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Effect of convective transport on droplet spinodal decomposition in fluids

V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012 India

(Received 23 February 1998; accepted 30 April 1998

The effect of convective transport on the late stage growth of droplets in the presence of
sedimentation and shear flow is analyzed. The high Peclet number URitl})> 1 is considered,
where U is the characteristic velocityR is the radius of the droplet, anD is the diffusion
coefficient. The growth of the droplet depends on the boundary condition for the fluid velocity at the
droplet interface, and two types of boundary conditions are considered. For a rigid interface, which
corresponds to the interface between a solid and a fluid, the tangential velocity is zero and the
normal velocity is equal to the velocity of the surface. For a mobile interface, which corresponds to
an interface between two fluids, the tangential and normal velocities are continuous. These results
indicate that the scaling relations for the critical radius Rgét)=t(*? for a sedimenting droplet

with a rigid interfaceR.(t) = t(?® for a sedimenting droplet with a mobile interfagg(t) <t for

a droplet with a rigid interface in a simple shear flow, @&gt)<t(’? for a droplet with a mobile
interface in a simple shear flow. The rate of droplet growth is enhanced by a factdF8ffererigid
interfaces and P¥? for mobile interfaces. ©1998 American Institute of Physics.
[S0021-960628)51030-9

I. INTRODUCTION the systeml(t) depends on time aKt)xt* where « is
reported to be close to 0.3 if the volume fraction of the solute
It has recently been realizéd that the dynamics of is small(droplet coarseningand close to 1.0 when the vol-
spinodal decomposition and droplet coarsening in fluidsume fraction is largehydrodynamic coarsening Though
could be very different from that in solid alloys. The coars-the exponent for the droplet coarsening is close to that of the
ening process in solid alloys proceeds by diffusion of theLifshitz—Slyozov theory, it has been noticed that the rate of
molecules along a solid lattice, but in a fluid convectivecoarsening is larger than that predicted by the Lifshitz—
transport could also enhance the coarsening process. The dSlyozov theory.
namics of spinodal decomposition could be distinguished The motion of a droplet, either due to sedimentation or
into two types—the coarsening due to the motion of randomiue to an externally imposed shear, could cause an enhance-
interfaces forming a bicontinuous pattern in a symmetricment of the transport rates of the solute at the droplet inter-
quench;™® and the growth of droplets in an off-symmetric face. In particular, when the convective effects are strong
guench. The coarsening of droplets is considered to be due tompared to the diffusive effects, the concentration field
two possible mechanisms: around a droplet of radiuR decays to the matrix concentra-
(1) the diffusion mechanisf? which involves the growth tion within a distance small compar.ed to thg droplet radius.
of droplets with radius larger than a critical value and theThIS could lead to larger concentration gradients, ar_1d conse-
shrinking of droplets with radius smaller than this valuequemIy faster_transport of the solute from the m_atnx to the
due to diffusion of the solute through the matrix; droplet, resulting in faster gromh. The acceleration of drop-
. ; i let growth due to an externally imposed shear flow has been
(2) the coagulation mechanisfnyhere droplets undergoing ) 12 ) .
Brownian motion collide and coalesce to give a IargerObS(':'rved experimentally:™ In the.next section, scaling ar
guments are presented to determine the boundary layer thick-
droplet. 2.
ness around a droplet. Two types of boundary conditions for
The former mechanism is observed when the droplethe velocity at the surface of a droplet are considered. A
density is relatively low so that there are no collisions be-droplet with a “rigid” surface is similar to a rigid sphere
tween droplets, while the latter is observed when the dropletvhich has zero tangential velocity at the surface, and this
density is higher. In both cases, the mean radius of the dropoundary condition is appropriate for systems with surface
lets obeys a scaling law of the forR(t)«tY3. The scaling active agents which prevent compression of the surface. A
law is the same as that for the Lifshitz—Slyo2dwheory for  droplet with a “mobile” surface is similar to a liquid drop
alloys, but it has experimentally been observed that the rateith a finite velocity at the surface, and the velocity field is
of growth of the average radius could be much larger thametermined within and outside the droplet by matching the
that in an alloy. In the present analysis, the effect of dropletangential velocity and stress at the surface. The flux of the
motion on the diffusion mechanism is examined. minority phase at the surface in the presence of strong con-
There have been many experimental studies on theective effects is calculated, and the scaling law for the
growth of droplets in binary fluids. The experiments of change in the critical radius as a function of time is deter-
Wong and Knoblée? indicate that the characteristic length in mined. In addition, the size distribution of the droplets is also

