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Coarsening of random interfaces in the spinodal decomposition
of a binary fluid
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The growth of random interfaces during the late stage spinodal decomposition for a near symmetric
quench of a binary fluid is analyzed. Inertial effects are neglected, and the motion of the interface
is determined by a balance between the surface tension, which tends to reduce the curvature, and the
viscous stresses in the fluid. The interface is described by an ‘‘area distribution function’’A(K,t),
defined so thatA(K,t)dKdx is the area of the interface with curvature in the intervaldK aboutK
in the volumedx at timet. Here,K5(K1

21K2
2)1/2 is the magnitude of the curvature, andK1 andK2

are the principal curvatures. There is a change in the area distribution function due to a change in
the curvature, and due to the tangential compression of the interface. Phenomenological relations for
the change in curvature and surface area are obtained using the assumption that the only length scale
affecting the dynamics of the interface at a point is the radius of curvature at that point. These
relations are inserted in the conservation equation for the interface, and a similarity solution is
obtained for the area distribution function. This solution indicates that the area of the interface
decreases proportional tot21 in the late stages of coarsening, and the mean curvature also decreases
proportional tot21. The effect of the motion of the interface on the interfacial concentration profile
and interfacial energy is analyzed using a perturbation analysis. The diffusion equation for the
concentration in the interfacial region contains an additional source term due to the convective
transport of material caused by the motion of the interface, and this causes a correction to the
equilibrium concentration profile of the interface. The excess interfacial energy due to the
nonequilibrium motion of the interface is calculated using the Cahn–Hilliard square gradient free
energy for a near-critical quench. It is found that the variation in the concentration causes an
increase in the interfacial energy which is proportional to the curvatureK of the interface. ©1998
American Institute of Physics.@S0021-9606~98!51906-X#
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I. INTRODUCTION

The rate of coarsening in the late stage spinodal dec
position of binary fluids depends on the relative concen
tion of the two species. For a near symmetric quench,
system consists of a random interface, and the coarse
occurs due to a reduction in curvature caused by the sur
tension of the interface. A suspension of droplets in a c
tinuous matrix is observed for an off-symmetric quench, a
the coarsening in this case occurs due to the convective
diffusive transport of the minority phase from the matrix in
the droplet. The classical Lifshitz–Slyozov1 theory predicts
that the average radius of the droplets grows proportiona
t (1/3) in the late stages of spinodal decomposition, and
scaling law has been observed in the late stage decom
tion in solid alloys. In fluids, the convective transport
material from the fluid to the droplets due to the Browni
motion of the droplets could influence the rate of growth
is found2 that the convective effects have only a minor effe
on the scaling exponent, and the growth law is given
Rm}t (4/13) or Rm}t (6/19) depending on the boundary cond
tion for the fluid velocity field at the surface of the drople
However, the rate of growth~which is the prefactor in the
scaling law! could be considerably higher in fluids. This is
agreement with experimental results3,4 which observe a scal
ing close to thet1/3 predicted by the Lifshitz–Slyozov theory
3030021-9606/98/108(7)/3038/7/$15.00
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The rate of coarsening of random interfaces for nea
symmetric quenches is less well understood. The Ohta,
now, Kawasaki5 theory for the rate of growth of a random
interface in the order–disorder transition in solids was ba
on a constitutive equation for the normal velocity at a po
as a function of the radius of curvature at that point. T
theory predicted that the characteristic length for the que
of random interfaces has a scaling lawl}t (1/2), and the re-
sults of this theory was found to be in agreement with
Monte Carlo simulations of Humayun and Bray.6 For a sys-
tem with conserved order parameter, the equivalent sca
relation l}t (1/3) was obtained by Bray.6

The theories for the coarsening of interfaces in fluids
more approximate. Siggia7 used a simple qualitative argu
ment, regarding the time required for the breakup of an
terface due to a capillary instability, to obtain a scaling la
l}t for the characteristic length of the interface. Furukaw8

obtained a similar scaling relation based on the balance
tween surface tension and viscous dissipation. This sca
law has also been observed in experiments of near symm
quenches.3,4

