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The coarsening of a random interface in a fluid of surface tengiand viscosityu is analyzed

using a curvature distribution functioA(K,,Kgy,t) which gives the distribution of the mean
curvatureK,, and Gaussian curvatulg, on the interface. There is a variation in the area distribution
function due to the rate of change ¥f,, K4 and the compression of the interface due to tangential
motion. The rates of change of mean and Gaussian curvature at a point are related to the rate of
change of the normal velocity in the tangential directions along the interface. The fluid velocity is
governed by the Stokes equation for a viscous flow, and the velocity field at a point is determined
as an integral of the product of the Oseen tensor and the normal force at other points on the
interface. Using a general form for this integral, it is shown that there is a characteristic variable
K= Kg/(Kﬁ1—4Kg)1’2 which is independent of time even Kg, andKy decrease proportional to

t~1 andt™ 2, respectively. In the late stages, analytical forms for the distribution function are
determined in the limitK,, <K, using a similarity variablen=(yKt/x). Two reasonable
approximations are used for the characteristic length for the correlation of the curvature and normal
along the interface, and the results for these two approximations are quadratic polynorigls in
which are nonzero for a finite interval abogt 0. It is expected that the actual distribution function

is in between these two limiting cases. M98 American Institute of Physics.
[S0021-960698)50130-4

I. INTRODUCTION Gaussian curvatures along the interface, is still lacking.
_ o _ The late stage coarsening of interfaces in a fluid has
_The late stage of spinodal decomposition in & binarygcejved relatively less attention, possibly due to the com-
fluid is characterized by the presence of sharp mterfaces b?ﬂexity of the dynamical equations. In particular, the hydro-
tween the two phases. The structure formed during coarselynamic interactions in a fluid are long range, and the veloc-

ing depends on the relative concentrations of the two speciq@ at a point on an interface depends on the forces exerted on

mh the mixture. Atbhcgntlnuouosl str.uct:tufre, w_her(; the tdwfothe fluid by other sections of the interface. Consequently, the
phases are separated by a random Interface, 1S ObServed 1of &, ¢, .o velocity is given by an integral equation, which

nearly symmetric mixture. In the case of an asymmetric mix- . h . .
y Sy y ontains the correlations in the curvature at different loca-

ture, decomposition proceeds by the growth of droplets of. . e . L
o : . .~ ."tions. This causes difficulties in the rigorous derivation of
the minority phase in a supersaturated matrix of the majority i ; :
! . . averaged equations for the interface dynamics, and the cal-
phase. A microscopic analysis of the growth of a randomculation of the distribution of curvatures along the interface
interface in a fluid is the subject of the present study. Th liest predicti £ th ; fg interf b'
The late stage decomposition in binary alloys and mag- € earliest prediclion of Ihe coarsening ot an intertace by

netic systems has been studied in some detail. The Lifshitzg‘iggiaf1 was based on a simple dimensional analysis. If the

Slyozov theorY for the late stage coarsening of droplets inonIy parameters_ which.determine the interface dynamics are
an alloy predicts that the average droplet radius increasd§® Surface tensiop (which causes the normal forcend the
proportional tot3, and this growth law has been confirmed fluid viscosity u, then the characteristic length of the inter-
by experiments. The theories for the coarsening of a randorf@ce! has to scale ab=(yt/u). Furukawa also put forth
interface in solid systems are less well developed. Ohta, Jasimilar arguments for the scaling of the characteristic length
now, and Kawasakiused a constitutive relation for the mo- Of the interface, and this has been verified in experimehts.
tion of the interface as a function of the curvature and sur- A more detailed approach was pursued by the adthor,
face tension at a point, and predicted that the characteristi¥here a characteristic curvatufe= (K5 +K3)"?was used to
length in the system increases proportionatfdfor a non- ~ describe the dynamics of the interface. A curvature distribu-
conserved order parameter system. In a conserved order péen functionA(K,t) was defined such th#(K,t)dK is the
rameter system, the characteristic length increases propoarea per unit volume with curvature in the interddd about
tional tot*® due to the additional constraint of conservationK at timet. There is a change in the curvature distribution
of magnetization. Both of these scaling laws were found tadue to the change in curvature, and due to the tangential
be in agreement with simulatiodslhough the scaling of the compression of the interface. Using the simple assumption
characteristic length has been obtained, a more quantitatiibat the only length scale which determines the dynamics at
description of, for example, the distribution of mean anda point is the curvatur¥ itself, simple constitutive relations
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were obtained for the rate of change of curvature and thé¢he rate of change of area due to contractiopA{Jt), are

tangential compression of the interface. Using these, an eXxnown. These are determined using a microscopic model for

pression for the curvature distribution function was derived the fluid velocity induced by the surface tension forces at the
_ a interface.

