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The velocity distribution function for a two-dimensional vibro-fluidized bed of par-
ticles of radius r is calculated using asymptotic analysis in the limit where (i) the
dissipation of energy during a collision due to inelasticity or between successive col-
lisions due to viscous drag is small compared to the energy of a particle and (ii) the
length scale for the variation of density is large compared to the particle size. In this
limit, it is shown that the parameters εG = rg/T0 and ε = U2

0/T0 � 1, and ε and εG are
used as small parameters in the expansion. Here, g is the acceleration due to gravity,
U0 is the amplitude of the velocity of the vibrating surface and T0 is the leading-order
temperature (divided by the particle mass). In the leading approximation, the dissi-
pation of energy and the separation of the centres of particles undergoing a binary
collision are neglected, and the system is identical to a gas of rigid point particles
in a gravitational field. The leading-order particle number density is given by the
Boltzmann distribution ρ0 ∝ exp(−gz/T0), and the velocity distribution function is
given by the Maxwell–Boltzmann distribution f(u) = (2πT0)

−1 exp[−u2/(2T0)], where
u is the particle velocity. The temperature cannot be determined from the leading
approximation, however, and is calculated by a balance between the rate of input of
energy at the vibrating surface due to particle collisions with this surface, and the rate
of dissipation of energy due to viscous drag or inelastic collisions. The first correction
to the distribution function due to dissipative effects is calculated using the moment
expansion method, and all non-trivial first, second and third moments of the velocity
distribution are included in the expansion. The correction to the density, temperature
and moments of the velocity distribution are obtained analytically. The results show
several systematic trends that are in qualitative agreement with previous experimental
results. The correction to the density is negative at the bottom of the bed, increases
and becomes positive at intermediate heights and decreases exponentially to zero as
the height is increased. The correction to the temperature is positive at the bottom
of the bed, and decreases and assumes a constant negative value as the height is
increased. The mean-square velocity in the vertical direction is greater than that in
the horizontal direction, thereby facilitating the transport of energy up the bed. The
difference in the mean-square velocities decreases monotonically with height for a
system where the dissipation is due to inelastic collisions, but it first decreases and
then increases for a system where the dissipation is due to viscous drag.

1. Introduction
The properties of vibrated and fluidized granular materials have been of interest

in technological applications in solids transportation, handling and processing. Many
of these processes involve the vibration of a granular material from below. In dense
vibrated beds at low base velocity the particles form a layered structure and remain in
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contact for extended periods of time. However, as the number of layers of particles is
decreased and the velocity of the vibrating surface is increased, the energy transmitted
to the material from the vibrating surface results in a vigorous motion of the particles,
where the time of contact between the particles during a binary collision is small
compared to the time between successive collisions. In this regime, momentum and
energy are transmitted due to instantaneous collisions between the particles, and the
sustained frictional contact is not present. These materials exhibit unusual properties,
such as liquid-like streaming motion and wave propagation (Savage 1988; Gold-
shtein et al. 1995), and gas-like density variations and shock waves (Warr, Huntley &
Jacques 1995; Goldshtein et al. 1995) for certain parameter regimes. The development
of statistical descriptions for these types of behaviour involves averaging over the ‘mi-
croscopic’ laws for the particle motion to obtain ‘macroscopic’ conservation equations
for the flow. A statistical description for the uniformly fluidized state of a vibrated bed,
using methods from the kinetic theory of gases, is the subject of the present analysis.

There has been a lot of research on the properties and the stability of gas-fluidized
beds, where a gas is passed upward through a bed of particles, and the vigorous
motion of the particles is caused by the drag force exerted by the gas. The stability
of the uniformly fluidized state of the bed has been of interest for some time, and
the earliest work in this area was carried out by Jackson (1963) who showed, using a
simple continuum description, that the uniformly fluidized state of the bed is always
unstable to density fluctuations. Since then, there has been a lot of work on continuum
descriptions and stability analyses of the uniform state of a fluidized bed (see, for
example, Didwania & Homsy 1982; Batchelor 1988; and the review by Jackson 1985).
However, there is still no consensus on the appropriate continuum description of a
fluidized bed, and its stability. There have been fewer attempts to obtain a statistical
description, by averaging over the microscopic dynamics of the particles, possibly due
to the complex interactions between the turbulent gas flow and the particle motion.
The description of particle dynamics in a vibrated fluidized bed is simpler, because
the fluidization takes place due to the vibration of the bottom surface.

There have been many experimental and theoretical studies of the motion of
vibrated granular materials, but there have been fewer attempts at obtaining a
microscopic description for the motion of the material. Savage (1988) conducted
experiments on a vibrated bed of polystyrene spheres. The bed was vibrated at the
bottom, with a maximum amplitude at the centre of the bed and zero amplitude at the
sides, and a circulatory streaming pattern was observed. The author used a model for
a granular material similar to that of Jenkins & Savage (1983) for the flow of smooth,
inelastic spherical particles undergoing collisions, and the circulation was treated in a
manner similar to the acoustic motion in gases. More recently, Goldshtein et al. (1995)
have considered the dynamics of a granular material vibrated uniformly from below.
They have observed three types of behaviour: a solid-like state where the entire gran-
ular material behaves as a plastic body; a liquid-like regime where there are transverse
waves on the surface of the material; and a gas-like state where there are expansion–
compression waves propagating upward. The authors propose a description for the
gas-like state using equations similar to the Euler equations for an ideal gas.

Experimental studies and computer simulations have also reported the presence of
a uniformly fluidized state of a vibrated fluidized bed. Luding, Herrmann & Blumen
(1995) carried out ‘event driven’ simulations of a two-dimensional system of inelastic
disks in a gravitational field vibrated from below, and obtained scaling laws for
the density variations in the bed. An experimental study of a vibrated fluidized bed
was carried out by Warr et al. (1995). Their experimental set-up consisted of steel
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spheres confined between two glass plates that are separated by a distance slightly
larger than the diameter of the spheres. The particles were fluidized by a vibrating
surface at the bottom of the bed, and the statistics of the velocity distribution of the
particles were obtained using visualization techniques. Profiles for the density and the
mean-square velocity were obtained, and the particle velocity distributions were also
determined at certain positions in the bed. Both of these studies reported that there
is an exponential dependence of the density on the height near the top of the bed,
similar to the Boltzmann distribution for the density of a gas in a gravitational field.
However, the dependence of the density deviates from the exponential behaviour near
the bottom. The dependence of the mean-square velocity on the vibration frequency
and amplitude were found to be different in the two studies.

There have been many studies on the properties of sheared suspensions which have
used kinetic theory methods. The earliest attempts of Jenkins & Savage (1983) and
Lun et al. (1984) exploited similarities between the vigorous motion of the particles in
a suspension and the fluctuations of the molecules in a gas, while incorporating the
difference that the collisions between the particles are inelastic, and dissipate energy.
The leading-order velocity distribution was assumed to be a Maxwell–Boltzmann
distribution; this assumption is valid when the energy dissipation in a collision is
small compared to the energy of the particles. However, the ‘temperature’ of the
suspension, which is proportional to the mean square of the velocity fluctuations of
the particles, is determined by a balance between the source of energy due to the
mean shear and the dissipation of energy due to inelastic collisions. Balance laws
for the moments of the distribution function were obtained using methods similar
to those used in the Chapman–Enskog theory for dense gases. Another approach
is the moment expansion method, used by Jenkins & Richman (1985), where the
distribution function is assumed to be an anisotropic Gaussian distribution with
different mean-square velocities in different spatial directions.