The rate of coarsening of an interface in a near symm
ric quench is the subject of the present analysis. This anal
augments the previous work on the subject in two ways. T
first is to provide a more quantitative description of t
8 © 1998 American Institute of Physics
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coarsening of the interface. An area distribution functi
A(K,t) is defined such thatA(K,t)dxdK is the area of the
interface with the magnitude of the curvature in the inter
dK aboutK in the volumedx at time t, and the area distri-
bution function is independent of the positionx because the
system is considered homogeneous. There is a change i
area distribution function due to a change in the curvatureK,
as well as due to the contraction of the area due to the
gential motion of the interface. Constitutive equations for
change in curvature and change in area are obtained bas
dimensional analysis and the assumption that the only len
scale affecting the dynamics of the interface at a point is
radius of curvature of the interfaceK21 at that point. These
constitutive relations are obtained in the limit where the
gime where hydrodynamic effects are dominant, and the
fect of diffusion on the interface motion is neglected. In a
dition, it is possible to obtain simple forms of the constituti
relation only for the case of a conserved order param
fluid system, and the reasons for this are discussed in
next section. These are incorporated into a conserva
equation for the change in the area distribution function
similarity solution is obtained for this conservation equati
for the case where the area distribution function is indep
dent of curvature at the start of the coarsening process,
expressions for the evolution of the mean curvature and
density ~interface area per unit volume! are derived. The
mean curvature decreases proportional tot21, in agreement
with previous results, and the area density also decre
proportional tot21 in the late stages. A similar analysis
carried out for solid the order–disorder transition in solid
and it is found that the curvature decreases proportiona
t21/2, in agreement with the predictions of Ohta, Jasnow, a
Kawasaki5 and simulation results.6

The previous studies have assumed that the interfac
of infinitesimal thickness and has a constant surface tens
This approximation is applicable in the late stages of coa
ening, when the interface concentration profile is close to
equilibrium concentration profile. The motion of the inte
face causes a change in the curvature of the interface, a
contraction due to the tangential motion along the interfa
This contraction could alter the concentration profile at
interface, which in turn changes the interfacial energy. T
first correction to the interfacial energy due to the interfa
motion, which is the second objective of the present analy
is calculated in Sec. III. The method of analysis is very sim
lar to that used by Langer and Sekerka9 for the mobility of an
interface in the spinodal decomposition in a solid. Howev
convective transport is also included in the present analy
since the motion of an interface in a fluid is considered.
addition, the primary interest in the present analysis is
variation of the interfacial energy due to dynamical effec
while the focus of the analysis of Langer and Sekerka9 was
the change in the mobility of the interface due to noneq
librium effects. The Cahn–Hilliard square gradient appro
mation is used for the dependence of the free energy on
concentration, and a diffusion equation is written for t
variation of the concentration. This diffusion equation co
tains an additional source term, which is the change in
interface concentration due to interface motion. In the ‘‘qu
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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steady’’ approximation, there is a balance between the div
gence of the diffusive flux and the rate of change of conc
tration due to interface motion. This balance equation
solved to obtain the correction to the interfacial concent
tion profile due to interface motion, and the correction to t
interfacial energy~excess free energy per unit area of t
interface! is determined. It is found that the correction to th
interfacial energy is positive and proportional to the curv
ture K, indicating that sections of the interface with high
curvature have a higher interfacial energy and coarsen fa
than sections with a lower curvature.