Alm)=(1=n)%, @ The fluid velocity field is obtained by solving the
wheren=(a,Ky/u) is a similarity variable, and is a phe-  Navier—Stokes equations for a simple fluid with dengity
nomenological constant in the constitutive equations for theand viscosityu. The equations are simplified by assuming
rate of change of curvature and the tangential compression ofiat inertial effects are negligible, the validity of this as-
the interface. sumption was examined earl@iWith this approximation,

The analysis leading to El) has the disadvantage that the velocity field at a poink in the fluid is given by
it is based on phenomenological relations for the rate of
change of curvature and the tangential compression of the
interface. Consequently, the constantn Eq. (1) is as yet Ui(X):Yf dS' Ji;(x=x")n{ (X" )K(x'), 3
unknown. The objective of the present analysis is to analyze
the dynamics starting from a microscopic description of the,haere x’ is a point on the interfacedS is a differential

motion of the interface. The present analysis is more exact,tace area of the interface. the Oseen tedgais
and the dynamics of the interface is expressed using an area ’

distribution functionA(K,,Kg,t) which is a function of the 1
mean curvaturK,,, and Gaussian curvatui€,. The fluid Jij (0= o
velocity due to the force exerted by the interface is deter- s
mined from the solution of the Stokes equation, and the rates ) o
of change of curvatures and area are determined as functioR®@d the pressure on the fluid at the poiitis given by

of the variations in the normal velocity along the interface. YN (X')Ky(x"), whereyis the surface tensiom/ (x) is the

To obtain averaged equations for the rates of change of cuknit normal to the interface at this point, and the integral in
vature, the microscopic equations for the rates of change dfd- (3) is carried out over the surface of the interface.
curvature are averaged over the distributions interface con- The change in curvature and the contraction of the inter-
figurations in the vicinity of a point where the curvature andface at a poinix caused by the fluid motion are examined
unit normal are known. These equations indicate that there {8€xt. Consider an orthogonal coordinate system at a point
a variableK , = Kg/(Kan_4Kg)1/2 which is invariant during N the mterface', where is the unit nqrmgl andv and 3 are

the decomposition process, whike, and K, decrease pro- tangents to the interface glo'ng the directions of extremal cur-
portional tot~* andt~2. The conservation equation for the Vaturex, andxs. The principal curvature&, andK, are
area distribution function is difficult to solve in general, but the curvatures of the interface along theandx directions,
analytical solutions are obtained in the late stages wher@nd the curvatures are considered positive if the center of
K, >K,, using some approximations regarding the interaccurvature is on the side of the interface into which the unit

4

EREEER

tion between different sections of the interface. normal is directed. The normal velocity of the interfaceat
the pointx is
Il. ANALYSIS , e,
) ) ] ] ) . vn=yni(x)J dS Jjj(Xx=x")Nn{ (X" )K(X"). (5)
The two-dimensional surface in three dimensions is

completely defined by the mean curvatitg=K,+Kgz and ]
the Gaussian curvaturé,=K Kz, whereK, andK, are The rate of change of curvature, /dt) is the second de-

the principle curvatures, which are the extrema of the curvativative of the nzormal velocity a_long the_cﬁrection tangential
tures at a point. The dynamics of the surface is describeff the surfacedvy,). The following identities are necessary
using a “curvature distribution functionA(t,K,,K,) such ~ for determining the gradients along the surface:
thatA(t,K, ,Kg)dK,dKy is the area per unit volume which

has mean curvature in the intengs,, aboutK ,, and Gauss- duNi= — Ky,

ian curvature in the intervalKy aboutK,. A conservation

equation for the curvature distribution function can be writ-9,,a; =K n;

ten as ©®)

oA A dKy  OA dKg A
ot Ky, dt oK, dt ot

The left-hand side of Eq.2) is the change in the curvature
distribution function in a “Lagrangian” reference frame in
the K,—K,4 plane, and the right-hand side represents the
change in the area due to contraction of the surface causethered,=(d/9x,) is the gradient along the interface, and
by the tangential motion of fluid along the interface. Thed,=(d/dx;) is the gradient in three dimensions. Using the
conservation equation can be solved if expressions for thabove relations, the rate of change of the principal curvature
rates of change of curvatured,,/dt) and @Kg/dt), and K, is

