since we are only interested in the rate of chang® the interface dynamics due to diffusion is considered in
of the curvatureK, to give the following equation for the the next section, and the concentration equation used there is

area distributiomA(K,1): conservative.

In a solid the dynamics of the interface is different, and
dA(K,t) dK dA(K,t)  dA(K, 1) the resistance to interface motion in a conserved order pa-
Ty + : 3 h ifferent f hich is di

dt dt ~ oK ot rameter system has a very different form which is discussed

a little later. In a solid alloy, the motion of the interface

To solve the above equation, it is necessary to obtain th@6Curs due to the diffusion of the components across the
rate of change of curvaturelK/dt) and the rate of change interface, since the underlying crystal structure is frozen. In a
of area @.A(K,t)/at). Though the exact evaluation of these conserved order—disorder transition in a solid, the motion of

quantities requires a microscopic model for the interface dy_different sections of the interface are not independent due to

namics, theK dependence of these can be obtained fronthe requirement of conservation of total magnetization, and
dimensional arguments. The motion of the interface is usus° thg conservation equation has a different from given in
ally dominated by viscous effects for typical binary fluid Bray-” This is very different from the motion in the case of a
systems. The Reynolds numbetJ1{/v), which is the ratio fluid, where the resistance is due to viscous stresses exerted

of inertial and viscous effects, is usually small. For examplePY fluid flow. Consequently, the equations for the rate of
in water, the kinematic viscosity~10 %m? s™%, and the change of curvature have different forms in these cases.

velocity U can be estimated as the thermal fluctuation veloc- If we stipulate that the only length scale affecting the
ity (T/(4m/3pL3), which is O(107*¥L¥)m s, at room dynamics of the interface at a pointis ~ at that point, there

temperature, andl is a typical length measured in meters. is only one possible form for the rate of change of the cur-
Here, the density has been estimated as*i@ m ™3, andT ~ Vature

is the product of the Boltzmann constant and the tempera- dK 2 VK2
ture. With this estimate, the ratio of inertial and viscous ——_—— _ 1Y ,
forces isO(107%/LY?), which is small for lengths greater dt M

fchan a_nanometer_. Consequently, the mation of_the mterfac\?/hereal is a positive constant because the curvature of the
is dominated by viscous effects, and the only fluid propertie

that affect the rate of change of curvature are the S’urfajnten‘ace decreases with time. The rate of change of area is
. ! change '"Mact lated to the tangential motion of the interface as follows:
tensiony and the fluid viscosityw. For example, the fluid

velocity at any poink due to the forces acting at other points 9AK 1)

6

in the fluid is TzA(K,t)Vt~vt, (7)
Ui(X)=J dx Jj; (x—X')F{(x"), (4 ~ WhereVyis the two dimensional gradient operator along the
interface, andv; is the velocity along the interface. If the

only length scale that determines the interface dynamics at a

whereJ;;(x—x') is the Oseen tensor given position isK "1, then the above equation shows that

L lrr s there is only one possible form for the rate of change of area,
Y= | T
WO g s ) O 1A a ®
A gt - M ,

wherer=x—x". In the above expression, the fluid velocity at

any point depends only on the viscosjiyand the forcd=. If ~ Wherea, is a positive constant because the area decreases
the force at any point depends only on the local curvagyre With time.

then the only material parameters affecting the rate of change Inserting the “constitutive” Egs.(6) and (8) into the

of curvature are the surface tensignand the viscosityw. ~ conservation Eq(3), the following equation for the area dis-
This is different from the dynamics of the interface in the tribution is obtained:

conserved order parameter case in a solid system, since the )
coarsening can occur due to the flow and deformation of the d_A: a; 7K d_A_ 7K
fluid in the two phases, which is influenced by the viscosity ~ dt w 4Ky
of the fluid. It should also be noted that the Stokes equation
for a low Reynolds number flow, which are used to obtain
the Oseen tensor, conserve fluid density in the two phas
separately. Since we are assuming that the interface moti . S . .
is due to the fluid flow and deformation rather than the dif->" t"f“n a S|m|!ar|ty sollut|0n. for the conservation @). The
fusion across the interface, these equations are consisteﬂ{mlamy yanable 1S defined a37=(alth/M),_ and .the .
with the conservation requirements for the concentratiorFONservation equation expressed in terms of this variable is

field if concentration equation is also conservative. The con-  ga( ) dA(7)

centration equation does not appear directly in this section, =14y —aA(7n), (10
because of the assumption that the resistance to interface

motion is due to viscous flow alone. However, the correctionvherea=(a,/a;). The solution of the above equation is

©)