II. COARSENING OF A RANDOM INTERFACE

A nearly symmetric quench of a binary liquid in the la
stages of spinodal decomposition is considered, where
two phases form a bicontinuous pattern separated by s
interfaces of random orientation. Due to the bicontinuo
nature of the system, the pressure in the two phases
equal. In addition, the dilute limit is considered where t
interface is ‘‘noninteracting,’’ so that the motion of one se
tion of the interface does not affect another section. The
of coarsening is determined by a balance between the sur
tension, which tends to reduce the curvature of the surfa
and the viscous stresses, which offer frictional resistanc
the motion of the interface. The shape of the interface
determined by the ‘‘principal curvatures’’K1 andK2, which
are the extrema of the curvatures at any point on the surf
or by the magnitudeK5(K1

21K2
2)1/2 and the angle

tan(u)5(K2 /K1). For the present purposes, an ‘‘area dist
bution function’’ for the interface curvature,A(K,u,t), is
defined such thatA(K,u,t)dKdudx is the area with curva-
ture in the intervaldK aboutK and du aboutu in the dif-
ferential volumedx about the positionx at timet. There are
two reasons for a change in the area distribution function
change in the area due to the tangential motion of the m
rial points along the surface, and a change in the curvatur
the surface. The difference equation relating the area di
bution function at timest and t1Dt is

A~K,u,t1Dt !5A@K2~Dt !dtK,u2~Dt !dtu,t#

1DcA@K2~Dt !dtK,u2~Dt !dtu,t#,

~1!

wheredtK and dtu are the rates of change of the positio
(K,u) in ‘‘curvature space,’’ andDcA is the variation in the
area due to tangential compression along the interface.
above conservation equation is a ‘‘Lagrangian’’ equati
which incorporates the fact that the area occupying the p
tion (K,u) at time t1Dt was at the position
@K2(Dt)dtK,u2(Dt)dtu# at the time t. The differential
form of the conservation equation in the limitDt→0 is

dA

dt
52

dK

dt

]A

]K
2

du

dt

]A

]u
1

]cA

]t
, ~2!

where (]cA/]t) is the rate of change of surface area due
the tangential motion along the interface. The above con
vation equation is further simplified by averaging over theu
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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coordinate, since we are only interested in the rate of cha
of the curvatureK, to give the following equation for the
area distributionA(K,t):

dA~K,t !

dt
52

dK

dt

]A~K,t !

]K
1

]cA~K,t !

]t
. ~3!

To solve the above equation, it is necessary to obtain
rate of change of curvature (dK/dt) and the rate of chang
of area (]cA(K,t)/]t). Though the exact evaluation of thes
quantities requires a microscopic model for the interface
namics, theK dependence of these can be obtained fr
dimensional arguments. The motion of the interface is u
ally dominated by viscous effects for typical binary flu
systems. The Reynolds number, (UL/n), which is the ratio
of inertial and viscous effects, is usually small. For examp
in water, the kinematic viscosityn;1026m2 s21, and the
velocity U can be estimated as the thermal fluctuation vel
ity (T/(4p/3rL3), which is O(10212/L3/2)m s21, at room
temperature, andL is a typical length measured in meter
Here, the densityr has been estimated as 103 kg m23, andT
is the product of the Boltzmann constant and the temp
ture. With this estimate, the ratio of inertial and visco
forces isO(1026/L1/2), which is small for lengths greate
than a nanometer. Consequently, the motion of the inter
is dominated by viscous effects, and the only fluid proper
that affect the rate of change of curvature are the surf
tensiong and the fluid viscositym. For example, the fluid
velocity at any pointx due to the forces acting at other poin
in the fluid is

ui~x!5E dx8Ji j ~x2x8!F j~x8!, ~4!

whereJi j (x2x8) is the Oseen tensor

Ji j ~x2x8!5
1

8pmS r i r j

r 3
1

d i j

r
D , ~5!

wherer5x2x8. In the above expression, the fluid velocity
any point depends only on the viscositym and the forceF. If
the force at any point depends only on the local curvatureg,
then the only material parameters affecting the rate of cha
of curvature are the surface tensiong and the viscositym.
This is different from the dynamics of the interface in t
conserved order parameter case in a solid system, sinc
coarsening can occur due to the flow and deformation of
fluid in the two phases, which is influenced by the viscos
of the fluid. It should also be noted that the Stokes equati
for a low Reynolds number flow, which are used to obta
the Oseen tensor, conserve fluid density in the two pha
separately. Since we are assuming that the interface mo
is due to the fluid flow and deformation rather than the d
fusion across the interface, these equations are consi
with the conservation requirements for the concentrat
field if concentration equation is also conservative. The c
centration equation does not appear directly in this sect
because of the assumption that the resistance to inter
motion is due to viscous flow alone. However, the correct
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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to the interface dynamics due to diffusion is considered
the next section, and the concentration equation used the
conservative.