) (?aJ dS' Jj;(x=x")n;(x")Kn(X")

=akf dS’&kJij(X_X/)nj(X/)Km(X,),
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dK, 10A
ar = Yaln KW_Y(Q‘(?“JF’B‘%)
=Y (—(&aKa)ai—Kini)f dS’Jij(X_X,) X ninjf dS’ij(X—X’)n{((X')Kr'“(X') . (10)
xnj’(x’)Kr’n(x’)+Ka(nink—Zaiak) Using Eg. (6), the rate of change of surface area due to
contraction of the surface is
xfdS’akJij(x—x’)nj’(x’)Kr’n(x’) 1 9A
K7=y[—Kanf dS Jj(x=x")Ng(X" K (X") ]

+niaka|J dS’&kﬁ|Jijnj’(X')Kr’n(X') y (7) (11)

The average rate of change of curvature is determined by

Where‘?aK_a represents the rate of c_hgnge of curv_ature alongiaLveraging over the distribution of microscopic configurations
the coordinater on the surface. A similar expression can beof the interface at the point’ in Egs.(8) and (9)

derived for the rate of change of curvature in fhdirection,

(dKgz/dt), and using these, the rate of change of the mea , TR
curvature and the Gaussian curvature are determined, dS'Jij(x=x")nj (x")Kp(x")
dK, ) )
ar = Y (T (0aKe) ai= (95K p) Bi— (K= 2Kg)my) :fdvu”(x—x'l) fdn'deg
xf dS' Jjj(x=x")n{ (x")Kp(x") xfdK;nAz(t,n’,K;n,Ké,x’|n,Km,Kg,x)nj’K,’n,
+(Kmnink—ZKaaiak—ZKﬂBin) (12)
where Ay(n’, Ky, ,Kg,x'[n,Ky,Kg,x)dV'dn’dKidKg s
Xf dS' 3 Jij(Xx—=x")nj (X" )Kp(x") the area of the interface in the volundd/’ aboutx’ with
curvatures betweek;, and K +dKp,, Kg and Kg+dK,
+ni(axe+ BeBy) and unit normal in the intervah’ andn’+dn’ given that
there is a surface element with curvatig,, K, and unit
xf das &k&,Jijnj’(x’)K,’n(x’) . (8) normaln at the positionx. In order to proceed further, it is

necessary to specify a form for the function within the square

A similar expression can be derived for the Gaussian curvaPrackets in Eq(12). For a homogeneous and isotropic sys-
ture by addingK g(dK,/dt) + K (dKg/dt): tem, this function should be linear in the unit nornmaland
dependent only on the distan¢e—x’|. Further, it is ex-
pected that the functiom, is close to §(K,—Kp)d(Kg
- Ké) S(n—n") if (x—x") is small compared to the radius of
curvature of the surface. Whemr<{x’) becomes large com-
Xf dS Jij (x—=x")n] (X )K [ (x') pared to the radius of curvature, the functip should tend

to zero. Further, in the absence of any intrinsic length scale

dKy
=7 (~Kp(0.K ) @i~ Ko(3pK 5) B~ KK g))

in the system, this is only a function of the curvatukes
+ 2K g(njng— a’ia‘k_IBi,Bk)f dS 9, J;j(x—x") andK  at the pointx. Consistent with these expectations, the
most general form for the term in square brackets in(Eg).
XN{ (X" )Kn(X") +Kpni(aya + BiB)) is

XJ’ dS' 9y Jij (X—=xX")n{ (X )K (X" |. (9)

