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Droplet interaction in the spinodal decomposition of a fluid
V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

~Received 2 December 1997; accepted 28 July 1998!

The interaction between a pair of non-Brownian droplets in the spinodal decomposition of a binary
fluid is examined. The interaction arises due to the convective term in the model H momentum
equation, which is reciprocal to the convective term in the concentration equation. The dominant
contribution to this convective term is due to the interface between the droplet and the matrix, where
concentration gradients are large, and this contribution is determined in the limit where the distance
between the dropletsL is large compared to the radius of a dropletR. The force on the fluid due to
the interfacial concentration gradient is first calculated, and it is found that there is a net force on the
fluid only if there is a deviation of the interfacial concentration profile from the equilibrium profile.
This deviation is related to the flux of solute at the interface, which is calculated correctly to (R/L)2

for the interacting droplets. The average velocity of the droplets is then calculated by solving the
momentum equations for the system. It is found that the interaction between the droplets does cause
a spontaneous motion of the droplets towards each other. ©1998 American Institute of Physics.
@S0021-9606~98!50741-6#
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I. INTRODUCTION

It has been known for some time, both experimenta1

and theoretically2–4 that the dynamics of spinodal decomp
sition and droplet coarsening in fluids could be very differe
from that in solid alloys; this has been confirmed by mo
recent experimental5,6 and computer simulation7,8 studies.
The coarsening process in solid alloys proceeds by diffus
of the molecules along a solid lattice, but in a fluid conve
tive transport could enhance the coarsening process. The
namics of spinodal decomposition could be distinguish
into two types; the coarsening due to the motion of rand
interfaces forming a bicontinuous pattern in a symme
quench, and the growth of droplets in an off-symmet
quench. The coarsening of droplets is considered to be du
two possible mechanisms:

~1! The diffusion mechanism,9,10 which involves the growth
of droplets with radius larger than a critical value and t
shrinking of droplets with radius smaller than this val
due to diffusion of the dispersed phase through the m
trix;

~2! The coagulation mechanism,2,11 where droplets of differ-
ent sizes undergoing Brownian motion collide and co
lesce to give a larger droplet.

The former mechanism is observed when the drop
density is relatively low so that there are no collisions b
tween droplets, while the latter is observed when the dro
density is higher. In both cases, the mean radius of the d
lets obeys a scaling law of the formR(t)}t1/3. The scaling
law is the same that for the Lifshitz–Slyozov9,10 theory for
alloys, but it has experimentally been observed that the
of growth of the average radius could be much larger th
that in an alloy.

However, recent experiments5,6 have suggested tha
there is another mechanism, apart from Brownian moti
7640021-9606/98/109(17)/7644/5/$15.00
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which could lead to coalescence of droplets. In these exp
ments, it was observed that even when the droplets are
ficiently large that Brownian motion is negligible, coale
cence takes place due to the spontaneous motion of dro
towards each other. The author suggested that this coul
due to the force exerted by the convective term in the m
mentum conservation equation, which is the reciprocal of
term in the convective transport term in the mass conse
tion equation in the model H12 equations for a binary fluid.
Further, it was also suggested that this force is caused by
sharp gradient in the concentration at the droplet interfa
An analysis of the motion of a droplet in a steady concen
tion gradient was carried out by Tanaka13 to illustrate the
effect of concentration gradient on droplet motion.

In this analysis, the motion of a pair of droplets is dete
mined in the limit where the distance of separationL is large
compared to the radius of the dropletR. The model H mo-
mentum equation, which contains a term reciprocal to
convective term in the concentration equation, is used to
termine the velocity field. The velocity induced in the flu
due to a moving interface is determined using the assump
that the interfacial thickness is small compared to the rad
of the droplets. The calculation shows that an equilibriu
interface does not exert any force on the fluid, but noneq
librium corrections to the interfacial concentration profi
could result in a force due to the convective term in t
model H momentum equation. The motion of the interface
then related to the flux of solute at the interface, which
asymmetric due to the interaction between the droplets.
diffusion flux correct toO(R/L)2 is calculated, and the ve
locity of the droplet due to the convective term in the m
mentum equation is determined.

