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The stability of the flow of a fluid in a flexible tube is analysed over a range
of Reynolds numbers 1 < Re < 104 using a linear stability analysis. The system
consists of a Hagen–Poiseuille flow of a Newtonian fluid of density ρ, viscosity
η and maximum velocity V through a tube of radius R which is surrounded by
an incompressible viscoelastic solid of density ρ, shear modulus G and viscosity
ηs in the region R < r < HR. In the intermediate Reynolds number regime, the
stability depends on the Reynolds number Re = ρVR/η, a dimensionless parameter
Σ = ρGR2/η2, the ratio of viscosities ηr = ηs/η, the ratio of radii H and the
wavenumber of the perturbations k. The neutral stability curves are obtained by
numerical continuation using the analytical solutions obtained in the zero Reynolds
number limit as the starting guess. For ηr = 0, the flow becomes unstable when
the Reynolds number exceeds a critical value Rec, and the critical Reynolds number
increases with an increase in Σ. In the limit of high Reynolds number, it is found
that Rec ∝ Σα, where α varies between 0.7 and 0.75 for H between 1.1 and 10.0.
An analysis of the flow structure indicates that the viscous stresses are confined to a
boundary layer of thickness Re−1/3 for Re � 1, and the shear stress, scaled by ηV/R,
increases as Re1/3. However, no simple scaling law is observed for the normal stress
even at 103 < Re < 105, and consequently the critical Reynolds number also does
not follow a simple scaling relation. The effect of variation of ηr on the stability is
analysed, and it is found that a variation in ηr could qualitatively alter the stability
characteristics. At relatively low values of Σ (about 102), the system could become
unstable at all values of ηr , but at relatively high values of Σ (greater than about 104),
an instability is observed only when the viscosity ratio is below a maximum value η∗rm.

1. Introduction
Many biological systems and biotechnology processes involve flow through flexible

tubes and channels. The flow of blood and other fluids in the body takes place
through flexible tubes, and the separation and purification processes in pharmaceutical
industries often involve flow in tubes and channels made up of polymer matrices and
membranes. These have been analysed using models similar to those for the flow
in a rigid tube, but some experiments conducted by Krindel & Silberberg (1979)
suggest that the characteristics of the flow in a flexible tube could be very different.
In the present analysis, the stability of the flow in a flexible tube is analysed in
the Reynolds number range from 1 to 104 for various fluid and wall parameters.
This work complements the earlier asymptotic analyses of the author (Kumaran
1995a, b) in the low and high Reynolds number regimes, and provides the transition
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characteristics in the intermediate Reynolds number regime which is appropriate for
blood flows and the experiments of Krindel & Silberberg (1979).

There has been considerable work done on the instability leading to the collapse of
a flexible tube due to the difference between the internal and external pressures. This
has physiological applications related to the flow of air in the respiratory passages.
Detailed experiments have been conducted by Bertram (1986) on the different types
of oscillatory behaviour, and the transitions between these have been characterized by
Bertram, Raymond & Pedley (1989). There have also been other theoretical studies
in this area by Reyn (1987), Jensen & Pedley (1989) and others. In these studies, the
flow is in the turbulent regime, and the cross-sectional area of the tube is related
to the difference between the external and internal pressure. The present analysis is
qualitatively different from these studies, because the base flow is laminar, and the
instability of the laminar flow in a tube with viscoelastic walls is examined. The
instability leads to oscillations of the walls and a modification of the flow, but does
not result in a significant change in the tube geometry.

The stability of the flow through a rigid tube has been examined using asymptotic
analysis by Corcos & Sellars (1959) and Gill (1965). These studies found that both
the centre and wall modes are always damped, and there are no unstable modes
in the high Reynolds number limit. There have been many linear stability analyses
of the Hagen–Poiseuille flow to axisymmetric and non-axisymmetric disturbances at
finite Reynolds number (Davey & Drazin 1969; Garg & Rouleau 1972; Salwen &
Grosch 1972). These have all concluded that the flow is stable to small disturbances
at all Reynolds numbers, and there now appears to be a consensus that the flow in a
rigid tube is stable to small-amplitude perturbations, but the observed instability may
be due to perturbations of finite amplitude. The flow in a flexible tube is qualitatively
different from that in a rigid tube in both the low and high Reynolds number limits.

The stability of the ‘viscous modes’ in the flow through a flexible tube was analysed
by Kumaran (1995a). The analysis indicated that the fluctuations could become
unstable when the velocity is increased beyond a critical value. The instability is
caused by the transport of energy from the mean flow to the fluctuations due to the
shear work done by the mean flow at the interface. The stability of the ‘inviscid modes’
in the high Reynolds number limit was considered in Kumaran (1995b, 1996). In this
case, the flow is inviscid in the core of the tube, and there is a wall layer of thickness
O(Re−1/2) smaller than the tube radius where the viscous stresses are O(Re−1/2) smaller
than the inertial stresses. An asymptotic analysis in the small parameter ε = Re−1

was used, and in the leading approximation the real part of the growth rate is zero,
indicating that the perturbations are neutrally stable at this level of approximation.
The O(ε1/2) correction to the growth rate due to the stresses in the wall layer turns
out to be negative. This is because the transport of energy from the mean flow to the
fluctuations due to the shear work is equal in magnitude and opposite in direction
to that due to the convective terms in the momentum equation, and there is a small
stabilizing effect due to the viscous dissipation in the wall layer.