?’he above equation has to be solved subject to an appropri-
e initial condition at=_0. If the initial condition is homo-
eneous, i.e A is independent oK att=0, it is possible to

dn
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A=Ay(1—7)? for =<1 constituents. For a system where the order paranietar
, a centration fieldd is not conserved, Ohta, Jasnow, and
=Ao(n—1)% for »=1, (1) Kawasaki assumed that the velocity of the interface is pro-

where the constanté, and A} are determined from the portional to the curvature=K, and obtained an equation of
boundary conditions. Note that the constamtg and A]  the form

could be different, because the solution contains a branch au(x.t)

point in the complex plane ay=1. The requirement that !
A—0 for p—o implies thatAj= 0, while the constam is
the value of the distribution function a&=0 (»=0). This
gives the solution for the area distribution function

=DV?2u(x,t), (16)

wherez=u(x,t) represents the equation of the interface. In
this case, the material properties influencing the motion of

A=Ay(1—7n)? for y=<1 the interface is the diffusion coefficief® (with units of
lengttf/time). If the motion of a section of the interface with
=0 for #=1. (120 curvatureK is a function of the curvaturé only, then the

It is useful to note the following two special cases. In therates of change of curvature and ateaalogous to 6 and)8
limit a— 0, which corresponds to the case where there is n@'€®
change in area due to tangential motion at the interface, the
area distribution function is a constant at all times. In the —=—a1DK3, (17)
limit a>1, which corresponds to the case where the coars-
ening occurs due to a reduction in area without any change in A
curvature, the distribution function is of the form — —=—a,DK2 (18
A=A, exp(—an). (13
o Inserting these into the conservation E8), and defining the
The moments of the curvature distribution can now besimilarity variablen=a;DK?2t, the following equation is ob-

determined quite easily from the area distribution functionizined for the probability distribution functiof(7):

(12). The total interfacial area per unit volume at any time

is given by dA(7n) _2 dA(7)
dgp K dzy

where a=(a,/a;) as before. This equation can be easily

solved for a homogeneous initial conditid= A, att=0 to

—aA(7), (19
Aredt) = f dKA(K,t)

Mmoot obtain
=— f dnA(7) (14
yaptJo A(5)=Ag(1—27)¥2 for p<(1/2)
A =0 for »=(1/2. (20
tya;(a+1) The area per unit volume and the mean curvature are easily
The average curvature at a tirhés obtained_ from the above expression. The total area per unit
. volume is
K)= J dK K A(K,t)
(K) Area(t) Areat)= | dKA(K,1)
(15
= L. 1 fllz 1o
tya;(a+2 =——| dyyp 7A
yai(a+2) 20an 2o 477 (7)
The above equations indicate that the total area and the av-
erage curvature of the interface decrease proportionil to _ 1 \/E I'(1+(a/2) (21)
in the limit t=>1. The prediction regarding the time depen- 2(Da,t)¥2 vV 2T[(3/2)+(al2)]’

dence of the curvature of the surface is identical to that of . .

Siggid using capillary instability arguments. The presentWh.ereF(_X) is the gamma function. The average curvature at

analysis is more quantitative than that of Siggia, because R timet is

also predicts the probability distribution of the curvature of 1

the interface. However, there is a phenomenological constant (K)y= MJ dK K A(K,t)

a in the theory which has to be determined from the detailed

microscopic dynamics of the interface. This is difficult to 1 1 \ﬁ [(1+(al2))

obtain analy_ucally, and hag to bel obtalneq using simulations = (Dayt)2 a+2{ EI’[(3/2)+(a/2)]

or by matching the predictions with experimental results. !
It is useful to make a brief digression to obtain qualita- The present analysis predicts that the area and the mean cur-

tively similar results for the growth of a random interface in vature decrease proportional to*2 in the order—disorder

the order—disorder transition in solids. In this case, the motransition in solids. The scaling law for the mean curvature is

tion of the interface occurs due to diffusive transport of thein agreement with the previous result of Ohta, Jasnow, and

-1
] . (22
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Kawasaki for a random interface in the order—disorder tran-librium concentration profile. The equilibrium concentration
sition in solids, and the scaling is independent of the spatigprofile is easily evaluated using a scaled concentration field
dimension. y=(clcy),

For a system with conserved order param&tiere mo-
tion of different sections of the interface are not independent, e=tanh(z/h), (26)
and the velocity is proportional to the gradient of the curvayhere h=[c,(y/x)*?] ! is the thickness of the interface,
ture v=LVK. In this case, the dynamics of the interface anq, is the concentration field at equilibrium. The equilib-

depends only on the constart which has units of rjym surface tension, which is the free energy per unit area of
lengtt?/time, and it can easily be verified using methodsine equilibrium interface, is

similar to those used above that the curvature decreases pro-
portional tot~ Y. This is in agreement with the Lifshitz— Ye= XCoh. (27)

