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Flows with velocity profiles very different from the parabolic velocity profile can occur
in the entrance region of a tube as well as in tubes with converging/diverging cross-
sections. In this paper, asymptotic and numerical studies are undertaken to analyse the
temporal stability of such ‘non-parabolic’ flows in a flexible tube in the limit of high
Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible
tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile
contains both axial and radial components, the flow is assumed to be locally parallel
in the stability analysis. The fluid is Newtonian and incompressible, while the flexible
wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis
shows that the non-parabolic velocity profiles can become unstable in the inviscid
limit. This inviscid instability is qualitatively different from that observed in previous
studies on the stability of parabolic flow in a flexible tube, and from the instability of
developing flow in a rigid tube. The results of the asymptotic analysis are extended
numerically to the moderate Reynolds number regime. The numerical results reveal
that the developing flow could be unstable at much lower Reynolds numbers than
the parabolic flow, and hence this instability can be important in destabilizing the
fluid flow through flexible tubes at moderate and high Reynolds number. For flow in
a slightly converging tube, even small deviations from the parabolic profile are found
to be sufficient for the present instability mechanism to be operative. The dominant
non-parallel effects are incorporated using an asymptotic analysis, and this indicates
that non-parallel effects do not significantly affect the neutral stability curves. The
viscosity of the wall medium is found to have a stabilizing effect on this instability.

1. Introduction
Fluid flow in tubes with deformable walls is widely observed in biological systems

and in industrial applications such as hollow fibre reactors and membrane bioreactors.
Experimental evidence (Krindel & Silberberg 1979) suggests that the transition from
laminar flow to turbulence in such systems could be very different from that of a
rigid tube. In recent years, there has been renewed interest in the stability of fluid
flow through flexible tubes (Kumaran 1995a, b, 1996, 1998b), and these studies have
focused on the stability of the fully developed parabolic velocity profile. Flows with
velocity distributions very different from the parabolic flow can occur in the entrance
region of the tube prior to the formation of the fully developed flow. At moderate
to high Reynolds number (Re), the length required for the flow development to
occur is proportional to Re. The Reynolds number for the case of blood flow in the
body varies from about 10−2 in capillaries to about 6000 in the large blood vessels
(Lahav, Eliezer & Silberberg 1973; Silberberg 1987). Thus, there exists fluid flow in
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flexible tubes where Re is of O(103), and in these cases the length required for flow
development will be quite large. In such situations, if the developing flow profiles in
the flexible tube are more unstable than the parabolic profile, it is appropriate to base
the critical Reynolds number for instability on the stability of the developing flow
profile. In certain applications, the flexible tube may be converging slowly along the
flow direction due to the applied pressure gradient; in such converging tubes, when
Re� 1, the velocity profiles are very different from parabolic.

The objective of this paper is to develop asymptotic and numerical formulations to
analyse the temporal stability of such ‘non-parabolic’ flows in a flexible tube. Kumaran
(1996) generalized the classical theorems of hydrodynamic stability to inviscid flow in
a flexible tube and predicted that the entrance flow velocity profile in a flexible tube
and the flow in a slightly converging tube could become unstable in the inviscid limit.
This instability is qualitatively different from the instabilities that have been observed
in the earlier studies of Kumaran (1995a, 1998b), and from the instabilities observed
in flow past compliant walls and compliant-walled channels. In this paper, relevant
previous theoretical studies are discussed in § 2, and the method and results of this
paper are compared with those of earlier studies in § 3. An asymptotic analysis of the
stability equations in the Re�1 limit is carried out in § 4, and a numerical solution of
the governing equations is presented in § 5. Results from the numerical solution are
discussed in § 6. Our asymptotic results show that the non-parabolic velocity profiles
of interest are indeed unstable in the Re → ∞ limit, thus verifying the prediction
of Kumaran (1996). Numerical results reveal that the non-parabolic flows can be
unstable at much lower Reynolds number than the parabolic flow, and this instability
can be important in the transition in fluid flow through flexible tubes. The stability of
the non-parabolic profiles is first determined using the parallel flow approximation,
where the gradient of the mean flow in the axial direction and the radial component
of the mean flow are neglected. This is a good approximation in the Re � 1 limit,
because the length scale for the variation of the mean velocity is O(Re) larger than
the radius of the tube. The error incurred due to the parallel flow approximation
is estimated using an asymptotic analysis in § 7, where the largest correction to the
stability equations due to the axial gradient of the mean velocity is included, and the
change in the neutral curves due to this correction is calculated. A summary of the
important conclusions of this paper is given in § 8.

