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The velocity distribution function for the steady shear flow of disks (in two dimen-
sions) and spheres (in three dimensions) in a channel is determined in the limit where
the frequency of particle–wall collisions is large compared to particle–particle colli-
sions. An asymptotic analysis is used in the small parameter ε, which is naL in two
dimensions and na2L in three dimensions, where n is the number density of particles
(per unit area in two dimensions and per unit volume in three dimensions), L is the
separation of the walls of the channel and a is the particle diameter. The particle–wall
collisions are inelastic, and are described by simple relations which involve coefficients
of restitution et and en in the tangential and normal directions, and both elastic and
inelastic binary collisions between particles are considered. In the absence of binary
collisions between particles, it is found that the particle velocities converge to two
constant values (ux, uy) = (±V , 0) after repeated collisions with the wall, where ux and
uy are the velocities tangential and normal to the wall, V = (1 − et)Vw/(1 + et), and
Vw and −Vw are the tangential velocities of the walls of the channel. The effect of
binary collisions is included using a self-consistent calculation, and the distribution
function is determined using the condition that the net collisional flux of particles at
any point in velocity space is zero at steady state. Certain approximations are made
regarding the velocities of particles undergoing binary collisions in order to obtain
analytical results for the distribution function, and these approximations are justified
analytically by showing that the error incurred decreases proportional to ε1/2 in the
limit ε→ 0. A numerical calculation of the mean square of the difference between the
exact flux and the approximate flux confirms that the error decreases proportional
to ε1/2 in the limit ε → 0. The moments of the velocity distribution function are
evaluated, and it is found that 〈u2

x〉 → V 2, 〈u2
y〉 ∼ V 2ε and −〈uxuy〉 ∼ V 2ε log (ε−1) in

the limit ε→ 0. It is found that the distribution function and the scaling laws for the
velocity moments are similar for both two- and three-dimensional systems.

1. Introduction
Rapid shear flows of granular materials are encountered in many situations such

as rock slides, snow avalanches, and in numerous industrial applications involving the
transport of solids. Rapid flows involve widely spaced particles in vigorous motion,
where the transport of momentum and energy is due to instantaneous particle–wall
and particle–particle collisions. This is in contrast to slow deformations, where there
is extended contact between particles and the transport of momentum and energy
occurs due to tangential and normal frictional forces. In rapid shear flows, the
particle motion is driven by the motion of the walls, and momentum and energy are
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transported by particle collisions with the wall and with other particles. For such
flows, it is natural to exploit the analogy between the motion of the particles and
the motion of molecules in an ideal gas, and to seek a description similar to the
kinetic theory for gases. Such a description is difficult, however, due to the nonlinear
nature of the Boltzmann equation for the particles. In an ideal gas of elastic particles
at equilibrium, it is possible to use the Boltzmann H-Theorem to show that the
velocity distribution function is a Gaussian (Maxwell–Boltzmann) distribution. For
systems near equilibrium, an asymptotic scheme, the Enskog expansion (Chapman
& Cowling 1970), can be used with the Maxwell–Boltzmann distribution as the
leading approximation. Most of the previous analyses of shear flows have used the
Maxwell–Boltzmann distribution as the starting point, but this approximation is valid
when the coefficient of elasticity is close to 1, the time between successive collisions
is small compared to the inverse of the strain rate and the distance between the
walls is large compared to the mean free path of the particles (low-Knudsen-number
limit). However, an approximation of this type cannot be used in the opposite limit,
where the coefficient or restitution may not be close to 1, and the distance travelled
by a particle between successive binary collisions is large compared to the distance
between the walls (high-Knudsen-number limit). The objective of the present study is
to use asymptotic analysis to determine the distribution function in the high Knudsen
number limit where the coefficient of restitution may not be close to 1.

The analogy between the motion of particles in rapid shear and that of molecules
in a gas has been used to develop kinetic theories for the rapid flow of granular
materials (Jenkins & Savage 1983; Lun et al. 1984; Jenkins & Richman 1988;
for a review see Jenkins 1987). In these models, there is a granular ‘temperature’
associated with the random fluctuating motion of the particles, and in addition to
the mass and momentum equations, it is necessary to write a conservation equation
for the temperature. Constitutive equations that take into account both frictional
and collisional transport of momentum have been proposed by Savage (1982) and
Johnson & Jackson (1987). Another issue of importance in the study of granular flows
is the form of the boundary conditions, in particular the boundary condition for the
granular temperature at the bounding surfaces. Jenkins & Richman (1986) obtained
the boundary conditions from microscopic models for the interaction between the
particle and the wall due to a specific geometric structure of the wall. Johnson &
Jackson (1987) have used a more simple specularity condition, and included both
frictional and kinetic transport effects in their boundary conditions. Recently, Jenkins
& Askari (1991) have considered the interface between particles that are sheared and
particles that are stationary on average, and treated the boundary using methods
similar to that of Jenkins & Richman (1986).

The form of the constitutive equation for the temperature is considered to be similar
to the heat equation in the Chapman–Enskog theory of dense gases (Chapman &
Cowling 1970), and the dependence of the viscosity and thermal conductivity on the
temperature is assumed to be of the same form as that for a dense gas. In using these
equations it is explicitly or implicitly assumed that the velocity distribution function of
the particles is close to the Maxwell–Boltzmann distribution for a gas at equilibrium.
However, in practical situations the distribution function could be very different
due to many reasons. The Maxwell–Boltzmann distribution is valid only for elastic
particles, while in practice most granular flows involve inelastic particles. Even for
slightly inelastic particles when the coefficient of elasticity is close to 1, the Maxwell–
Boltzmann distribution can only be used when the time between successive collisions
is small compared to the inverse of the strain rate, and when the mean free path is
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small compared to the width of the channel. In view of the restrictive regime where the
Maxwell–Boltzmann equation is applicable, it is necessary to examine other methods
of deriving the particle distribution function in order to model realistic physical
situations. However, this is complicated due to the nonlinear nature of the Boltzmann
equation, and a general class of solutions is not available. In the present study,
asymptotic analysis is used to derive the distribution function in the limit opposite
to the Maxwell–Boltzmann limit, i.e. in the limit where the coefficient of elasticity
may not be close to 1, and the particle–wall collisions are more frequent compared to
particle–particle collisions. Since the calculation of the distribution function explicitly
includes the details of the particle–particle and particle–wall collisions, it is not
necessary to make any assumptions regarding the form of the boundary conditions
once the model for the particle dynamics is identified.