The propagation of sound waves in a gas has been extensively analysed (see,
for example, Sirovich & Thurber 1965; Cercignani 1975). Here, it is of interest to
calculate the dispersion relation, which gives the relation between the frequency,
wavelength and attenuation rate of sound in a gas. The present analysis is different
from these earlier studies, because the focus is on the distribution function in the
uniform state of the vibrated material. In a gas, the uniform state is determined by
the thermodynamic temperature. In a dissipative granular material, the uniform state
can only be maintained in the presence of external vibration, and it is of interest
to study the relation between the vibration and the distribution function of the
granular material. There could be oscillations superposed on the uniform state due
to the vibrating surface, but the amplitude of these will be small if the frequency of
oscillations of the vibrating surface is large compared to the time between successive
collisions of a particle with this surface, so that there is no correlation in the velocity
of the surface during successive collisions. Moreover, the experiments of Warr et al.
(1995) did not show any systematic oscillations superposed on the uniform state, and
so these oscillations are not analysed here.

In the present analysis, asymptotic techniques are used to calculate the velocity
distribution function of the particles in vibro-fluidized beds in the limit where the
maximum velocity of the vibrating surface is small compared to the root-mean-square
velocity of the particles. In addition, the particle radius is small compared to the length
scale of the density variations in the bed, which is proportional to T0/g as discussed
in the next section. In this limit it is shown, using an energy balance argument, that
the dissipation of energy during a collision due to inelasticity or between successive
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collisions due to viscous drag is small compared to the energy of the particles. In the
leading approximation, the system is identical to a gas of hard spheres at equilibrium in
a gravitational field: the density of the gas decreases exponentially away from the sur-
face, while the temperature of the gas is independent of height. The correction to this
leading-order distribution function due to dissipative effects is calculated using a mo-
ment expansion method. The perturbation to the distribution function is anisotropic
with different mean-square velocities in the horizontal and vertical direction. In ad-
dition, the perturbation also has non-zero third moments of the velocity distribution
function. In contrast to earlier studies on sheared suspensions, the leading-order dis-
tribution function is spatially varying at steady state, and the moments of the velocity
distribution function depend on the distance from the vibrating surface. In addition,
the transport of momentum and energy due to viscous and thermal effects is included
in the description, in contrast to the Euler-type equations used by Goldshtein et al.
(1995). The perturbed distribution function is inserted into the Boltzmann equation,
and the equations for the moments of the distribution function are determined. The
usual assumption that the particle velocities are uncorrelated before a collision (molec-
ular chaos) is made while evaluating the collision integral. The balance equations are
solved to obtain the moments of the distribution function, and the spatial variation of
the density and the moments of the distribution function are determined analytically.

An issue of importance in the kinetic theory for granular materials is the appropriate
form of the boundary conditions, and their relation to the mean velocity and the gran-
ular temperature at the wall, since these boundary conditions are necessary for solving
the balance equations. One approach, due to Jenkins & Richman (1986), is to use
microscopic models for the interaction of the particles with the wall and use averag-
ing techniques to derive macroscopic boundary conditions. Johnson & Jackson (1987)
have used a simple specularity condition at the wall to take into account the possibil-
ity of wall roughness. These types of conditions are necessary for shear flows because
motion of the wall is in the tangential direction, and transmission of momentum from
the particle to the wall along the tangential direction requires the presence of surface
roughness. In the present case, there is a transmission of momentum in the direction
normal to the wall due to the motion of the vibrating surface, and the boundary condi-
tions can be obtained directly by considering the interaction of a particle with the wall,
and averaging over the probability distributions of the particle and wall velocities.

The system analysed here consists of a vibro-fluidized bed in which the particles are
confined to move in a plane. The solutions for the leading-order and the first correction
to the distribution function are obtained in the next section for two cases – the first
where inelastic collisions are the dominant mechanism of energy dissipation, and the
second where viscous drag on the particles is the dominant dissipation mechanism.
The solutions for the first correction are obtained analytically as convergent series
expansions. The properties of the distribution function are discussed in §3 for the cases
where inelastic collisions and viscous drag are the dominant dissipation mechanisms.
In addition, the results of the present analysis are compared to the experimental
results of Warr et al. (1995).

2. Distribution function
A Cartesian coordinate system is chosen for the analysis, where the z-direction is op-

posite to the direction of gravity and the x-direction is in the horizontal plane, and the
particles are confined to the (x, z)-plane. The input of energy is provided by a vibrating
surface located at z = 0. The amplitude of the vibrating surface is considered to be
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small compared to the distance between successive collisions of a particle, and the fre-
quency of vibrations is large compared to the frequency of collisions of the particles, so
that the velocity of a particle colliding with the vibrating surface is uncorrelated with
the velocity of the surface itself. The dynamics of the vibrating surface is described by
a probability distribution P (U) which is defined such that P (U)dU is the probability
of finding the velocity of the surface in the interval dU about U at any time, and the
mean velocity of the surface is zero. The results for the case when the mean velocity of
the surface is non-zero could be very different from those for the present calculation,
as discussed in Kumaran (1998). It should be noted that the present analysis is appli-
cable to systems where the velocity of the vibrating surface varies periodically if the
time period of oscillations is small compared to the time between successive collisions
of particles with the surface. In this case, there is no correlation between the velocity
of the surface at successive particle collisions, and consequently the dynamics of the
fluidized bed is also not correlated to the frequency of the surface. It turns out that the
dynamics of the system only depends on the mean-square velocity 〈U2〉 in the present
limit where the velocity of the surface is small compared to the fluctuating velocity
of the particles in the bed. For example, if the velocity of the vibrating surface is

U = U0 exp(iωt) (2.1)

where ω is the frequency of vibration, the probability P (U) is given by

P (U) =
1

π(U2
0 −U2)1/2

(2.2)

and the mean-square velocity of the surface is

〈U2〉 = 1
2
U2

0 . (2.3)

For definiteness, the above probability distribution function (2.2) will be employed in
the present analysis, though the results can easily be modified to incorporate other
forms of P (U) as well. The system is homogeneous in the x-direction, so that the
number density of the particles ρ(z) is only a function of z. The velocity distribution
function f(x, u) is defined such that ρ(x)f(x, u) dx du gives the number of particles in
the differential volume (dx du) about the point (x, u). The conservation equation for
the distribution function is the steady-state Boltzmann equation

∂(uiρf)

∂xi
+
∂(aiρf)

∂ui
=
∂c(ρf)

∂t
, (2.4)

where u and a are the velocity and acceleration of the particles, the indicial notation
has been used to represent vectors and a repeated index represents a dot product. The
first term on the left is the convective transport of particles in real space, while the sec-
ond term on the left represents the transport in velocity space due to the acceleration
of the particles. The term on the right represents the rate of change of the distribution
function due to the collisional transport of particles in velocity space. This is obtained
by considering the collision of a particle with position and velocity (x, u) with another
particle with position and velocity (x†, u†) and integrating over the velocity of the
second particle and the orientation of the line of centres at the point of collision:

∂c(ρ(x)f(x, u))

∂t
= ρ(x)g0(ν)

∫
du†

∫
dkρ(x†)[f(x′, u′)f(x†′, u†′)

−f(x, u)f(x†, u†)](2rw · k) (2.5)
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where k is the unit vector in the direction of the line joining the centres of the
particles, x† = x + 2rk, w = u − u† is the velocity difference, and the integral is
carried out over all velocities such that w · k > 0. The function g0(ν) is the equilibrium
radial distribution at contact, and ν = ρ(x)(πr2) is the area fraction. An analytical
expression for g0(ν) has been determined by Verlet & Levesque (1982):

g0(ν) =
(16− 7ν)

16(1− ν)2
. (2.6)

In the limit ν → 0, the above expression tends to the expected value of g0 = 1, and it
is in good agreement with the simulations of Hoover & Alder (1967) up to ν = 0.665.