In a solid the dynamics of the interface is different, a
the resistance to interface motion in a conserved order
rameter system has a very different form which is discus
a little later. In a solid alloy, the motion of the interfac
occurs due to the diffusion of the components across
interface, since the underlying crystal structure is frozen. I
conserved order–disorder transition in a solid, the motion
different sections of the interface are not independent du
the requirement of conservation of total magnetization, a
so the conservation equation has a different from given
Bray.6 This is very different from the motion in the case of
fluid, where the resistance is due to viscous stresses exe
by fluid flow. Consequently, the equations for the rate
change of curvature have different forms in these cases.

If we stipulate that the only length scale affecting t
dynamics of the interface at a point isK21 at that point, there
is only one possible form for the rate of change of the c
vature

dK

dt
52

a1gK2

m
, ~6!

wherea1 is a positive constant because the curvature of
interface decreases with time. The rate of change of are
related to the tangential motion of the interface as follow

]cA~K,t !

]t
5A~K,t !¹t•vt , ~7!

where¹t is the two dimensional gradient operator along t
interface, andvt is the velocity along the interface. If th
only length scale that determines the interface dynamics
given position isK21, then the above equation shows th
there is only one possible form for the rate of change of ar

1

A

]cA

]t
52

a2gK

m
, ~8!

wherea2 is a positive constant because the area decre
with time.

Inserting the ‘‘constitutive’’ Eqs.~6! and ~8! into the
conservation Eq.~3!, the following equation for the area dis
tribution is obtained:

dA

dt
5

a1gK2

m

dA

dK
2

a2gK

m
A. ~9!

The above equation has to be solved subject to an appro
ate initial condition att50. If the initial condition is homo-
geneous, i.e.,A is independent ofK at t50, it is possible to
obtain a similarity solution for the conservation Eq.~9!. The
similarity variableh is defined ash5(a1gKt/m), and the
conservation equation expressed in terms of this variable

dA~h!

dh
5h

dA~h!

dh
2aA~h!, ~10!

wherea5(a2 /a1). The solution of the above equation is
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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A5A0~12h!a for h<1

5A08~h21!a for h>1, ~11!

where the constantsA0 and A08 are determined from the
boundary conditions. Note that the constantsA0 and A08
could be different, because the solution contains a bra
point in the complex plane ath51. The requirement tha
A→0 for h→` implies thatA0850, while the constantA0 is
the value of the distribution function att50 (h50). This
gives the solution for the area distribution function

A5A0~12h!a for h<1

50 for h>1. ~12!

It is useful to note the following two special cases. In t
limit a→0, which corresponds to the case where there is
change in area due to tangential motion at the interface,
area distribution function is a constant at all times. In t
limit a@1, which corresponds to the case where the co
ening occurs due to a reduction in area without any chang
curvature, the distribution function is of the form

A5A0 exp~2ah!. ~13!

The moments of the curvature distribution can now
determined quite easily from the area distribution funct
~12!. The total interfacial area per unit volume at any timet
is given by

Area~ t !5E dKA~K,t !

5
m

ga1t
E

0

1

dhA~h! ~14!

5
A0m

tga1~a11!
.

The average curvature at a timet is

^K&5
1

Area~ t !E dK K A~K,t !
~15!

5
m

tga1~a12!
.

The above equations indicate that the total area and the
erage curvature of the interface decrease proportional tot21

in the limit t@1. The prediction regarding the time depe
dence of the curvature of the surface is identical to tha
Siggia7 using capillary instability arguments. The prese
analysis is more quantitative than that of Siggia, becaus
also predicts the probability distribution of the curvature
the interface. However, there is a phenomenological cons
a in the theory which has to be determined from the deta
microscopic dynamics of the interface. This is difficult
obtain analytically, and has to be obtained using simulati
or by matching the predictions with experimental results.