A distribution function that is very different from the Maxwell–Boltzmann distri-
bution was derived earlier by Kumaran & Koch (1993) for a bidisperse suspension
of particle settling in a gas. In this case, particles collisions due to a difference in the
terminal velocities of the two species induce fluctuations, and the drag force due to
the gas reduces the fluctuations and brings the particle velocities back to their termi-
nal velocities. In the limit where the viscous relaxation time of the particles is small
compared to the time between collisions, most of the particles have velocities close
to their terminal velocities, while there are a few particles which have velocities very
different from their terminal velocities soon after a collision. An asymptotic analysis
was used to examine this limit, and the distribution functions are delta functions at the
terminal velocities of the two species in the absence of binary collisions in the leading
approximation. The effect of binary collisions between particles travelling at their
terminal velocities on the distribution function was determined using a perturbation
analysis in the small parameter τv/τc, where τv is the viscous relaxation time and τc
is the time between successive collisions. It was found that the distribution function
diverges near the terminal velocities of the two species, and is non-zero in a finite
region in velocity space. The moments of the distribution function were calculated,
and these were in agreement with the simulation results of Kumaran, Tsao & Koch
(1993) with no adjustable parameters. Tsao and Koch (1995) extended this to the
shear flow of a dilute monodisperse suspension of particles in a gas. Here, collisions
are induced between particles travelling along streamlines with different velocities
whose separation is less than a particle diameter, and the viscous dissipation in the
gas tends to bring the particles back to the velocity of the streamline along which
they are travelling.

In the present study, a similar analysis is carried out for the shear flow of a granular
material between two plates. The number density of the particles n is low enough
that the parameter ε = nLa2 is small, where L is the distance between the plates and
a is the particle diameter. Note that ε, the ratio of the distance between the plates
and the distance between successive binary collisions, is the inverse of the Knudsen
number (Cercignani 1975). In this case, particle–wall collisions are more frequent than
particle–particle collisions, and the particle–wall collisions transfer momentum to the
particles in the tangential direction. In order to model this transfer, the particle–wall
collisions are considered to be inelastic with constant coefficients of restitution in
the tangential and normal directions. The binary collisions between the particles are
considered to be elastic in most of the analysis, but the effect of inelastic collisions
is also considered. The particle transport in velocity space due to wall and binary
collisions is determined, and the distribution function at steady state is calculated
by equating the fluxes into and out of a differential volume in velocity space. The



322 V. Kumaran

moments of the distribution function are then calculated. The analysis is developed for
inelastic disks in a two-dimensional geometry in the next section, since the transport
of particles in velocity space is more easily visualized in two dimensions. The extension
to inelastic spheres in three dimensions is briefly discussed in §3.

2. Inelastic disks in two dimensions
In the present section, the velocity distribution function for a two-dimensional set of

disks sheared between two plane surfaces is analysed in the limit where the frequency
of wall collisions is large compared to that of binary collisions between the disks. The
configuration consists of a channel of width L and infinite length containing disks
of diameter a with number density n per unit area, with the origin of the coordinate
system located at the centre of the channel. The walls of the channel move with
velocities Vw and −Vw , and the tangential force exerted by the wall on the particles
causes particle motion. If the particle velocities in the x- and y-directions are of the
same magnitude, the frequency of wall collisions is small compared to that of binary
collisions for naL � 1. The particle–wall collisions are inelastic, and the coefficient
of restitution is en for the normal velocity and et for the tangential velocity, where
et and en are both less than 1. The components of the velocity of a particle after a
wall collision, (u′x, u

′
y), are related to the components before the collision, (ux, uy), as

follows:

u′x = etux ± (1− et)Vw, u′y = −enuy. (2.1)

In the equation for u′x, the positive sign for Vw is used for collisions with the wall
at y = L/2, and the negative sign for collisions with the wall at y = −L/2. In
(2.1), the equation for the change in the tangential velocity ux states that the post
collisional relative velocity between the particle and wall is et times the precollisional
relative velocity. Equations similar to (2.1) have been used often in previous studies,
for example in Jenkins & Richman (1985), Lun & Savage (1987) and Lun (1991).
The coefficients of restitution are not constants in general, and could depend on
the inelasticity, the particle surface friction coefficient and the impact velocity. The
effect of a normal-velocity-dependent coefficient of restitution was considered by Lun
& Savage (1987), who assumed that en was an exponentially increasing function
of the normal velocity. More complex collision laws which incorporate normal and
tangential coefficients of restitution and tangential friction have been formulated by
Walton (1992) and used by Jenkins (1992), and these have been verified experimentally
by Foerster et al. (1994). However, the computations become quite complex even for
this simple form of the friction coefficient. In the present analysis, as in the studies of
Jenkins & Richman (1985) and Lun (1991), the coefficients of restitution are assumed
to be constants to simplify the calculations. The binary collisions between particles
are considered to be elastic in most of the analysis, but the effect of inelastic binary
collisions on the velocity distribution function is briefly discussed at the end of this
section.

The derivation of the distribution function is a self-consistent derivation, and the
steady state distribution function is derived by equating the fluxes of particles into
and out of a differential volume in velocity space. However, before presenting the self-
consistent analysis, it is useful to discuss the physical mechanism for the generation of
particle velocity fluctuations in the flow. A collision of a particle with the wall has two
effects. The first is to decrease the velocity of the particle normal to the wall, thereby
dampening the fluctuations normal to the wall. The second is to alter the tangential
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velocity by an amount proportional to the difference between the particle velocity
and the wall velocity, thereby increasing the velocity fluctuations in this direction.
If we consider an initial state where the particles have some velocity fluctuations in
the y-direction and neglect binary collisions, the effect of repeated collisions with the
walls would tend to reduce the normal velocity to zero, while the tangential velocity
would converge to a set of velocities which are regenerated after successive collisions
with the two walls of the channel. This final velocity can be obtained by considering
two successive collisions of the particle, first with the wall at y = L/2 and second with
the wall at y = −L/2. After the first collision, the particle velocity in the x-direction
is

u′x = etux + (1− et)Vw, (2.2)

and the velocity after the second collision is

u′′x = etu
′
x − (1− et)Vw

= e2
t ux − (1− et)2Vw. (2.3)

If the tangential velocity of the particle is recovered after two successive collisions,
u′′x = ux, and the velocity of the particle is

ux = −V =
−(1− et)Vw

1 + et
,

u′x = V =
(1− et)Vw

1 + et
.

 (2.4)

If the initial distribution of particle velocities in the y-direction is symmetric about
uy = 0, the distribution function in the final state would consist of an equal number
of particles with velocities at (±V , 0), with small fluctuations about these velocities.
The velocity after i collisions with the walls of a particle with initial velocity (u(0)

x , u
(0)
y )

is

ux + (−1)i(1 + (−1)(i−1)eit)V = eitu
(0)
x , uy = (−1)ieinu

(0)
y , (2.5)

where it is assumed that the first collision takes place with the wall at y = +L/2.
A symmetrical argument applies if the first collision takes place with the wall at
y = −L/2.

