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Effect of convective transport on droplet spinodal decomposition in fluids
V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012 India

~Received 23 February 1998; accepted 30 April 1998!

The effect of convective transport on the late stage growth of droplets in the presence of
sedimentation and shear flow is analyzed. The high Peclet number limit (UR/D)@1 is considered,
where U is the characteristic velocity,R is the radius of the droplet, andD is the diffusion
coefficient. The growth of the droplet depends on the boundary condition for the fluid velocity at the
droplet interface, and two types of boundary conditions are considered. For a rigid interface, which
corresponds to the interface between a solid and a fluid, the tangential velocity is zero and the
normal velocity is equal to the velocity of the surface. For a mobile interface, which corresponds to
an interface between two fluids, the tangential and normal velocities are continuous. These results
indicate that the scaling relations for the critical radius areRc(t)}t (1/2) for a sedimenting droplet
with a rigid interface,Rc(t)}t (2/3) for a sedimenting droplet with a mobile interface,Rc(t)}t (3/7) for
a droplet with a rigid interface in a simple shear flow, andRc(t)}t (1/2) for a droplet with a mobile
interface in a simple shear flow. The rate of droplet growth is enhanced by a factor of Pe~1/3! for rigid
interfaces and Pe~1/2! for mobile interfaces. ©1998 American Institute of Physics.
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I. INTRODUCTION

It has recently been realized1–3 that the dynamics of
spinodal decomposition and droplet coarsening in flu
could be very different from that in solid alloys. The coar
ening process in solid alloys proceeds by diffusion of
molecules along a solid lattice, but in a fluid convecti
transport could also enhance the coarsening process. Th
namics of spinodal decomposition could be distinguish
into two types—the coarsening due to the motion of rand
interfaces forming a bicontinuous pattern in a symme
quench,4–6 and the growth of droplets in an off-symmetr
quench. The coarsening of droplets is considered to be du
two possible mechanisms:

~1! the diffusion mechanism,8,9 which involves the growth
of droplets with radius larger than a critical value and t
shrinking of droplets with radius smaller than this val
due to diffusion of the solute through the matrix;

~2! the coagulation mechanism,7 where droplets undergoin
Brownian motion collide and coalesce to give a larg
droplet.

The former mechanism is observed when the drop
density is relatively low so that there are no collisions b
tween droplets, while the latter is observed when the dro
density is higher. In both cases, the mean radius of the d
lets obeys a scaling law of the formR(t)}t1/3. The scaling
law is the same as that for the Lifshitz–Slyozov8,9 theory for
alloys, but it has experimentally been observed that the
of growth of the average radius could be much larger th
that in an alloy. In the present analysis, the effect of drop
motion on the diffusion mechanism is examined.

There have been many experimental studies on
growth of droplets in binary fluids. The experiments
Wong and Knobler10 indicate that the characteristic length
2430021-9606/98/109(6)/2437/5/$15.00
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the systeml (t) depends on time asl (t)}ta, where a is
reported to be close to 0.3 if the volume fraction of the sol
is small ~droplet coarsening! and close to 1.0 when the vol
ume fraction is large~hydrodynamic coarsening!. Though
the exponent for the droplet coarsening is close to that of
Lifshitz–Slyozov theory, it has been noticed that the rate
coarsening is larger than that predicted by the Lifshit
Slyozov theory.

The motion of a droplet, either due to sedimentation
due to an externally imposed shear, could cause an enha
ment of the transport rates of the solute at the droplet in
face. In particular, when the convective effects are stro
compared to the diffusive effects, the concentration fi
around a droplet of radiusR decays to the matrix concentra
tion within a distance small compared to the droplet radi
This could lead to larger concentration gradients, and con
quently faster transport of the solute from the matrix to t
droplet, resulting in faster growth. The acceleration of dro
let growth due to an externally imposed shear flow has b
observed experimentally.11,12 In the next section, scaling ar
guments are presented to determine the boundary layer th
ness around a droplet. Two types of boundary conditions
the velocity at the surface of a droplet are considered
droplet with a ‘‘rigid’’ surface is similar to a rigid sphere
which has zero tangential velocity at the surface, and
boundary condition is appropriate for systems with surfa
active agents which prevent compression of the surface
droplet with a ‘‘mobile’’ surface is similar to a liquid drop
with a finite velocity at the surface, and the velocity field
determined within and outside the droplet by matching
tangential velocity and stress at the surface. The flux of
minority phase at the surface in the presence of strong c
vective effects is calculated, and the scaling law for t
change in the critical radius as a function of time is det
mined. In addition, the size distribution of the droplets is a
7 © 1998 American Institute of Physics
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determined and the mean radius and the number of drop
per unit volume are calculated as a function of time.