0021-9606/98/109(6)/2437/5/$15.00 2437 © 1998 American Institute of Physics

Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2438 J. Chem. Phys., Vol. 109, No. 6, 8 August 1998 V. Kumaran

determined and the mean radius and the number of dropletomplex fluids such as polymer melts. The kinematic viscos-
per unit volume are calculated as a function of time. ity vis 10°® m?s™! for a simple fluid such as water, but
could be 102 m?s™! or higher for polymer solutions and
melts. Consequently, there exists a considerable range of pa-
Il. ANALYSIS rameter values, $&<Pe<10°, where the Reynolds number
The system consists of a binary fluid mixture in the late!S Small and the Peclet number is large. In this case, the fluid
stage of droplet growth in a matrix where the supersaturatioffoW around the droplet is viscous, but the convective effects
is small. The concentration of the solute in the droplet is2'® large compared to the molecular diffusion of the solute.

considered to be the equilibrium concentration of the droplef N€ Scaling of the droplet growth in this regime is analyzed

phase, while the matrix has a concentratipnat a large here: o 3
distance from the droplet. The velocity field depends on the mobility of the surface

It is useful to estimate the range of droplet sizes forof the droplet. Consider a droplet settling in a fluid with

which convective effects could be important. For dropletsvelocity U. If the interface is rigid, so that a no-slip bound-
sedimenting in a fluid, the sedimentation velocity is@ry condition is applicable at the interface, the velocity field
! <13

(2ApgR?/9u), whereAp is the difference in the densities of 'S

the droplet and matrix and is the shear viscosity. The ratio 3R 1R®

of convective and diffusive transport is given by the dimen-  u,=U cog 0)[5 T3 r—;;}

sionless “Peclet” number Pe(UR/D), where U is 2)
the characteristic droplet velocityR is the radius of the 1R3

droplet, andD is the diffugsion coefficient. Using typical uy,=—U sin(9) Z?+Zr_3 ,

values of Ap~10F kgm™3, u~103kgm sl and
D~10"° m?s %, the Peclet number is210"R?, where the  whereu, andu, are the radial and azimuthal components of
radiusR is measured in meters. This indicates that the Peclehe velocity field, the radius is the distance from the center
number is large for droplets larger than aboutudf settling  of the droplet and the azimuthal anglés the angle made by
under the effect of gravity. For a sheared suspension, thghe radius vector with the direction of the velocity of the
Peclet number scales &R?/D, wherel is the shear rate. droplet. If the interface of the drop is mobile, the velocity
For a typical shear rate of 1§ the Peclet number is large field is obtained by solving the Stokes equations inside and
for droplet sizes greater than about4@. In these cases, the outside the droplet, and using the continuity of tangential
Lifshitz—Slyozov theory for late stage growth would not be velocity and stress at the interface. In this case, the velocity
applicable, and it is necessary to determine the growth rate ifield depends on the droplet viscosity as well as the viscosity
the presence of convection and diffusion. of the fluid inside and outside the droplet

In accordance with the classical Lifshitz—Slyozov
theory, the chemical potential of the matrix at the surface of E (E_ R_j) " R_j}

2\r r rs|’

the droplet is considered to be the sum of the chemical po- ur=U cog6)

tential of the droplet material and a correction due to surface 3 3 )
tension. The concentration in the matrix at the surface of the _ : E B R_ _ 1 R_
o uy=—U sin(6) 3 3|
droplet materiaty is 4\r r 2r
B 20v whereX = (3u,+2)/(u,+1), andu, is the ratio of the vis-
CR=Ce| 1 TR/’ (1) cosities of the droplet fluid and the matrix fluid. For a droplet

in shear flow, it is convenient to express the velocity field in
indicial notation in terms of the position vectoiin the fluid.