In deriving the above trajectory of the particles, the effect of binary collisions
has been neglected. However, binary collisions are important when the velocity
uy becomes small. The frequency of wall collisions (per unit area) is proportional
to nuy/L, while the frequency of binary collisions (per unit area) is proportional
to n2aV . The frequency of wall collisions is of the same magnitude as that of
binary collisions for uy ∼ εV , or ein ∼ ε. In this case, it is necessary to take into
account the effect of binary collisions in a small region of radius εV about the
points (±V , 0). The binary collisions cause a dispersion in the particle velocities,
and produce the y-component of the velocity required for wall collisions. The wall
collisions then tend to reduce the particle velocities back to the values (±V , 0).
Consequently, at steady state, most of the particles have velocities near (±V , 0), while
a relatively small number of particles have velocities O(V ) different from (±V , 0).
For particles with velocities near (±V , 0), the dominant mechanism of dispersion is
binary collisions, since the velocity of these particles normal to the wall is small, while
for particles with velocities O(V ) different from (±V , 0), the dominant mechanism
of dispersion is particle–wall collisions, which tend to reduce the velocity of these
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Figure 1. The coordinate system for analysing the binary collision between two disks in the
two-dimensional geometry.

particles to (±V , 0). The qualitative picture presented here is formalized using a
self-consistent derivation of the distribution function at steady state in the following
analysis.

The distribution function is derived self-consistently using an asymptotic expansion
in the small parameter ε = naL. The effect of binary collisions on the dispersion of
particle velocities is considered first. As indicated earlier, transport in velocity space
due to binary collisions is large compared to that due to particle–wall collisions
when the particles velocities are close to (±V , 0). Therefore, while calculating the flux
due to binary collisions correct to leading order in small ε, it is assumed that the
colliding particles have velocities (±V , 0). It will be shown a little later that at steady
state, the root-mean-square fluctuating velocity of the particles in the y-direction is
O(ε1/2V ) and the root mean square of the deviation of the velocities in the x-direction
from ±V is O(ε1/2V ). Consequently, it is expected that the error incurred in the
post-collisional velocities due to the assumption that the precollisional velocities are
(±V , 0) decreases proportional to ε1/2V in the asymptotic limit ε → 0. In addition,
the error in the collisional fluxes due to the assumption regarding the precollisional
velocities is verified in another manner later in the analysis. The collisional fluxes are
calculated using the approximate distribution function in two ways. In the first, the
flux is estimated using the actual precollisional velocities of the two particles, and in
the second the precollisional velocities are assumed to be (±V , 0). The mean square
of the difference in the fluxes evaluated in these two ways is computed and integrated
over velocity space. It is observed that the root mean square of the difference in the
fluxes does decrease proportional to ε1/2 in the limit ε → 0, thereby justifying the
above qualitative arguments.

Consider a collision between particle A with velocity (uAx, uAy) = (V , 0) and particle
B with velocity (uBx, uBy) = (−V , 0). The result of the collision depends on the angle
made by the line joining the centres of the particles at the point of contact with
the direction of the relative velocity, θ, as shown in figure 1. The components of the
velocity after the collision are

u′Ax = −V cos (2θ), u′Ay = −V sin (2θ),

u′Bx = V cos (2θ), u′By = V sin (2θ).

}
(2.6)

If the components of the velocity are expressed in polar coordinates in velocity space,
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the final velocities of the two particles are

uA = V , χA = π + 2θ,

uB = V , χB = 2θ,

}
(2.7)

where uA and uB are the distances from the origin in velocity space, and χA and χB are
the polar angles. In the above equations, χA varies between 0 and 2π, while χB varies
between −π and π. Equation (2.7) indicates that binary collisions transport particles
onto a circle of radius V centred at the origin in velocity space, and there is an
accumulation of particles on this circle due to binary collisions. There is a depletion
of particles because of the change in velocity due to wall collisions, and the density
of particles on this circle is determined by a balance between these two, as shown
below.

The frequency of collisions between particles per unit area in which the angle
between the line of centres and the relative velocity is in the range dθ about θ is

Frequency / Area = (n/2)2(2V )a cos (θ)dθ. (2.8)

Using the relation between χA, χB and θ (2.7), the following relations can be obtained
for the collisional influx of particles (per unit area) in the differential angle dχA about
χA and dχB about χB on the circle of radius V in velocity space:

Nin
A (χA)dχA = 1

4
n2Va

[
cos
(

1
2
χA − 1

2
π
)]

dχA,

Nin
B (χB)dχB = 1

4
n2Va

[
cos
(

1
2
χB
)]

dχB.

 (2.9)

Here, the indices A and B refer to the particles that have a precollisional x-velocity in
the positive and negative directions respectively. The collisional fluxes for particles of
type A and B are written separately because the ranges of the angles χA and χB are
different: χA varies between 0 and 2π, while χB varies between −π and π. At steady
state, there is a flux of particles out of the circle of radius V due to particle collisions
with the wall. This flux (per unit area) is

Nout
I (χI )dχI = (n|uIy|/L)fI0(χI )dχI (2.10)

for I = A and I = B. Here, fI0(χI ) is the distribution function along the circle of
radius V in velocity space after the binary collision, and nfI0(χI )dχI is the number
of particles per unit area in the differential angle dχI about χI . At steady state,
Nout
I = Nin

I , and fI0 is

fA0(χA) =
ε

4| sin (χA)|
[
cos
(

1
2
χA − 1

2
π
)]
,

fB0(χB) =
ε

4| sin (χB)|
[
cos
(

1
2
χB
)]
.

 (2.11)

The above distribution function diverges near χA = π and χB = 0. This is because at
these points, the velocity uy is zero, and there is no depletion of particles due to wall
collisions. However, it is necessary to take into account the depletion due to binary
collisions at these points, since they are of the same magnitude as the wall collisions.
The modified flux of particles (per unit volume) is

Nout
I (χI )dχI = (n|uy|/L+ 2n2aV )fI0(χI )dχI . (2.12)

In deriving the above expression, we have assumed that the velocities of the colliding
particles are (V , 0) and (−V , 0). This approximation is correct to O(ε1/2) for particles
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with uy ∼ O(ε1/2V ). For particles with uy ∼ O(V ), there is an O(1) error in the
estimation of the frequency of the binary collisions. However, for these particles, the
depletion of particles due to binary collisions is O(ε) smaller than that due to wall
collisions, and so the error made in the estimate of the total flux is O(ε) in this region.
Therefore, the above expression for the particle flux is in error by a maximum of
O(ε1/2). The error incurred due to this approximation is evaluated quantitatively later
on in the present section. A measure of the error 〈E2〉 is defined as the integral over
the velocity space of the square of the difference between the ‘exact flux’ evaluated
using the approximate distribution function and the exact velocity difference between
the particles, and the approximate flux evaluated using the approximate distribution
function and setting the velocity difference equal to (2V , 0). It is observed that the
square root of this error does decrease proportional to ε1/2, as anticipated by the
qualitative arguments used here.

The modified distribution functions, determined by incorporating the approximate
expression for the collisional flux, (2.12), are

fA0(χA) =
ε

4(| sin (χA)|+ 2ε)

[
cos
(

1
2
χA − 1

2
π
)]
,

fB0(χB) =
ε

4(| sin (χB)|+ 2ε)

[
cos
(

1
2
χB
)]
.