II. ANALYSIS

The system consists of a binary fluid mixture in the la
stage of droplet growth in a matrix where the supersatura
is small. The concentration of the solute in the droplet
considered to be the equilibrium concentration of the drop
phase, while the matrix has a concentrationcs at a large
distance from the droplet.

It is useful to estimate the range of droplet sizes
which convective effects could be important. For dropl
sedimenting in a fluid, the sedimentation velocity
(2DrgR2/9m), whereDr is the difference in the densities o
the droplet and matrix andm is the shear viscosity. The rati
of convective and diffusive transport is given by the dime
sionless ‘‘Peclet’’ number Pe5(UR/D), where U is
the characteristic droplet velocity,R is the radius of the
droplet, andD is the diffusion coefficient. Using typica
values of Dr;102 kg m23, m;1023 kg m21 s21, and
D;1029 m2 s21, the Peclet number is 231014R3, where the
radiusR is measured in meters. This indicates that the Pe
number is large for droplets larger than about 10mm settling
under the effect of gravity. For a sheared suspension,
Peclet number scales asGR2/D, whereG is the shear rate
For a typical shear rate of 1 s21, the Peclet number is larg
for droplet sizes greater than about 10mm. In these cases, th
Lifshitz–Slyozov theory for late stage growth would not
applicable, and it is necessary to determine the growth ra
the presence of convection and diffusion.

In accordance with the classical Lifshitz–Slyozo
theory, the chemical potential of the matrix at the surface
the droplet is considered to be the sum of the chemical
tential of the droplet material and a correction due to surf
tension. The concentration in the matrix at the surface of
droplet materialcR is

cR5c`S 11
2sv
TR D , ~1!

wherec` is the concentration that is at equilibrium with
flat interface,s is the surface tension andv is the molecular
volume. In the Lifshitz–Slyozov theory, the concentrati
field in the vicinity of the droplet is assumed to respo
instantaneously to changes in the droplet radius, so tha
concentration field is obtained by the solution of the stea
state diffusion equation. In the presence of droplet moti
however, there is a transport of material due to convec
and diffusion, and it is necessary to solve the steady s
convection–diffusion equation to obtain the concentrat
field around a droplet.

The velocity field around a droplet in uniform motion
governed by the steady state Navier–Stokes equations
addition, the inertial forces are small compared to the v
cous forces for situations of practical interest. The Reyno
number, (rUR/m), which is the ratio of inertial and viscou
forces, scales as (D/n)Pe, wheren is the kinematic viscos-
ity. The diffusion coefficientD is usually about 1029 m2 s21

for simple fluids, but could be as low as 10212 m2 s21 for
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complex fluids such as polymer melts. The kinematic visc
ity n is 1026 m2 s21 for a simple fluid such as water, bu
could be 1023 m2 s21 or higher for polymer solutions and
melts. Consequently, there exists a considerable range o
rameter values, 103<Pe<106, where the Reynolds numbe
is small and the Peclet number is large. In this case, the fl
flow around the droplet is viscous, but the convective effe
are large compared to the molecular diffusion of the solu
The scaling of the droplet growth in this regime is analyz
here.

The velocity field depends on the mobility of the surfa
of the droplet. Consider a droplet settling in a fluid wi
velocity U. If the interface is rigid, so that a no-slip bound
ary condition is applicable at the interface, the velocity fie
is13

ur5U cos~u!F3

2

R

r
2

1

2

R3

r 3 G ,
~2!

uu52U sin~u!F3

4

R

r
1

1

4

R3

r 3 G ,
whereur anduu are the radial and azimuthal components
the velocity field, the radiusr is the distance from the cente
of the droplet and the azimuthal angleu is the angle made by
the radius vector with the direction of the velocity of th
droplet. If the interface of the drop is mobile, the veloci
field is obtained by solving the Stokes equations inside
outside the droplet, and using the continuity of tangen
velocity and stress at the interface. In this case, the velo
field depends on the droplet viscosity as well as the visco
of the fluid inside and outside the droplet

ur5U cos~u!FS2 S R

r
2

R3

r 3 D1
R3

r 3 G ,
~3!

uu52U sin~u!FS4 S R

r
1

R3

r 3 D2
1

2

R3

r 3 G ,
whereS5(3m r12)/(m r11), andm r is the ratio of the vis-
cosities of the droplet fluid and the matrix fluid. For a drop
in shear flow, it is convenient to express the velocity field
indicial notation in terms of the position vectorx in the fluid.
If the strain rate isGi j at a large distance from the surface
the droplet, the velocity field in indicial notation for a rigi
surface is

ui5Gi j xj S 12
R5

r 5 D1
5

2
GjkxixjxkS R5

r 7 2
R3

r 5 D ~4!

and for a mobile surface is

ui5Gi j xj S 12
R5

r 5

m r

11m r
D

1GjkxixjxkS 5

2

R5

r 7

m r

11m r
2

R3

r 5

215m r

11m r
D . ~5!