[ a [ ay [ ok

The change in area due to the contraction of the interface
is determined from the relative tangential velocity of points ><A2(t"",'|<rlw1’|<éj 'X'|n'Km’Kg ’X)nJ,Kr/n
on the interface. The normal velocity of a point on the inter-
face isn,v,,, and the rate of change of this velocity along the =N Kn(X)9(Kpn Kg,[x=x"],t)
poordinf';\te direc.tiom is aa(nivn)_. Th_e rate of cha_nge of the +th(Kpm Kg Ix=x']1), (13)
interfacial velocity along the directior, tangential to the
interface isa;d,(njv,). A similar expression can be derived wheret is the perpendicular to the unit nornmain the plane
for the rate of change of the relative velocity in thgdirec-  containing n and &-x'), g(Kn,Kg,|x—x[,t), and
tion along the interface. The rate of change of area due th(K,,Kg,|x—x’|,t) are functions of the mean and Gaussian
interfacial compression is the product of the interfacial areacurvature which is presently unspecified. When the integral
and the sum of the rates of change of velocity in the tangenef Eq. (13) is carried out over the coordinate on the inter-
tial directions, face, the resulting expression has no dependence on the di-
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rectiont due to symmetry considerations, and the resultingn Egs. (20)—(22), the average(- --) is an average over the
expressions for the average values of the integrals in Eqglistribution of the unit normal and curvature adjacent to a
(8), (9), and(11) are point where the curvature and unit normal are specifiaad
not an ensemble average over the curvatures and unit nor-
<f dS’Jij(X—X')n,-'(X')Kr'n(X')> mals at a point. To simplify the notation in the following
analysis, the angular brackets are not shown explicitly, it
N () K () F(K(X), K (%), 1) being understood thatdK,/dt), (dK,/dt), and (1A)
= : (14 x(a.Aldt) are averaged in the sense noted above.
Though the conservation equati¢®) cannot be solved
, o, using relationg20)—(22), it is possible to find a characteris-
<f dS' 9 i (x=x")nj (x")Ky(x )> =0, (19 ¢ direction for the variable&,, andKg. The independent
variables are transformed fronK(,,Ky) to a new set of
n(X)(aea; + BiB)) var!ables Ky« ,Km), where the new variabl, (K,,Kg) is
defined such that

M

x f dS'aka.Jij(x—x')n,-’(x')K;n<x'>>=o, (16 d, _ 9K, dKg 9K, dKn 23
dt — Ky dt oKy, dt

where o . .
This implies that the new variabl¢, remains a constant at

a point on the interfacén the averaged sense noted above
Equation(23) can be easily solved to get the characteristic
17 variableK, ,

Note that the functiorf(K,,Kg,t) has the dimensions of K

length, and physically represents a length scale over which K :2—9_ (24)
the curvature of the interface is correlated. The forms of Egs. VK= 4Ky

(14) and (15 are evident from symmetry, but E¢L6) re-
quires further justification. Using the general form

M ! ! !

Note thatK, is always real, sinc&3—4K = (K,—Kz)? is
positive. With the introduction of this similarity variable, the
area distribution function can be expressed using {,K,)

f dS' 3013 (X=X )g(Km Kg, [x=x"|,t) as the three independent variables, and the conservation
equation is
=A(Kn ,Kg,1) 6ij 8+ B(Kiy . Kg , 1) (i 01 + 61 Ojk) ,
(18) d_A:_ A de_ YKEAT(K Ky ,t). 25
it can easily be inferred, by contracting both sides wghs;, dt Ky dt -
that A=—4B. Contracting both sides of Eq18) with The conservation equatia®5) is still difficult to solve
6ij O, We get analytically, but an analytical solution can be derived in the

limit of larget. In this limit, it is expected that the magnitude
—30B= f ds aﬁJ“(x—x’)g(Km Kg,[x=x"),t). (19 of the mean curvature of the interface decreases proportional
to (u/ yt), and that of the Gaussian curvature proportional to
It can easily be verified tha#J;;(x—x’) for [x—x'|>0, (u/yt)?. However, the magnitude of the variablie, re-
resulting in Eq.(16). There is some subtlety involved in mains a constant, since this variable remains unchanged at
obtaining d3J;; (x—x") for [x—x'|=0, since the function all points on the interface. This implies tht, <K, in the
tends to a delta function at this point. However, since thdate stages of interface coarsening. From &4) for K, , it
force exerted on the fluid by the interface is confined to aan be inferred thaik2=4K, in the leading approximation
surface, the normal velocity at the interface can be evaluateig the limit K,,<K, , andK7— 4K, decreases as * in the
as the limit of the velocity in the fluid as the interface is |ate stagegin contrast to thé 2 decrease oKfn or Kg). In
approached along the direction normal to the interface. Thishis case, the conservation equation for the area distribution
limiting value is zero due to Eq19), resulting in the identity  function reduces to