 (2.13)

The particles with velocity distribution function fI0(χI ) (for I = A and B) sub-
sequently undergo collisions with the wall, and their velocities after i collisions are
given in (2.5). From (2.5) (and the symmetrical equation for the case where the first
collision is with the wall at −L/2), it can be inferred that the particles which have
undergone i collisions with the wall after the most recent binary collision are located
on contours in velocity space

u
(i)
Ix + (1 + (−1)(i−1)eit)V = eitV cos (χI ) for 0 < χI < π,

u
(i)
Ix − (1 + (−1)(i−1)eit)V = eitV cos (χI ) for π < χI < 2π,−π < χI < 0,

u
(i)
Iy = einV sin (χI ).

 (2.14)

The above equations show that the particle positions are located along ellipses Ci
centred at (±(1+(−1)(i−1)eit)V , 0) with radii eitV and einV along the x- and y-directions.
The contours Ci for en = 0.7 and et = 0.7 are shown in figure 2.

The distribution function along each of these contours at steady state can be
obtained by a flux balance in velocity space as before. The rate of accumulation of
particles on the contour Ci, due to collisions between the particles on the contour
Ci−1 and the wall, is

Nin
IidχI = (n|u(i−1)

Iy |/L)fI(i−1)(χI )dχI . (2.15)

The rate of depletion of particles on the contour Ci, due to collisions of particles on
this contour with the wall, is

Nout
Ii dχI = (n|u(i)

Iy|/L)fIi(χI )dχI . (2.16)

In addition, it is necessary to include the depletion of particles due to binary collisions
for the reasons discussed above when calculating fI0(χI ). When calculating this
depletion for a particle on contour Ci, it is assumed that the difference in the velocities
of the two particles is (2V , 0). This is correct to O(ε1/2) when the velocities of the
colliding particles are O(ε1/2V ) different from (±V , 0). When the particle velocities
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Figure 2. The contours Ci of the particle velocities in the (ux, uy)-plane, where the index i represents
the number of times the particle has collided with the walls after its most recent binary collision.
The solid lines show the location of particles whose first collision is with the wall at y = +L/2, while
the broken lines show the location of particles whose first collision is with the wall at y = −L/2.
The coefficients of restitution et and en are both 0.7.

are O(V ) different from (±V , 0), the error made due to this approximation is O(1).
However, in this case, the flux due to binary collisions is O(ε) smaller than that due to
wall collisions, and the error made in the estimate of the total flux is O(ε). Therefore,
the above approximation has a maximum error of O(ε1/2) throughout velocity space.
Equation (2.16), modified to include the depletion due to binary collisions, is

Nout
Ii dχI =

[
n|u(i)

Iy|/L+ 2n2aV
]
fIi(χI )dχI . (2.17)

Equating Nin
Ii and Nout

Ii at steady state, we get

fIi(χI ) =
fI(i−1)(χI )

en

[
1 +

2εV

|u(i)
Iy|

]−1

, (2.18)

where u(i)
y = einV sin (χI ). The distribution function fIi(χI ) can be expressed in terms

of fI0(χI ) by induction:

fIi(χI ) =
fI0(χI )

ein

i∏
j=1

[
1 +

2ε

(en)j | sin (χI )|

]−1

. (2.19)

This provides the final distribution function for the particle distribution along the
contours Ci in velocity space. It is difficult to analytically simplify the above expression
further. However, it can easily be verified that the above distribution function is
normalized, i.e.

∞∑
i=0

[∫ 2π

0

dχAfAi(χA) +

∫ π

−π
dχBfBi(χB)

]
= 1. (2.20)

The relation
∞∑
1

e−in

i∏
j=1

[
1 +

2ε

e
j
n| sin (χ)|

]−1

=
| sin (χ)|

2ε
(2.21)

is useful for deriving the normalization condition (2.20). The identity (2.21) is proved
by expanding the left-hand side in a Taylor series in the variable en.

The qualitative features of the distribution function are as follows. As i increases,
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Figure 3. The number of particles gi on contour Ci as a function of i. The coefficients of
restitution et and en are both 0.7. ©, ε = 10−1; 4, ε = 10−2; 2, ε = 10−3; 3, ε = 10−4.

the distribution function increases as e−in till ein ∼ ε. This is because the frequency of
wall collisions decreases as uy decreases. However, as i is further decreased, there is
a decrease in the distribution function proportional to ε−1ei(i−1)

n , because the effect of
binary collisions becomes significant in this region. The function

gi =

∫ 2π

0

dχAfAi(χA) +

∫ π

−π
dχBfBi(χB) (2.22)

is shown as a function of the index i for en = 0.7 and ε = 10−1, 10−2, 10−3 and 10−4 in
figure 3. This figure shows that the number of particles along the contour Ci decreases
with an increase in i for ε = 0.1, indicating that the approximation made in deriving
the particle flux due to binary collisions is not valid for this case. However, there is an
increase and then a decrease in gi, as anticipated above, for ε between 10−2 and 10−4,
and the value of i at which gi is a maximum increases as − log (ε). Figure 4 shows the
number of particles gi as a function of ui, which is the radius of the semicircle which
forms contour Ci, and is a measure of the deviation in the velocity of particles along
Ci from the closer of (±V , 0). This figure shows that the deviation from (±V , 0) is
large for ε = 10−1, but most particles have velocities close to (±V , 0) for ε 6 10−2, as
anticipated in the asymptotic analysis. The position of the maximum of gi varies as
ui = e− log (ε)

n .

It is useful to estimate the magnitude of the errors incurred while calculating the
distribution function. While calculating the collisional fluxes Nin

Ii (χI ) and Nout
Ii (χI ),

approximate expressions were used for the flux due to binary collisions. The actual
errors incurred while evaluating the fluxes cannot be determined since the exact
expression for the distribution function is not known. However, it is possible to
estimate the error made in the fluxes using the present asymptotic expression for the
distribution function. If the error made is small, it can be inferred that the asymptotic
distribution function is close to the exact distribution function. In the evaluation of
Nout
Ii (χ), only particles with velocities close to (±V , 0) were considered, and the velocity

difference between the two colliding particles was approximated as 2V . The ‘exact



Velocity distribution of a dilute sheared granular material 329

0.3

0.2

0.1

0
10–4

ui

gi

10–3 10–2 10–1 100

Figure 4. The number of particles gi on contour Ci as a function ui, the radius of contour Ci.
The coefficients of restitution et and en are both 0.7. ©, ε = 10−1; 4, ε = 10−2; 2, ε = 10−3; 3,
ε = 10−4.

relation’ for Nout(χ) is

Nout
Ii (χI ) = (nu(i)

Iy/L)fIi(χI ) + 2n2a
∑
J=A,B

∞∑
j=0

∫
dχJfIi(χI )fJj(χJ)|u(i)

I − u
(j)
J |, (2.23)

where the limits of integration of χJ are 0 to 2π if J = A, and −π to π if J = B.
In the above expression, the second term on the right is the frequency of binary
collisions calculated using the exact velocity difference between the particles and the
approximate distribution function. The difference between the above exact expression
and the approximate expression (2.12) is due to the approximation made in treating
binary collisions:

