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Microscopic analysis of the coarsening of an interface in the spinodal
decomposition of a binary fluid
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The coarsening of a random interface in a fluid of surface tensiong and viscositym is analyzed
using a curvature distribution functionA(Km ,Kg ,t) which gives the distribution of the mean
curvatureKm and Gaussian curvatureKg on the interface. There is a variation in the area distribution
function due to the rate of change ofKm , Kg and the compression of the interface due to tangential
motion. The rates of change of mean and Gaussian curvature at a point are related to the rate of
change of the normal velocity in the tangential directions along the interface. The fluid velocity is
governed by the Stokes equation for a viscous flow, and the velocity field at a point is determined
as an integral of the product of the Oseen tensor and the normal force at other points on the
interface. Using a general form for this integral, it is shown that there is a characteristic variable
K* 5Kg /(Km

2 24Kg)1/2 which is independent of time even asKm andKg decrease proportional to
t21 and t22, respectively. In the late stages, analytical forms for the distribution function are
determined in the limitKm!K* using a similarity variableh5(gKmt/m). Two reasonable
approximations are used for the characteristic length for the correlation of the curvature and normal
along the interface, and the results for these two approximations are quadratic polynomials inuhu
which are nonzero for a finite interval abouth50. It is expected that the actual distribution function
is in between these two limiting cases. ©1998 American Institute of Physics.
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I. INTRODUCTION

The late stage of spinodal decomposition in a bin
fluid is characterized by the presence of sharp interfaces
tween the two phases. The structure formed during coar
ing depends on the relative concentrations of the two spe
in the mixture. A bicontinuous structure, where the tw
phases are separated by a random interface, is observed
nearly symmetric mixture. In the case of an asymmetric m
ture, decomposition proceeds by the growth of droplets
the minority phase in a supersaturated matrix of the majo
phase. A microscopic analysis of the growth of a rand
interface in a fluid is the subject of the present study.

The late stage decomposition in binary alloys and m
netic systems has been studied in some detail. The Lifsh
Slyozov theory1 for the late stage coarsening of droplets
an alloy predicts that the average droplet radius increa
proportional tot1/3, and this growth law has been confirme
by experiments. The theories for the coarsening of a rand
interface in solid systems are less well developed. Ohta,
now, and Kawasaki2 used a constitutive relation for the mo
tion of the interface as a function of the curvature and s
face tension at a point, and predicted that the character
length in the system increases proportional tot1/2 for a non-
conserved order parameter system. In a conserved orde
rameter system, the characteristic length increases pro
tional to t1/3 due to the additional constraint of conservati
of magnetization. Both of these scaling laws were found
be in agreement with simulations.3 Though the scaling of the
characteristic length has been obtained, a more quantita
description of, for example, the distribution of mean a
3240021-9606/98/109(8)/3240/5/$15.00
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Gaussian curvatures along the interface, is still lacking.
The late stage coarsening of interfaces in a fluid h

received relatively less attention, possibly due to the co
plexity of the dynamical equations. In particular, the hydr
dynamic interactions in a fluid are long range, and the vel
ity at a point on an interface depends on the forces exerte
the fluid by other sections of the interface. Consequently,
interface velocity is given by an integral equation, whi
contains the correlations in the curvature at different lo
tions. This causes difficulties in the rigorous derivation
averaged equations for the interface dynamics, and the
culation of the distribution of curvatures along the interfac
The earliest prediction of the coarsening of an interface
Siggia4 was based on a simple dimensional analysis. If
only parameters which determine the interface dynamics
the surface tensiong ~which causes the normal force! and the
fluid viscosity m, then the characteristic length of the inte
face l has to scale asl 5(gt/m). Furukawa5 also put forth
similar arguments for the scaling of the characteristic len
of the interface, and this has been verified in experiment6,7