Slyozov scaling law for the coarsening of droplets in a solid . S I .
Y 9 9 P In an interface which is not at equilibrium, the evolution

alloy. T e }
y of the concentration field is given by the diffusion equation
o Do? oF d (28)
—_— —_— C,
Ill. EFFECT OF FINITE INTERFACE THICKNESS ot zZ 5c V22

The effect of the interaction between the motion of thewhere D is the diffusion coefficient and-v,d,c is the
interface and the concentration variation within the interfacechange in the concentration due to convective transport in
is analyzed in the present section. In the previous section, thez direction which is discussed a little later. Equati@8),
was assumed that the interface is of infinitesimal thickness£xpressed in terms of the scaled concentration(c/co)
and the interfacial energy per unit area of the interface is @nd scaled normal coordinat&(z/h), reduces to
constant. However, the motion of the interface causes a oy 1
change in the area du_e to tangentlal motion glong the mtgr- = D*a; - Z[?i* b= (1= ) | — (v, /N) I i,
face, and this tangential motion could result in a change in
the interfacial energy due to a variation in the interfacial (29
concentration profile. This variation is studied using a perwhere D*=(4XDC§/h2)- It is convenient to define a
turbation analysis when the interfacial concentration profileconcentration field which represents the deviation of the
is close to the concentration profile at equilibrium. local concentration from its equilibrium value,

The equilibrium concentration profile of the interface be- ¢(z,t) = (z,t) — (). The diffusion equation for the field
tween two fluids is obtained by minimizing the free energy ¢(z,t) is

per unit area along the interfal®which is the surface ten-

sion of the interface, is 9¢ 1
0 =D | = 7T b= bt 30l + 3o+ 6
1
F[C]=f dz] Af(c)+ §K|d2C|2 , (23 —(0,/N) I (Yot b). (30)
wherec is the concentration field, is the coordinate perpen-  1he velocityv, is determined from the mass conserva-
dicular to the interface, and,= (d/dz). Af(c) is the differ-  tion condition at the interface
ence between the free energy at a concentrati@amnd the 90,4 V=0, (31)

free energy of the two coexisting phases, and the second
term on the right is the square gradient term. The concentrawherev, is the tangential velocity at the interface, aVidis
tion profile at equilibrium is easily obtained by minimizing the tangential gradient operator. The surface compression
the free energy with respect to variationscirandd,c Vi.V; is given by Eg.(8) with the assumption that the only
length scale affecting the dynamics of the systenkKis'.
Af(c) (24) The length scale for the variation of the tangential velocity
due to the interface motion i€ 1, and the variation of the
The above equation for the interfacial concentration profileta.ngentlal v elocity over Iength; comparable to the interface
. . . _thickness ishKv;. For a thin interface, {K<1), and the
has to be solved numerically in general, but an analytica : : . )

. . " . angential velocity can be considered to be independent of
solution exists for the near critical regime where the free : : . ,
energy has the symmetric form the perpendicular d_|stance from the mte_rface_over dlstgnces

comparable to the interface thickndssWith this approxi-
Af(c):X(Cg_CZ)Z, (25) mation, the normal velocity at the interface is

1/2

d,c=

where = ¢, are the concentrations of the coexisting phases. a,yKz
In the present analysis, attention is restricted to the near criti- Uz~ —ZVev= '
cal quench, since an analytical solution for the concentration H
profile is available for this regime. However, the presentThe above expression indicates that the normal velocity di-
analysis can easily be modified to include other situationserges for|z|>1, due to the invalidity of the assumption of
where a numerical solution has to be obtained for the equieonstant tangential velocity fde| ~K 1. However, this di-

(32
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sion (35 correctly reproduces the behaviogp(z*)
«z* exp(—2zF). The coefficientd , by inserting the above
expansion into conservation e@0), and evaluating the co-
efficientsl,,. The functiong(z*), defined as

uD* ¢(z")

36
az’yKhz ( )

g(z")=

is shown as a function a* in Fig. 1. From this figure, it is
seen that there is very little variation i#(z*) when the
number of functiom; is changed from 7 to 10, and conse-
quentlyn; is set equal to 10 in the subsequent calculations.