The low Reynolds number analysis showed that the fluid flow could become
unstable when the dimensionless velocity is increased beyond a critical value, but
the high Reynolds number analysis indicated that the inviscid modes are always
stable. In § 2, the stability of the flow in the intermediate Reynolds number regime
1 6 Re 6 104 is analysed using a linear stability analysis. Though attention is restricted
to axisymmetric modes, it is expected that the behaviour of non-axisymmetric modes
will be qualitatively similar for the following reason. The results indicate that the
vorticity in the fluid is restricted to a boundary layer of thickness Re−1/3 at the wall,



Flow through a flexible tube at intermediate Reynolds number 125

r

x
2HR

2RFluid

Flexible wall

Figure 1. Configuration and coordinate system used for the analysis.

and the leading-order viscous stress is due to the normal variation of the tangential
velocity at the wall. It is expected that the fluid velocity profile will be qualitatively
similar for non-axisymmetric disturbances, since the length scale in the polar direction,
which is the tube radius, is large compared to the boundary layer thickness. The details
of the analysis are given in § 2, and the conclusions are summarized in § 3.

2. Analysis
2.1. Equations of motion

The configuration consists of a Newtonian fluid of density ρ and viscosity η flowing
through a tube of radius R surrounded by a viscoelastic solid with density ρ, viscosity
ηs and coefficient of elasticity G in the annular region 1 < r < H as shown in figure 1.
Here, r and x are the radial and axial coordinates scaled by the tube radius R. In
this section, the lengths are scaled by R, the time by η/G and the velocity by GR/η,
these being the natural scales in the low Reynolds number limit. The mean flow in
the fluid has a parabolic velocity profile:

v̄x = Γ (1− r2), (2.1)

where Γ = Vη/GR is the scaled maximum velocity in the fluid. The non-dimensional
Navier–Stokes equations for the fluid are

∂ivi = 0, (2.2)

(Re/Γ )(∂t + vj∂j)vi = −∂ip+ ∂2
j vi, (2.3)

where the subscripts i and j represent the components of a vector, repeated subscripts
represent dot products, ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi. In (2.2) and (2.3), vi and p are the
velocity and pressure fields scaled by GR/η and G respectively, and Re = ρVR/η is
the Reynolds number based on the maximum fluid velocity. The stress tensor for the
fluid, scaled by G, is

τij = −pδij + (∂ivj + ∂jvi). (2.4)

The equations used for the wall material are those for an incompressible elastic
solid (Landau & Lifshitz 1989) modified to include viscous effects (Kumaran 1993,
1995a, b). The dynamics of the solid is described by the displacement field ui, scaled
by the radius of the tube R, which is the displacement of the material points from
their equilibrium positions due to the fluid stresses. In an incompressible solid, the
displacement field satisfies the solenoidal condition

∂iui = 0, (2.5)
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while the momentum conservation equation is

(Re/Γ )∂2
t ui = −∂ip+ ∂2

j ui + ηr∂
2
j (∂tui), (2.6)

where ηr = (ηs/η) is the ratio of the viscosities of the solid and fluid. The first term on
the right-hand side is the gradient of the pressure required to satisfy incompressibility,
the second is the divergence of an elastic stress due to the strain in the wall medium
while the third term is the divergence of a viscous stress. The stress tensor for the
solid, scaled by G, is

σij = −pδij + (1 + ηr∂t)(∂iuj + ∂jui). (2.7)

The above form for the momentum equation and the stress tensor, incorporating
frequency-independent coefficients of elasticity and viscosity, have been used by
Harden, Pleiner & Pincus (1991) and Kumaran (1993) to describe the surface fluctu-
ations on polymer gels, and in the previous stability analyses of Kumaran (1995a, b).
Experimental studies have reported that the storage modulus for polymer gels does
have a constant ‘plateau value’ over the frequency range 10−2 to 103 s−1, (Tong & Liu
1993), and so the assumption regarding the frequency-independent elasticity is a good
one. (The terms ‘storage modulus’ and ‘loss modulus’ refer to the real and imaginary
parts of the shear modulus.) Moreover, Krindel & Silberberg (1979) reported that
their experiments were carried out in a range of frequencies where a plateau exists
for the storage modulus. However, they did not provide any information about the
loss modulus, so in the present analysis we use the simplest approximation, where
the viscosity is considered independent of the frequency. The neutral stability curves
obtained in the present analysis can easily be extended to a system with frequency-
dependent viscosity. For a system with viscosity η′r(ω) dependent on the frequency ω,
the critical value of η′rc(ω) for neutrally stable modes is related to the critical value ηrc
determined in the present analysis for frequency-independent viscosity by the relation
η′rc(ωc) = ηrc, where ωc is the frequency of the neutrally stable modes in the present
analysis.

The boundary conditions at the interface between the solid and the fluid are the
continuity of velocity and stress:

vi = ∂tui, τij = σij . (2.8)

In the linear analysis, small-amplitude axisymmetric normal mode perturbations
are placed on the fluid velocity field and the displacement field in the solid of the
form

vi = v̄(r)δix + ṽi(r) exp (ikx+ st), ui = ũi(r) exp (ikx+ st), (2.9)

where v̄(r) is the mean velocity, x is the axial coordinate, k is a real wavenumber and
s is a complex growth rate in the temporal stability analysis. In the linear analysis,
the growth rate is affected by the mean velocity profile due to the convective term
in the conservation equation, but is not affected by the mean pressure and stress
fields because there are no nonlinear terms involving these fields in the conservation
equation. In addition, both the shear and normal stresses as well as their gradients are
continuous across the interface between the fluid and the wall (see Kumaran 1995a),
and so the boundary conditions for the perturbations to the pressure and stress fields
do not contain terms proportional to the mean pressure or stress. The mean pressure
gradient along the tube causes a variation in the radius of the tube, which in turn
could affect the mean flow. However, in the experiments of Krindel & Silberberg
(1979), the variation in the tube radius was found to be small, and it was estimated
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in Kumaran (1995a) that the slope of the tube wall is O(10−3). Consequently, the
variation in the radius of the tube is neglected in the present analysis, and the tube
is considered to be of constant diameter.