A more detailed approach was pursued by the auth8

where a characteristic curvatureK5(K1
21K2

2)1/2 was used to
describe the dynamics of the interface. A curvature distri
tion functionA(K,t) was defined such thatA(K,t)dK is the
area per unit volume with curvature in the intervaldK about
K at time t. There is a change in the curvature distributi
due to the change in curvature, and due to the tangen
compression of the interface. Using the simple assump
that the only length scale which determines the dynamic
a point is the curvatureK itself, simple constitutive relations
0 © 1998 American Institute of Physics
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were obtained for the rate of change of curvature and
tangential compression of the interface. Using these, an
pression for the curvature distribution function was deriv

A~h!5~12h!a, ~1!

whereh5(a1Kg/m) is a similarity variable, anda is a phe-
nomenological constant in the constitutive equations for
rate of change of curvature and the tangential compressio
the interface.

The analysis leading to Eq.~1! has the disadvantage th
it is based on phenomenological relations for the rate
change of curvature and the tangential compression of
interface. Consequently, the constanta in Eq. ~1! is as yet
unknown. The objective of the present analysis is to anal
the dynamics starting from a microscopic description of
motion of the interface. The present analysis is more ex
and the dynamics of the interface is expressed using an
distribution functionA(Km ,Kg ,t) which is a function of the
mean curvatureKm and Gaussian curvatureKg . The fluid
velocity due to the force exerted by the interface is de
mined from the solution of the Stokes equation, and the ra
of change of curvatures and area are determined as func
of the variations in the normal velocity along the interfac
To obtain averaged equations for the rates of change of
vature, the microscopic equations for the rates of chang
curvature are averaged over the distributions interface c
figurations in the vicinity of a point where the curvature a
unit normal are known. These equations indicate that ther
a variableK* 5Kg /(Km

2 24Kg)1/2 which is invariant during
the decomposition process, whileKm and Kg decrease pro-
portional tot21 and t22. The conservation equation for th
area distribution function is difficult to solve in general, b
analytical solutions are obtained in the late stages wh
K* @Km using some approximations regarding the inter
tion between different sections of the interface.

II. ANALYSIS

The two-dimensional surface in three dimensions
completely defined by the mean curvatureKm5Ka1Kb and
the Gaussian curvatureKg5KaKb , whereKa and Kb are
the principle curvatures, which are the extrema of the cur
tures at a point. The dynamics of the surface is descri
using a ‘‘curvature distribution function’’A(t,Km ,Kg) such
that A(t,Km ,Kg)dKmdKg is the area per unit volume whic
has mean curvature in the intervaldKm aboutKm and Gauss-
ian curvature in the intervaldKg aboutKg . A conservation
equation for the curvature distribution function can be w
ten as

]A

]t
1

]A

]Km

dKm

dt
1

]A

]Kg

dKg

dt
5

]cA

]t
. ~2!

The left-hand side of Eq.~2! is the change in the curvatur
distribution function in a ‘‘Lagrangian’’ reference frame i
the Km–Kg plane, and the right-hand side represents
change in the area due to contraction of the surface ca
by the tangential motion of fluid along the interface. T
conservation equation can be solved if expressions for
rates of change of curvature, (dKm /dt) and (dKg /dt), and
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the rate of change of area due to contraction (]cA/]t), are
known. These are determined using a microscopic mode
the fluid velocity induced by the surface tension forces at
interface.

The fluid velocity field is obtained by solving th
Navier–Stokes equations for a simple fluid with densityr
and viscositym. The equations are simplified by assumin
that inertial effects are negligible, the validity of this a
sumption was examined earlier.8 With this approximation,
the velocity field at a pointx in the fluid is given by

v i~x!5gE dS8Ji j ~x2x8!nj8~x8!Km8 ~x8!, ~3!

where x8 is a point on the interface,dS8 is a differential
surface area of the interface, the Oseen tensorJi j is

Ji j ~x!5
1

8pm S d i j

uxu
1

xixj

uxu3 D , ~4!

and the pressure on the fluid at the pointx8 is given by
gnj8(x8)Km8 (x8), whereg is the surface tension,n8(x8) is the
unit normal to the interface at this point, and the integral
Eq. ~3! is carried out over the surface of the interface.