It is useful to make a brief digression to obtain quali
tively similar results for the growth of a random interface
the order–disorder transition in solids. In this case, the m
tion of the interface occurs due to diffusive transport of t
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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constituents. For a system where the order parameter~con-
centration field! is not conserved, Ohta, Jasnow, a
Kawasaki5 assumed that the velocity of the interface is pr
portional to the curvaturev}K, and obtained an equation o
the form

]u~x,t !

]t
5D¹2u~x,t !, ~16!

wherez5u(x,t) represents the equation of the interface.
this case, the material properties influencing the motion
the interface is the diffusion coefficientD ~with units of
length2/time). If the motion of a section of the interface wit
curvatureK is a function of the curvatureK only, then the
rates of change of curvature and area~analogous to 6 and 8!
are

dK

dt
52a1DK3, ~17!

1

A

]cA

]t
52a2DK2. ~18!

Inserting these into the conservation Eq.~3!, and defining the
similarity variableh5a1DK2t, the following equation is ob-
tained for the probability distribution functionA(h):

dA~h!

dh
522h

dA~h!

dh
2aA~h!, ~19!

where a5(a2 /a1) as before. This equation can be eas
solved for a homogeneous initial conditionA5A0 at t50 to
obtain

A~h!5A0~122h!a/2 for h<~1/2!

50 for h>~1/2!. ~20!

The area per unit volume and the mean curvature are ea
obtained from the above expression. The total area per
volume is

Area~ t !5E dKA~K,t !

5
1

2~Da1t !1/2E0

1/2

dhh21/2A~h!

5
1

2~Da1t !1/2
Ap

2

G~11~a/2!!

G@~3/2!1~a/2!#
, ~21!

whereG(x) is the gamma function. The average curvature
a time t is

^K&5
1

Area~ t !E dK K A~K,t !

5
1

~Da1t !1/2

1

a12HAp

2

G~11~a/2!!

G@~3/2!1~a/2!#J
21

. ~22!

The present analysis predicts that the area and the mean
vature decrease proportional tot21/2 in the order–disorder
transition in solids. The scaling law for the mean curvature
in agreement with the previous result of Ohta, Jasnow,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



n
ti

n
a

ce

ds
p

lid

he
c

n,
s

is
s
te

ia
er
fil

e
gy
-

-

o
tr
g

fil
ica
e

e
ri

tio
n

on
qu

n
eld

,
-

a of

n
n

t in

the
,

a-

sion
y

ity

ce

t of
ces

di-
f

3042 J. Chem. Phys., Vol. 108, No. 7, 15 February 1998 V. Kumaran
Kawasaki5 for a random interface in the order–disorder tra
sition in solids, and the scaling is independent of the spa
dimension.

For a system with conserved order parameter,6 the mo-
tion of different sections of the interface are not independe
and the velocity is proportional to the gradient of the curv
ture v5L¹K. In this case, the dynamics of the interfa
depends only on the constantL which has units of
length3/time, and it can easily be verified using metho
similar to those used above that the curvature decreases
portional to t21/3. This is in agreement with the Lifshitz–
Slyozov scaling law for the coarsening of droplets in a so
alloy.

III. EFFECT OF FINITE INTERFACE THICKNESS

The effect of the interaction between the motion of t
interface and the concentration variation within the interfa
is analyzed in the present section. In the previous sectio
was assumed that the interface is of infinitesimal thickne
and the interfacial energy per unit area of the interface
constant. However, the motion of the interface cause
change in the area due to tangential motion along the in
face, and this tangential motion could result in a change
the interfacial energy due to a variation in the interfac
concentration profile. This variation is studied using a p
turbation analysis when the interfacial concentration pro
is close to the concentration profile at equilibrium.