[Nout
Ii (χI )−Nout

Ii (χI )] = 2n2afIi(χI )

[(∑
J=A,B

∞∑
j=0

∫
dχJfJj(χJ)|u(i)

I − u
(j)
J |
)
− V

]
. (2.24)

An estimate of the square of the magnitude of the total error incurred can be obtained
by integrating the square of the quantity in the square brackets in (2.24) over all values
of χ and summing it over all i as follows:

〈E2〉 =
∑
I=A,B

∞∑
i=0

∫
dχIfIi(χI )

[(∑
J=A,B

∞∑
j=0

∫
dχJfJj(χJ)

(
|u(i)
I − u

(j)
J |

V

))
− 1

]2

. (2.25)

The root-mean-square error 〈E2〉1/2 is shown as a function of ε for different values
of the coefficient of restitution in figure 5. It can be seen that in the limit ε → 0,
the root mean square of the error in the fluxes is proportional to ε1/2, as anticipated
while deriving the fluxes. This validates the previous assumption that the expressions
for the fluxes are correct to O(ε1/2) in the limit ε→ 0.

The moments of the velocity distribution function can now be evaluated using
(2.19) and (2.13):

〈ψ(u)〉 =

∞∑
i=0

[∫ 2π

0

dχAψ(u(i)
A )fAi(χA) +

∫ π

−π
dχBψ(u(i)

B )fBi(χB)

]
, (2.26)
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Figure 5. The root mean square of the error, 〈E2〉1/2 as a function of ε for ©, et = en = 0.1;
4, et = en = 0.3; 2, et = en = 0.5; 3, et = en = 0.7; ∇, et = en = 0.9.
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Figure 6. The mean-square velocity 〈u∗2x 〉 − 1 as a function of ε. ©, et = en = 0.3, e = 1.0;
4, et = en = 0.5, e = 1.0; 2, et = en = 0.7, e = 1.0; 3, et = 0.3, en = 0.7, e = 1.0; ∇,
et = 0.3, en = 0.7, e = 1.0; −−−− , et = en = 0.7, e = 0.7; · · · · · · , et = en = 0.7, e = 0.5.

where ψ(u) is a function of the particle velocities. It is necessary to evaluate the sum
and integral in (2.26) numerically, and in the numerical calculations the upper limit
of the index i was chosen large enough that a variation of 10 in i changed the value
of the moment by less than 10−6 times the value of the moment. The integral over the
angle χ was evaluated using Simpson’s rule, and the step size chosen was 10−3. Using
this scheme, then error in the normalization condition (2.20) (ψ(u) = 1) was less than
10−6 for all the results discussed here.

The results shown here are for the scaled velocity moments ψ(u∗), where u∗ = (u/V )
and V = (1− et)Vw/(1 + et). The moments of the velocity distribution function have
the following behaviour in the limit ε→ 0.

(a) The mean-square velocity 〈u∗2x 〉 tends to a constant value 〈u∗2x 〉 = 1 since the
particle velocities in the x-direction asymptotically approach ±V . The deviation of
the mean-square velocity from ±1, 〈u∗2x 〉 − 1, is shown as a function of ε for different
values of the coefficient of restitution in figure 6. The deviation has the asymptotic
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Figure 7. The mean-square velocity 〈u∗2y 〉 as a function of ε. ©, en = 0.3, e = 1.0;
4, en = 0.5, e = 1.0; 2, en = 0.7, e = 1.0; −−−− , en = 0.7, e = 0.7; · · · · · · , en = 0.7, e = 0.5.

behaviour

lim
ε→0

(
〈u∗2x 〉 − 1

)
∼ εβ for e2

t > en

∼ ε for e2
t < en, (2.27)

where 0 < β < 1.
(b) Figure 7 shows 〈u∗2y 〉 as a function of ε and en. Note that 〈u∗2y 〉 is only a function

of en and is independent of et. From figure 7, it can easily be seen that

lim
ε→0
〈u∗2y 〉 ∼ ε. (2.28)

(c) The cross-correlation, −〈u∗xu∗y〉, is shown as a function of ε for different values
of the coefficient of restitution in figure 8. The behaviour of this function is

lim
ε→0

(
−〈u∗xu∗y〉

)
∼ −ε log (ε). (2.29)

The above asymptotic expressions can be derived using relations similar to (2.21)
for the infinite sum in the expression for the distribution function. In particular, the
following three relations are useful for obtaining the asymptotic behaviour:

lim
ε→0

∞∑
1

i∏
j=1

[
1 +

2ε

e
j
n| sin (χ)|

]−1

∼ log (ε), (2.30)

lim
ε→0

∞∑
1

(−1)(i−1)pi
i∏

j=1

[
1 +

2ε

e
j
n| sin (χ)|

]−1

→ constant, (2.31)

lim
ε→0

∞∑
1

pi
i∏

j=1

[
1 +

2ε

e
j
n| sin (χ)|

]−1

∼ ε−α for p > 1

→ constant for p < 1. (2.32)

Here, p is a constant and the exponent α is a function of p and en, and varies between
0 and 1. The above results are difficult to derive analytically, and were obtained using
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Figure 8. The moment of the velocity distribution −〈u∗xu∗y〉 as a function of ε. ©,
et = en = 0.3, e = 1.0;4, et = en = 0.5, e = 1.0; 2, et = en = 0.7, e = 1.0;3, et = 0.3, en = 0.7, e = 1.0;
∇, et = 0.3, en = 0.7, e = 1.0; −−−− , et = en = 0.7, e = 0.7; · · · · · · , et = en = 0.7, e = 0.5.

symbolic computation. In this procedure, the sum of a finite number of terms in
the series, usually between 200 and 500, was used for the analysis. The number of
terms in the series was chosen so that the addition of 100 terms caused a variation
of less than 10−8 times the value of the sum. The sums obtained in this manner were
analysed over a variation in ε over four decades 10−6 6 (ε/ sin (χ)) 6 10−2 for various
values of p, en and χ to extract the asymptotic behaviour given in (2.30) to (2.32).