The concentration field is obtained by solving th
convection–diffusion equation,

] tc1ui] ic5D] j
2c, ~6!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where] i[(]/]xi) is the gradient operator, and the veloci
ui is given by 2, 3, 4, or 5. This equation cannot be solv
analytically for the present configuration, but it is possible
obtain analytical solutions in the limit where the Peclet nu
ber is large.

In the large Peclet number limit, the diffusion term
Eq. ~6! is small compared to the convection term, and o
might attempt to get a leading order solution by neglect
the diffusion term in the equation. However, this converts
equation from a second order differential equation to a fi
order differential equation, and it is not possible to satisfy
boundary conditions at infinity and at the surface of the dr
let using this approximation. This is because the diffus
terms become important in a boundary layer at the surfac
the droplet where the concentration gradients are large
this case, the magnitude of the concentration and flux at
surface can be obtained using scaling arguments. Consid
spherical coordinate system where the origin is located at
center of the droplet, the radiusr is the distance from the
origin and the azimuthal angleu is the angle made by th
radius vector with the direction of the velocity of the drople
Let the thickness of the boundary layer bedR, where the
small parameterd is determined from the following scalin
arguments. In the boundary layer, the diffusion term in E
~6! scales asD(cs2cR)/(d2R2), wherecs is the concentra-
tion of the supersaturated matrix at a large distance from
droplet. The convective transport depends on the relative
locity between the matrix and droplet in the boundary lay
v i5ui2Ui , and the magnitude of this velocity depends
the mobility of the interface.

~1! For a rigid interface, where a no slip condition is appli
cable, Eqs.~2! and ~4! indicate that the components o
the relative velocity between the droplet and fluid a
v r;d2U andvu;dU. Equating the convection and dif
fusion terms, it is found thatd;Pe21/3. The concentra-
tion flux at the interface, which isJ5D(]c/]r ) at
r 5R, scales as Pe1/3D(cs2cR)/R.

~2! For amobile interface, where a nonzero velocity is per
mitted at the interface, Eqs.~3! and~5! provide the com-
ponents of the relative velocityv r;dU and vu;U.
Equating the convection and diffusion terms, it is fou
that d;Pe21/2. The flux at the interface scales a
J;Pe1/2D(cs2cR)/R.

The scaling of the concentration flux with Peclet number
a rigid interface has been observed in experiments on m
transfer to solid particles,14 but there do not appear to hav
been systematic experiments done to determine the flu
droplets.

The rate of growth of the droplets can now be obtain
to within a constant using the scaling relations for the flux
at the interface. The procedure, which is very similar to t
used to obtain the growth law in the classical Lifshitz
Slyozov theory, is briefly described here. The rate of cha
of the radius is

dR

dt
5J5

B

Rb FD~ t !2
a

RG ~7!
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whereD(t)5cs2c` , a5(2svc` /T) and the constantsB
andb are determined as follows.

~1! For a sedimentingdroplet, the settling velocityU;R2

and Pe;R3, and for arigid interface the coefficientsB
andb are

B5B1~2Drg/9m!1/3D2/3,

b50. ~8!

For a sedimenting droplet with amobile interface, the
coefficientsB andb are

B5B2~2Drg/9m!1/2D1/2,

b521/2. ~9!

~2! For a droplet inshear flowwith shear rateG, Pe;R2,
and for arigid interface, the coefficientsB andb are

B5B3G
1/3D2/3,

b51/3. ~10!

For a droplet in a shear flow with amobile interface, the
coefficientsB andb are

B5B4G
1/2D1/2,

b50. ~11!

In the above equations,B1 , B2 , B3 , and B4 are O(1)
constants. The conservation equation~7! can be solved by
defining the nondimensional quantitiesx(t)5(Rc(t)/
Rc(0)), u5(R/Rc(t)), and t5(b12)logx, where Rc(t)
5(a/D(t)) is the critical radius which separates growin
and shrinking droplets. The rate of change of droplet rad
is now given by

dub12

dt
5g~u21!2ub12, ~12!

where the parameter positiveg is

g5
Ba

Rc~0!b12 S xb11
dx

dt D
21

. ~13!