The change in curvature and the contraction of the in
face at a pointx caused by the fluid motion are examine
next. Consider an orthogonal coordinate system at a poix
on the interface, wheren is the unit normal anda andb are
tangents to the interface along the directions of extremal c
vaturexa and xb . The principal curvaturesKa and Kb are
the curvatures of the interface along thexa andxb directions,
and the curvatures are considered positive if the cente
curvature is on the side of the interface into which the u
normal is directed. The normal velocity of the interfacevn at
the pointx is

vn5gni~x!E dS8Ji j ~x2x8!nj8~x8!Km8 ~x8!. ~5!

The rate of change of curvature (dKa /dt) is the second de-
rivative of the normal velocity along the direction tangent
to the surface (]a

2vn). The following identities are necessar
for determining the gradients along the surface:

]ani52Kaa i ,

]aa i5Kani
~6!

]aE dS8Ji j ~x2x8!nj~x8!Km~x8!

5akE dS8]kJi j ~x2x8!nj~x8!Km~x8!,

where]a[(]/]xa) is the gradient along the interface, an
] i[(]/]xi) is the gradient in three dimensions. Using t
above relations, the rate of change of the principal curvat
Ka is
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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dKa

dt
5]a

2vn

5gF ~2~]aKa!a i2Ka
2ni !E dS8Ji j ~x2x8!

3nj8~x8!Km8 ~x8!1Ka~nink22a iak!

3E dS8]kJi j ~x2x8!nj8~x8!Km8 ~x8!

1niaka lE dS8]k] lJi j nj8~x8!Km8 ~x8!G , ~7!

where]aKa represents the rate of change of curvature alo
the coordinatea on the surface. A similar expression can
derived for the rate of change of curvature in theb direction,
(dKb /dt), and using these, the rate of change of the m
curvature and the Gaussian curvature are determined,

dKm

dt
5gF ~2~]aKa!a i2~]bKb!b i2~Km

2 22Kg!ni !

3E dS8Ji j ~x2x8!nj8~x8!Km8 ~x8!

1~Kmnink22Kaa iak22Kbb ibk!

3E dS8]kJi j ~x2x8!nj8~x8!Km8 ~x8!

1ni~aka l1bkb l !

3E dS8]k] lJi j nj8~x8!Km8 ~x8!G . ~8!

A similar expression can be derived for the Gaussian cu
ture by addingKb(dKa /dt)1Ka(dKb /dt):

dKg

dt
5gF ~2Kb~]aKa!a i2Ka~]bKb!b i2KmKgni !

3E dS8Ji j ~x2x8!nj8~x8!Km8 ~x8!

12Kg~nink2a iak2b ibk!E dS8]kJi j ~x2x8!

3nj8~x8!Km8 ~x8!1Kmni~aka l1bkb l !

3E dS8]k] lJi j ~x2x8!nj8~x8!Km8 ~x8!G . ~9!

The change in area due to the contraction of the interf
is determined from the relative tangential velocity of poin
on the interface. The normal velocity of a point on the int
face isnivn , and the rate of change of this velocity along t
coordinate directiona is ]a(nivn). The rate of change of the
interfacial velocity along the directionxa tangential to the
interface isa i]a(nivn). A similar expression can be derive
for the rate of change of the relative velocity in thexb direc-
tion along the interface. The rate of change of area due
interfacial compression is the product of the interfacial a
and the sum of the rates of change of velocity in the tang
tial directions,
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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]cA

]t
5g~a i]a1b i]b!

3FninjE dS8Jjk~x2x8!nk8~x8!Km8 ~x8!G . ~10!