The first term in the square brackets on the right-hand side in (2.5) is the flux
of particles into the differential volume about (x, u) due to collisions, and the initial
velocities (x′, u′) and (x†′, u†′) are chosen such that the particle at x has a final velocity
u after the collision. The second term in the square bracket on the right-hand side is
the flux of particles out of the differential volume about (x, u) due to collisions.

The Boltzmann equation (2.4) is a non-linear integro-differential equation, and
the distribution function cannot be obtained by analytically solving this equation.
However, there is an analytical solution in the following limits.

(a) The dissipation of energy during a collision, due to inelastic effects, or between
successive collisions, due to viscous drag, is small compared to the energy of the

particles. This requires that 1 − e � 1 for inelastic collisions, or µT
1/2
0 /g � 1 for

systems where the dissipation is due to viscous drag. Here, it is assumed that the drag
law is given by (2.15), and µ is the drag coefficient.

(b) The variation in the particle density over a distance comparable to the particle
radius is small. This condition requires that gr/T0 � 1, because the length scale for
the variation of particle density is T0/g. In this limit, it can also be shown that the
correction to the radial distribution function due to variation in the particle density is
small, so the pair distribution function is set equal to 1 in the leading approximation.
The density of the particles scales as Ng/T0 from equation (2.7) below, where N is
the number of particles per unit length in the horizontal direction. The area fraction
ν = πr2(Ng/T0), which is small because Nr ∼ 1 and rg/T0 � 1 in this analysis.
In this case, the system is identical to a gas of hard sphere particles under the influence
of gravity, and the Boltzmann equation is identically satisfied by the following leading-
order density and velocity distributions in two dimensions:

ρ0 =

(
Ng

T0

)
exp

(
−gz
T0

)
, (2.7)

f0(x, u) = F(u) =
1

2πT0

exp

(
−u

2
x + u2

z

2T0

)
, (2.8)

where Ng/T0 is the density at z = 0, N is the number of particles per unit length in the
x-direction and the ‘temperature’ T0 has been scaled by the mass of the particle, and
has units of the square of velocity. In the leading approximation, T0 is independent
of position in the bed. An asymptotic scheme is employed in the present analysis,
where the density (2.7) and distribution function (2.8) are taken as the leading-order
approximations, and the effect of energy dissipation and the variation in the density
over a distance comparable to the particle radius are used to calculate the higher-order
corrections.

Since the temperature T0 is independent of position in the leading approximation,
it can be determined by a macroscopic energy balance over the entire bed. There
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is a source of energy due to particle collisions with the vibrating surface at z = 0,
and dissipation due to inelastic collisions and the drag force due to the gas. The
leading-order temperature and density are calculated by balancing the leading-order
contributions to the source and dissipation of energy.

The source of momentum and energy at the vibrating surface is determined by
analysing the collisions between the particles and the surface. The particle–base
collisions are considered to be elastic in the present case, but the analysis can easily
be extended to inelastic collisions as well. The variation in the height of the surface is
neglected since this is small compared to the mean free path of the particles, and only
the variation in the velocity is included in the analysis of the collisions. The frequency
of a collision between a particle of velocity u and the surface (per unit length of the
surface) is (Ng/T0)(U−uz)f(0, u). The velocity of a particle after an inelastic collision
is u′z = 2U − uz , and the change in energy is (1/2)(u′2z − u2

z) = 2U(U − uz). (Note that
the momentum and energy have been scaled by the mass of the particle in a manner
similar to the temperature.) Therefore, the total change in energy per unit width of
the surface per unit time due to particle collisions with the vibrating surface is

S =

∫ U0

−U0

dU

∫ U

−∞
duzP (U)

Ng

T0

f(0, u)2U(U − uz)2, (2.9)

where the limits of integration are chosen so that U − uz > 0. While determining
the leading-order contribution to S , it is sufficient to consider the leading-order
contribution to the distribution function f(0, u) = F(u) in (2.9). The integral in (2.9)
is difficult to evaluate even with this simplification, but it is possible to obtain a
series solution in the small parameter U2

0/T in the limit U2
0 � T . In this limit, the

leading-order contribution to the source of energy S0 is

S0 =

(
2

π

)1/2
Ng

T
1/2
0

U2
0 . (2.10)

For a suspension where the dissipation of energy is due to inelastic collisions, the
rate of energy dissipation is

DI = −
∫ ∞

0

dzρ(z)ρ(z†)g0(ν)

∫
du

∫
du†

∫
dkf(x, u)f(x†, u†)(2rw · k)(u′2 − u2)/2

(2.11)
where u and u′ are the magnitudes of the particle velocities after and before a collision,
k is the unit vector in the direction of the line joining the centres of the particles
at the point of collision and w = u − u†. Note that there is a negative sign in (2.11)
because the dissipation rate is the negative of the rate of change of energy of the
suspension. In determining the leading-order estimate DI0, the variation in the density
over a distance comparable to the particle radius is neglected, the radial distribution
function g0 is set equal to 1 and the leading-order energy dissipation rate is

DI0 = π1/2rN2gT
1/2
0 (1− e2). (2.12)

Equating the leading-order source of energy due to the vibrating surface and the
energy dissipation, the leading-order temperature is

T0 =

√
2

π

U2
0

rN(1− e2)
. (2.13)

In the perturbation analysis of a system where the dissipation is due to inelastic
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collisions, the small parameter ε is defined as

εI =
U2

0

T0

=
π√
2
rN(1− e2). (2.14)

This parameter is independent of the amplitude of the velocity of the vibrating
surface, and depends only on the number of layers of particles and the radius and
coefficient of restitution of the particles.

For analysing the effect of viscous dissipation, a drag law is considered to be of
the form

ai = −µui (2.15)

where µ is the drag coefficient. The dissipation of energy due to the drag force is

DD =

∫ ∞
0

ρ(z)

∫
duf(x, u)µ(u · u). (2.16)

The leading-order contribution DD0 to the dissipation due to viscous drag can be
evaluated by substituting F(u) for f(x, u) and ρ0(z) for ρ(z) in the above expression:

DD0 = 2µNT0, (2.17)

and the leading-order temperature is obtained by equating DD0 and S0:

T0 =

(
1

(2π)1/2

U2
0g

µ

)2/3

. (2.18)

In this case, the parameter ε is defined as

εD =
U2

0

T0

=

(
(2π)1/2µU0

g

)2/3

=

(
(2π)1/2µT

1/2
0

g

)
. (2.19)

This parameter now depends on the amplitude of the velocity oscillation of the
surface. In the present analysis we consider the limit where ε = U2

0/T0 � 1, and use
a perturbation analysis to determine the properties of the system. This parameter
assumes different values for situations where the dissipation of energy is due to
inelastic collisions and due to the viscous drag force. However, it provides a unified
framework for the formulation of the equations of motion, and a distinction between
the two mechanisms is made only when the results for the variation in the density
and the velocity moments are calculated.

The dissipation of energy causes a small correction to the density ρ = ρ0(z)(1 +
ερ1(z)), a correction to the temperature T = T0(1 + εT1(z)), and a perturbation to
the form of the distribution function which is assumed to be of the form

f(x, u) = F(u)

[
1 + ε

(
T1(z)(u

2
x + u2

z − 2T0)

2T0

+
A1(z)uz

T
1/2
0

+
A2(z)(u

2
z − u2

x)

T0

+
A3(z)u

3
z

T
3/2
0

− (A1(z) + 3A3(z))u
2
xuz

T
3/2
0

)]
= F(u)(1 + εΦ(x, u)). (2.20)

The terms in the perturbation expansion are suitably scaled by different powers of the
temperature T0 so that T1, A1, A2 and A3 are dimensionless. The term proportional
to T1 in the above represents the variation in the distribution function due to the
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variation in the temperature, while the other terms are chosen so that the variation in
the form of the distribution function does not alter the temperature. In addition, the
term proportional to u3

z has been chosen so that the mean velocity in the z-direction
is zero at all points.