The change in the interfacial energy per unit area due to
a variation in the interfacial concentration can now be evalu-
ated using a linear approximation,

FIG. 1. Variation of the dimensionless concentratg{z*) [Eq. (36)] as a
function of the dimensionless distance perpendicular to the intezface,
solution obtained by including ten terms in the Laguerre polynomial expan- ~ AF = C%J dz{4xca (2% )3~ e(Z) 1 (Z*)
sion; A, solution obtained by including seven terms in the Laguerre poly-

nomial expansion.

+ (k/h?)(d s he) (A )} @7
4

vergence does not cause difficulties in the analysis because :azpcoX 7Kh.

the gradient of the concentratighc decays faster than * uD*

in this limit, and the product,,C is finite. The constanp was evaluated numerically using the solution

Th?, conser.va'uc_)n Eq30) IS _solved using the "quasi for ¢(z*) (Fig. 1), and the value of the constant was found
steady” approximation, where it is assumed that the CONCEIY, he 0.0462. The low numerical value of the coefficient is

tration field in the interface responds instantaneously to th%ue to the opposing contributions to the interfacial energy

constraints imposed by the interface motion. The time scakaue to the terms proportional thf and the square gradient

for the variation of the concentration field in the interface 'Sterm. The effect of the correction to the concentration due to

(1/D*) and the time scale for the motion of the interface iSthe square gradient term tends to increase the energy of the
(u/yK), and the quasi steady approximation is valid in the- ¢ aua'© 9 9y

- Y o . interface, while its effect on the term proportional Adf
limit (h.K)(.y/'“D h)<1. _In a.dd'“‘?”'.we make the linear tends to decrease the energy of the interface, and conse-
approximation¢<<#,, which is valid in the late stages of

. . K . . _quently the sum of these two contributions has a low numeri-
interfacial growth..W|th the_se two assumptions, the equaqu:al value. The ratio of the change in the interfacial energy
for the concentration field is

due to nonequilibrium effects and the equilibrium surface
1, tension is

az’yKZ
D* 33| — 70— d+3¢d | =

*
———pie. (33
o AF 0.0462,yK
This equation can be solved to obtain the concentration field vy, ubD*
¢. An analytical solution cannot be obtained, but it is pos-
sible to obtain a solution using an expansion in an approprify. CONCLUSIONS
ate orthogonal function space. In the limit-1, the solution
has the form The area distribution function for a random interface was
determined in Sec. Il using certain simplifications, and it is
_ ayyKzZ* exp(—2z%) a4  Usefulatthe outset to recall these simplifications and discuss
B 2uD* ' (34) the scope for future improvements. A two dimensional sur-
face in three dimensional space is completely characterized if
e principal curvatureK ; andK,, which are the extrema of
the curvatures along orthogonal directions, are specified at

(39

The above behavior is best incorporated using a series
Laguerre polynomials as the basis functions

a,yKhz* every point, or by the magnitud&=(K3+K3)¥? and
$(z*)= * > 1n[L(n,2z%)— 1]exp(—22*), tan() = (K,/K,). In this case, it is appropriate to define the
wD™ 0=z (35 area distribution  function A(K,6,t) such that

A(K, 6,t)dKdédx is the area with magnitude of curvature in
where L(n,2z*) are Laguerre polynomials. The above ex-the intervaldK aboutK, polar angle in the interval § about
pansion is appropriate because it reproduces the correct bé-in the volumex. In Sec. Il, the area distribution was inte-
havior in the limitsz* =0 andz* —. The Laguerre poly- grated over thed coordinate, and a conservation equation
nomials are defined so that.(n,x)=1 at x=0. was written for this distribution function which is only a
Consequently, the basis functions used in expan@bhare  function of the magnitude of the curvatufe Consequently,

all zero atz* =0, in agreement with the requirements of only the magnitude of the curvature can be calculated using
symmetry for the present case. In the limft—, expan- the present analysis, and the analysis does not distinguish
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between interfaces with the sare but different ratios of sity (9). The analysis was also extended to a the order—
principal curvatures. For example, there is no distinction bedisorder transition in solids where the dynamics of the inter-
tween interfaces in the form of two dimensional waves andace is dependent on the diffusion coefficient in the solid and
in the form of three dimensional waves if the magnitude ofthe surface tension in the interface, and the analysis predicted
the curvature are the same. A more complete description dhat the area of the interface decreases proportiontai ¥4,
the interface would require the inclusion of both the principaland the average curvature also decreases proportional to
curvatures in the analysis. This limitation does not exist for @~ 2. The latter result is in agreement with the theory of
one dimensional interface in two dimensional space, and th®hta, Jasnow, and Kawasakand with previous simulation
results of the present analysis should be directly applicable inesults®
this case. In Sec. lll, the effect of interface motion on the concen-

