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Droplet interaction in the spinodal decomposition of a fluid
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The interaction between a pair of non-Brownian droplets in the spinodal decomposition of a binary
fluid is examined. The interaction arises due to the convective term in the model H momentum
equation, which is reciprocal to the convective term in the concentration equation. The dominant
contribution to this convective term is due to the interface between the droplet and the matrix, where
concentration gradients are large, and this contribution is determined in the limit where the distance
between the droplets is large compared to the radius of a drogRefThe force on the fluid due to

the interfacial concentration gradient is first calculated, and it is found that there is a net force on the
fluid only if there is a deviation of the interfacial concentration profile from the equilibrium profile.
This deviation is related to the flux of solute at the interface, which is calculated correcRyLip*(

for the interacting droplets. The average velocity of the droplets is then calculated by solving the
momentum equations for the system. It is found that the interaction between the droplets does cause
a spontaneous motion of the droplets towards each otherl9@8 American Institute of Physics.
[S0021-960628)50741-9

I. INTRODUCTION which could lead to coalescence of droplets. In these experi-
ments, it was observed that even when the droplets are suf-
It has been known for some time, both experimentally ficiently large that Brownian motion is negligible, coales-
and theoreticall§ that the dynamics of spinodal decompo- cence takes place due to the spontaneous motion of droplets
sition and droplet coarsening in fluids could be very differenttowards each other. The author suggested that this could be
from that in solid alloys; this has been confirmed by moredue to the force exerted by the convective term in the mo-
recent experimentaf and computer simulatid studies. mentum conservation equation, which is the reciprocal of the
The coarsening process in solid alloys proceeds by diffusioterm in the convective transport term in the mass conserva-
of the molecules along a solid lattice, but in a fluid convec-tion equation in the model ¥ equations for a binary fluid.
tive transport could enhance the coarsening process. The difurther, it was also suggested that this force is caused by the
namics of spinodal decomposition could be distinguishedsharp gradient in the concentration at the droplet interface.
into two types; the coarsening due to the motion of randonmAn analysis of the motion of a droplet in a steady concentra-
interfaces forming a bicontinuous pattern in a symmetriction gradient was carried out by Tanakdo illustrate the
quench, and the growth of droplets in an off-symmetriceffect of concentration gradient on droplet motion.
guench. The coarsening of droplets is considered to be due to In this analysis, the motion of a pair of droplets is deter-
two possible mechanisms: mined in the limit where the distance of separatiois large
compared to the radius of the droplRt The model H mo-
. : " mentum equation, which contains a term reciprocal to the
o;driplets }/vc;th I’ElldIUS Ig rr]gerdt-han a crllltlcalhvaluE_ and Itheconvective term in the concentration equation, is used to de-
shrinking of droplets with radius smaller than this va Y€ termine the velocity field. The velocity induced in the fluid

?r?x? to diffusion of the dispersed phase through the M3&Fue to a moving interface is determined using the assumption

. . ) that the interfacial thickness is small compared to the radius
(2) The goagulatlon m_echams?ﬁ,.lwhere .droplet.s of differ- of the droplets. The calculation shows that an equilibrium
ent sizes yndergomg Brownian motion collide and C0%nterface does not exert any force on the fluid, but nonequi-
lesce to give a larger droplet. librium corrections to the interfacial concentration profile
The former mechanism is observed when the dropletould result in a force due to the convective term in the
density is relatively low so that there are no collisions be-model H momentum equation. The motion of the interface is
tween droplets, while the latter is observed when the droplethen related to the flux of solute at the interface, which is
density is higher. In both cases, the mean radius of the drogsymmetric due to the interaction between the droplets. The
lets obeys a scaling law of the forR(t)«ct¥3 The scaling diffusion flux correct toO(R/L)? is calculated, and the ve-
law is the same that for the Lifshitz—SlyoZo\ theory for  locity of the droplet due to the convective term in the mo-
alloys, but it has experimentally been observed that the ratsentum equation is determined.
of growth of the average radius could be much larger than
that in an alloy. IIl. ANALYSIS
However, recent experimenfs have suggested that The momentum equation for the velocity field in a bi-
there is another mechanism, apart from Brownian motionpary fluid contains an additional term, reciprocal to the con-