Using Eq. ~6!, the rate of change of surface area due
contraction of the surface is

1

A

]cA

]t
5gF2KmnjE dS8Jjk~x2x8!nk8~x8!Km8 ~x8!G .

~11!

The average rate of change of curvature is determined
averaging over the distribution of microscopic configuratio
of the interface at the pointx8 in Eqs.~8! and ~9!,

K E dS8Ji j ~x2x8!nj8~x8!Km8 ~x8!L
5E dV8Ji j ~x2x81!F E dn8E dKg8

3E dKm8 A2~ t,n8,Km8 ,Kg8 ,x8un,Km ,Kg ,x!nj8Km8 G ,
~12!

where A2(n8,Km8 ,Kg8 ,x8un,Km ,Kg ,x)dV8dn8dKm8 dKg8 is
the area of the interface in the volumedV8 aboutx8 with
curvatures betweenKm8 and Km8 1dKm8 , Kg8 and Kg81dKg8
and unit normal in the intervaln8 and n81dn8 given that
there is a surface element with curvatureKm , Kg and unit
normaln at the positionx. In order to proceed further, it is
necessary to specify a form for the function within the squ
brackets in Eq.~12!. For a homogeneous and isotropic sy
tem, this function should be linear in the unit normalni and
dependent only on the distanceux2x8u. Further, it is ex-
pected that the functionA2 is close to d(Km2Km8 )d(Kg

2Kg8)d(n2n8) if ( x2x8) is small compared to the radius o
curvature of the surface. When (x2x8) becomes large com
pared to the radius of curvature, the functionA2 should tend
to zero. Further, in the absence of any intrinsic length sc
in the system, this is only a function of the curvaturesKm

andKg at the pointx. Consistent with these expectations, t
most general form for the term in square brackets in Eq.~12!
is

F E dn8E dKg8E dKm8

3A2~ t,n8,Km8 ,Kg8 ,x8un,Km ,Kg ,x!nj8Km8 G
5nj~x!Km~x!g~Km ,Kg ,ux2x8u,t !

1t jh~Km ,Kg ,ux2x8u,t !, ~13!

wheret is the perpendicular to the unit normaln in the plane
containing n and (x2x8), g(Km ,Kg ,ux2x8u,t), and
h(Km ,Kg ,ux2x8u,t) are functions of the mean and Gaussi
curvature which is presently unspecified. When the integ
of Eq. ~13! is carried out over the coordinatex8 on the inter-
face, the resulting expression has no dependence on th
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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rection t due to symmetry considerations, and the result
expressions for the average values of the integrals in E
~8!, ~9!, and~11! are

K E dS8Ji j ~x2x8!nj8~x8!Km8 ~x8!L
5

ni~x!Km~x! f ~Km~x!,Kg~x!,t !

m
, ~14!

K E dS8]kJi j ~x2x8!nj8~x8!Km8 ~x8!L 50, ~15!

K ni~x!~aka l1bkb l !

3E dS8]k] lJi j ~x2x8!nj8~x8!Km8 ~x8!L 50, ~16!

where

f ~Km ,Kg ,t !5
m

3 E dV8Jii ~x2x8!g~Km ,Kg ,ux2x8u,t !.

~17!

Note that the functionf (Km ,Kg ,t) has the dimensions o
length, and physically represents a length scale over wh
the curvature of the interface is correlated. The forms of E
~14! and ~15! are evident from symmetry, but Eq.~16! re-
quires further justification. Using the general form

E dS8]k] lJi j ~x2x8!g~Km ,Kg ,ux2x8u,t !

5A~Km ,Kg ,t !d i j dkl1B~Km ,Kg ,t !~d ikd j l 1d i l d jk!

~18!

it can easily be inferred, by contracting both sides withd ikd j l

that A524B. Contracting both sides of Eq.~18! with
d i j dkl , we get

230B5E dS8]k
2Jii (x2x8)g(Km ,Kg ,ux2x8),t). ~19!