The expressions for the mean-square velocities can be simplified using symmetry
considerations. It is only necessary to evaluate the integrals over the angles χA and
χB from 0 to π while evaluating the moments in (2.26). The values of the integrals
from π to 2π for χA and from −π to 0 for χB can be obtained using the symmetry
of the distribution function. The mean-square velocity in the x-direction obtained in
this manner is

〈u∗2x 〉 = 1 + 2
∑
I=A,B

∫ π

0

dχIfI0(χI )

[ ∞∑
i=0

2(−1)(i−1)eit
ein

i∏
j=1

[
1 +

2ε

(en)j | sin (χI )|

]−1
]

+2
∑
I=A,B

∫ π

0

dχI (1 + cos (χI )
2)fI0(χI )

[ ∞∑
i=0

e2i
t

ein

i∏
j=1

[
1 +

2ε

(en)j | sin (χI )|

]−1
]
. (2.33)

In addition, a further simplification is possible because the values of the integrals for
the particles of type A and B are equal. In (2.33), fI0(χI ) is proportional to ε when
u∗x is O(1) different from ±V , and (〈u∗2x 〉 − 1) is proportional to ε1−α for e2

t > en, and
proportional to ε for e2

t < en in the limit ε→ 0 (from (2.32)).
The mean-square velocity 〈u∗2y 〉 is

〈u∗2y 〉 =
∑
I=A,B

∞∑
i=0

∫ π

0

dχIfIi(χI )[e
i
n sin (χI )]

2

=
∑
I=A,B

∫ π

0

dχI sin (χI )
2fI0(χI )

[ ∞∑
i=0

ein

i∏
j=1

[
1 +

2ε

(en)j | sin (χI )|

]−1
]
. (2.34)
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For u∗y ∼ 1, fI0(χI ) is proportional to ε in the limit ε → 0 and the term in the
square brackets converges to a constant (from (2.31)). Near the points (±V , 0) where
fI0 = O(1), the velocity u∗y ∼ ε1/2, and therefore 〈u∗2y 〉 has the behaviour given in
(2.28). The correlation 〈u∗xu∗y〉 is

− 〈u∗xu∗y〉 =
∑
I=A,B

∞∑
i=0

∫
dχIfIi(χI )e

i
n sin (χI )(1 + (−1)(i−1)eit − eit cos (χI ))

=
∑
I=A,B

∫
dχI sin (χI )fI0(χI )

[ ∞∑
i=0

(1 + (−1)(i−1)eit − eit cos (χI ))

×
i∏

j=1

[
1 +

2ε

(en)j | sin (χI )|

]−1
]
. (2.35)

Using (2.30) and arguments similar to those used above it can easily be seen that
−〈u∗xu∗y〉 ∼ −ε log (ε) in the limit ε→ 0 as given in (2.29).

The shear and normal stresses at the wall can be derived using the expressions for
the moments of the velocity distribution function. The normal stress at the wall at
y = L/2 due to collision of particles with velocity uy > 0 is

τyy =
∑
I=A,B

∫ π

0

dχI

( ∞∑
i=0

fIi(χI )(nu
(i)
Iy)[(1 + en)mu

(i)
Iy]

)
, (2.36)

where the term nu
(i)
Iy is the frequency of collision per unit length with the wall at

y = L/2, (1 + en)mu
(i)
Iy represents the impulse transmitted to the wall during a collision

and is the negative of the change in the momentum of the particle during a collision.
Here m is the mass of the particle. In (2.36), the angle χI has been integrated between
0 and π since the velocity u

(i)
Iy has to be positive for a collision with the wall at

y = L/2. The expression can easily be simplified to yield

τyy = nmV 2(1 + en)
1
2
〈u∗2y 〉. (2.37)

From the above equation, it can be inferred that τyy ∼ ε in the limit ε→ 0. The shear
stress at the wall at y = L/2 due to collisions of particles with uy > 0 is

τxy =
∑
I=A,B

∫ π

0

dχI

( ∞∑
i=0

fIi(χI )(nu
(i)
Iy)[(1− et)m(Vw − u(i)

Ix)]

)
, (2.38)

where the impulse transmitted to the wall, (1− et)m(Vw − u(i)
Ix), is the negative of the

change in the particle momentum during the collision. The above expression can be
reduced to

τxy = nm(1− et)[VVw〈u∗y〉∗ − V 2 1
2
〈u∗xu∗y〉], (2.39)

where

〈u∗y〉∗ =
∑
I=A,B

∫ π

0

dχI

∞∑
i=0

fIi(χI )u
(i)
Iy. (2.40)

Using (2.30), it can easily be verified that

lim
ε→0

[〈u∗y〉∗] ∼ −ε log (ε), (2.41)

and the shear stress τxy is proportional to −ε log (ε) in this limit.
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Figure 9. The contours Ci of the particle velocities in the (ux, uy)-plane for particles undergoing
inelastic binary collisions. The solid lines show the location of particles whose velocity before the
binary collision is (+V , 0), while the broken lines show the location of the particles whose velocity
before the binary collision is (−V , 0). The coefficient of restitution of wall collisions, et and en, and
the coefficient of restitution of binary collisions, e, are all 0.7.

The effect of inelastic binary collisions between particles is considered next. As
before, the system consists of particles of diameter a and number density n in a
channel of width L, and the coefficients of restitution of particle–wall collisions are
et and en in the directions normal and tangential to the wall. However, the binary
collisions are considered to be inelastic with a coefficient of restitution e. Consider
a collision between particle A with velocity (uAx, uAy) = (V , 0) and particle B with
velocity (uBx, uBy) = (−V , 0) as shown in figure 1. The velocities of the particles after
collision, analogous to (2.6), are

u′Ax = V [e− − e+ cos (2θ)] , uAy = −Ve+ sin (2θ),

u′Bx = V [−e− + e+ cos (2θ)] , uBy = Ve+ sin (2θ),

}
(2.42)

where e+ = (1 + e)/2 and e− = (1− e)/2. The particle A with a precollisional velocity
(V , 0) is displaced onto a circle in velocity space centred at (Ve−) with radius (Ve+),
while the particle B with a precollisional velocity (−V , 0) is displaced onto a circle
centred at (−Ve−) with the same radius (Ve+) as shown in figure 9. As before, the
velocity distribution is determined using the polar coordinates, (uA, χA) and (uB, χB).
These are related to the angle θ by

uA = Ve+, χA = π + 2θ,

uB = Ve+, χB = 2θ,

}
(2.43)

where θ varies between −π/2 and π/2, χA varies between 0 and 2π and χB varies
between −π and π.

The distribution functions are evaluated in a manner similar to the derivation for
a system with elastic binary collisions. The distribution functions fA0(χA) and fB0(χB),
analogous to (2.13), are

fA0(χA) =
ε

4(e+| sin (χA)|+ 2ε)

[
cos
(

1
2
χA − 1

2
π
)]
,

fB0(χB) =
ε

4(e+| sin (χB)|+ 2ε)

[
cos
(

1
2
χB
)]
.