(1) The diffusion mechanisM®which involves the growth
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vective term in the concentration equation, which could re-  Consequently, the only contribution to the fluid velocity
sult in a fluid velocity driven by concentration gradients. Forfield is due to the square gradient contribution to the free
an incompressible fluid, the momentum equation in the abenergy, and the velocity field is given by

sence of inertial effects 18

SE vi(x)=—Kf dx' J;;(x—x")[9jcazc]. (8)

aj()'ij-f‘ E

&ic :0’ (1) . . . . o

n In order to simplify Eq.(8) for the velocity profile, it is
o ) useful to determine the expressiefwﬁc in a spherical co-
where indicial notation has been used to represent vectorg qinate system with origin at the center of the droplet. For
andd;=(d/dx;), and[], represents the transverse projection, axisymmetric concentration field

operator. In Eq(1), the thermal noise is neglected for sim-

plicity, because the issue of interest is the systematic flud . _ [ &—C+t» 1oc )
velocity induced by the convective force density, which is J Por Trag)
the second term on the left-hand side of EQ. The trans-
o : #’c 2 4c 1 d ac
verse part of the stress tensot; , is given by Newton'’s law 2c= .
: A . K=+ - —+ 57— sing) —|, (10)
for a for a simple fluid with viscosityy, ar ror rsin(6) 70 a0
aij=n(dv;+djvy), (20  wheren andt are the unit vectors in theand ¢ directions,

) ) - and 6 is the azimuthal angle. Since the concentration gradi-
andE is the free energy given by the Cahn—Hilliard expres-ents are sharp only near the interface, it is useful to express
sion with an additional contribution due to the kinetic energyine concentration field in terms of the dimensionless coordi-

of the fluid natez* =(r —R)/h, whereh is the interfacial thickness dis-
K o cussed a little later,
Ezf dx f[c]+5ai2c+§vi2 . ) 1 dc 1 dc
5J'C: €] H—*+eﬁj W— , (11)
With the above definition of the free energy, the momentum 0z +hz" 90
conservation equatiofl) can easily be solved to determine 1 9% 1 Jc
the velocity field in the fluid induced by concentration gra- (9Ec= S —5t " "
dients. For a Newtonian fluid, the velocity field is h®9z** h(R+hz") 9z
SE 1 1 9 Jc
(X)) = "3 (x=x) gc — + —sin(6) —|. 12
vi(X) fdx Jij(x=x")| 9;¢ 5| (4) (R+hz")2 sin(9) 90 n( )30 (12
whereJ;;(x—x') is the Oseen tensor In the above expression, it is easy to see that the that in the
. expression fow;c, the gradient in thed direction, which is
, 8ij (xi—xi’)(xj—xj’) the coefficient oft;, is O(h/R) smaller than the gradient in
Jij(X=x)= 8wy |[x—x| Ix—x'[? (5 ther direction proportional ta; . Consequently, the contri-

bution to d;c proportional tot; is neglected in the leading
There are two contributions to the force density approximation. In the expression féfc, the derivative in
(d;c(oE/6c)), one due to the square gradient term and thehe ¢ direction provides the smallest contribution, and con-
other due to the variation in free energy with concentrationsequently only the first two terms representing gradients in
f[c]. The term proportional té[c] does not result in flow, ther direction are retained. In the limh<R, the volume
since it results in a longitudinal contribution to the force integral in the expression for the velocit§) can be written
density, as

of[c
e e © o= [ dAscexn (0G0, 13
vhereA is the area of the interfac, is the position vector
along the interface, and is the outward unit normal to the

droplet. The magnitude of the force per unit arédx,), is

The transverse component of the velocity field due to thi
contribution to the force density is