It can easily be verified that]k
2Jii (x2x8) for ux2x8u.0,

resulting in Eq.~16!. There is some subtlety involved i
obtaining ]k

2Jii (x2x8) for ux2x8u50, since the function
tends to a delta function at this point. However, since
force exerted on the fluid by the interface is confined to
surface, the normal velocity at the interface can be evalua
as the limit of the velocity in the fluid as the interface
approached along the direction normal to the interface. T
limiting value is zero due to Eq.~19!, resulting in the identity
~16!.

Using the relations~14!–~16!, the equations for the rat
of change of curvature and interfacial area are

K dKm

dt L 5
2g~Km

2 22Kg!Kmf ~Km ,Kg ,t !

m
, ~20!

K dKg

dt L 5
2gKgKm

2 f ~Km ,Kg ,t !

m
, ~21!

K 1

A

]cA

]t L 5
2gKm

2 f ~Km ,Kg ,t !

m
. ~22!
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In Eqs. ~20!–~22!, the average^¯& is an average over the
distribution of the unit normal and curvature adjacent to
point where the curvature and unit normal are specified, and
not an ensemble average over the curvatures and unit
mals at a point. To simplify the notation in the followin
analysis, the angular brackets are not shown explicitly
being understood that (dKm /dt), (dKg /dt), and (1/A)
3(]cA/]t) are averaged in the sense noted above.

Though the conservation equation~2! cannot be solved
using relations~20!–~22!, it is possible to find a characteris
tic direction for the variablesKm andKg . The independent
variables are transformed from (Km ,Kg) to a new set of
variables (K* ,Km), where the new variableK* (Km ,Kg) is
defined such that

dK*
dt

5
]K*
]Kg

dKg

dt
1

]K*
]Km

dKm

dt
50. ~23!

This implies that the new variableK* remains a constant a
a point on the interface~in the averaged sense noted abov!.
Equation~23! can be easily solved to get the characteris
variableK* ,

K* 5
Kg

AKm
2 24Kg

. ~24!

Note thatK* is always real, sinceKm
2 24Kg5(Ka2Kb)2 is

positive. With the introduction of this similarity variable, th
area distribution function can be expressed using (t,Km ,K* )
as the three independent variables, and the conserva
equation is

dA

dt
52

]A

]Km

dKm

dt
2

gKm
2 A f~Km ,K* ,t !

m
. ~25!

The conservation equation~25! is still difficult to solve
analytically, but an analytical solution can be derived in t
limit of large t. In this limit, it is expected that the magnitud
of the mean curvature of the interface decreases proporti
to (m/gt), and that of the Gaussian curvature proportiona
(m/gt)2. However, the magnitude of the variableK* re-
mains a constant, since this variable remains unchange
all points on the interface. This implies thatKm!K* in the
late stages of interface coarsening. From Eq.~24! for K* , it
can be inferred thatKm

2 54Kg in the leading approximation
in the limit Km!K* , andKm

2 24Kg decreases ast24 in the
late stages~in contrast to thet22 decrease ofKm

2 or Kg!. In
this case, the conservation equation for the area distribu
function reduces to

]A

]t
5FKm

3

2

]A

]Km
2Km

2 AG g f 8~Km ,t !

m
. ~26!

In Eq. ~26!, f (Km ,K* ,t) has been set equal tof 8(Km ,t) for
the late stages of coarsening, since it is expected that the
no dependence onK* in this limit. The conservation equa
tion ~26! for the area distribution function can be solve
using the similarity variableh5(gKmt/m),

]A

]h
5Fh2

2

]A

]h
2hAG m f 8~Km ,t !

gt
. ~27!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In Eq. ~27!, the functionf 8(Km ,t) is still unknown, and
represents a measure of the length over which the corr
tions in the curvature of the interface are correlated. In or
to proceed, it is necessary to make one further approxima
regarding the functionf 8(Km ,t). The functionf 8(Km ,t) at a
point could depend on the local curvature at the point,Km ,
as well as the mean curvature of the interface at timet which
determines the area distribution about the point under c
sideration. The exact form has to be determined by solv
Eq. ~8! self-consistently for the area distribution functio
However, one could consider two limiting cases for the fun
tion f 8(Km ,t).