The functions ρ1, T1, A1, A2 and A3 are determined using the moment expansion
method. Conservation equations for the moments of the velocity distribution function
are determined by multiplying the Boltzmann equation by products of the components
of the particle velocity and integrating over velocity space. The moment 〈ψ(x)〉 of a
function ψ(u) of the particle velocity is

〈ψ(x)〉 =

∫
duψ(u)f(x, u). (2.21)

Equations for five functions of the velocity distribution, uz , u
2
z , u

2
x, u

3
z and u2

xuz , are
considered in the present analysis. The moments of these functions can be expressed
in terms of the functions T1, A1, A2 and A3:

〈uz〉 = 0, (2.22)

〈u2
z〉 = T0 + εT0(T1 + 2A2), (2.23)

〈u2
x〉 = T0 + εT0(T1 − 2A2), (2.24)

〈u3
z〉 = 6εT

3/2
0 A3, (2.25)

〈u2
xuz〉 = −2εT

3/2
0 (A1 + 3A3). (2.26)

The conservation equations for the above moments are

∂z(ρ〈u2
z〉) + gρ =

∂cρ〈uz〉
∂t

, (2.27)

∂z(ρ〈u3
z〉) + 2µρ〈u2

z〉 =
∂cρ〈u2

z〉
∂t

, (2.28)

∂z(ρ〈u2
xuz〉) + 2µρ〈u2

x〉 =
∂cρ〈u2

x〉
∂t

, (2.29)

∂z(ρ〈u4
z〉) + 3gρ〈u2

z〉+ 3µρ〈u3
z〉 =

∂cρ〈u3
z〉

∂t
, (2.30)

∂z(ρ〈u2
xu

2
z〉) + gρ〈u2

x〉+ µρ〈u2
xuz〉 =

∂cρ〈u2
xuz〉

∂t
. (2.31)

The rate of change of a moment ψ(x) due to particle collision is obtained by
considering a collision between two particles with positions z and z†, initial velocities
u and u†, and with final velocities u′ and u†′, and integrating over all u and u†:

∂cρ〈ψi(x)〉
∂t

= ρ(z)ρ(z∗)

∫
du

∫
du†

∫
dkf(x, u)f(x†, u†)(ψ(u′)− ψ(u))(2rw · k). (2.32)

It is useful to briefly describe the method used for evaluating the collision integrals.
The velocities of the two particles before the collision are separated into the velocity
of the centre of mass v and the velocity difference between the two particles w as
follows:

vi = (ui + u
†
i )/2, wi = ui − u†i . (2.33)

The centre-of-mass velocity after the collision is equal to the centre-of-mass velocity
before the collision, while the velocity difference between the two particles after the
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Figure 1. Coordinate system for analysing collisions between particles.

collision is given by

w′i = (δij − (1 + e)kikj)wj, (2.34)

where the vector k is the unit vector joining the centres of the two disks and δij is the
identity tensor. With these substitutions, (2.32) can be expressed as an integral over
the velocities v and w:

∂cρ〈ψi(x)〉
∂t

= ρ(z)ρ(z†)

∫
dv

∫
dw

∫
dkF(v)F(w)(1 + ε(Φ(x, u) + Φ(x†, u†))

×(ψ(u′)− ψ(u))(2rwiki), (2.35)

where F(v) = (πT0)
−1 exp(−v2/T0) and F(w) = (4πT0)

−1 exp(−w2/4T0) are the
leading-order distribution functions for the velocity of the centre of mass and the dif-
ference velocity. In (2.35), only the O(ε) corrections to the distribution function have
been included in the calculation, since the collision integrals are evaluated correct to
O(ε). The integral over the velocity v can easily be evaluated, since it is decoupled
from the other two integrals. The configuration shown in figure 1 is used to evaluate
the integrals over k and w. The vector k makes an angle θ with the vertical, while the
vector w makes an angle χ with k. The components of w can be expressed in terms
of θ and χ:

wx = w(cos (χ) cos (θ)− sin (χ) sin (θ)),

wz = w(sin (χ) cos (θ) + cos (χ) sin (θ)),

w′x = w(−e cos (χ) cos (θ)− sin (χ) sin (θ)),

w′z = w(−e cos (χ) sin (θ) + sin (χ) cos (θ)).

 (2.36)

The collisional rate of change of the function ψ can now be expressed in terms of w,
χ and θ as

∂cρ〈ψi(x)〉
∂t

= ρ(z)ρ(z†)g0(ν)

∫
dv

∫ ∞
0

w dw

∫ 2π

0

dθ

∫ π/2

−π/2
dχF(v)F(w)

×(1 + ε(Φ(x, u) + Φ(x†, u†))(ψ(u′)− ψ(u))(2rw cos χ), (2.37)

where Φ(x, u) is defined in (2.20) Note that the angle χ has been integrated between
(−π/2) and (π/2) because the two particles collide only for −π/2 6 χ 6 π/2 where
(w · k) is positive.

In the limit ε� 1, the conservation equations are identically satisfied in the leading-
order approximation by the Boltzmann distribution, while the O(ε) corrections to the
equations are solved to obtain the functions ρ1, T1, A1, A2 and A3. It is convenient
to express the equations in terms of a scaled length z∗ = zg/T0, a scaled velocity

u∗i = ui/T
1/2
0 , and a scaled density ρ∗0 = ρ0T0/Ng = exp(−z∗). The scaled equations
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for the O(ε) correction to the conservation equations are

ε[dz∗(ρ
∗
0(T1 + 2A2 + ρ1)) + ρ∗0ρ1] =

∂cρ
∗
0〈u∗z〉
∂t∗

∣∣∣∣
1

, (2.38)

ε[dz∗(6ρ
∗
0A3)] +

(
2

π

)1/2

ρ∗0εD =
∂cρ

∗
0〈u∗2z 〉
∂t∗

∣∣∣∣
1

, (2.39)

ε[dz∗(−2ρ∗0(A1 + 3A3))] +

(
2

π

)1/2

ρ∗0εD =
∂cρ

∗
0〈u∗2x 〉
∂t∗

∣∣∣∣
1

, (2.40)

ε[dz∗(3ρ
∗
0(2T1 + 4A2 + ρ1)) + 3ρ∗0(ρ1 + T1 + 2A2)] =

∂cρ
∗
0〈u∗3z 〉
∂t∗

∣∣∣∣
1

, (2.41)

ε[dz∗(ρ
∗
0(2T1 + ρ1)) + ρ∗0(T1 − 2A2 + ρ1)] =

∂cρ
∗
0〈u∗zu∗2x 〉
∂t∗

∣∣∣∣
1

. (2.42)

In the leading-order approximation, the collisional change in the velocity moments is
identically zero, since the Boltzmann equation is identically satisfied by the distribution
function. The first correction to the collisional rate of change of the velocity moments
is due to the following four factors.