II. ANALYSIS

The momentum equation for the velocity field in a b
nary fluid contains an additional term, reciprocal to the co
4 © 1998 American Institute of Physics
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vective term in the concentration equation, which could
sult in a fluid velocity driven by concentration gradients. F
an incompressible fluid, the momentum equation in the
sence of inertial effects is12

] js i j 1F] ic
dE

dc G
'

50, ~1!

where indicial notation has been used to represent vec
and] i[(]/]xi), and@ #' represents the transverse projecti
operator. In Eq.~1!, the thermal noise is neglected for sim
plicity, because the issue of interest is the systematic fl
velocity induced by the convective force density, which
the second term on the left-hand side of Eq.~1!. The trans-
verse part of the stress tensor,s i j , is given by Newton’s law
for a for a simple fluid with viscosityh,

s i j 5h~] iv j1] jv i !, ~2!

andE is the free energy given by the Cahn–Hilliard expre
sion with an additional contribution due to the kinetic ener
of the fluid

E5E dxF f @c#1
K

2
] i

2c1
r

2
v i

2G . ~3!

With the above definition of the free energy, the moment
conservation equation~1! can easily be solved to determin
the velocity field in the fluid induced by concentration gr
dients. For a Newtonian fluid, the velocity field is

v i~x!5E dx8Ji j ~x2x8!F] j c
dE

d cG , ~4!

whereJi j (x2x8) is the Oseen tensor

Ji j ~x2x8!5
1

8ph F d i j

ux2x8u
1

~xi2xi8!~xj2xj8!

ux2x8u3 G . ~5!

There are two contributions to the force dens
(] ic(dE/dc)), one due to the square gradient term and
other due to the variation in free energy with concentrat
f @c#. The term proportional tof @c# does not result in flow,
since it results in a longitudinal contribution to the for
density,

] ic
d f @c#

dc
5] i~ f @c# !. ~6!

The transverse component of the velocity field due to t
contribution to the force density is

E dx8Ji j ~x2x8!] j~ f @c# !5E dx8] j8~Ji j ~x2x8! f @c# !,

~7!

where ] j8[(]/]xj8). In the above equation, the identit
] j Ji j (x2x8)50 has been used. Equation~7! reduces to a
surface integral, which is zero because the concentra
field decreases to a constant value far from the droplets. C
sequently, there is no contribution to the convective fo
density due to the term proportional tof @c# in the expression
for the free energy.
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Consequently, the only contribution to the fluid veloci
field is due to the square gradient contribution to the f
energy, and the velocity field is given by

v i~x!52KE dx8Ji j ~x2x8!@] j c]k
2c#. ~8!

In order to simplify Eq.~8! for the velocity profile, it is
useful to determine the expression] j c]k

2c in a spherical co-
ordinate system with origin at the center of the droplet. F
an axisymmetric concentration field,

] j c5S nj

]c

]r
1t j

1

r

]c

]u D , ~9!

]k
2c5S ]2c

]r 2 1
2

r

]c

]r
1

1

r 2 sin~u!

]

]u
sin~u!

]c

]u
D , ~10!

wheren and t are the unit vectors in ther andu directions,
andu is the azimuthal angle. Since the concentration gra
ents are sharp only near the interface, it is useful to exp
the concentration field in terms of the dimensionless coo
natez* 5(r 2R)/h, whereh is the interfacial thickness dis
cussed a little later,

] j c5S er j

1

h

]c

]z*
1eu j

1

R1hz*

]c

]u
D , ~11!

]k
2c5S 1

h2

]2c

]z* 2 1
1

h~R1hz* !

]c

]z*

1
1

~R1hz* !2

1

sin~u!

]

]u
sin~u!

]c

]u
D . ~12!

In the above expression, it is easy to see that the that in
expression for] j c, the gradient in theu direction, which is
the coefficient oft j , is O(h/R) smaller than the gradient in
the r direction proportional tonj . Consequently, the contri
bution to ] j c proportional tot j is neglected in the leading
approximation. In the expression for]k

2c, the derivative in
the u direction provides the smallest contribution, and co
sequently only the first two terms representing gradients
the r direction are retained. In the limith!R, the volume
integral in the expression for the velocity~4! can be written
as

v i~x!5E dAJi j ~x2xs!nj~xs!G~xs!, ~13!

whereA is the area of the interface,xs is the position vector
along the interface, andn is the outward unit normal to the
droplet. The magnitude of the force per unit area,G(xs), is

G~xs!52
K

h2 E
2`

`

dz* F]z* cS ]z*
2 c1

h

~R1hz* !
]z* cD G

52
K

h2 F ~]z* c!2

2 G
2`

`

2
2

R

K

h E
2`

`

dz* ~]z* c!2.

~14!