The above equation has a solution that is consistent w
mass conservation only ifg andu approach finite values in
the limit t→`

u→
b12

b11
,

g→
~b12!b12

~b11!b11 . ~14!

The above results are in agreement with the results of
Lifzhitz–Slyozov theory for the caseb51. From the above
results, the late stage growth law for the droplet radius can
obtained

x~ t !b125S ~b11!

~b12! D
b11 Ba

Rc~0!b12 t. ~15!

With this, the following scaling laws are obtained
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~1! Sedimenting droplet, rigid interface
Rc~t!}t1/2. ~16!

~2! Sedimenting droplet, mobile interface
Rc~t!}t2/3. ~17!

~3! Sheared droplet, rigid interface
Rc~t!}t3/7. ~18!

~4! Sheared droplet, mobile interface
Rc~t!}t1/2. ~19!

The method used for determining the size distribution
the droplets is very similar to that used in the Lifshitz
Slyozov theory,15 and the important steps are briefly e
plained here. The first correction to the growth rate is de
mined using a Taylor series expansion in the parametet.
The coefficientg is expanded about its leading order a
proximationg05(b12)(b12)/(b11)(b11)(14)

g5g0~12e~t!2!. ~20!

The conservation equation~12! correct toO(e2) is

du

dt
52

e2

b11
2

~b11!2

2~b12!
~u2u0!2, ~21!

whereu05(b12)/(b11). The above equation is recast u
ing the variablesz5(u2u0)/e andh5de21/dt to give

2~b12!

~b11!2

1

e

dz

dt
52z22

2~b12!

~b11!3 1
2~b12!

~b11!2 zh. ~22!

Using conditions similar to those used by Lifshitz a
Slyozov,15 it can be inferred that the solutions of the abo
equation are consistent with the conservation requirem
only if z andh tend to finite values in the limitt→`

h5F2~b11!

b12 G1/2

, z5F2~b12!

~b11!3 G1/2

. ~23!

This gives the first correction to the parameterg

g5F ~b12!b12

~b11!b11GF12
b12

2~b11!t2G . ~24!

The probability distribution function for the droplet rad
can be determined in a manner similar to that in the Lifshit
Slyozov theory. The probability distribution functionP(u,t)
is defined such thatP(u,t)du provides the probability of
finding a droplet with reduced radius in the intervaldu about
u at time t. The conservation equation for the probabili
distribution is

]P

]t
1

]~vP!

]u
50, ~25!

where

v5
du

dt
5

u0
~b11!

u~b11! ~u21!2
u

b12
. ~26!

The characteristic solution for the conservation equation~25!
is

P~u,t!5x~t2 f ~u!!/~2v !, ~27!

where
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du8@v~u8!#21 ~28!

andx is a function to be determined.
Using a procedure similar to Lifshitz and Slyozov,8 it

can be shown that in the solution for the functionP(u,t) in
the late stages is

P~u,t!5A expS 2
3~t2 f ~u!!

b12 D /~2v~u!!

5A expS 2
3t

b12D Pu~u!, ~29!

whereA is the normalization constant.
Unlike in the Lifshitz–Slyozov theory for solid alloys, i

is not possible to get an analytical solution for the probabi
distribution functionPu(u) for general values ofb. An ana-
lytical solution is possible for the caseb50

Pu~u!5
16u

~22u!5 expS 23u

22uD . ~30!

For other values ofb, the solution can be obtained numer
cally, and the solution is finite only foru,u0 . The probabil-
ity distribution functionPu(u) is shown as a function ofu
for the three different cases, along with that for the Lifshit
Slyozov theory (b51), in Fig. 1.

The mean radius and the mean square of the drop ra
can be determined

^R&5
Rc*0

u0du uPu~u!

*0
u0du Pu~u!

, ~31!

^R2&5
Rc

2*0
u0du u2Pu~u!

*0
u0du Pu~u!

. ~32!

The results for these parameters are summarized in Tab
It is seen, both from Table I and Fig. 1, that the drop s
distribution is peaked at a lower value of (u/u0) as the ex-
ponentb is decreased, and the ratio (^R&/Rc) also decreases
In addition, the polydispersity and the standard deviation
the drop size distribution are greater as the parameterb is
decreased. The number of droplets per unit volumeN can be
determined from

FIG. 1. Pu(u) as a function of (u/u0) for different values of the paramete
b. ~s!—b51; ~n!—b50; ~h!—b521/2; ~L!—b51/3.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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N5E
0

u0
du P~u!