(a) The perturbation to the distribution function (2.20). While calculating this
effect, the collisions can be considered elastic, the variation in the density over a
length comparable to the particle size can be neglected, and the deviation in the
radial distribution function from its value of 1 in the dilute limit is neglected since the
inclusion of these effects causes subdominant corrections in the asymptotic scheme.
With this approximation, the rates of change of the velocity moments due to the
perturbation to the distribution function, scaled in a manner similar to the balance
equations (2.38)–(2.42) are

∂p(ρ
∗
0〈u∗z〉)
∂t∗

= 0, (2.43)

∂p(ρ
∗
0〈u∗2z 〉)
∂t∗

= −8π1/2εA2(Nr)ρ
∗2
0 , (2.44)

∂p(ρ
∗
0〈u∗2x 〉)
∂t∗

= 8π1/2εA2(Nr)ρ
∗2
0 , (2.45)

∂p(ρ
∗
0〈u∗3z 〉)
∂t∗

= 6π1/2ε(−A1 − 6A3)(Nr)ρ
∗2
0 , (2.46)

∂p(ρ
∗
0〈u∗zu∗2x 〉)
∂t∗

= 2π1/2ε(5A1 + 18A3)(Nr)ρ
∗2
0 . (2.47)

(b) There is a correction to the distribution function due to the inelastic nature
of the collisions. While calculating the leading-order effect of inelastic collisions, the
perturbation to the distribution function and the effect of variation in density on
the collision integral are neglected, the pair distribution function is set equal to its
value of 1 in the dilute limit, and the rates of change of the velocity moments due to
inelastic collisions are

∂i(ρ
∗
0〈u∗z〉)
∂t∗

= 0, (2.48)

∂i(ρ
∗
0〈u∗2z 〉)
∂t∗

= −2

(
2

π

)1/2

εIρ
∗2
0 , (2.49)
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∂i(ρ
∗
0〈u∗2x 〉)
∂t∗

= −2

(
2

π

)1/2

εIρ
∗2
0 , (2.50)

∂i(ρ
∗
0〈u∗3z 〉)
∂t∗

= 0, (2.51)

∂i(ρ
∗
0〈u∗zu∗2x 〉)
∂t∗

= 0. (2.52)

(c) There is a variation in the collision integral due to the variation in the density
over distances of the order of the particle radius. The effect of the density variation
is proportional to the small parameter εG = (rg/T0), which is the ratio of the particle
radius and the length scale of the variation of properties in the fluidized bed. The
leading-order effect due to this is determined using a Taylor series expansion for the
leading-order density:

ρ0(z
∗) = ρ0(z) + (z∗ − z)∂zρ0(z)

= ρ0(z)

(
1− (z∗ − z)g

T0

)
. (2.53)

With this approximation, the contribution to the collisional rates of change of the
velocity moments due to the gradients in the density are

∂g(ρ
∗
0〈u∗z〉)
∂t∗

= 4πεG(rN)ρ∗20 , (2.54)

∂g(ρ
∗
0〈u∗2z 〉)
∂t∗

= 0, (2.55)

∂g(ρ
∗
0〈u∗2x 〉)
∂t∗

= 0, (2.56)

∂g(ρ
∗
0〈u∗3z 〉)
∂t∗

= 12πεG(rN)ρ∗20 , (2.57)

∂g(ρ
∗
0〈u∗2x u∗z〉)
∂t∗

= 4πεG(rN)ρ∗20 . (2.58)

While calculating the above correction, the effect of inelasticity and the variation
in the distribution function from the Maxwell–Boltzmann distribution are neglected,
and the pair distribution function is set equal to its value of 1 in the dilute limit.

(d) The effect of variation in the pair distribution function due to variations in the
density. The pair distribution function (2.6) can be expanded in a Taylor series in the
area fraction ν = ρπr2. In the leading approximation, ν = (Nr)εG exp(−z∗), and the
pair distribution function is given by g0(ν) = 1 + (25/16)(Nr)εG exp(−z∗) correct to
O(εG). As anticipated earlier, the correction to the pair distribution function due to
variations in the particle density is O(εG). The O(ε) correction to the collisional change
in the velocity moments can be obtained by including the correction to the radial
distribution function, but neglecting the corrections due to inelasticity, the deviation in
the distribution function from the Maxwell–Boltzmann distribution and the variation
in the density over a distance equal to the particle radius. In this case, it can easily
be verified that the O(εG) correction to the collisional terms is identically zero. This
is because the collisional corrections are just equal to the O(εG) correction to the
radial distribution function times the leading-order collisional changes in the velocity
moments, and the latter are identically zero. Consequently, the O(εG) correction due
to deviation in the value of the radial distribution function from its value of 1 in the
dilute limit is zero in the present asymptotic scheme.
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The boundary conditions for the solutions of equations (2.38)–(2.42) are obtained
as follows. The condition for ρ1 is obtained by stipulating that a variation in the
density does not alter the total number of particles in the suspension. This requires
that ∫ ∞

0

dz∗ exp(−z∗)ρ1(z
∗) = 0. (2.59)

The condition for T1 is obtained from energy balance conditions for the entire bed,
in a manner similar to that used for obtaining the temperature T0 in the leading
approximation

S1 = D1 (2.60)

where D1 is the O(ε) correction to the dissipation of energy, and S1 is the O(ε)
correction to the source of energy at the vibrating surface. The O(ε) correction to the
energy source at the surface, obtained in a manner analogous to S0 (2.10), is

S1 = ε2NgT
1/2
0

(
1

4(2π)1/2
+

1

(2π)1/2
(2A2 + T1) +

(
2

π

)1/2

ρ1

)
. (2.61)

For a system where the energy dissipation is due to inelastic collisions, the O(ε)
correction to the energy dissipation due to inelastic collisions, obtained in a manner
similar to DI0 (2.12), is

DI1 = ε2
INgT

1/2
0

(
2

π

)1/2(∫ ∞
0

dz∗ exp(−2z∗)(3T1 + 4ρ1)

)
. (2.62)

For a system where the energy dissipation is due to viscous drag, the O(ε2) correction
to the energy dissipation is

DD1 =

(
2

π

)1/2

ε2
DNgT

1/2
0

∫ ∞
0

dz∗ exp(−z∗)(T1 + ρ1). (2.63)

The condition for the first correction to the temperature T1 is obtained by equating
the source of energy (2.61) to the dissipation of energy (2.62) or (2.63). The boundary
conditions for the functions A1 and A3 are determined from the requirement that the
flux of the moments 〈u∗2z 〉 and 〈u∗2x 〉 due to the vibrating surface is identical to that
obtained from the perturbed distribution function. The fluxes of the velocity moments
are evaluated using a procedure similar to that used for the flux of energy from the
vibrating surface (2.9). The flux of 〈u2

x〉 at the vibrating surface is identically zero,
because there is no change in the tangential velocity of the particles due to collisions
with the surface. This condition results in the following boundary condition at z = 0:

(A1 + 3A3)|z=0 = 0. (2.64)

The leading-order contribution to the flux of 〈u∗2z 〉 at the surface is

ρ∗0〈u3
z〉 = 2

(
2

π

)1/2

T
1/2
0 U2

0 . (2.65)

From this, the following condition for A1(z) is obtained:

A1(z)|z=0 = −
(

2

π

)1/2

. (2.66)
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3. Results
3.1. Dissipation due to inelastic collisions

A suspension in which the dissipation is due to inelastic collisions is considered first.
An equation for A1(z

∗) is obtained by adding ((2.39) and (2.40)), and this is solved to
obtain:

A1(z) = −
(

2

π

)1/2

exp(−z∗). (3.1)

In the above solution, an exponentially growing term has been neglected due to the
constraint that A1 is finite at large z∗, and it can easily be verified that the above
solution is consistent with the boundary condition (2.66).