The equilibrium concentration profile of the interface b
tween two fluids is obtained by minimizing the free ener
per unit area along the interface,10 which is the surface ten
sion of the interface, is

F@c#5E dzFD f ~c!1
1

2
kudzcu2G , ~23!

wherec is the concentration field,z is the coordinate perpen
dicular to the interface, anddz[(d/dz). D f (c) is the differ-
ence between the free energy at a concentrationc and the
free energy of the two coexisting phases, and the sec
term on the right is the square gradient term. The concen
tion profile at equilibrium is easily obtained by minimizin
the free energy with respect to variations inc anddzc

dzc5FD f ~c!

k G1/2

. ~24!

The above equation for the interfacial concentration pro
has to be solved numerically in general, but an analyt
solution exists for the near critical regime where the fr
energy has the symmetric form

D f ~c!5x~c0
22c2!2, ~25!

where6c0 are the concentrations of the coexisting phas
In the present analysis, attention is restricted to the near c
cal quench, since an analytical solution for the concentra
profile is available for this regime. However, the prese
analysis can easily be modified to include other situati
where a numerical solution has to be obtained for the e
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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librium concentration profile. The equilibrium concentratio
profile is easily evaluated using a scaled concentration fi
c5(c/c0),

ce5tanh~z/h!, ~26!

where h5@c0(x/k)1/2#21 is the thickness of the interface
andce is the concentration field at equilibrium. The equilib
rium surface tension, which is the free energy per unit are
the equilibrium interface, is

ge5xc0
4h. ~27!

In an interface which is not at equilibrium, the evolutio
of the concentration field is given by the diffusion equatio

]c

]t
5D]z

2 dF

dc
2vz]zc, ~28!

where D is the diffusion coefficient and2vz]zc is the
change in the concentration due to convective transpor
thez direction which is discussed a little later. Equation~28!,
expressed in terms of the scaled concentrationc5(c/c0)
and scaled normal coordinatez* (z/h), reduces to

]c

]t
5D* ]z*

2 F2
1

4
]z*

2 c2c~12c2!G2~vz /h!]z* c,

~29!

where D* 5(4xDc0
2/h2). It is convenient to define a

concentration field which represents the deviation of
local concentration from its equilibrium value
f(z,t)5c(z,t)2ce(z). The diffusion equation for the field
f(z,t) is

]f

]t
5D* ]z*

2 S 2
1

4
]z*

2 f2f13ce
2f13cef

21f3D
2~vz /h!]z* ~ce1f!. ~30!

The velocityvz is determined from the mass conserv
tion condition at the interface

]zvz1¹ t.vt50, ~31!

wherevt is the tangential velocity at the interface, and¹t is
the tangential gradient operator. The surface compres
¹t.vt is given by Eq.~8! with the assumption that the onl
length scale affecting the dynamics of the system isK21.
The length scale for the variation of the tangential veloc
due to the interface motion isK21, and the variation of the
tangential velocity over lengths comparable to the interfa
thickness ishKvt . For a thin interface, (hK!1), and the
tangential velocity can be considered to be independen
the perpendicular distance from the interface over distan
comparable to the interface thicknessh. With this approxi-
mation, the normal velocity at the interface is

vz52z¹t.vt5
a2gKz

m
. ~32!

The above expression indicates that the normal velocity
verges foruzu@1, due to the invalidity of the assumption o
constant tangential velocity foruzu;K21. However, this di-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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vergence does not cause difficulties in the analysis bec
the gradient of the concentration]zc decays faster thanz21

in this limit, and the productvz]zc is finite.
The conservation Eq.~30! is solved using the ‘‘quas

steady’’ approximation, where it is assumed that the conc
tration field in the interface responds instantaneously to
constraints imposed by the interface motion. The time sc
for the variation of the concentration field in the interface
(1/D* ) and the time scale for the motion of the interface
(m/gK), and the quasi steady approximation is valid in t
limit ( hK)(g/mD* h)!1. In addition, we make the linea
approximationf!ce , which is valid in the late stages o
interfacial growth. With these two assumptions, the equa
for the concentration field is

D* ]z
2S 2

1

4
]z*

2 f2f13ce
2f D5

a2gKz*

m
]z* ce . ~33!