 (2.44)

The dispersion of the particle velocities due to subsequent wall collisions is very
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similar to that analysed earlier for elastic binary collisions. The velocity components
of a particle which has undergone i collisions with the wall after the most recent
binary collision, analogous to (2.14), are

u
(i)
Ax + (1 + (−1)(i−1)eit)V = eitV (e+ cos (χA) + e−) for 0 < χA < π,

u
(i)
Ax − (1 + (−1)(i−1)eit)V = eitV (e+ cos (χA) + e−) for π < χA < 2π,

u
(i)
Ay = eine+V sin (χA),

 (2.45)

u
(i)
Bx + (1 + (−1)(i−1)eit)V = eitV (e+ cos (χB)− e−) for 0 < χB < π,

u
(i)
Bx − (1 + (−1)(i−1)eit)V = eitV (e+ cos (χB)− e−) for −π < χB < 0,

u
(i)
By = eine+V sin (χB),

 (2.46)

and the corresponding distribution functions are

fAi =
fA0

ein

i∏
j=1

[
1 +

2ε

e
j
ne+| sin (χA)|

]
, fBi =

fB0

ein

i∏
j=1

[
1 +

2ε

e
j
ne+| sin (χB)|

]
. (2.47)

It can easily be verified that the above distribution functions are also normalized,
and the moments of the velocity distribution function can be evaluated in a manner
similar to that for the case of elastic binary collisions. The moments of the distribution
function for a system of disks with inelastic binary collisions are shown in figures
6, 7 and 8. The particle–wall coefficients of restitution are et = en = 0.7, while the
coefficient of restitution for the binary collisions is e = 0.7 (broken line) and e = 0.5
(dotted line). It can be seen that the effect of inelastic binary collisions only leads to
a quantitative change in the moments of the velocity distribution, while the scaling
laws in the limit ε→ 0 remain unchanged.

3. Inelastic spheres in three dimensions
The extension of the above analysis to a three-dimensional system is briefly dis-

cussed in this section. The coordinate axes x and y are chosen parallel and perpendic-
ular to the walls of the channel in the plane of shear, while the z-axis is perpendicular
to the plane of shear. The frequency of wall collisions per unit volume in the present
case is nuy/L, where n is now the number of particles per unit volume, while the
frequency of binary collisions is proportional to n2πa2V , where V is the magnitude
of the particle velocities. In the limit where the frequency of wall collisions is large
compared to that of binary collisions, the small parameter ε = na2L is used for the
asymptotic analysis.

As in the two-dimensional case, the particle velocities approach (±V , 0, 0) after
successive collisions with the walls, where V = (1 − et)Vw/(1 + et). The evolution
of the velocity of a particle with initial velocity (ux0, uy0, uz0) due to successive wall
collisions is

ux + (−1)i(1 + (−1)i−1eit)V = eitux0, uy = (−1)ieinuy0, uz = eituz0, (3.1)

where i denotes the number of collisions with the wall after the most recent binary
collision, and it is assumed that the first collision takes place with the wall at y = L/2.

The effect of binary collisions is analysed in a manner similar to that for inelastic
disks in two dimensions. In the leading approximation, only collisions between particle
A with velocity (V , 0, 0) and particle B with velocity (−V , 0, 0) are considered, since
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most of the particles have velocities close to (±V , 0, 0) in the limit ε→ 0. The result
of the collision depends on the azimuthal and meridional angles made by the line
joining the centres of the particles with the x-axis, θ and φ. Here, θ is the angle
made by the line joining the centres with the x-axis, while φ is the angle made by the
projection of the line of centres on the (y, z)-plane with the y-axis. The components
of the velocity after the collision are

u′Ax = −V cos (2θ), u′Ay = −V sin (2θ) cos (φ), u′Az = −V sin (2θ) sin (φ),

u′Bx = V cos (2θ), u′By = V sin (2θ) cos (φ), u′Bz = V sin (2θ) sin (φ),

}
(3.2)

where the subscripts A and B refer to particles whose precollisional velocities in the
x-direction are positive and negative respectively. The components of the velocity
after the collision, expressed in spherical polar coordinates, are

uA = V , χA = π − 2θ, ηA = π + φ,

uB = V , χB = 2θ, ηB = φ.

}
(3.3)

The ranges of the azimuthal and meridional angles are 0 6 χA 6 π, 0 6 χB 6 π,
π 6 ηA 6 3π and 0 6 ηB 6 2π. The particles are displaced onto a sphere of radius
V centred at the origin in velocity space. The frequency of binary collisions per unit
volume for which the azimuthal and meridional angles are in the range (dθ, dφ) about
(θ, φ) is

Frequency/Volume = (n/2)2(2V )a cos (θ) sin (θ)dθdφ. (3.4)

Using (3.3), the collisional influx of particles in the differential solid angle (dχI , dηI )
about (χI , ηI ) on the sphere of radius V is

Nin
A (χA, ηA)dχAdηA = 1

4
n2Va

[
cos
(

1
2
π − 1

2
χA
)

sin
(

1
2
π − 1

2
χA
)]

dχAdηA,

Nin
B (χB, ηB)dχAdηA = 1

4
n2Va

[
cos
(

1
2
χB
)

sin
(

1
2
χB
)]

dχBdηB.

}
(3.5)

The flux of particles out of the sphere of radius V due to wall collisions and binary
collisions is

Nout
I (χI , ηI ) = (n|uIy|/L+ n2πa2V )fI0(χI , ηI ) (3.6)

for I = A,B, where fI0 is the distribution function, and nfI0(χI , ηI )dχIdηI is the
number of particles per unit volume in the differential angle (dχI , dηI ) about (χI , ηI )
on the sphere of radius V in velocity space. The assumptions made while deriving
(3.6) are identical to those made while deriving (2.12) for a two-dimensional case. At
steady state, Nin

I (χI , ηI ) = Nout
I (χI , ηI ) and the distribution function fI0 is

fA0(χA, ηA) =
ε

4(| sin (χA) cos (ηA)
|+ πε)

[
cos
(

1
2
π − 1

2
χA
)

sin
(

1
2
π − 1

2
χA
)]
,

fB0(χB, ηB) =
ε

4(| sin (χB) cos (ηB)
|+ πε)

[
cos
(

1
2
χB
)

sin
(

1
2
χB
)]
.

 (3.7)

Subsequent wall collisions alter the particle velocities, and the velocity of the particle
after i collisions with the walls following the most recent binary collision is

u
(i)
Ix + (1 + (−1)(i−1)eit)V = eitV cos (χI ) for −π/2 < φ < π/2,

u
(i)
Ix − (1 + (−1)(i−1)eit)V = eitV cos (χI ) for π/2 < φ < 3π/2,

u
(i)
Iy = einV sin (χI ) cos (ηI ),

u
(i)
Iz = eitV sin (χI ) sin (ηI ).


(3.8)
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Figure 10. The number of particles gi on contour Ci as a function i for a three-dimensional system.
The coefficients of restitution et and en are both 0.7. ©, ε = 10−2; 4, ε = 10−3; 2, ε = 10−4; 3,
ε = 10−5.
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Figure 11. The number of particles gi on contour Ci as a function ui, the radius of contour Ci for
a three-dimensional system. The coefficients of restitution et and en are both 0.7. ©, ε = 10−2; 4,
ε = 10−3; 2, ε = 10−4; 3, ε = 10−5.