In deriving the second expression above, a term proportio
to (h/R) has been neglected in the denominator of the s
ond term on the right-hand side. For a system at equilibriu
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



nc
o
de

f
he
a
a

rs

m

r
th

l-

is
to
pl
h
ia
an
o

ity
ce

va
te

It

-

er-
um

e

the

ib-
tain

ns
-

a

ng

ral

7646 J. Chem. Phys., Vol. 109, No. 17, 1 November 1998 V. Kumaran
the first term on the right-hand side of Eq.~14! is zero be-
cause the concentration gradient is zero at large dista
from the interface. Consequently, the dominant nonzero c
tribution is due to the second term on the right-hand si
which is the product of the curvature (2/R) and the surface
tension (K/h2)*2`

` (]z* c)2, in agreement with the theory o
Kawasaki and Ohta.14 Note the negative sign because t
surface tension acts in a direction opposite to the outw
unit normal at the surface. For a system which is not
equilibrium, there is a nonzero contribution due to the fi
term on the right-hand side of Eq.~14!, since the flux could
be nonzero at the interface. Moreover, this term is the do
nant contribution to the force density, since it is (R/h) larger
than the second term. Consequently, the convective fo
density due to this term is considered in the remainder of
analysis.

The fluid flow due to departure from equilibrium is ca
culated for a specific model of the interface

f @c#5
x

2
~c2cd!2~c2cm!2, ~15!

where x is a constant. The departure from equilibrium
caused by the diffusional flux of the solute from the matrix
the droplet. It is assumed that the concentration of the dro
has attained its equilibrium value, while the flux is due to t
gradient in concentration in the matrix. The flux of mater
causes the motion of the interface along its unit normal,
the concentration at any point in a reference frame fixed
the interface is determined from the equation

2u~xs!]zc5L]z
2FdE

dc G
5L]z

2@2K]z
2c12x~c2cd!

3~c2cm!~2c2cd2cm!#, ~16!

whereu(xs) is the velocity of the interface at the pointxs ,
and L is the Onsager transport coefficient. The veloc
u(xs) is related to the diffusion flux of solute at the interfa
a little later.

The equilibrium concentration of the interface is

ce5
cd1cm

2
2

cd2cm

2
tanhS z

hD , ~17!

whereh5@((cd2cm)2/4)(x/K)#21/2 is the interfacial thick-
ness,cd is the concentration in the droplet, andcm is the
concentration in the matrix. In the above calculation, cur
ture effects have been neglected while determining the in
facial concentration since it is assumed that the radius
curvature is large compared to the interfacial thickness.
useful to express the interfacial concentration asc5c(cd

2cm)/21(cd1cm)/2, wherec is now a dimensionless con
centration field. The equilibrium concentrationce in the in-
terface is

ce52tanh~z/h!. ~18!
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The nonequilibrium correction to the concentration is det
mined using an expansion in the departure from equilibri
f5(c2ce). Equation ~16! correct to linear order in the
departure from equilibriumf is

2
u~xs!

h
]z* ce5

D

h2 ]z*
2 F2

1

4
]z*

2 f1S 3ce
221

2
D fG ,

~19!

where the dimensionless coordinatez* 5(z/h), and D
5Lx(cd2cm)2 is the bulk diffusion coefficient. The abov
fourth order equation can be integrated twice to obtain

F2
1

4
]z*

2 f1S 3ce
221

2 DfG
5

uh

D F E
0

z*
dy~2ce~y!!1z* 2 log~2!G , ~20!

where the constants of integration are determined from
requirement that thef50 anddz* f50 in the droplet phase
z*→2`, where the concentration is equal to the equil
rium concentration. It turns out to not be necessary to ob
the numerical solution to Eq.~20! for f, since the function
G(xs) can be determined from the boundary conditio
alone. It is sufficient to recognize the following limiting be
havior of the functionf(z* ):

f}exp~2z* ! for z*→2`,
~21!

f5
2u~xs!h

D
z* for z*→`.

The functionG(xs) can now be determined as follows:

G~xs!5
2K~cd2cm!2

4h2 E
2`

`

dz* ]z* c]z*
2 c

5
2K~cd2cm!2

8h2 ~]z* c!2U
2`

`

52S K~cd2cm!2u~xs!
2

2D2 D . ~22!

The convective force per unit area of the interface is
function of the velocity of the interfaceu(xs). The velocity
v i(x) due to the convective force is determined by carryi
out the integral over the surface of the droplets in Eq.~13!.
The most convenient method for determining this integ
involves expanding the Oseen tensorJi j (x2xs) about its
value at the center of the droplet

v i~x!5Ji j ~x2xc!E dAnj~xs!G~xs!1]kJi j ~x2xc!

3E dArknj~xs!G~xs!1]k] lJi j ~x2xc!