J dX’Jn<X—X’>&j(f[c])=fdx’aj’ui,-(x—x')f[c]), __K f A 2
@ G(Xs) n? _mdz d+C| dyuC+ (R¥h7") dxC
where 9= (d/dx{). In the above equation, the identity _ K [(dxc)?]" 2K foc 42 (9.00)?
d;Jij(x—x")=0 has been used. Equati¢) reduces to a h 2 | _ RhJ_s S

surface integral, which is zero because the concentration

field decreases to a constant value far from the droplets. Con- (14)
sequently, there is no contribution to the convective forcdn deriving the second expression above, a term proportional
density due to the term proportional tpc] in the expression to (h/R) has been neglected in the denominator of the sec-
for the free energy. ond term on the right-hand side. For a system at equilibrium,
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the first term on the right-hand side of Ed.4) is zero be- The nonequilibrium correction to the concentration is deter-
cause the concentration gradient is zero at large distancesined using an expansion in the departure from equilibrium
from the interface. Consequently, the dominant nonzero coné = (¢/— i.). Equation(16) correct to linear order in the
tribution is due to the second term on the right-hand sidedeparture from equilibriung is

which is the product of the curvature &/ and the surface

tension K/h?) [~ _.(d,xc)?, in agreement with the theory of u(xs) D ,| 1, 3ye-1
Kawasaki and Oht4' Note the negative sign because the Ioxthe=15 9| ~ It 5 ¢l
surface tension acts in a direction opposite to the outward (19)

unit normal at the surface. For a system which is not at

equilibrium, there is a nonzero contribution due to the firstwhere the dimensionless coordina#® =(z/h), and D
term on the right-hand side of E(L4), since the flux could = A x(cq—c)? is the bulk diffusion coefficient. The above
be nonzero at the interface. Moreover, this term is the domifourth order equation can be integrated twice to obtain
nant contribution to the force density, since it R/f) larger

than the second term. Consequently, the convective forct_l o 3¢§—1)¢
density due to this term is considered in the remainder of the 4 “#* 2
analysis.
The fluid flow due to departure from equilibrium is cal- uh| [ .
culated for a specific model of the interface D JO dy(—¢e(y)) +2 —Iog(Z)}, (20

X 5 ) where the constants of integration are determined from the

fle]=75 (c=ca)™(c—cm), (19 requirement that the=0 andd,« #=0 in the droplet phase

z* — —oo, where the concentration is equal to the equilib-

where y is a constant. The departure from equilibrium is "lUm concentration. It turns out to not be necessary to obtain
caused by the diffusional flux of the solute from the matrix toth€ numerical solution to Eq20) for ¢, since the function
the droplet. It is assumed that the concentration of the droplée(%s) can be determined from the boundary conditions
has attained its equilibrium value, while the flux is due to thelone. It is sufficient to recognize the following limiting be-
gradient in concentration in the matrix. The flux of material havior of the functiong(z*):
causes the motion of the interface along its unit normal, and

* * _
the concentration at any point in a reference frame fixed on pexp2zt)  for 2% ——c,

the interface is determined from the equation 2u(x)h (21)
= 7% for z¥ —o,
SE D
2
—u(xs)azc=Aaz[—} ) _
oc The functionG(x) can now be determined as follows:
A 22 K A2 _
=Ad;[—Kasc+2x(c—cy) —K(cq—Cp)? (= ) ,
X (6= Cn) (26— Cg = C), (16 S~ i |z i
i i i i —K(cyg— Cm)z ”
whereu(x,) is the velocity of the interface at the poixt, _ (D)2
and A is the Onsager transport coefficient. The velocity B 8h?2 ¥
u(xs) is related to the diffusion flux of solute at the interface o
a little later. K(Cg—Cm)2U(Xs)?
The equilibrium concentration of the interface is =- D2 : (22
_C4tCm Cg—Cm ¢ z 1 The convective force per unit area of the interface is a
Ce=7 2 2 h/’ 17 function of the velocity of the interface(xs). The velocity

vi(x) due to the convective force is determined by carrying
whereh=[((cq—cn)%4)(x/K)] Y is the interfacial thick- out the integral over the surface of the droplets in Bc).
ness,cq is the concentration in the droplet, ang, is the ~ The most convenient method for determining this integral
concentration in the matrix. In the above calculation, curvainvolves expanding the Oseen tenshj(x—Xx;s) about its
ture effects have been neglected while determining the intei/alue at the center of the droplet
facial concentration since it is assumed that the radius of
curvature is large compared to the interfacia! thickness. It is vi(x):\]ij(x_xc)f dAN (X)) G(Xe) + Aicdij (X—X¢)
useful to express the interfacial concentrationcasys(cy
—Cm)/2+(cyt+ ) /2, wherey is now a dimensionless con-

centration field. The equilibrium concentratign in the in- X J dArN;(Xs) G(Xs) + 1 dij (X—Xc)
terface is
o= —tank(z/h). (19 xfdArkrIan(Xs)"'"' : (23