5A expS 2
3t

b12D
}t @23/~b12!#. ~33!

The rate of decrease of the number of droplets is acceler
due to convective effects.

III. CONCLUSIONS

The rate of droplet growth in a binary fluid was derive
in the high Peclet number limit where convective effects, d
to the sedimentation or shear flow, are strong compare
diffusion in the matrix. It was shown that this approximatio
is valid for droplets of size>10mm for simple fluids, and
for smaller droplets for complex fluids with a low diffusio
coefficient and high viscosity. First, the concentration a
velocity field for the droplet were analyzed, and scaling
lations were derived for the flux of the minority phase in
the droplet as a function of the matrix concentration and
characteristic velocity. These scaling relations were then
serted into the equation for the rate of change of the dro
radius, and relations for the rate of increase of the aver
radius of the droplet were derived.

The results indicate that the scaling laws for the drop
growth in the limit of high convection could be very diffe
ent from that in the absence of convection. The four m
scaling relations for sedimenting droplets and droplets
shear flow with different interfacial conditions are summ
rized in Eqs.~16!–~19!. The results for a droplet with a mo
bile interface would apply for spinodal decomposition
pure fluids where the tangential velocity and stress are c
tinuous across the interface. The results for a rigid interf

TABLE I. Characteristics of the critical radius and the droplet size distri
tion function for different values ofb. Case~a! corresponds to the Lifshitz–
Slyozov theory for binary alloys, case~b! corresponds to a sedimentin
droplet with rigid interface and a droplet in shear flow with a mobile int
face, case~c! corresponds to a sedimenting droplet with a mobile interfa
and case~d! corresponds to a droplet in shear flow with a rigid interfaceb
is the exponent in Eq.~7!, Rc(t) is the critical radius,u0 is the maximum
value ofu5(R/Rc(t)), g0 is the leading order value of the parameterg in
Eq. ~13!, and^R& and ^R2& are the mean and mean square radii defined
Eqs.~31! and~32! andN is the number of droplets per unit volume define
in Eq. ~33!.

Case ~a! ~b! ~c! ~d!

b5 1 0 21/2 1/3
Rc(t)} t (1/3) t (1/2) t (2/3) t (3/7)

u05 (3/2) 2 3 (7/4)
g05 (27/4) 4 (3)/2) (7(7/3)/3(4(4/3)))
(^R&/Rc)5 1 (8/9) 0.7341 0.9428
(^R2&2^R&2)/(^R&2)5 0.046 25 0.6875 1.5280 0.3953
N} t21 t23/2 t22 t29/7
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would apply to decomposition in fluids with surface acti
agents at the interface. In an interface with surfactants,
gential compression of the interface is resisted becaus
results in an increase in density of the surfactants from th
equilibrium value. If the density of surfactant is sufficient
high that the surface is closely packed with surfactant m
ecules, further compression of the interface is not permit
and a no-slip boundary condition is appropriate.

It is found that the rate of growth isO(Pe1/3) larger than
that in the absence of convection for a droplet with a rig
interface, andO(Pe1/2) larger than that in the absence
convection for a droplet with a mobile interface. The pro
ability distribution function for the droplet size is also sig
nificantly affected by convective effects. The peak of t
probability distribution function occurs at lower values of th
scaled radius, and the polydispersity in the droplet size
tribution is also higher in the presence of strong convect
effects.

The enhancement of droplet growth due to fluid flow h
been reported previously in literature. Baumberger, Per
and Beysens11 observed that shear could enhance the nu
ation and growth of droplets in a binary mixture, but the
experiments were carried out in the early stages of grow
and the scaling law observed was^R&}t (0.660.1). Though this
is slightly higher than the predictionŝR&}t (3/7) and ^R&
}t (1/2) of the present analysis, this does confirm that ther
a significant increase in the scaling exponent due to the
plication of shear. In addition, they also observed an
hancement of the flux at the interface by a factor prop
tional to Pe1/3, also in agreement with the predictions of th
analysis for a rigid interface. However, it has also be
speculated12 that sedimentation could alter the scaling la
for late stage growth from̂R&}t (1/3) in the absence of grav
ity to ^R&}t in the presence of gravity. The present analy
indicates the scaling exponent could change at most f
^R&}t (1/3) to ^R&}t (2/3), though the rate of growth of drop
lets could be significantly increased.
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