| In the Lifshitz—S| th th rati If the strain rate is5;; at a large distance from the surface of
volume. n the Liishitz=sSlyozov theory, the concentration y, droplet, the velocity field in indicial notation for a rigid
field in the vicinity of the droplet is assumed to respondsurfaCe is

instantaneously to changes in the droplet radius, so that the

wherec,, is the concentration that is at equilibrium with a
flat interface,o is the surface tension andis the molecular

concentration field is obtained by the solution of the steady R® R® R®
state diffusion equation. In the presence of droplet motion, Ui=GijXj| 1= 15|+ 3 Gikxixjxk(ﬁ_ r_S) S
however, there is a transport of material due to convection
and diffusion, and it is necessary to solve the steady statand for a mobile surface is
convection—diffusion equation to obtain the concentration 5
field around a droplet. ui=G;x|1— R_5 L)
The velocity field around a droplet in uniform motion is o r> 1+
govc_arned by .the _steady state Navier—Stokes equations: In 5RS g, R3 2+ 54,
addition, the inertial forces are small compared to the vis- + GjiXiXj Xk 77T 1r P ) 5)
cous forces for situations of practical interest. The Reynolds K K
number, pUR/u), which is the ratio of inertial and viscous The concentration field is obtained by solving the
forces, scales adD)(/v)Pe, wherev is the kinematic viscos- convection—diffusion equation,
ity. The diffusion coefficienD is usually about 10° m?s™!
for simple fluids, but could be as low as 18 m?s™* for dc+uigic=Dd’c, (6)
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whered,=(d/dx;) is the gradient operator, and the velocity where A(t)=c;—c.., a=(20vc,/T) and the constantB
u; is given by 2, 3, 4, or 5. This equation cannot be solvedand 8 are determined as follows.

analytically for the present configuration, but it is possible to
obtain analytical solutions in the limit where the Peclet num-
ber is large.

Eq. (6) is small compared to the convection term, and one

(1) For asedimentingdroplet, the settling velocity) ~ R?
and Pe-R®, and for arigid interface the coefficientB
and g are

In the large Peclet number limit, the diffusion term in 13m2f3
B=B(2Apg/9u) "D ",

might attempt to get a leading order solution by neglecting B=0. )
the diffusion term in the equation. However, this converts the  For a sedimenting droplet with mobile interface, the
equation from a second order differential equation to a first coefficientsB and 8 are

order differential equation, and it is not possible to satisfy the B=B,(2Apg/9u) D2,

boundary conditions at infinity and at the surface of the drop- B=—1/2. 9)

let using this approximation. This is because the diffusio
terms become important in a boundary layer at the surface
the droplet where the concentration gradients are large. In
this case, the magnitude of the concentration and flux at the

rgf?) For a droplet inshear flowwith shear ratd”, Pe~R?,
and for arigid interface, the coefficient8 and 8 are
B= Bgr1/3D 2/3

surface can be obtained using scaling arguments. Consider a B=1/3. (10)
spherical coordinate system where the origin is located at the For a droplet in a shear flow withrmobileinterface, the
center of the droplet, the radiusis the distance from the coefficientsB and 3 are

origin and the azimuthal anglé is the angle made by the B=B,['Y?D1?,

radius vector with the direction of the velocity of the droplet.
Let the thickness of the boundary layer BR, where the

B=0. (12)

small parameteb is determined from the following scaling In the above equationsB;, B,, B3, and B, are O(1)
arguments. In the boundary layer, the diffusion term in Eq.constants. The conservation equati@ can be solved by
(6) scales aD(cs—cgr)/(6°R?), wherec, is the concentra- defining the nondimensional quantitiex(t)=(R.(t)/

tion of the supersaturated matrix at a large distance from thR.(0)), u=(R/R.(t)), and 7=(8+2)logx, where R.(t)
droplet. The convective transport depends on the relative ve= («/A(t)) is the critical radius which separates growing
locity between the matrix and droplet in the boundary layerand shrinking droplets. The rate of change of droplet radius
vi=u;—U;, and the magnitude of this velocity depends onis now given by

the mobility of the interface.

1)

@

For arigid interface where a no slip condition is appli- ’ =y(u—1)—ub*2 (12)
cable, Egs(2) and (4) indicate that the components of dr '

the relative velocity between the droplet and fluid are

v,~ 6°U andv ,~ 8U. Equating the convection and dif- where the parameter positiveis

fusion terms, it is found thaf~Pe 3. The concentra-

tion flux at the interface, which isl=D(dc/dr) at Ba o dx\ 1
r=R, scales as PED(cs—cR)/R. TR G (13
For amobile interface where a nonzero velocity is per- ¢

mitted at the interface, Eqé&3) and(5) provide the com-
ponents of the relative velocity,~6U and v,~U.
Equating the convection and diffusion terms, it is found
that 6~Pe Y2 The flux at the interface scales as
J~Pe"’D(cs—cR)/R.