A differential equation for A2 can be obtained by taking (2.41) −3× (2.42), and
using the appropriate collisional terms:

dzA2(z) = −3π1/2(Nr)(A1 + 4A3)ρ
∗
0. (3.2)

Taking a derivative of this with respect to z and using (2.39) and (2.40) for the
derivatives dz∗(ρ

∗
0A1) and dz∗(ρ

∗
0A3), the following second-order differential equation is

obtained for A2(z):

d2
zA2(z) =

[
16πA2(Nr)− 2

√
2
]

(Nr) exp(−2z∗). (3.3)

The above equation cannot be solved analytically, but a series solution in the param-
eter exp(−2z∗) can be obtained for z∗ � 1. In this limit, there are two leading-order
solutions for A2; one solution is independent of z∗ and the other is a linear function of
z∗. The latter is not finite in the limit z∗ � 1, and is neglected. With this simplification,
the series solution for z∗ is

A2(z
∗) =

∞∑
n=0

A2n exp(−2nz∗), A21 =

[
4π(Nr)2A20 −

(Nr)√
2

]
, A2n =

4π(Nr)2A2(n−1)

n2
,

(3.4)
where A20 is a constant of integration determined using the boundary conditions. The
above series is convergent even in the limit z∗ → 0, because the ratio A2(n+1)/A2n ∼
(4πNr)/n2 for n� 1, and the above series solution provides a uniform approximation
in the range 0 6 z∗ 6 ∞. The function A3(z) can be determined from the balance
equation (2.40) and the solution (3.4) for A2(z

∗):

A3(z
∗) =

2π1/2(Nr)

3

∞∑
n=0

A2n exp[−(2n+ 1)z∗]

(n+ 1)
+

1

6

(
2

π

)1/2

exp(−z∗). (3.5)

In the above equation, the constant of integration has been set equal to zero due to
the constraint that A3 is finite in the limit z∗ → ∞. The constant of integration A20

can be determined by inserting the solutions (3.1) and (3.5) for A1(z
∗) and A3(z

∗) into
the boundary condition (2.66). It can easily be seen from the differential equations
and the boundary conditions that A1(z

∗), A2(z
∗) and A3(z

∗) are independent of the
parameter εG.

A differential equation for T1 is obtained by taking (2.41) −3× (2.38), and taking
the derivative with respect to z∗ of the resulting equation:

d2
z∗(T1 + 2A2) =

[
16πA2(Nr) + 4

(
2

π

)1/2
]

exp(−2z∗). (3.6)
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The series solution for the above equation is obtained using the solution (3.4) for
A2(z

∗):

T1 = T10 +

∞∑
n=0

[
4π(Nr)2A2n exp[−2(n+ 1)z∗]

(n+ 1)2
− 2A2n exp(−2nz∗)

]
(3.7)

where T10 is an unknown constant to be determined from the boundary conditions.
The first correction to the density ρ1 can be determined from (2.38), using the solutions
(3.4) and (3.7) for A2(z

∗) and T1(z
∗):

ρ1 = ρ10 + T10z
∗ − 4πεG(Nr) exp(−z∗) +

∞∑
n=1

[
−(2n+ 1)

2n
(T1n + 2A2n) exp(−2nz∗)

]
.

(3.8)

The solutions (3.7) and (3.8) for the functions ρ1 and T1 contain two unknown
constants, T10 and ρ10, which are determined using the integral balance conditions
(2.59) and (2.60), where the first correction to the dissipation rate is given by (2.62).
The solutions (3.1), (3.4), (3.5), (3.7) and (3.8) for A1(z

∗), A2(z
∗), A3(z

∗), T1(z
∗) and

ρ1(z
∗) can be used to determine the O(εI ) correction to the velocity moments given

in (2.22)–(2.26).
The leading-order contribution to the anisotropy in the mean-square velocity,

(〈u∗2z − u∗2x 〉) = 4A2(z
∗), is shown as a function of z∗ in figure 2(a) for three different

values of (Nr). As explained earlier, the function A2(z
∗) is independent of εG, and so

the leading-order contribution to the difference in the mean-square velocities is also
independent of εG. From figure 2(a), it is seen that the mean-square velocity in the
vertical direction is always larger than that in the horizontal direction. The difference
between the two decreases with increasing z∗, and attains a constant value in the limit
z∗ → ∞, and this limiting value is proportional to (Nr)−1. The value of the anisotropy
is determined by a balance between the collisional transport of energy from the
horizontal to the vertical velocity fluctuations and the dissipation of energy due to
inelastic collisions. Both of these decrease proportional to ρ∗20 in the limit ρ∗0 � 1
(see (2.44), (2.45), (2.49) and (2.50)), and the anisotropy attains a constant value
in this limit. In addition, the rate of transport of energy is proportional to A2(Nr)
from (2.44) and (2.45), while the rate of dissipation of energy is independent of (Nr),
and consequently the value of the anisotropy in the limit z∗ → 0 is proportional to
(Nr)−1.

The O(εI ) corrections to the third moments of the velocity distribution, 〈u∗3z 〉 and
〈u∗2x u∗z〉, are shown as a function of z∗ in figures 2(b) and 2(c). The first correction
to the third moments are functions of A1(z

∗) and A3(z
∗) (see (2.25) and (2.26)), and

are independent of εG for reasons provided earlier. The figure 2(b) shows that 〈u∗3z 〉
decreases as z∗ increases, and has a limiting behaviour proportional to exp(−z∗) in
the limit z∗ → ∞. In addition, this limiting value shows a very weak dependence on
Nr. These qualitative features can be explained as follows. Equation (2.28) indicates
that the conduction of energy in the vertical direction is due to a gradient in ρ∗0〈u∗3z 〉,
while the dissipation of energy due to inelastic collisions is proportional to ρ∗20 . A
balance between these two provides the behaviour 〈u∗3z 〉 ∝ exp(−z∗), and the weak
dependence of 〈u∗3z 〉 on Nr. The figure 2(c) shows that the velocity moment 〈u∗2x u∗z〉
first increases and then decreases with increasing z∗, and shows a behaviour similar
to 〈u∗3z 〉 in the limit z∗ → ∞. The initial increase in 〈u∗2x u∗z〉 is due to the boundary
condition (2.64), which stipulates that 〈u∗2x u∗z〉 = 0 at z∗ = 0, while the reasons for the
qualitative trends in the limit z∗ → ∞ are identical to those for the behaviour of 〈u∗3z 〉.
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Figure 2. Properties of the velocity distribution function: (a) the scaled anisotropy 〈u∗2z − u∗2x 〉; (b)
the third moment 〈u∗3z 〉; (c) the third moment 〈u∗2x u∗x〉; (d) the function T ′1; (e) the function ρ′1;
( f ) the function ρ′′1 , all as a function of the scaled vertical coordinate z∗. The solid lines are for a
system where inelastic collision is the dominant dissipation mechanism, and the broken lines are
for a system where viscous drag is the dominant dissipation mechanism. ◦, Nr = 1.0; 4, Nr = 2.0;
2, Nr = 3.0.

The first corrections to the temperature and density, T1(z
∗) and ρ0(z

∗)ρ1(z
∗), are

functions of the parameter εG which accounts for the leading-order correction due to
variations in the concentration field over distances comparable to the particle diameter.
These can be expressed as T1 = T ′1 + (εG/εI )T

′′
1 and (ρ0ρ1) = ρ′1(z

∗) + (εG/εI )ρ
′′
1(z∗). It

turns out that the function T ′′1 = −2.0944(Nr) is independent of z∗, and the functions
T ′1, ρ

′
1 and ρ′′1 are shown as functions of z∗ in figures 2(d), 2(e) and 2( f ). It is observed

that T ′1 is positive for small z∗, decreases as z∗ is increased and attains a constant
negative value in the limit z∗ → ∞. An opposite trend is observed for the functions
ρ′1(z

∗) and ρ′′1(z∗), which are negative for small z∗, increase and assume positive values
for intermediate values of z∗ and then decrease proportional to z∗ exp(−z∗) in the
limit z∗ → ∞. It is useful to note that the functions T ′′1 and ρ′′1 are larger than T ′1 and
ρ′1, indicating that the effect of variation in the gradients in the concentration field
on collisional interactions dominates the effect of the perturbation to the distribution
function for (εG/εI ) ∼ 1.
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3.2. Dissipation due to viscous drag

The functions A1, A2, A3, ρ1 and T1 for a suspension where viscous dissipation is the
dominant mechanism of dissipation is considered next. The method of analysis is
identical to the case where the dissipation is due to inelastic collisions, so the details
are not provided, and the final results are

A1(z
∗) = −

(
2

π

)1/2

, (3.9)

A2(z
∗) =

∞∑
n=0

A2n exp(−nz∗),

A21 = −
√

2(Nr),

A2n =
16π(Nr)2A2(n−2)

n2
for n > 2,


(3.10)

A3(z
∗) =

1

6

(
2

π

)1/2

+
4π1/2(Nr)

3

∞∑
n=0

A2n

(n+ 2)
exp[−(n+ 1)z∗], (3.11)

T1(z
∗) = T10 +

∞∑
n=0

[
16π(Nr)2A2n

(n+ 2)2
exp[−(n+ 2)z∗]− 2A2n exp(−nz∗)

]
, (3.12)

ρ1(z
∗) = ρ10 + T10z

∗ − 4πεG(Nr) exp(−z∗) +

∞∑
n=1

[
−(n+ 1)

n
(T1n + 2A2n) exp(−nz∗)

]
.