The particle positions are located on ellipsoids of revolution Si centred about (±(1 +
eit)V , 0, 0) with radii eitV along the x- and z-directions and einV along the y-direction.
The intersection of the ellipsoids with the (x, y)-plane is identical to the contours Ci
shown in figure 2. The accumulation and depletion of particles on the ith surface,
analogous to (2.15) and (2.17) are

Nin
Ii (χI , ηI ) = (n|u(i−1)

Iy |/L)fI(i−1)(χI ), (3.9)

Nout
Ii (χI , ηI ) = [(n|u(i)

Iy|/L) + πn2aV ]fIi(χI ). (3.10)

Equating Nin
Ii (χI , ηI ) and Nout

Ii (χI , ηI ) at steady state, the distribution function is

fIi(χI , ηI ) =
fI(i−1)(χI , ηI )

en

[
1 +

πεV

|u(i)
Iy|

]−1

. (3.11)
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Figure 12. The mean-square velocity 〈u∗2x 〉−1 as a function of ε for a three-dimensional system and
elastic binary collisions. ©, et = en = 0.3; 4, et = en = 0.5; 2, et = en = 0.7; 3, et = 0.7, en = 0.3;
∇, et = 0.3, en = 0.7.

Finally, the distribution function can be expressed in terms of fI0(χI , ηI ) using induc-
tion:

fIi(χI , ηI ) =
fI0(χI , ηI )

ein

i∏
j=1

[
1 +

πε

e
j
n| sin (χI ) cos (ηI )|

]
. (3.12)

As in the case of inelastic disks in two dimensions, it can easily be verified that the
above distribution function is normalized:∑

I=A,B

∞∑
i=0

∫
dηI

∫ π

0

dχI sin (χI )fIi(χI , ηI ) = 1, (3.13)

where the range of integration is π 6 ηA 6 3π and 0 6 ηB 6 2π.
The fraction of the particles on the surface Si in velocity space, gi, is

gi =
∑
I=A,B

∫
dηI

∫ π

0

dχI sin (χI )fIi(χI , ηI ), (3.14)

where the limits of integration for the angle ηI are π 6 ηI 6 3π for I = A and
0 6 ηI 6 2π for I = B. The fraction gi is shown as a function of i in figure 10, and as
a function of ui = ein in figure 11. Figure 11 shows that the velocities of the particles are
close to (±V , 0, 0) only for ε 6 10−3, in contrast to the two-dimensional case (figure 4)
where the equivalent condition was ε 6 10−2. Therefore, the assumptions made while
deriving the distribution function for the three-dimensional geometry are valid over
a smaller range of ε than those for the two-dimensional case. The qualitative reason
for this is as follows. In the two-dimensional geometry, the binary collisions scatter
particles onto a circle in velocity space, and these particles subsequently approach
(±V , 0, 0) due to repeated collisions. The collision frequency of these particles is
proportional to uy , which is non-zero at all points on the circle C0 except near
(±V , 0). In the three-dimensional case, the particles are scattered onto a surface S0

in velocity space, and the depletion of particles due to wall collisions is proportional
to uy . Therefore, the particles on the contour that is the intersection of the surface
S0 with the (ux, uz)-plane do not experience wall collisions, and the depletion of
these particles is due to binary collisions alone. Due to this, the assumption that the
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Figure 13. The mean-square velocity 〈u∗2y 〉 as a function of ε for a three-dimensional system and

elastic binary collisions. ©, et = en = 0.3; 4, et = en = 0.5; 2, et = en = 0.7.
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Figure 14. The mean-square velocity 〈u∗2z 〉 as a function of ε for a three-dimensional system and
elastic binary collisions. ©, et = en = 0.3; 4, et = en = 0.5; 2, et = en = 0.7; 3, et = 0.7, en = 0.3;
∇, et = 0.3, en = 0.7.

particles have velocities close to (±V , 0, 0) is less accurate in the three-dimensional
than in the two-dimensional case.

The moments of the velocity distribution, 〈u∗2x 〉 − 1, 〈u∗2y 〉, 〈u∗2z 〉 and −〈u∗xu∗y〉 are
shown in figures 12, 13, 14 and 15 respectively. The asymptotic behaviour of these
moments is identical to those for the two-dimensional system analysed in §2. In
addition, it is seen that 〈u∗2z 〉 ∼ ε for ε → 0. The reasons for the limiting behaviour
for these moments can be easily deduced using arguments similar to those for a two-
dimensional system, and so these are not discussed in detail here. From the above
scalings for the moments of the velocity distribution, the asymptotic behaviour of the
normal stresses is τyy ∼ ε and τzz ∼ ε, and the shear stress τxy ∼ ε log (ε) in the limit
ε→ 0.
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Figure 15. The moment of the velocity distribution−〈u∗xu∗y〉 as a function of ε for a three-dimensional

system and elastic binary collisions. ©, et = en = 0.3; 4, et = en = 0.5; 2, et = en = 0.7; 3,
et = 0.7, en = 0.3; ∇, et = 0.3, en = 0.7.

4. Conclusions
In the present analysis, the velocity distribution function of a granular material in

shear flow in a channel was determined in the limit where the frequency of particle–
wall collisions is large compared to the frequency of binary collisions between particles.
The walls of the channel were separated by a distance L, and were considered to be
moving with constant velocities +Vw and −Vw . In this regime, an asymptotic analysis
was used in the small parameter ε, which is equal to naL in two dimensions and
naL2 in three dimensions, where n is the particle number density and a is the particle
diameter. The dynamics of particle–wall collisions was described by simple relations
(2.1) with constant coefficients of restitution. The present analysis can be extended
quite easily for collisions described by a specularity coefficient, where the probability
of a particle being reflected with a certain angle is known. However, analysis of
this type cannot be easily carried out for the case where the tangential coefficient
of restitution depends on the normal velocity. The binary collisions were considered
to be elastic in most of the analysis, but the effect of inelastic binary collisions was
analysed for the two-dimensional geometry at the end of §2. It was found that inelastic
binary collisions did not qualitatively alter the results for the moments of the velocity
distribution.

The velocity distribution function at steady state was determined using a self-
consistent procedure. First, binary collisions were neglected in the limit ε � 1, and
two fixed points (±V , 0) were identified in velocity space to which all particle velocities
converge after repeated collisions with the walls. These two fixed points have zero
velocity normal to the walls, and equal and opposite velocities in the tangential
direction. Collisions between particles at these two points results in a scattering of
the particle velocities onto a sphere of radius V in three dimensions or a circle
of diameter V in two dimensions. Subsequent wall collisions transport the particles
onto certain elliptical contours in velocity space, and the distribution function is zero
elsewhere. The distribution function along the elliptical contours were determined
using a flux balance at steady state. This calculation is not exact, because the particles
were assumed to be at the fixed points (±V , 0) while calculating the fluxes due to
binary collisions in order to obtain analytical results for the distribution function.
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The error made due to this approximation was estimated using the approximate
distribution function, and it was found to decrease proportional to ε1/2 in the limit
ε → 0. The moments of the velocity distribution function were determined, and the
scaling relations in the limit ε → 0 were the same for two- and three-dimensional
systems. These are summarized in (2.27), (2.28) and (2.29). In addition, it was found
that the normal stress is proportional to ε and the shear stress is proportional to
ε log (ε−1) in the limit ε→ 0.
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