This equation can be solved to obtain the concentration fi
f. An analytical solution cannot be obtained, but it is po
sible to obtain a solution using an expansion in an appro
ate orthogonal function space. In the limitz@1, the solution
has the form

f5
a2gKz* exp~22z* !

2mD*
. ~34!

The above behavior is best incorporated using a serie
Laguerre polynomials as the basis functions

f~z* !5
a2gKhz*

mD*
(
n52

nf

l n@L~n,2z* !21#exp~22z* !,

~35!

where L(n,2z* ) are Laguerre polynomials. The above e
pansion is appropriate because it reproduces the correc
havior in the limitsz* 50 andz*→`. The Laguerre poly-
nomials are defined so thatL(n,x)51 at x50.
Consequently, the basis functions used in expansion~35! are
all zero at z* 50, in agreement with the requirements
symmetry for the present case. In the limitz*→`, expan-

FIG. 1. Variation of the dimensionless concentrationg(z* ) @Eq. ~36!# as a
function of the dimensionless distance perpendicular to the interfacez* . s,
solution obtained by including ten terms in the Laguerre polynomial exp
sion; n, solution obtained by including seven terms in the Laguerre po
nomial expansion.
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sion ~35! correctly reproduces the behaviorf(z* )
}z* exp(22z* ). The coefficientsl n by inserting the above
expansion into conservation eq.~30!, and evaluating the co
efficientsl n . The functiong(z* ), defined as

g~z* !5
mD* f~z* !

a2gKh2
~36!

is shown as a function ofz* in Fig. 1. From this figure, it is
seen that there is very little variation inf(z* ) when the
number of functionnf is changed from 7 to 10, and cons
quentlynf is set equal to 10 in the subsequent calculatio

The change in the interfacial energy per unit area due
a variation in the interfacial concentration can now be eva
ated using a linear approximation,

DF5c0
2E dz$4xc0

2@ce~z* !32ce~z* !#f~z* !

1~k/h2!~dz* ce!~dz* f!%
~37!

5
a2pc0

4xgKh

mD*
.

The constantp was evaluated numerically using the solutio
for f(z* ) ~Fig. 1!, and the value of the constant was foun
to be 0.0462. The low numerical value of the coefficient
due to the opposing contributions to the interfacial ene
due to the terms proportional toD f and the square gradien
term. The effect of the correction to the concentration due
the square gradient term tends to increase the energy o
interface, while its effect on the term proportional toD f
tends to decrease the energy of the interface, and co
quently the sum of these two contributions has a low num
cal value. The ratio of the change in the interfacial ene
due to nonequilibrium effects and the equilibrium surfa
tension is

DF

ge

5
0.0462a2gK

mD*
. ~38!

IV. CONCLUSIONS

The area distribution function for a random interface w
determined in Sec. II using certain simplifications, and it
useful at the outset to recall these simplifications and disc
the scope for future improvements. A two dimensional s
face in three dimensional space is completely characterize
the principal curvaturesK1 andK2, which are the extrema o
the curvatures along orthogonal directions, are specifie
every point, or by the magnitudeK5(K1

21K2
2)1/2 and

tan(u)5(K2 /K1). In this case, it is appropriate to define th
area distribution function A(K,u,t) such that
A(K,u,t)dKdudx is the area with magnitude of curvature
the intervaldK aboutK, polar angle in the intervaldu about
u in the volumex. In Sec. II, the area distribution was inte
grated over theu coordinate, and a conservation equati
was written for this distribution function which is only
function of the magnitude of the curvatureK. Consequently,
only the magnitude of the curvature can be calculated us
the present analysis, and the analysis does not disting

-
-
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between interfaces with the sameK but different ratios of
principal curvatures. For example, there is no distinction
tween interfaces in the form of two dimensional waves a
in the form of three dimensional waves if the magnitude
the curvature are the same. A more complete descriptio
the interface would require the inclusion of both the princip
curvatures in the analysis. This limitation does not exist fo
one dimensional interface in two dimensional space, and
results of the present analysis should be directly applicabl
this case.