(3.13)

The constant A20 is determined using the boundary condition (2.64), while the con-
stants T10 and ρ10 are determined using the integral condition for the density (2.59)
and the integral condition for the energy balance (2.60) with the source and dis-
sipation of energy given by (2.61) and (2.63) respectively. The O(εD) correction to
the moments of the distribution function are determined by substituting the above
solutions for the functions A1(z

∗), A2(z
∗), A3(z

∗), T1(z
∗) and ρ1(z

∗) into the equations
(2.22)–(2.26).

The anisotropy in the distribution function 〈u∗2z − u∗2x 〉 is shown as a function of z∗

for different values of Nr in figure 2(a), and the third moments of the distribution
function 〈u∗3z 〉 and 〈u∗2x u∗z〉 are shown in figure 2(b, c). The z∗ → ∞ behaviour of the
third moments of the velocity distribution in the present case are very different from
those for a suspension where the dissipation is due to inelastic collisions. The balance
between the conduction of energy due to the third moment of the distribution function
in (2.28) and (2.29), proportional to ρ∗0〈u∗3z 〉 and ρ∗0〈u∗2x u∗z〉, and the viscous dissipation
of energy, proportional to ρ∗0, requires that the third moments attain constant values
independent of Nr in the limit z∗ → ∞. In addition, the rates of dissipation of energy
in the horizontal and vertical directions are equal, therefore the limiting values of the
third moments of the velocity distribution are also equal.

The collisional transport of energy from the vertical to the horizontal direction,
which is proportional to ρ∗20 〈u∗2z −u∗2x 〉, is small compared to the conduction of energy
in the limit z∗ → ∞. In addition, the limiting value of the anisotropy in the distribution
function, 〈u∗2z − u∗2x 〉, is independent of Nr in the present case. This is because the
leading-order rate of transport of energy due to collisions, which is proportional to
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ρ∗20 , is balanced by the O(exp(−z∗)) correction to the rate of conduction of energy in
(2.39) and (2.40), which is also proportional to Nr.

The first corrections to the temperature and density are expressed as T1 = T ′1 +
(εG/εD)T ′′1 and ρ0ρ1 = ρ′1(z

∗) + (εG/εD)ρ′′1(z∗). In the present case, the function T ′′1 =
−4.1888Nr is independent of z∗, and the functions T ′1, ρ

′
1 and ρ′′1 are shown as functions

of z∗ in figure 2(d–f ). The trend exhibited by these functions is very similar to that
for a suspension where the dissipation is due to inelastic collisions. The functions
T ′′1 and ρ′′1 are larger than T ′1 and ρ′1 in the present case also, indicating that the
effect of variation in the gradients in the concentration field on collisional interactions
dominates the effect of the perturbation to the distribution function for εG/εD ∼ 1.

3.3. Comparison with experimental results

There have been a relatively small number of experimental studies and numerical
simulations that have attempted to examine the particle distribution functions in the
uniform state of a vibrated fluidized bed. Luding et al. (1994) carried out event-
driven simulations of a vibrated fluidized bed of inelastic particles, and reported
the behaviour of the density variation in the bed. However, they did not provide the
magnitudes of the velocity fluctuations, so it is difficult to make a rigorous comparison
with their results. Details of the velocity distribution were determined experimentally
using imaging techniques by Warr et al. (1995) for a two-dimensional bed of particles,
and their experimental results are compared with the predictions of the analysis in
the present section.

The experimental system of Warr et al. (1995) consisted of a two-dimensional bed
of spherical particles of diameter 5 mm confined between two glass plates separated
by a distance of 5.05 mm. The bed was vibrated at the bottom with a frequency of
50 Hz and an amplitude between 0.5 and 2.12 mm. The coefficient of restitution for
binary collisions between the particles was reported as 0.92, and the parameter values
Nr for the different experiments are given in table 1. It can also be seen from table 1
that the parameter ε = U2

0/T0 is not small in the experiments, and could be greater
than 1.0 in some cases. Thus, quantitative agreement between the experiments and
analysis cannot be expected, and in the present section a qualitative comparison is
made between the experimental and analytical results.

The experimental results for the scaling of the temperature with the maximum
velocity of the vibrating base is T ∝ Uα

0 , where α is reported to be between 1.36
and 1.41. This is in between the analytical predictions of the previous section of
α = 1.33 for a system where viscous drag is the dominant mechanism, and α = 2.0
for a system where inelastic collisions are the dominant mechanism of dissipation of
energy. Thus, it appears that both inelastic collisions and viscous drag are important,
and the temperatures observed in the experiments are in good agreement with those
of the analysis for µ/g = 0.35 m−1 s, as shown in table 1. The agreement is poor for
the lowest number density used in the experiments, but it should be noted that at
this number density, the number of particles is sufficient for less than one monolayer
on the surface at rest. The analysis may not be applicable in this case because the
probability of particle collisions with the vibrating surface is more than the probability
of binary collisions, and the assumption of molecular chaos used in the analysis may
not be valid. In the remainder of this subsection, the analytical results are derived
assuming that the dissipation of energy is due to both inelastic collisions and viscous
drag, and using µ/g = 0.35 m−1 s.

The comparison of the area fraction profiles is shown in figure 3 for the experimental
parameters listed in table 1. It is observed that the qualitative features of the analytical
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Experiment
Number Nr U0 (m s−1) Te (m2 s−2) εe = U2

0/Te Ta (m2 s−2) εG = rg/Te

1 0.4091 0.1571 0.0849 0.2907 0.0672 0.2888
2 0.4091 0.3519 0.2837 0.4365 0.2234 0.0865
3 0.4091 0.5781 0.5505 0.6071 0.4563 0.0446
4 0.4091 0.6660 0.8413 0.5272 0.5580 0.0292
5 0.6061 0.1571 0.0612 0.4033 0.0588 0.4007
6 0.6061 0.3519 0.2026 0.6112 0.2050 0.1211
7 0.6061 0.5781 0.4255 0.7854 0.4280 0.0576
8 0.6061 0.6660 0.5374 0.8254 0.5261 0.0456
9 0.9091 0.1571 0.0488 0.5058 0.0489 0.5026

10 0.9091 0.3519 0.1759 0.7843 0.1812 0.1394
11 0.9091 0.5781 0.3594 0.9299 0.3896 0.0682
12 0.9091 0.6660 0.4660 0.9518 0.4824 0.0526
13 1.3636 0.1571 0.0394 0.6264 0.0387 0.6225
14 1.3636 0.3519 0.1346 0.9200 0.1531 0.1822
15 1.3636 0.5781 0.3342 1.0000 0.3416 0.0734
16 1.3636 0.6660 0.3927 1.1295 0.4271 0.0625

Table 1. The parameters Nr, U0, the observed temperature Te and the parameter U2
0/Te used in the

experiments of Warr et al. (1995), and the temperature Ta predicted by the analysis for µ/g = 0.35.