The linearized mass and momentum equations for the fluid can be reduced to a
fourth-order equation for the radial velocity ṽr:

[−(Re/Γ )(s+Γ ik(1− r2)) + d2
r + r−1dr − r−2− k2](d2

r + r−1dr − r−2− k2)ṽr = 0, (2.10)

and the linearized mass and momentum equations for the wall material can be reduced
to a fourth-order equation for the displacement field ũr in the wall:

[−(Re/Γ )s2 + (1 + ηrs)(d
2
r + r−1dr − r−2 − k2)](d2

r + r−1dr − r−2 − k2)ũr = 0, (2.11)

where dr ≡ (d/dr). The boundary conditions for the solid are the zero-displacement
conditions ũr = 0 and ũx = 0 at the outer surface r = H . At the interface between
the fluid and the wall, it is necessary to apply the mass and momentum balance
conditions. In the linear analysis, the velocity and stress fields due to the mean flow
and the perturbations at the perturbed interface are expanded in a Taylor series
about their values at the unperturbed interface at r = 1. The linear terms in the
series expansion are retained and the higher-order terms are neglected to obtain the
following conditions in which all the quantities are evaluated at the unperturbed
interface (r = 1):

ṽr = sũr, ṽx − 2Γ ũr = sũx,

τ̃rr = σ̃rr, τ̃xr = σ̃xr.

}
(2.12)

The term proportional to ũr in the tangential velocity boundary condition represents
the variation in the mean velocity of the surface due to the surface displacement.

The equations (2.10) and (2.11) are two fourth-order equations for the velocity field
and displacement field respectively. The general solutions for the fluid velocity field
are obtained by marching outwards from the centre of the tube. Since two symmetry
conditions are applied at the centre of the tube, there are two independent solutions.
One of these is determined analytically:

ṽ(1)
r = I1(kr), (2.13)

while the other is determined numerically. The general solutions for the displacement
field in the wall material are determined by marching inward from the outer surface
at r = H . Since there are two zero-displacement boundary conditions applied at the
outer surface, there are two independent solutions.

2.2. Numerical method

The differential equations were solved using a fourth-order Runge–Kutta integrator
with adaptive step size control due to the possibility of large variations in the
velocity in the viscous wall layer in the high Reynolds number limit. In this limit, the
analytical solution (2.13) represents the inviscid ‘outer’ solution, while the numerically
determined solution captures the variation of the velocity field in the wall layer where
viscous forces are important. Since only one of the solutions is determined numerically,
it is not necessary to use any orthogonalization. There are two general solutions for the
displacement field in the solid, both of which are determined by numerically solving
the fourth-order equation (2.11). The general solutions for the displacement fields
were also determined using a fourth-order Runge–Kutta integrator with adaptive step
size control. In addition, it was necessary to use an orthogonalization procedure due
to the stiff nature of the equations.
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In the solution procedure, the solutions for the fluid velocity and solid displacement
fields at the interface are inserted into the boundary conditions (2.12) to obtain a
4 × 4 characteristic matrix. The determinant of this matrix is set equal to zero to
obtain the characteristic equation for the growth rate s. This equation is nonlinear
and cannot be reduced to a polynomial in s, so it is not possible to obtain analytical
solutions. However, in the viscous limit (Re = 0), it was shown by Kumaran (1995a)
that the characteristic equation reduces to a quadratic equation in the growth rate s,
and analytical solutions were obtained in this limit. In the present case, the neutral
stability curves at finite Reynolds numbers are determined by numerical continuation
using the known solutions at zero Reynolds number as the starting point. In the
computations, the wavenumber k is fixed, the real part of the growth rate is set
equal to zero (sR = 0) and the Reynolds number is increased in steps of about
(Re/100). The initial guess for the transition velocity Γt and the frequency of the
neutrally stable mode −sI are determined using a predictor–corrector technique, and
the Newton–Raphson method is used to obtain the solutions for −sI and Γt at the
new Reynolds number.

Two types of verification procedures were used to determine the accuracy of the
numerical procedure. The first was to compare the numerical results with previous
asymptotic solutions for the growth rate obtained by the author in the high and
low Reynolds number limits (Kumaran 1995a, b). In addition, the results were also
compared with numerical solutions of Davey & Drazin (1969) for the stability of
fluid flow in a rigid tube. The results of these comparisons are as follows.

(a) The comparison with the zero Reynolds number asymptotic analysis of Ku-
maran (1995a) involved setting the Reynolds number equal to zero, while retaining
a finite value for the parameter Γ . (Note that the parameter Γ used here is identical
to that used in the low Reynolds number analysis of Kumaran 1995a.) In this case,
it was found that there is exact agreement between the asymptotic and numerical
results for the growth rate to within machine precision.

(b) The numerical results were compared with the high Reynolds number asymp-
totic results of Kumaran (1995b) for inviscid modes. In that study, the growth rate
was determined in the limit Re � 1 and (ρV 2/G) ≡ (Γ/Re) ∼ 1. There are multiple
solutions for the growth rate, and the solutions were determined using an asymptotic
expansion in the small parameter Re−1/2. The asymptotic solution is in error by a
factor of O(Re−1), and the difference between the asymptotic and numerical results
should decrease proportional to Re−1 in the limit Re � 1. A comparison between the
asymptotic results (sa) and the numerical results (sn) for the real and imaginary parts
of the growth rates are shown in figure 2(a) and figure 2(b), while figure 2(c) shows
E = (|sn − sa|/|sn|), which is the ratio of the magnitude of the error in the asymptotic
growth rate and the magnitude of the numerical growth rate. Figures 2(a) and 2(b)
show that there is excellent agreement between the asymptotic and numerical results
at Reynolds numbers greater than about 1000. Figure 2(c) shows that E decreases
proportional to Re−1, as predicted by the asymptotic analysis. In addition, the numer-
ical solutions also exhibit a boundary layer of thickness Re−1/2 where viscous effects
are important, in agreement with the asymptotic analysis.