Downloaded 06 Apr 2005 to 128.111.9.167. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 109, No. 17, 1 November 1998 V. Kumaran 7647

wherex. is the position of the center of the droplet and Dcs 2 R R2\2

=Xs—X.. It can easily be verified that if the functid(x,) [u(xs)]2=(—) {( 1-—+—

is independent of position on the droplet surface, the fluid R(Cq—Cm) L L

velocity is zero at all points as follows: BR X)L | R R? 3R¥ajL; 2

(1) All terms proportional tof dAn;, [dAnr,r,,... arezero L3 (1 R R E ) }
because the integrands are odd functions of the unit nor-
mal to the interface. (27)

(2) The term giJij(x—xc)JdAnir is proportional to |n the above expression, the first term on the right-hand side
d;Jij (X—xc), which is zero due to incompressibility. Ina does not contribute to the fluid velocity for reasons given
similar manner, all higher order terms proportional toahove. The third term on the right-hand side is proportional
JAdAnryrry, ... are also zero. to (R/L)*, which is small compared to theR(L)? depen-
However, if there is a variation in the velocityalong ~ dence of the second term in the linii-R. Consequently,

the surface of the droplet; could be nonzero. One mecha- we examine the effect of the second term on the motion of

nism for this variation is the interaction between two drop-droPIetA. The fluid velocity at the surface of droplétcon-
lets, where the concentration field due to the presence of orf@ins two contributions, one due to the interface of droplet
droplet affects the concentration field around the other. Fopnd the other due to the interface of droietlt can easily
example, consider two droplets of radiBsseparated by a be verified that the contribution due to the interface of drop-
distanceL. Two coordinate systems, andxg, with origins €t B is O(R/L) smaller than that due to the interface of
at the centers of the two droplets, are chosen for the analysidoPlet A. Consequently, while calculating the velocity of
and the vector distance from drop®to dropletAisL. Itis ~ dropletA, itis sufficient to consider the surface of drophet
convenient to write equations for the reduced concentratiof!ON€. The velocity of the fluid at the surface of dropieis

¢, which is the difference between the local concentration _3KC2L X'

and the average concentration in the matrix, so that the , _ sk R TRV

R . . Uj 3 dXA‘JIJ(XA XA)nJ(X ) ) (28)

boundary condition i€—0 for r —o in the matrix. A mul- L R

tipole expansion is used to determine the concentration field , )

in the limit R<L, and the terms in the expansion are choserf'NeréXa andx, are points on the surface of dropkt The

to satisfy the conditiom= —c., at the surface of the droplet, VElOCity of the droplev/,; can be determined by carrying out

wherec, is the difference between the concentration in the?" integral over the radius of this droplet,

matrix atr —oo and the equilibrium concentration of the ma- 1

trix phase at the surface of the droplet. The concentration Vai=—— f dxav; . (29)

field around the droplets, correct t&IL)?, is 4mR

The integral in Eq(29) can easily be carried out to obtain

—cR (1 R . Rz) csR ( R . RZ) the following expression correct to leading order R/I(),
c= ——t |- |1-—t—
r L L% r L L?
A B y _—2Kc§RLi 0
CRL (Xni_ o) N %0
R g 24
A B A similar calculation can be carried out for the average ve-
locity of droplet B, and it can be shown that the average
The flux at the surface of droplét, correct to R/L)?, is velocity is
2KC2RL
Jailr —r=—Ddic|, - s
A||rA R [ |rA R Vgi= E (32)

R? Ctzt 5 |- (29 The above results indicate that the convective term in the
model H momentum equation gives rise to a spontaneous
motion of the droplets towards each other, sithcas the
vector directed from the center of dropBtto the center of

:—DchAi( R R_2 3RXajL

The normal velocity of the surface is

dropletA.