Expressions for the rate of change of curvature and thération profile at the interface was analyzed. The Cahn-
rate of change of surface area due to tangential compressidtilliard square gradient theory was used to describe the con-
were derived using the assumption that the only materiatentration dependence of the free energy. The concentration
properties affecting the interface motion are the surface tenvariation in the interface was described using a diffusion
sion vy and the viscosity of the fluige, and the only length equation which contained a convective term which incorpo-
scale affecting the dynamics of the interface is the inverse ofated the convective transport due to the tangential compres-
the magnitude of the curvature at that point. It should besion of the interface. This equation was solved for the func-
noted that the rate of change of curvature and area of theon ¢(z), which is the difference between the actual
interface are averages of the corresponding microscopic vatoncentration profile and the concentration profile at equilib-
ues over the polar coordinate=arctank,/K;). In a more rium. Terms linear in the concentration deviatignwere
complete description, where the dependence on the ahgleretained, and the diffusion equation was solved using the
is included, the normal velocity could be a function of both “quasi steady” approximation where there is a balance be-
the curvaturék ~! and the angl®, and it would be necessary tween the diffusive transport and the concentration source
to carry out a microscopic analysis to obtain the exact valuedue to the compression of the interface. The rate of convec-
of the velocity. This would require the solution of the Stokestive transport due to the compression of the interface is pro-
equations for the fluid subject to a jump in the normal stresportional to the curvatur&, and consequently the deviation
condition across the interface; this type of analysis is likelyof the concentration profile from the equilibrium concentra-
to be complicated by the long range nature of the hydrodytion profile is also proportional t&. The correction to the
namic interactions in the viscous limit. interfacial energy due to the deviation in the concentragon

The expressions for the rate of change of curvature an@as calculated. It was found that the correction to the inter-
the rate of change of surface area due to compression wefacial energy is positive and proportional ko, indicating
used to obtain an equation for the time rate of change of théhat regions with higher curvature have a larger normal ve-
area distribution function. A similarity solution was obtained locity and coarsen faster than regions with lower curvature.
for the conservation equation for the case where the area The analysis of Sec. Ill provides a first step towards
distribution function is independent of curvature at the starincorporating the interaction between the large scale inter-
of the coarsening process. It would be necessary to obtainface motion and the small scale concentration variation in the
numerical solution for the general case where the area distrinterface. An analytical solution for the correction to the in-
bution function is dependent on the curvature at the start oferfacial energy due to concentration variation was possible
the coarsening process. The area distribution functions corbecause the linearization approximation was made, where
tains a parametea, which is the ratio of the rate of change only terms linear¢(z), the difference between the concen-
of the interfacial area due to tangential compression of thération and the equilibrium concentration, were retained.
interface and the rate of change of the curvature due to notHowever, numerical solutions can easily be obtained for the
mal motion of the interface. This phenomenological constantull nonlinear equation, and this would help in extending the
has to be determined from a microscopic analysis of the moanalysis to earlier times in the spinodal decomposition pro-
tion of the interface using simulation techniques or by com-cess where the effect of the interaction would be significant.
parison of the theoretical predictions with experiments.

The analysis predicts that the total interfacial area de—
creases proportional to~! in the late stages of spinodal 1J. D. Gunton and G. Drodntroduction to the Theory of Metastable and

L. Unstable StatesLecture Notes in Physics No. 18%pringer, Berlin,

decomposition, and the average curvature also decreases PrOrggy.
portional tot 1. These two results are the result of the same2y. kumaran, J. Chem. Physsubmitted.
physics, since there is only one length scale in the problem?’n Tar\lska J. %hemMP?(ﬁog 103a9(19:6 i
The latter result is in agreement with the theoretical results of, ghta o9 Jaansnfw 1. Ko ;;wasgiu Pi\;/stgvoféngé)zg (1982,
S'gg'd and Furukaw&which were derived using qualitative 6A J. Bray, Domain Growth and Coarseningn Phase Transition and
arguments, and with previous experimental restfttsut the Relaxation in Systems with Competing Energy Scaldiied by T. Riste
former does not appear to have been derived before. In ad;and D. Sheringtorikluwer Academic, the Netherlands, 1993
dition, the present analysis also provides expressions for thgﬁ Euz'fgﬁa T&’j 5;;95075’3(51(9189;9
area density12) and the mean curvatuf@3) as a function 93 s Langer and R. F. Sekerka, Acta MetaB, 1225(1975.
of the constant appearing in the equation for the area den-°J. w. Cahn and J. E. Hilliard, J. Chem. Phg8, 258 (1958.
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