(c) The results of the present numerical scheme were also compared with previous
numerical studies of the linear stability analysis of Davey & Drazin (1969) for the
flow in a rigid tube. Davey & Drazin (1969) used two procedures for the solution
of the stability equation, a numerical integration procedure and an expansion of
the solution in a complete and orthogonal function space, and reported that the
agreement between the two techniques is very good. Salwen & Grosch (1972) also
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Figure 2. A comparison of the numerical results of § 2 with the asymptotic results for the inviscid
modes of Kumaran (1995b) for ρV 2/G = 2 and H = 2: ◦, k = 0.5, least-damped downstream
travelling mode; 4, k = 0.5, least-damped upstream travelling mode; 2, k = 1.0, least-damped
downstream travelling mode; �, k = 1.0, least-damped upstream traveling mode. (a) Real part of
the growth rate sR as a function of Reynolds number; (b) imaginary part of the growth rate sI as
a function of Reynolds number; solid lines are numerical results and broken lines are asymptotic
results. (c) The ratio E = (|sn − sa|/|sn|); the broken line indicates a slope of −1.

used an expansion in an orthogonal function space and showed that their results are
in agreement with those of Davey & Drazin (1972) for axisymmetric perturbations.

Davey & Drazin determined the wave velocities for two different types of modes.
The first are the centre modes, where the vorticity is confined to a region of thickness
Re−1/4 at the centre of the tube, and the second are the wall modes, where the
vorticity is confined to a region of thickness Re−1/3 at the wall of the tube. The
centre modes are not of interest in the present analysis, because the vorticity of these
is confined to the centre of the tube, and consequently these are not influenced by
the flexibility of the wall. The centre modes cannot be obtained from the present
numerical scheme, because the analytic approximation that has been made for one
of the linearly independent solutions (2.13) is not appropriate for the centre modes.
The wall modes are suitable for comparison with the present analysis, since the wave
velocity is likely to be influenced by the wall flexibility, and consequently the results of
the present numerical procedure are compared with the wall mode results of Davey
& Drazin (1969).

The results of the present numerical technique cannot be directly compared with
those for a rigid-walled tube, because there is a fundamental difference in the numeri-
cal techniques used. In a flexible tube, the solutions for the fluid velocity field and the
displacement field in the wall are obtained by numerical integration procedures start-
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Figure 3. A comparison of the numerical results of § 2 (solid lines) for a flexible tube with H = 2.0
with the results of Davey & Drazin (1969) (broken lines) for the least-damped mode in a rigid
tube. ◦, k = 0.252, Re = 3.22× 103; 4, k = 0.563, Re = 6.00× 103; 2, k = 1.04, Re = 4.78× 103; �,
k = 1.00, Re = 8.44× 103. (a) Real part of s/Γ as a function of G/ρV 2. (b) Imaginary part of s/Γ
as a function of G/ρV 2.
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Figure 4. A comparison of the numerical results of § 2 (solid lines) for a flexible tube with
G/ρV 2 = 0.1 with the results of Davey & Drazin (1969) (broken lines) for the least-damped mode in
a rigid tube. ◦, k = 0.252, Re = 3.22×103;4, k = 0.563, Re = 6.00×103; 2, k = 1.04, Re = 4.78×103;
�, k = 1.00, Re = 8.44× 103. (a) Real part of s/Γ as a function of H − 1. (b) Imaginary part of s/Γ
as a function of H − 1.

ing at the centre of the tube and the outer boundary of the wall, and the boundary
conditions at the interface are used to obtain the characteristic matrix. In contrast, the
numerical procedure for a rigid tube involves a numerical integration from the centre
of the tube, followed by a shooting procedure to enforce the boundary conditions at
the wall. However, there are two limiting procedures that can be used to compare the
present solutions with those for a rigid wall. The first is to take the limit G→∞ at a
fixed value of H , shown in figures 3(a) and 3(b), and the second is to take the limit
H − 1 → 0, at a fixed value of G, shown in figures 4(a) and 4(b). In these figures,
the real and imaginary parts of s/Γ , which is the growth rate scaled by V/R are
shown as a function of the parameters G/ρV 2 and H − 1. It should be noted that the
product s/Γ remains finite even in the limit G→ ∞. The values of the wave velocity
for a rigid walled channel were extracted from an electronically digitized image of
figure 2 of Davey & Drazin (1969), and the error made in determining the numerical
values is estimated at 1%. It can be seen from figures 3 and 4 that the flexible-tube
solution for the growth rate converges towards the rigid-tube solution in the limit
G/ρV 2 � 1 and H − 1 � 1, and the agreement between the present results and those
of Davey & Drazin is excellent. Moreover, the numerical calculations show that the
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Figure 5. The transition Reynolds number, Ret, as a function of the dimensionless parameter Σ for
H = 2 and for different values of wavenumber k. ◦, k = 1.0; 4, k = 2.0; 2, k = 4.0; �, k = 6.0; ∇,
k = 8.0.

vorticity in the fluid is confined to a boundary layer of thickness Re−1/3 at the wall of
the tube in the limit of high Reynolds number. This is in qualitative agreement with
the asymptotic results of Corcos & Sellars (1959) and the numerical results of Davey
& Drazin (1972), confirming that the modes reported here are wall modes.