JaiNA It is important to note at this point that the spontaneous

U(Xg) == ——— motion of the droplets is driven not by a variation in the
(Cq—Crm) shape from its equilibrium spherical shape, but due to an

Dc, R R? 3DCXalL | asymmetry in the flux at the interface. A spherically symmet-
=——|1-—+—|+—F5———. (2600 ric concentration field around a droplet cannot induce a
R(C4—Cm) L L L*(Cq—Cm) transverse velocity component, as evident from the discus-

sion after Eq.(23). However, when there is an interaction
The fluid velocity is proportional to the square ofxs), between the concentration fields around two droplets, the
which is flux at the surface of a droplet is not spherically symmetric.
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Due to this, the convective force densfip Eq. (13)] is not  zero fluid velocity. The flux at a point on the interface of a
spherically symmetric, and there is a transverse velocity fieldiroplet which is facing the second droplet is lower than that

even if the droplet is spherical. at a point not facing the other droplet, and this difference
results in a fluid flow which tends to bring the droplets to-
Ill. CONCLUSIONS wards each other along their line of centers. It is interesting

It is useful to qualitatively summarize the various stepsto note that if a similar calculation is done for a solid alloy,

in the present analysis. The interaction between a pair Otlhe same difference in flux would cause the droplets to move
droplets in a binary fluid due to convective effects at the2WVaY from each other due to the greater accumulation of

interface was analyzed. The convective effects arise from g1ater|al at points not facing the second droplet.

term in the momentum equation for the fluid which is recip—]c tTdhe aboveltc_aICttJrI]ann |ntd|cates thatt_the c;)r:r\]/ec(tjlve Ieft-
rocal to the convective term in the concentration equation ect does result in the spontaneous motion of the droplets

and this term is required to ensure that the coupled Concer1‘|9wards each other, and this could result in the coalescence

tration and momentum terms satisfy the Poisson bracket rle the droplets. There are two requirements for spontaneous

lations. It was shown that the contribution of this term to themotlon;
transverse component of the velocity is proportional to theg1) The deviation of the interfacial profile from the equilib-
product of the first and second spatial gradients of the con- rium profile due to the flux of solute at the interface;
centration profiles, which are large at the interface betwee(?) The variation of the flux at the interface due to the inter-
the droplet and the matrix. Consequently, the dominant con-  action between the droplets.
tribution to this convective term is due to the large concen-
tration gradients at the interface.

The inertial terms in the momentum equation were ne
glected, and the velocity at any point in a viscous flow is
expressed as an volume integral of the product of the flui

There have been various assumptions made in the above
calculation. Since a multiple expansion has been used for the
concentration field around interacting droplets, only terms
(R/L)? smaller than the leading order term have been re-

mobility and the forces density at other points. The analysi ained in the calculation. Consequently, the results would not
e valid when the distance between the droplets is of the

was carried out for the case where the interface thickness ) . L
small compared to the radius of the droplet, and so the vol>ame magnitude as the droplet radius. In addition, the con-

ume integral of the force density could be reduced to thevective transport has been neglected while calculating the

product of integrals over the coordinate normal to the inter.coOncentration field around the droplet. This is applicable

only when the ratio YR/D)<1, or (Kc2R?/DL?)<1.

face and the surface area of the droplet. The interfacial cor‘w Ki v i to add th limitadi
centration profile was determined using a diffusion equation ork IS currently In progress 10 address these limitations.

for the concentration field, with the free energy given by the_However, the calculati_on unambiguously indicates that there
Cahn—Hilliard square gradient expression for a regular solu’S & spor)taneou_s motion of the droplets towards ea.‘Ch other,
tion. It was shown that an equilibrium interfacial concentra-2S SE€N I experiments, due to the sharp concentrations at the
tion profile does not cause any fluid flow, but there could bénterface.
flow due to deviations of the concentration profile from its
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