(16).
Using the relation§14)—(16), the equations for the rate A _ K_ﬁ; A o | YK (26)
of change of curvature and interfacial area are a2 K, M '
dKm\  — YKz = 2K ) K yf (K K 1) 20 In Eq. (26), f(K,,,K, ,t) has been set equal f6(K,,t) for
dt /| o ' the late stages of coarsening, since it is expected that there is
) no dependence oK, in this limit. The conservation equa-
dKgl _ — 7KK (K, Kg,1) (p1) fion (26 for the area distribution function can be solved
dt o’ ' using the similarity variabley= (yKt/u),
1A\ —yKEF(Kp,Kg,t) oA [ 7? oA (Kt
L0 _ ')’m(mg . 22) _=77_ " ,U«(m) 27)
A ot Mm dn |2 dn yt
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In Eq. (27), the functionf’ (K,,t) is still unknown, and analysis is an attempt to obtain a more detailed description
represents a measure of the length over which the correlatsing a curvature distribution function, which gives the dis-
tions in the curvature of the interface are correlated. In ordetribution of the mean and Gaussian curvature at different
to proceed, it is necessary to make one further approximatiopoints on the interface. A phenomenological model which
regarding the functiof’ (K,,t). The functionf’(K,,,t) ata considered only one characteristic curvature was the subject
point could depend on the local curvature at the pdi, of an earlier publicatiofi.In the present paper, a microscopic
as well as the mean curvature of the interface at tiwhich ~ model for the interface coarseniig was used as the start-
determines the area distribution about the point under coring point of the analysis. Two significant results for the dy-
sideration. The exact form has to be determined by solvingnamics of interface coarsening have been derived using vary-
Eq. (8) self-consistently for the area distribution function. ing degrees of approximation, one of which applies to the
However, one could consider two limiting cases for the func-entire coarsening process and the other to the late stages.

tion f' (K, ,t). The first result is that there is a functidt, = Kg/(Kfn

(1) If we assume that the functioff (K,,,t) at a point —4Kg)1’2 which is invariant as the interface coarsens. This
depends only on the local value Kf, at that point, then the was derived using the general functional foff8) for the
permitted functional form fof' (K, ,t) is distribution of unit normals and curvatures about a point

where the unit normal and curvature are fixed, and this is
== (29) expected to apply for the entire coarsening process. This im-
| Kl plies that at the late stages when the mean and Gaussian
wheref, is a constant. In this case, the conservation equacurvature decay proportional o * andt?, respectively,
tion (27) can be solved to obtain KZ— 4K <K? decays proportional to *. Consequently, on
average, the difference in the principal curvatures in the or-
Ao(2—f[7])? for f.[n<2 (29) thogonal directions is small compared to the magnitude of
0 for f,|n|>2 the principal curvatures.
whereA, is determined from the normalization condition. . Though an invariant char_actenstlc direction was o'b-
(2) If the functionf’(K,,t) at a point depends only on talneq for the curvature of .the mterface, the area dlstrlbqthn
the timet and not on the curvature at the point, then the onlyfunction could not be obtained in general. However, a simi-
permitted functional form fof is !arlty solution for the distribution fun_ctlon could b_e obtained
in the late stages, wheK <K, using the leading order
(Ko )= Y s (30 approximationk 2 = 4K in this limit. An approximation for
m: no the functional form off' (K,,,t), which represents the char-
acteristic length over which the curvature and unit normal of
the interface are correlated, was required. Two limiting

f'(Km,t)

A(n)=

wheref,, is a constant. In this case, the distribution func-

tion is forms of this characteristic length gave different similarity
Ag[2— (f,y 7] for f,,|7|<v2 solution for the distribution functio29) and (31). Though
Aln)= 0 for f,, |7|>v2 - (3D these distribution functions are different, they are both poly-

nomials in the characteristic variabley| =|yKt/u|, and
This provides two possible functional forms for the area dis-are nonzero only in a finite interval along theoordinate. It
tribution function. These two functions have different js expected that the actual area distribution function is in
fprms—one of these, Eq30), has negative slope and posi- petween these two forms. The distribution functi®9) is
tive curvature aty=0, and the other Eq(31)—has zero 5o of the form anticipated in an earlier publicatftiough
slope and a negative curvature at the origin. However, botle exponent, which was a phenomenological constant in

of these functions are quadratic polynomialsi#fy and are  that analysis, is fixed by the microscopic model in the
nonzero only in a finite domain abouj=0. Since these present case.

represent extreme cases of dependencg @K,,,t) on K,
andt, it is expected that the actual distribution is likely to be
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