The above consistency tests indicate that the results of the present analysis are
consistent with the previous asymptotic results for a flexible tube, and previous
numerical linear stability analyses for a rigid tube.

2.3. Results

The transition Reynolds number at which the perturbations become neutrally stable
(sR = 0) depends on the wavenumber k, the dimensionless velocity Γ = (Vη/GR), the
ratio of wall thickness to tube radius H and the ratio of viscosities ηr . In this section,
the behaviour of the transition velocity at ηr = 0 is first analysed, and then the effect
of variation in ηr on the transition velocity is determined. The transition Reynolds
number Ret is shown for H = 2, ηr = 0 and different values of the wavenumber k in
figure 5. The abscissa in the graph is chosen to be Σ = Re/Γ ≡ ρGR2/η2, since this
dimensionless number is independent of the fluid velocity and is a function only of the
properties of the fluid and the wall. Figure 5 shows that the transition velocity has a
minimum at finite k, indicating that the most unstable modes have finite wavelength.

The critical Reynolds number, which is the minimum Reynolds number at which
an instability is predicted, is shown as a function of Σ for different values of H in
figure 6(a). The critical Reynolds number increases as Σ is increased, and shows a
power-law relation of the type Rec ∝ Σα in the limit Σ � 1, where 0.7 < α < 0.75
for the values of H studied here. The wavenumber of the most unstable mode, kc,
which is shown as a function of Σ in figure 6(b), increases on the whole as Σ is
increased, and decreases as H is increased. The frequency of the most unstable mode,
−sIc, shown in figure 6(c), is positive, indicating that the phase velocity of the waves
is positive. This is a feature observed for all the neutrally stable modes obtained in
the present study.

It is useful to analyse the structure of the fluid velocity field in the limit of high
Reynolds number, and compare it with the velocity fields for the inviscid modes. A
characteristic feature of a high Reynolds number flow near an oscillatory surface is
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Figure 6. The critical Reynolds number Rec (a), wavenumber of the most unstable mode kc (b) and
frequency of the most unstable mode −sIc (c) as a function of the parameter Σ for different values
of H . ◦, H = 1.1; 4, H = 1.2; 2, H = 1.5; �, H = 2.0; ∇, H = 5.0; +, H = 10.0.
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Figure 7. The ratio ṽx/drṽx as a function of Re for neutrally stable modes for H = 2. ◦, k = 0.5;
4, k = 1.0; 2, k = 3.0; �, k = 8.0.

the confinement of the viscous stresses to a small region near the wall of the tube;
for further details, the reader is referred to Batchelor (1967). As explained in the
previous subsection, the solutions for the fluid velocity profile in the present case can
be separated into the outer flow ṽoi and the wall layer ṽwi, and the ratio (ṽwx/drṽwx)
gives the characteristic wall layer thickness in the present case. This ratio is shown in
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Figure 8. The ratio τ̃rr/drṽx as a function of Re for neutrally stable modes for H = 2. ◦, k = 0.5;
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Figure 9. The transition value of Γ as a function of ηr for k = 2 and H = 2 (solid lines) and
H = 10 (broken lines). ◦, Σ = 0.0; 4, Σ = 1.0; 2, Σ = 102; �, Σ = 104.

figure 7 for a variation in the transition Reynolds number from 103 to 105, and for
various values of the wavenumber k. The slope of the curve converges to a value of
−0.33 in the limit Re � 1, indicating that the wall layer thickness varies as Re−1/3.
From figure 7, it can also be inferred that the leading contribution to the ratio of
the shear stress and the tangential velocity, τ̃xr/ṽx, due to the flow in the wall layer,
scales as Re1/3. However, the ratio of the normal stress and the tangential velocity,
shown in figure 8, does not show a uniform scaling behaviour that is independent of
the wavelength even at Re = 105, and therefore the instability observed here would
not be accessible from asymptotic analysis. This explains why the critical Reynolds
number does not show a definite scaling behaviour even at Σ = 106.

The effect of variation in the ratio of viscosities ηr on the stability characteristics
is analysed next. In the low Reynolds number analysis of Kumaran (1995a), it was
found that a variation in the ratio of viscosities causes a qualitative change in the
stability characteristics of the system. In this limit, there are unstable modes only
when the viscosity ηr is below a maximum value ηrm which is a function of H and Σ;
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Figure 10. The transition value of Γ as a function of ηr for H = 2 and Σ = 102 (solid lines) and
Σ = 104 (broken lines). ◦, k = 2.0; 4, k = 4.0; 2, k = 6.0.

all perturbations are stable for ηr > ηrm for a given H . In the present case, the effect
of variation in the value of the parameter Σ on the neutral stability curves is shown
in figure 9. Here, the neutral stability curves are shown in the (Γ , ηr)-plane, and Γ
has been chosen as the abscissa in preference to Re so that the case Σ = 0, where the
Reynolds number is zero but the critical value of Γ is non-zero, can be represented.
From these curves, it can be seen that there are three distinct types of behaviour at
a fixed value of H and wavenumber k.

(i) At Σ = 0, the instability occurs at a transition value of Γt. This transition value
increases monotonically as a function of the ratio of viscosities ηr , and diverges at a
maximum value ηrm. This is in agreement with the low Reynolds number analysis of
Kumaran (1995a). The divergence of Γt is not apparent in figure 9, due to the scale
used for the ordinate, but can clearly be seen in Kumaran (1995a).

(ii) At Σ = 1, the transition value of Γt initially increases as ηr is increased,
reaches a maximum and then decreases when ηr is further increased. The numerical
calculations were extended to Γt = 103, and it was observed that the value of ηr
continued to decrease for the neutrally stable modes.