predictions are in good qualitative agreement with the experimental results for all
the parameter values, except for the experiments at the lowest density where, as
indicated earlier, the approximation of molecular chaos may not be valid. It is
experimentally observed that the area fraction initially increases and then shows an
exponential decrease as the height is increased, in agreement with the results of the
analysis. In addition, the analytical predictions are in good quantitative agreement
with the experimental results for values of U2

0/T0 less than 0.5, using just one
adjustable parameter (µ/g) which has been fitted to obtain the correct temperature.
The analytical predictions for the anisotropy in the distribution function are compared
with experimental results in figure 4. As seen from figure 4, the experimental results
show a lot of scatter, and the error bars are quite large, sometimes equal to half the
value of the temperature itself. Therefore, it is difficult to make a rigorous comparison
of the analytical and experimental results for the anisotropy. However, from figure 4,
it can be inferred that the experimental results for the anisotropy are of the same
magnitude as the theoretical predictions, and the vertical temperature is greater than
that in the horizontal direction in both the analysis and the experiments. Warr et
al. (1995) do not report any results for the skewness of the distribution function,
but it is apparent from their distribution functions (figures 3 and 4 of their paper)
that the skewness in the distribution of velocities in the vertical direction is positive,
and the magnitude of the skewness decreases and the distribution function becomes
symmetric as the height is increased. These observations are in qualitative agreement
with the results of the predictions of the analysis for the density profile, anisotropy
and the third moments of the distribution, though quantitative agreement is not
observed because the parameters εI and εD are not small in the experiments.

4. Conclusions
The distribution function for a vibro-fluidized bed was calculated using asymptotic

analysis in the limit where the dissipation of energy in a collision due to inelasticity
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Figure 3. Comparison between the density profiles predicted by the present analysis and those
reported by Warr et al. (1995). The solid lines represent the analytical results, and the broken lines
represent the experimental results. The data points correspond to the parameter values for the
following experiments listed in table 1: (a) ◦, 1; 4, 5; 2, 9; 3, 13. (b) ◦, 2; 4, 6; 2, 10; 3, 14. (c)

◦, 3; 4, 7; 2, 11; 3, 15. (d) ◦, 4; 4, 8; 2, 12; 3, 16.
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Figure 4. Comparison between the anisotropy in the mean-square velocity predicted by the present
analysis and that reported by Warr et al. (1995). The solid lines represent the analytical results,
and the scattered data points represent the experimental results. The data points correspond to the
following experiments listed in table 1: ◦, 4; 4, 8; 2, 12; 3, 16.

or between successive collisions due to viscous drag is small compared to the energy
of a particle. In addition, the radius of a particle is considered to be small compared
to the length scale of variation of density. In the leading approximation, the system
is identical to a gas of point particles in a gravitational field which undergo elastic
collisions. The density is given by the Boltzmann distribution, and the velocity
distribution function is given by the Maxwell–Boltzmann distribution with a constant
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temperature. However, the temperature is not specified in the leading approximation,
and has to be determined by a balance between the source of energy at the vibrating
surface and the dissipation due to viscous drag or inelastic collisions. The correction
to the distribution function due to dissipation and density variation is considered to
be in the form of the product of the leading-order distribution and an expansion in
the moments of the velocity components, and all non-trivial first, second and third
moments are included in the expansion. The parameters in the expansion, as well as
the correction to the temperature and density, are determined analytically.

Richman & Martin (1992) provided a continuum description of a vibro-fluidized
bed, where they used a momentum conservation equation in the vertical direction
and an energy conservation equation for describing the dynamics of the bed. The
constitutive relations for the energy transport were adapted from a constitutive theory
of Jenkins & Richman (1985). Continuum theories based on the Chapmen–Enskog
theory for dense gases have also been used earlier for shear flows of suspensions.
It is useful to examine the advantages of the present analysis in comparison to the
earlier continuum theories. In the continuum theory of Richman & Martin (1992),
the mass conservation equation states that the velocity in the vertical direction is
identically zero. The momentum conservation equation is a first-order differential
equation relating the gradient in the pressure in the vertical direction to the density
at steady state

∂p

∂z
= ρg

where the pressure is related to the temperature by an equation of state. The energy
conservation equation relates the energy flux to the rate of dissipation of energy

∂

∂z
K
∂T

∂z
− D(z) = 0

where D(z)dz is the dissipation of energy due to inelastic collisions or viscous drag
in the interval dz about z. The solution of the above two equations requires a total
of three boundary conditions. However, there are at least four conditions required to
be satisfied by the physical system:

(a) the density ρ→ 0 as z →∞;
(b) the energy flux (∂T/∂z)→ 0 as z →∞;
(c) the energy flux (∂T/∂z) has a value specified by the conditions at the vibrating

surface at z = 0;
(d) the total mass of the material per unit length of the bed is fixed by the amount

of material originally put in.
All of these cannot be simultaneously enforced by the continuum model, and one

needs a more detailed model for a realistic description of the vibro-fluidized bed.
Richman & Martin resolved this problem by specifying a ‘height’ β for the bed, which
was a free parameter. The addition of this free parameter enabled them to satisfy the
fourth boundary condition as well. However, there is no such height in the present
system, and the density decreases exponentially with height. Consequently, one cannot
satisfy all the boundary conditions which one would expect the physical system to
satisfy.

A more detailed continuum description would involve separate conservation equa-
tions for the temperatures (mean-square velocities) in the vertical (Tz) and horizontal
(Tx) directions. With this type of description, there are two difficulties. One is that
the Chapman–Enskog dense gas theory does not specify the correct form for the
thermal conductivity separately in the horizontal and vertical directions. The second
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is that the number of boundary conditions required for obtaining a solution is still
smaller than those that one would reasonably expect the physical system to satisfy.
This description gives two second-order differential equation for the velocities in
the horizontal and vertical direction, and a first-order differential equation for the
momentum. These equations require five boundary conditions to specify a unique so-
lution. However, there are at least six boundary conditions that one would reasonable
expect the physical system to satisfy:

(a) the density ρ→ 0 as z →∞;
(b) the vertical temperature Tz → 0 as z →∞;
(c) the horizontal temperature Tx → 0 as z →∞;
(d) a relation for the flux of the vertical temperature (∂Tz/∂z) at the vibrating

surface;
(e) a relation for the flux of the horizontal temperature (∂Tx/∂z) at the vibrating

surface;
( f ) the total mass condition.
Consequently, a more detailed description of the type provided here is required for

enforcing all the boundary conditions that one would reasonable require the physical
system to satisfy.

The analysis indicates that there are some systematic deviations due to dissipation
which are independent of the dissipation mechanism. The magnitude of the correction
to the density is largest at the vibrating surface, and the density correction is negative
near the bottom of the bed. The correction to the density increases and assumes
positive values as the height is increased, and decreases to zero exponentially at large
heights. The correction to the temperature is positive at the bottom, and decreases and
becomes negative near the top. In addition, the mean-square velocity in the vertical
direction is larger than that in the horizontal direction. These qualitative features have
been observed in the experiments of Warr et al. (1995), and the decrease in density
near the bottom has also been reported in the simulations of Luding et al. (1994).
There are also some significant differences in the variation of the velocity moments for
systems with dissipation due to inelastic collisions and viscous drag. The anisotropy
in the second moments, as well as the non-zero third moments of the distribution
function, decrease exponentially with height for a system where dissipation is due to
inelastic collisions, but they assume a constant value at large heights for a system
where dissipation is due to viscous drag. These qualitative differences do not seem to
have been probed in experiments or simulations.

The author would like to thank Dr S. Warr for introducing him to this problem
and for instructive discussions, and Dr S. Luding for useful discussions.
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