The above equation has a solution that is consistent with
mass conservation only if andu approach finite values in
the limit 7—o0

B+2

The scaling of the concentration flux with Peclet number for U— m
a rigid interface has been observed in experiments on mass

transfer to solid particle¥ but there do not appear to have

been systematic experiments done to determine the flux in
Y= B+1-
droplets. (B+1)

B+2
(B+2) (14)

The rate of growth of the droplets can now be obtained

to within a constant using the scaling relations for the fluxesThe above results are in agreement with the results of the
at the interface. The procedure, which is very similar to that-ifzhitz—Slyozov theory for the cas@=1. From the above
used to obtain the growth law in the classical Lifshitz— results, the late stage growth law for the droplet radius can be
Slyozov theory, is briefly described here. The rate of changebtained

of the radius is

(B+1)\A*1  Ba
B+2_
X0 =ry)  RioP" 15
dR_J_ B A @ 7
at UTre|AUTR D With this, the following scaling laws are obtained
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edimenting droplet, rigid interface .
(1) Sedi ing droplet, rigid interf; 22

Re(t)<t2 (16 ol
(2) Sedimenting droplet, mobile interface 1:6 -

Ru(t)t”. (17 14l
(3) Sheared droplet, rigid interface P(u) 127

Re(t)<t*”. (18 oal
(4) Sheared droplet, mobile interface 0:6,

Re(t)oct! 19 0.4}

0.2

The method used for determining the size distribution of 0.0 =8 L m o e
the droplets is very similar to that used in the Lifshitz— 00 01 02 03 04 05 06 07 08 05 1.0
Slyozov theoryt®> and the important steps are briefly ex- (w/uo)

pl?'mEd h?re' The first correctlon to the g.rOWth rate is deterf:IG. 1. P,(u) as a function of ¢/uy) for different values of the parameter
mined using a Taylor series expansion in the parameter B. (O)—B=1: (A)—B=0: (O)—B=—1/2; (O )—B=1/3.
The coefficienty is expanded about its leading order ap-

proximation y,= (8+2)#*2)/(p+1)A+1)(14)

Y=ro(1-e(n?). (20 f<u>=Judu’[v<u')]-1 (28)
The conservation equatiqi?) correct toO(e?) is °
) ) and y is a function to be determined.
ﬂ__ € (B+1) )2 Using a procedure similar to Lifshitz and Slyoz%\irf,
= (U—ug)<, (21 . . . :
dr B+l 2(B+2) can be shown that in the solution for the functiBtu, 7) in

whereuy=(B+2)/(8+1). The above equation is recast us- "¢ 1at€ Stages is

ing the variablez=(u—ug)/e and »=de /dr to give
2(B+2) 1dz , 2(B+2) 2(p+2)

— - =2 T+ = Z7.

(B+1)* edr (B+1)°  (B+1) A p( 37

=Aexpg —5—=

Using conditions similar to those used by Lifshitz and B+2

Slyozov!® it can be inferred that the solutions of the aboveyhereA is the normalization constant.
equation are consistent with the conservation requirements ypjike in the Lifshitz—Slyozov theory for solid alloys, it

3(r—f(u)

5 )/(—v(u))

P(u,m=A ex;{

(22)
Pu(u), (29

only if z and » tend to finite values in the limit— o is not possible to get an analytical solution for the probability
2(B+1)]12 2(B+2)]v2 distribution functionP,(u) for general values oB. An ana-
n= W , = W (23 Iytical solution is possible for the cagg=0
This gives the first correction to the parameter Py(u)= (21_&:)5 exy{ 2__33) (30
[(B+2)P*2 +2
y= (B+2) !l 1— B . (24) For other values of3, the solution can be obtained numeri-
[(B+1)P 2(B+1)7°

cally, and the solution is finite only far<u,. The probabil-

The probability distribution function for the droplet radii ity distribution functionP,(u) is shown as a function af
can be determined in a manner similar to that in the Lifshitz—for the three different cases, along with that for the Lifshitz—
Slyozov theory. The probability distribution functiét(u,7) ~ Slyozov theory f=1), in Fig. 1.
is defined such thaP(u,7)du provides the probability of The mean radius and the mean square of the drop radius
finding a droplet with reduced radius in the interdal about ~ can be determined
u at time 7. The conservation equation for the probability Rcfgodu UP,(U)