(iii) At Σ = 102 and Σ = 104, the critical value Γt increases as ηr increases and then
exhibits a turning point of infinite slope at a maximum value ηrm. As the velocity Γt is
further increased, the ratio of viscosities at which neutrally stable modes are observed
decreases, indicating that instabilities can occur only when the ratio of viscosities is
less than ηrm.

The trends observed in the neutral stability curve depend on the ratio of radii H
and the wavenumber k, and are referred to as type (i), (ii) and (iii) behaviour.

The classification of the behaviour of the neutral stability curve given above is
specific to a particular value of the wavenumber k. To determine the stability of the
system for a given set of fluid and wall properties, and to classify the qualitative
behaviour of the neutral stability curve for the most unstable mode, it is necessary to
examine the variation in the neutral stability curve as a function of the wavenumber
k. The effect of a variation in the neutral stability curves due to a variation in the
wavenumber at H = 2 is shown in figure 10. The two trends observed in figure 10 at
Σ = 102 and Σ = 104, which are typical of the trends observed at other values of Σ
as well, are as follows:

(A) At Σ = 102, the neutral stability curve shows type (iii) behaviour, where there
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is a turning point at a finite value of ηr , for low values of the wavenumber (k = 2).
However, at larger values of the wavenumber (k = 4 and 6), the neutral stability
curves exhibit type (ii) behaviour, where there is very little variation in the transition
value Γt as a function of ηr . In this case, there is no maximum limit on the ratio of
viscosities for the presence of unstable modes.

(B) At Σ = 104, the neutral stability curve shows type (iii) behaviour, where there
is a turning point in the Γt, Σ curve, at all chosen values of wavenumber. It is further
observed that the value of ηr at which there is a turning point first increases and
then decreases as the wavenumber is increased. This implies that there is a maximum
value ηrm at which perturbations with a specific wavenumber are neutrally stable, and
there is no instability at any wavenumber when ηr is increased beyond ηrm.

The neutral stability curve exhibits Type A behaviour at lower values of Σ, and in
this parameter regime there is the possibility of unstable modes at all values of the
ratio of viscosities ηr . Type B behaviour is exhibited at higher values of Σ, and in
this case it is of interest to find the maximum value of ηrm as a function of k for a
given set of fluid and wall parameters, since this is the maximum value of ratio of
viscosities at which an instability can occur. In order to find the values of Σ where
Type A and Type B behaviour are observed, a total of thirteen points which are
equidistant on the logarithmic scale in the interval 1 6 Σ 6 106 were chosen, and the
trends in the neutral stability curve at each of these points was examined to determine
whether it belonged to category A or category B. Where it belonged to category B, the
maximum value, η∗rm, of the viscosity ratio at which there are neutrally stable modes
was evaluated by increasing k in steps of 0.05 from k = 0 to k = 10 for a given Σ,
and evaluating ηrm at each value. The interval in which the curve showed a maximum
was identified, and the maximum value was obtained by cubic splines. The maximum
viscosity η∗rm is shown as a function of Σ in figure 11 in the regions in parameter
space in which type B behaviour is observed in the wavenumber interval between 0
and 10. The maximum ratio of viscosities is not shown for H = 1.2 and H = 1.1
because in these cases, type A behaviour is observed even at Σ = 105. The parameter
Γ ∗m = (Re∗m/Σ) at which the perturbations become neutrally stable at ηr = η∗rm is
shown as a function of Σ in figure 12. From these figures, it can be inferred that the
maximum ratio of viscosities and the Reynolds number for neutrally stable modes at
this viscosity ratio increase as Σ increases.

It is useful to compare the results of the present analysis with the experimental
observations of Krindel & Silberberg (1979) of the flow in a tube surrounded by a
wall made of polyacrylamide gel. The authors measured the flow rate in the tube at
a fixed pressure drop, and compared it with the expected flow rate if the flow were in
the laminar regime. In a rigid tube, the flow rate showed a discontinuous decrease at
a Reynolds number of about 2100 where the laminar to turbulent transition might be
expected. In the gel-walled tube, however, the authors reported that the flow rate was
significantly lower than that for a laminar flow in a rigid tube even at a Reynolds
number of about 800. (Note that the Reynolds number defined here based on the
radius and maximum velocity is identical to that used in tube flow literature based
on the diameter and mean velocity.) An attempt was made to observe the onset of
turbulence by the injection of a dye stream into the tube. The authors reported that
the dye stream in the centre of the tube becomes chaotic at a Reynolds number
between 570 and 870. However, the authors cautioned that this might overestimate
the transition Reynolds number since the turbulence appears to originate at the walls
and then grows inwards to engulf the laminar core.

The parameters Σ and H can be evaluated from the data provided by them, but
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Figure 11. The maximum value of the viscosity ratio, η∗rm, at which neutrally stable modes can
exist, as a function of Σ. ◦, H = 1.5; 4, H = 2.0; 2, H = 5.0; �, H = 10.0.
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Figure 12. The parameter Γ ∗m = Re∗m/Σ at which perturbations become neutrally stable at the
maximum ratio of viscosities, as a function of Σ. ◦, H = 1.5; 4, H = 2.0; 2, H = 5.0; �, H = 10.0.