3E dArkr lnjG~xs!1¯ , ~23!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherexc is the position of the center of the droplet andr
5xs2xc . It can easily be verified that if the functionG(xs)
is independent of position on the droplet surface, the fl
velocity is zero at all points as follows:

~1! All terms proportional to*dAnj , *dAnjr kr l ,... arezero
because the integrands are odd functions of the unit
mal to the interface.

~2! The term ]kJi j (x2xc)*dAnjr k is proportional to
] j Ji j (x2xc), which is zero due to incompressibility. In
similar manner, all higher order terms proportional
*dAnjr kr l r m, . .. are also zero.

However, if there is a variation in the velocityu along
the surface of the droplet,v i could be nonzero. One mecha
nism for this variation is the interaction between two dro
lets, where the concentration field due to the presence of
droplet affects the concentration field around the other.
example, consider two droplets of radiusR separated by a
distanceL. Two coordinate systems,xA andxB , with origins
at the centers of the two droplets, are chosen for the anal
and the vector distance from dropletB to dropletA is L . It is
convenient to write equations for the reduced concentra
c, which is the difference between the local concentrat
and the average concentration in the matrix, so that
boundary condition isc→0 for r→` in the matrix. A mul-
tipole expansion is used to determine the concentration fi
in the limit R!L, and the terms in the expansion are chos
to satisfy the conditionc52cs , at the surface of the drople
wherecs is the difference between the concentration in
matrix atr→` and the equilibrium concentration of the m
trix phase at the surface of the droplet. The concentra
field around the droplets, correct to (R/L)2, is

c5
2csR

r A
S 12

R

L
1

R2

L2D 2
csR

r B
S 12

R

L
1

R2

L2D
2

csR
4L j

L3 S xA j

r A
3 2

xB j

r B
3 D . ~24!

The flux at the surface of dropletA, correct to (R/L)2, is

JAiur A5R52D] icur A5R

5
2DcsxAi

R2 S 12
R

L
1

R2

L2 1
3RxA jL j

L3 D . ~25!

The normal velocity of the surface is

u~xs!52
JAinAi

~cd2cm!

5
Dcs

R~cd2cm!
S 12

R

L
1

R2

L2D 1
3DcsxA jL j

L3~cd2cm!
. ~26!

The fluid velocity is proportional to the square ofu(xs),
which is
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@u~xs!#
25S Dcs

R~cd2cm!
D 2F S 12

R

L
1

R2

L2D 2

1
6RxA jL j

L3 S 12
R

L
1

R2

L2D 1S 3RxA jL j

L3 D 2G .

~27!

In the above expression, the first term on the right-hand s
does not contribute to the fluid velocityv i for reasons given
above. The third term on the right-hand side is proportio
to (R/L)4, which is small compared to the (R/L)2 depen-
dence of the second term in the limitL@R. Consequently,
we examine the effect of the second term on the motion
dropletA. The fluid velocity at the surface of dropletA con-
tains two contributions, one due to the interface of dropleA
and the other due to the interface of dropletB. It can easily
be verified that the contribution due to the interface of dro
let B is O(R/L) smaller than that due to the interface
droplet A. Consequently, while calculating the velocity o
dropletA, it is sufficient to consider the surface of dropletA
alone. The velocity of the fluid at the surface of dropletA is

v i5
23Kcs

2Lk

L3 E dxA8Ji j ~xA2xA8 !nj~x8!
xAk8

R
, ~28!

wherexA andxA8 are points on the surface of dropletA. The
velocity of the dropletVAi can be determined by carrying ou
an integral over the radius of this droplet,

VAi5
1

4pR2 E dxAv i . ~29!

The integral in Eq.~29! can easily be carried out to obtai
the following expression correct to leading order in (R/L),

VAi5
22Kcs

2RLi

3hL3 . ~30!

A similar calculation can be carried out for the average
locity of droplet B, and it can be shown that the avera
velocity is

VBi5
2Kcs

2RLi

3hL3 . ~31!

The above results indicate that the convective term in
model H momentum equation gives rise to a spontane
motion of the droplets towards each other, sinceL is the
vector directed from the center of dropletB to the center of
dropletA.

It is important to note at this point that the spontaneo
motion of the droplets is driven not by a variation in th
shape from its equilibrium spherical shape, but due to
asymmetry in the flux at the interface. A spherically symm
ric concentration field around a droplet cannot induce
transverse velocity component, as evident from the disc
sion after Eq.~23!. However, when there is an interactio
between the concentration fields around two droplets,
flux at the surface of a droplet is not spherically symmetr
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Due to this, the convective force density@in Eq. ~13!# is not
spherically symmetric, and there is a transverse velocity fi
even if the droplet is spherical.