~1! If we assume that the functionf 8(Km ,t) at a point
depends only on the local value ofKm at that point, then the
permitted functional form forf 8(Km ,t) is

f 8~Km ,t !5
f *

uKmu
, ~28!

where f * is a constant. In this case, the conservation eq
tion ~27! can be solved to obtain

A~h!5H A0~22 f * uhu!2 for f * uhu<2

0 for f * uhu.2
~29!

whereA0 is determined from the normalization condition.
~2! If the function f 8(Km ,t) at a point depends only o

the timet and not on the curvature at the point, then the o
permitted functional form forf is

f 8~Km ,t !5
gt f **

m
, ~30!

where f ** is a constant. In this case, the distribution fun
tion is

A~h!5H A0@22~ f ** h!2# for f ** uhu<&

0 for f ** uhu.&
. ~31!

This provides two possible functional forms for the area d
tribution function. These two functions have differe
forms—one of these, Eq.~30!, has negative slope and pos
tive curvature ath50, and the other Eq.~31!—has zero
slope and a negative curvature at the origin. However, b
of these functions are quadratic polynomials inuhu, and are
nonzero only in a finite domain abouth50. Since these
represent extreme cases of dependence off 8(Km ,t) on Km

andt, it is expected that the actual distribution is likely to b
in between these two distributions.

III. CONCLUSIONS

The coarsening of a random interface in a fluid is mo
complex than that in a solid alloy or a magnetic system d
to the nonlocal interaction between different sections of
interface, as evident from Eq.~3!. While previous studies
have used dimensional analysis to determine the time va
tion of the characteristic length of the interface, the pres
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analysis is an attempt to obtain a more detailed descrip
using a curvature distribution function, which gives the d
tribution of the mean and Gaussian curvature at differ
points on the interface. A phenomenological model wh
considered only one characteristic curvature was the sub
of an earlier publication.8 In the present paper, a microscop
model for the interface coarsening~3! was used as the star
ing point of the analysis. Two significant results for the d
namics of interface coarsening have been derived using v
ing degrees of approximation, one of which applies to
entire coarsening process and the other to the late stage

The first result is that there is a functionK* 5Kg /(Km
2

24Kg)1/2 which is invariant as the interface coarsens. T
was derived using the general functional form~13! for the
distribution of unit normals and curvatures about a po
where the unit normal and curvature are fixed, and this
expected to apply for the entire coarsening process. This
plies that at the late stages when the mean and Gaus
curvature decay proportional tot21 and t22, respectively,
Km

2 24Kg!Km
2 decays proportional tot24. Consequently, on

average, the difference in the principal curvatures in the
thogonal directions is small compared to the magnitude
the principal curvatures.

Though an invariant characteristic direction was o
tained for the curvature of the interface, the area distribut
function could not be obtained in general. However, a sim
larity solution for the distribution function could be obtaine
in the late stages, whenKm!K* using the leading orde
approximationKm

2 54Kg in this limit. An approximation for
the functional form off 8(Km ,t), which represents the char
acteristic length over which the curvature and unit normal
the interface are correlated, was required. Two limiti
forms of this characteristic length gave different similar
solution for the distribution function~29! and ~31!. Though
these distribution functions are different, they are both po
nomials in the characteristic variableuhu5ugKmt/mu, and
are nonzero only in a finite interval along theh coordinate. It
is expected that the actual area distribution function is
between these two forms. The distribution function~29! is
also of the form anticipated in an earlier publication,8 though
the exponenta, which was a phenomenological constant
that analysis, is fixed by the microscopic model in t
present case.
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