H Σ Rec kc η∗rm Re∗m ω
(at ηr = 0) (at ηr = 0)

9.67 8.201× 103 209.30 0.667 2.42 579.41 −7.886× 10−3

9.67 3.076× 104 480.09 0.705 7.90 675.72 −4.04 × 10−3

31.0 3.076× 104 310.28 0.775 10.03 404.14 −3.28 × 10−3

Table 1. The critical Reynolds number and wavenumber at ηr = 0, and the maximum viscosity η∗rm
and Reynolds number Re∗rm, for the experiments of Krindel & Silberberg (1979)

it is not possible to obtain the ratio of viscosities ηr since the loss modulus (which
is the complex part of the shear modulus) was not reported in their experiments.
The loss modulus in a gel is sensitive not only to the concentration, but also to
the pH and the degree of cross-linking in the gel (Schosseler, Ilmain & Candau
1991). Since these other parameters were not reported by Krindel & Silberberg, the
loss modulus cannot be easily estimated from their experimental data. Therefore,



Flow through a flexible tube at intermediate Reynolds number 137

the critical Reynolds number at ηr = 0 (which represents the lower limit, since the
critical Reynolds number at ηr > 0 is greater) is given in table 1. In addition, the
Reynolds number of the neutrally stable modes at the maximum viscosity ratio ηrm
is also compared with their analysis using a reasonable estimate of the ratio of loss
and storage moduli. The viscosity ratio can be estimated as ηr = (G′′/G′)|ω|−1, where
G′ and G′′ are the storage and loss moduli, and the frequency ω has been scaled by
G′/η. The ratio of moduli (G′′/G′) is between 0.01 and 0.1 for most polymeric gels
(see, for example, the results of Tong & Liu 1993). Using the value of ω for the
neutrally stable perturbations, this corresponds to a viscosity ratio between 1.268 and
12.68 for case (i), between 2.475 and 24.75 for case (ii), and between and 3.05 and
30.49 for case (iii). In all the three cases, the maximum viscosity ratio predicted by the
analysis is greater than the lower limit, but less than the upper limit. A more definite
evaluation of the results cannot be made owing to a lack of data, but the comparison
indicates that the instability observed by Krindel & Silberberg could be the same as
that predicted by the analysis if the ratio of moduli is closer to 0.01.

3. Conclusions
The present numerical study of the stability of the fluid flow in a flexible tube in the

intermediate Reynolds number regime complements the earlier low and high Reynolds
number asymptotic analyses (Kumaran 1995a, b), and provides the stability character-
istics over a range of Reynolds numbers 1 < Re < 104. The stability characteristics for
the case ηr = 0 were studied first. The results indicate that the flow becomes unstable
when the Reynolds number is increased beyond a critical value for all values of Σ
in the range 1 < Σ < 106, and the critical Reynolds number increases with Σ. In the
limit of high Reynolds number, the critical Reynolds number increases as Σα, where
α has a value between 0.7 and 0.75 for the values of H studied here. This range of
scaling exponents is higher than that for the stable inviscid modes (Kumaran 1995b),
for which Re ∼ Σ1/2. In addition, the boundary layer thickness in the limit Re � 1
decreases proportional to Re−1/3, in contrast to the decrease proportional to Re−1/2

for the inviscid modes. These results indicate that the mode that becomes unstable in
the present analysis is different from the inviscid modes studied in Kumaran (1995b).

The reason for the difference in the boundary layer scaling is briefly discussed here;
a more detailed asymptotic analysis in the parameter regime Re ∼ Σ3/5 is given in a
future publication (Kumaran 1998). That scaling analysis for the wall modes shows
that the vorticity is confined to a boundary layer of thickness Re−1/3R near the wall,
and it is convenient to define a scaled coordinate z† = Re1/3(1 − r∗)/R, where r∗ is
the dimensional distance perpendicular to the flexible wall. The growth rate of the
wall modes is O(Re−1/3) smaller than the strain rate in the fluid, and the appropriate
scaled growth rate is s† = Re1/3(s∗R/V ), where s∗ is the dimensional growth rate of the
perturbations. In addition, the continuity equation indicates that the velocity normal
to the wall is O(Re−1/3) smaller than the tangential velocity, and if the scaled tangential
velocity is defined as ṽ†x = ṽ∗x/V , the scaled normal velocity is ṽ†r = Re1/3ṽ∗r /V , where
ṽ∗x and ṽ∗r are dimensional velocities. The leading-order Navier–Stokes equations in
the limit Re � 1, expressed in terms of these scaled variables, are

dz† ṽ
†
r + ik†ṽ†x = 0, (3.1)

dz† p̃
† = 0, (3.2)

− ik†p̃† + [−(s† + ik†z†) + d2
z†]ṽ

†
x = 0, (3.3)
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where k† = kR and p̃† = p̃∗/(Re−1/3ρV 2) are the scaled wavenumber and pressure.
The above equations can be solved analytically, but it is sufficient to examine these
equations to obtain some physical insight into the structure of the wall modes. It
can be seen that the tangential velocity at the wall is large compared to the normal
velocity, and the velocity in the flow is driven by the velocity in the boundary layer.
This is in contrast to the inviscid modes, where the flow in the boundary layer
is driven by the inviscid flow in the bulk of the fluid. In addition, equation (3.3)
also shows that the viscous effect (given by the second spatial derivative of the
tangential velocity) is of the same magnitude as the inertial terms, in contrast to
the inviscid modes where the viscous effects are O(Re−1/2) smaller than the inertial
effects. Consequently, the instability is caused by modes that are distinct from the
inviscid modes, and this explains why the present instability was not observed in
the asymptotic analysis of Kumaran (1995b). Though the boundary layer for the
fluid velocity field exhibits a clear scaling behaviour, no similar scaling behaviour was
observed for the displacement field in the wall material. The present parameter regime
cannot be accessed by asymptotic analysis, because unstable modes are found for
Re ∝ Σ0.7, which is different from the regime Re ∝ Σ3/5 for the asymptotic analysis. In
addition, it should be noted that the asymptotic analysis of the wall modes (Kumaran
1998) does not indicate the presence of an instability, and the present instability has
to be interpreted as a continuation of the wall modes into the intermediate Reynolds
number regime where the asymptotic analysis is no longer valid.