Expressions for the rate of change of curvature and
rate of change of surface area due to tangential compres
were derived using the assumption that the only mate
properties affecting the interface motion are the surface
sion g and the viscosity of the fluidm, and the only length
scale affecting the dynamics of the interface is the invers
the magnitude of the curvature at that point. It should
noted that the rate of change of curvature and area of
interface are averages of the corresponding microscopic
ues over the polar coordinateu5arctan(K2 /K1). In a more
complete description, where the dependence on the angu
is included, the normal velocity could be a function of bo
the curvatureK21 and the angleu, and it would be necessar
to carry out a microscopic analysis to obtain the exact val
of the velocity. This would require the solution of the Stok
equations for the fluid subject to a jump in the normal str
condition across the interface; this type of analysis is lik
to be complicated by the long range nature of the hydro
namic interactions in the viscous limit.

The expressions for the rate of change of curvature
the rate of change of surface area due to compression
used to obtain an equation for the time rate of change of
area distribution function. A similarity solution was obtaine
for the conservation equation for the case where the a
distribution function is independent of curvature at the s
of the coarsening process. It would be necessary to obta
numerical solution for the general case where the area di
bution function is dependent on the curvature at the star
the coarsening process. The area distribution functions c
tains a parametera, which is the ratio of the rate of chang
of the interfacial area due to tangential compression of
interface and the rate of change of the curvature due to
mal motion of the interface. This phenomenological const
has to be determined from a microscopic analysis of the
tion of the interface using simulation techniques or by co
parison of the theoretical predictions with experiments.

The analysis predicts that the total interfacial area
creases proportional tot21 in the late stages of spinoda
decomposition, and the average curvature also decreases
portional tot21. These two results are the result of the sa
physics, since there is only one length scale in the probl
The latter result is in agreement with the theoretical result
Siggia7 and Furukawa8 which were derived using qualitativ
arguments, and with previous experimental results,3,4 but the
former does not appear to have been derived before. In
dition, the present analysis also provides expressions for
area density~12! and the mean curvature~13! as a function
of the constanta appearing in the equation for the area de
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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sity ~9!. The analysis was also extended to a the ord
disorder transition in solids where the dynamics of the int
face is dependent on the diffusion coefficient in the solid a
the surface tension in the interface, and the analysis predi
that the area of the interface decreases proportional tot21/2,
and the average curvature also decreases proportiona
t21/2. The latter result is in agreement with the theory
Ohta, Jasnow, and Kawasaki,5 and with previous simulation
results.6

In Sec. III, the effect of interface motion on the conce
tration profile at the interface was analyzed. The Cah
Hilliard square gradient theory was used to describe the c
centration dependence of the free energy. The concentra
variation in the interface was described using a diffus
equation which contained a convective term which incorp
rated the convective transport due to the tangential comp
sion of the interface. This equation was solved for the fu
tion f(z), which is the difference between the actu
concentration profile and the concentration profile at equi
rium. Terms linear in the concentration deviationf were
retained, and the diffusion equation was solved using
‘‘quasi steady’’ approximation where there is a balance
tween the diffusive transport and the concentration sou
due to the compression of the interface. The rate of conv
tive transport due to the compression of the interface is p
portional to the curvatureK, and consequently the deviatio
of the concentration profile from the equilibrium concentr
tion profile is also proportional toK. The correction to the
interfacial energy due to the deviation in the concentrationf
was calculated. It was found that the correction to the int
facial energy is positive and proportional toK, indicating
that regions with higher curvature have a larger normal
locity and coarsen faster than regions with lower curvatu

The analysis of Sec. III provides a first step towar
incorporating the interaction between the large scale in
face motion and the small scale concentration variation in
interface. An analytical solution for the correction to the i
terfacial energy due to concentration variation was poss
because the linearization approximation was made, wh
only terms linearf(z), the difference between the conce
tration and the equilibrium concentration, were retain
However, numerical solutions can easily be obtained for
full nonlinear equation, and this would help in extending t
analysis to earlier times in the spinodal decomposition p
cess where the effect of the interaction would be significa
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