III. CONCLUSIONS

It is useful to qualitatively summarize the various ste
in the present analysis. The interaction between a pai
droplets in a binary fluid due to convective effects at t
interface was analyzed. The convective effects arise fro
term in the momentum equation for the fluid which is rec
rocal to the convective term in the concentration equati
and this term is required to ensure that the coupled con
tration and momentum terms satisfy the Poisson bracke
lations. It was shown that the contribution of this term to t
transverse component of the velocity is proportional to
product of the first and second spatial gradients of the c
centration profiles, which are large at the interface betw
the droplet and the matrix. Consequently, the dominant c
tribution to this convective term is due to the large conc
tration gradients at the interface.

The inertial terms in the momentum equation were
glected, and the velocity at any point in a viscous flow
expressed as an volume integral of the product of the fl
mobility and the forces density at other points. The analy
was carried out for the case where the interface thicknes
small compared to the radius of the droplet, and so the
ume integral of the force density could be reduced to
product of integrals over the coordinate normal to the int
face and the surface area of the droplet. The interfacial c
centration profile was determined using a diffusion equat
for the concentration field, with the free energy given by t
Cahn–Hilliard square gradient expression for a regular s
tion. It was shown that an equilibrium interfacial concent
tion profile does not cause any fluid flow, but there could
flow due to deviations of the concentration profile from
equilibrium value. While calculating the deviation from
equilibrium, it was assumed that the concentration in
droplet is equal to the equilibrium concentration, but there
a concentration gradient in the matrix which causes a flux
solute from the matrix to the droplet. Using the relation b
tween the flux of solute and the motion of the interface,
convective force density per unit area of the interface w
related to the flux of solute at the interface.

The fluid velocity was then determined by integrati
the product of the mobility and the force density per unit a
over the interface of the droplet. It was found that if the fl
is constant on the surface of the droplet, the total fluid
locity is identically zero. However, if there is an interactio
between the concentration fields of two droplets, the flux
the interface is not symmetric and this could result in a n
Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP
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zero fluid velocity. The flux at a point on the interface of
droplet which is facing the second droplet is lower than t
at a point not facing the other droplet, and this differen
results in a fluid flow which tends to bring the droplets t
wards each other along their line of centers. It is interest
to note that if a similar calculation is done for a solid allo
the same difference in flux would cause the droplets to m
away from each other due to the greater accumulation
material at points not facing the second droplet.

The above calculation indicates that the convective
fect does result in the spontaneous motion of the drop
towards each other, and this could result in the coalesce
of the droplets. There are two requirements for spontane
motion;

~1! The deviation of the interfacial profile from the equilib
rium profile due to the flux of solute at the interface;

~2! The variation of the flux at the interface due to the inte
action between the droplets.

There have been various assumptions made in the ab
calculation. Since a multiple expansion has been used for
concentration field around interacting droplets, only ter
O(R/L)2 smaller than the leading order term have been
tained in the calculation. Consequently, the results would
be valid when the distance between the droplets is of
same magnitude as the droplet radius. In addition, the c
vective transport has been neglected while calculating
concentration field around the droplet. This is applica
only when the ratio (VAiR/D)!1, or (Kcs

2R2/DL2)!1.
Work is currently in progress to address these limitatio
However, the calculation unambiguously indicates that th
is a spontaneous motion of the droplets towards each ot
as seen in experiments, due to the sharp concentrations a
interface.

1N. C. Wong and C. M. Knobler, Phys. Rev. A24, 3205~1981!.
2E. D. Siggia, Phys. Rev. A20, 595 ~1979!.
3M. San Miguel, M. Grant, and J. D. Gunton, Phys. Rev. A31, 1001
~1985!.

4H. Furukawa, Phys. Rev. A31, 1103~1985!.
5H. Tanaka, J. Chem. Phys.103, 2361~1995!.
6H. Tanaka, J. Chem. Phys.105, 10099~1996!.
7G. Gonella, E. Orlandini, and J. M. Yeomans, Phys. Rev. Lett.78, 1695
~1997!.

8E. Orlandini, M. R. Swift, and J. M. Yeomans, Europhys. Lett.32, 463
~1995!.

9I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids19, 35 ~1961!.
10J. D. Gunton and M. Droz,Introduction to the Theory of Metastable an

Unstable States~Springer, Berlin, 1983!.
11K. Binder and D. Stauffer, Adv. Phys.25, 242 ~1976!.
12P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435 ~1977!.
13H. Tanaka, J. Chem. Phys.107, 3734~1997!.
14K. Kawasaki and T. Ohta, Physica A118, 175 ~1983!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