The physical mechanism leading to the instability can be explained using an energy
balance analysis (Kumaran 1995b). A balance for the total energy of the fluctuations
can be written as

dE
dt

= C+S−Df −Dw (3.4)

where E is the energy of the fluctuations, C is the rate of transfer of energy from the
mean flow to the fluctuations due to the convective terms in the momentum equation,
S is the transfer of energy due to the work done by the mean flow at the interface,
and Df and Dw are the rates of dissipation of energy due to viscous effects in the
fluid and the wall. In the leading approximation, the convective transport of energy
C is zero because the tangential and normal velocities in the fluid are out of phase
by an angle of π/2 (Kumaran 1995b). Thus, there is an instability when the energy
transfer rate S is larger than the rate of dissipation Df +Dw . The rate of transport
due to the work done by the mean flow at the interface is

S = 2πR

∫
dx∗τ∗xr(v

∗
x − ∂t∗u∗x)|r∗=R (3.5)

where ∗ is used to denote dimensional quantities. The rate of dissipation of energy in
the fluid is

Df = 2πη

∫
dx∗

∫ R

0

r∗ dr∗ τ∗xr(∂r∗v
∗
x + ∂x∗v

∗
r ). (3.6)

From the scaling of the spatial and velocity coordinates in equations (3.1) to (3.3), it
can be inferred that the tangential velocity v∗x is large compared to the normal velocity
in the wall layer. In addition, the tangential velocity v∗x is also large compared to the
rate of change of normal displacement ∂t∗u

∗
x in (3.5); in the leading approximation,

ṽx is balanced by the term proportional to 2Γ ũr in the tangential velocity boundary
condition (2.12). With these simplifications,S can be expressed in terms of the Fourier
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components of the velocities ṽr and ṽx:

S = (Re1/32πRηV 2) exp [(s† + s̄†)]

∫
dk†[

¯
ṽ
†
xdz† ṽx + ṽ†xdz†

¯
ṽ
†
x]|r=1 (3.7)

where the overbar denotes the complex conjugate. The rate of dissipation of energy
in the fluid can be expressed in a similar fashion:

Df = (Re1/32πRηV 2) exp [(s† + s̄†)]

∫
dk†

∫ ∞
0

dz†[2(dz† ṽ
†
x)(dz†

¯
ṽ
†
x)]. (3.8)

In the above expression, the lower limit z† = 0 corresponds to the wall of the tube,
while the upper limit z† = Re1/3 at the centre of the tube has been approximated by
z† = ∞ in the limit Re � 1. The difference S−Df reduces to

S−Df = (Re1/32πRηV 2) exp [(s† + s̄†)]

∫
dk†

∫ ∞
0

dz†[(
¯
ṽ
†
xd

2
z† ṽ
†
x) + (ṽ†xd

2
z†

¯
ṽ
†
x)]. (3.9)

For a non-dissipative wall (ηr = 0), there is a transition from stable to unstable modes
when S−Df goes from negative to positive. Therefore, there is an instability when
the transfer of energy from the mean flow to the fluctuations due to the shear work
done at the surface is larger than the rate of dissipation of energy in the fluid for a
non-dissipative wall.

The effect of variation in ηr on the stability was analysed, and it was found
that a variation in ηr could qualitatively alter the stability characteristics; these are
summarized in § 2. It is found that wall dissipation could either stabilize or destabilize
the flow, depending on the parameter regime under consideration. The physical reason
for the stabilization or destabilization of the fluctuations has been explained in the
classic papers of Landahl (1962) and Benjamin (1963). However, the present analysis
reveals that the wall viscosity could have a complex effect on the stability, and it is
found that for some ranges of Σ, there is a maximum viscosity ratio beyond which
unstable modes do not exist. A similar observation regarding the extreme sensitivity
of the neutral stability curves to the damping in the elastic surface has been made by
Gajjar & Sibanda (1996) in their asymptotic analysis of the flow in a channel with
compliant boundaries.

The unstable modes observed here come under the category of Flow Induced
Surface Instability in the classification scheme of Carpenter & Garrad (1985), and
are distinct from the Tollmien–Schlichting modes which can exist in flows past rigid
surfaces. However, it is difficult to classify these modes using the scheme of Benjamin
(1963) based on the effect of wall damping on the stability of the system, because an
increase in wall viscosity could stabilize or destabilize the perturbations depending
on the value of Σ.

The results indicate that the flow in a flexible tube could become unstable at
Reynolds numbers that are significantly lower (sometimes an order of magnitude
lower) than the transition value of 2100 for a rigid tube. This finding is in qualitative
agreement with the experimental results of Krindel & Silberberg (1979), who reported
that the drag force in a gel-walled tube is significantly higher than that in a rigid tube at
Reynolds numbers as low as 800, and that the flow in the tube becomes turbulent at a
Reynolds number as low as 570. A quantitative comparison between the experimental
and theoretical results could not be made, because the ratio of viscosities ηr could
not be determined from the data provided by Krindel & Silberberg. However, the
lower limit of the critical Reynolds number, which corresponds to ηr = 0, is lower
than the transition Reynolds number reported by Krindel & Silberberg. In addition,
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an estimate of the ratio of viscosities was obtained using a reasonable estimate of the
ratio of the storage and loss moduli for swollen polymer gels. The maximum ratio of
viscosities predicted by the present analysis was within the estimated range of viscosity
ratios, indicating that the high drag force observed by Krindel & Silberberg could be
due to the instability predicted here. However, further experiments are necessary for
more detailed comparisons.

The author would like to thank the Department of Science and Technology,
Government of India for financial support.
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