distribution is (R)= Togy P (31)
P (vP) Jodu Pulw)
AR TR 25 . REfedu PP(u)
R = 32
where (R Jo%du Py(u) (32
du uf*b u The results for these parameters are summarized in Table I.
~dr_ u@D (u=1)— T2 (26) It is seen, both from Table | and Fig. 1, that the drop size

distribution is peaked at a lower value af/(1p) as the ex-
The characteristic solution for the conservation equat®  ponentg is decreased, and the rati¢R)/R.) also decreases.
is In addition, the polydispersity and the standard deviation in
_ _ _ the drop size distribution are greater as the parametisr
P(u,n=x(r=HW)/(~v), @7) decreased. The number of droplets per unit voliNnean be
where determined from
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TABLE |. Characteristics of the critical radius and the droplet size distribu-ywould apply to decomposition in fluids with surface active
tion function fordlffergnt values gB. Case(a) corresponds to the L_|fsh|tz‘— agents at the interface. In an interface with surfactants, tan-
Slyozov theory for binary alloys, casd) corresponds to a sedimenting . . . . . .
droplet with rigid interface and a droplet in shear flow with a mobile inter- gential .comp.ressmn C?f the Ir.]terface is resisted because .It
face, caséc) corresponds to a sedimenting droplet with a mobile interface'€SUItS in an increase in density of the surfactants from their
and casdd) corresponds to a droplet in shear flow with a rigid interfgg@e.  equilibrium value. If the density of surfactant is sufficiently

is the exponent in Eq(7), Rc(t) is the critical radiusy, is the maximum  hjgh that the surface is closely packed with surfactant mol-

value ofu=(R/R(t)), vy is the leading order value of the paramefein  gcyjjes, further compression of the interface is not permitted
Eg. (13), and(R) and(R?) are the mean and mean square radii defined in d lio b d dition i iat
Egs.(31) and(32) andN is the number of droplets per unit volume defined and a no-slip boundary condition IS appropriate.

in Eq. (33). It is found that the rate of growth i®(P€"®) larger than
that in the absence of convection for a droplet with a rigid
Case @ (b) © @ interface, andO(P€"?) larger than that in the absence of
B= 1 0 —1/2 13 convection for a droplet with a mobile interface. The prob-
Ry(t) o £(13) e t(23) 37 ability distribution function for the droplet size is also sig-
Uo= (3/2) 2 3 (714) nificantly affected by convective effects. The peak of the
Yo= @4y 4 (332) (77FI3(4%%))  propapility distribution function occurs at lower values of the
EEEZC?);)Z) I(RYD) = 0_026 25 (()E_sé%)m Of_gggo 06%523 sc_:ale_d radius, anpl the _polydispersity in the droplet size qlis-
Noc 1 192 -2 97 tribution is also higher in the presence of strong convective
effects.

The enhancement of droplet growth due to fluid flow has
been reported previously in literature. Baumberger, Perrot,
_ | and Beysen'$ observed that shear could enhance the nucle-
N= du P(u) X . ) . .
0 ation and growth of droplets in a binary mixture, but their
experiments were carried out in the early stages of growth,
—A ex;{ _ 3T and the scaling law observed wiR) «t(®6=%-D, Though this
B+2 is slightly higher than the predictioné&R)=t®") and (R)
el —3B+2)] 33 «t(2) of the present analysis, this does confirm that there is
a significant increase in the scaling exponent due to the ap-
The rate of decrease of the number of droplets is acceleratgglication of shear. In addition, they also observed an en-

due to convective effects. hancement of the flux at the interface by a factor propor-
tional to P& also in agreement with the predictions of this
Ill. CONCLUSIONS analysis for a rigid interface. However, it has also been

The rate of droplet growth in a binary fluid was derived speculatetf that sedimentation could alter the scaling law

. . .. . (113) -
in the high Peclet number limit where convective effects, dud®" ate stage growth fromiR)«<t*** in the absence of grav--
to the sedimentation or shear flow, are strong compared tfY ©© (R)=t in the presence of gravity. The present analysis
diffusion in the matrix. It was shown that this approximation |nd|ca5?/§) the scall(r;/gs) exponent could change at most from
is valid for droplets of size=10 um for simple fluids, and ()=t to (R)=t*™®), though the rate of growth of drop-
for smaller droplets for complex fluids with a low diffusion '€t could be significantly increased.
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