2. Previous theoretical studies
In this section, we review the instabilities that have been observed in flow past

compliant walls and compliant-walled channels. The earlier classification of instabil-
ities in flow past flexible walls by Benjamin (1960) and Landahl (1962) was based
on the effect of wall dissipation on the stability of the modes, while the classification
of Carpenter & Garrad (1985, 1986) was based on the absence of these modes in
flow past rigid surfaces. These classifications are inadequate because there are many
modes of instability in flexible channels and tubes that could share similar qualita-
tive features according to the previous classification, but where the mechanism of
instability could be very different. Consequently, it is more appropriate to classify the
instabilities according to the following criteria : (i) asymptotic behaviour of the modes
at the high/low Reynolds number limit and high/low wavelength limit, (ii) the flow
structure of the unstable modes (e.g. the thickness of the boundary layer), (iii) the
mechanism of instability, and (iv) the specific features of the wall dynamics for which
these modes are observed. According to these characteristics, we classify below the
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instabilities analysed in the earlier studies on flows in flexible channels/tubes and flow
past compliant surfaces. This classification makes evident the qualitative differences
between the instability analysed in this paper from that of earlier studies, and it places
the present work in perspective.

(A) Viscous instability

This instability is observed in wall materials of finite thickness with shear modulus
G which are described by linear elasticity equations for the displacement field in the
material in the low Reynolds number regime where Re� 1 and (Vη/(GR)) ∼ O(1).
Here, ρ and η are the density and viscosity of the fluid, R is the radius of the tube,
V is the characteristic fluid velocity and G is the shear modulus of the wall medium.
The viscous modes become unstable when the fluid velocity is increased beyond a
critical value even in the absence of fluid inertia. The mechanism of instability is the
transfer of energy from the mean flow to the perturbations due to the shear work
done by the mean flow at the interface between the fluid and the wall medium. In
the limit of Re → 0 the scaling relation between Re and the quantity Σ ≡ ρGR2/η2

turns out to be Re ∼ Σ. Viscous modes were first studied by Kumaran, Fredrickson
& Pincus (1994) for Couette flow past a flexible surface, and this was extended by
Kumaran (1995a) to the stability of Hagen–Poiseuille flow in a flexible tube. The
continuation (Kumaran 1998b; Srivatsan & Kumaran 1997) of the viscous modes
to the intermediate-Re regime revealed that at high Re, the scaling relation becomes
Re ∼ Σα, where α takes a value between 0.7 and 0.75.

(B) Low Reynolds number long-wave instability

This instability has been found for flow past spring-backed plates and membranes.
These modes are neutrally stable in the viscous limit Re→ 0. However, the inertial
correction to the governing equations in the limit of low wavenumber (k) destabilizes
these modes, and the destabilizing mechanism is the transfer of energy due to the
inertial terms in the conservation equation in the limit k → 0. This type of instability
was predicted in the analysis of Kumaran & Srivatsan (1998) for the case of Couette
flow past a membrane, and by LaRose & Grotberg (1997) for the developing flow
through a channel with spring-backed walls. A continuation of this type of instability
to finite k and Re was carried out by LaRose & Grotberg (1997) and Kumaran &
Srivatsan (1998). LaRose & Grotberg (1997) classify two types of instability depending
on the wavenumber at which the transition Reynolds number is a minimum. When
the transition first occurs at k → 0, the instability is called a ‘long-wave instability’
while the instability is termed a ‘flutter’ instability if the transition first occurs at
a finite value of k. However, both of these are continuations of the same solutions
obtained from the k � 1 limit where the inertial terms are neglected in the leading
approximation, and the physical mechanism of these instabilities is the same.

(C) Rigid surface modes

These modes exist in the flow past rigid surfaces, but in flow past flexible surfaces
they are modified by wall flexibility. The neutral stability curve has a characteristic
lower and upper branch in the (Re, k)-plane, and Re scales as k−1/8 in the lower
branch of the neutral curve in the limit of high Re. The mechanism of instability is
the work done by the Reynolds stresses in a critical layer of thickness Re−1/3 in the
flow, where the viscous forces become important. There have been many studies on
the effect of wall flexibility on the Tollmien–Schlichting instability for the flow past a
wall made of spring-backed plates, for example the classic paper of Benjamin (1960),
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Carpenter & Garrad (1985), Carpenter & Gajjar (1990), Davies & Carpenter (1997).
For parabolic flow through a flexible tube with an elastic wall of finite thickness,
the study of Kumaran (1998b) has recovered the stable solutions of axisymmetric
perturbations in a rigid tube in the limit G/ρV 2 � 1. Kumaran (1998c) has recovered
the stable wall modes in a rigid tube. In this paper, we recover the neutral modes
of Garg (1981) for the stability of the developing flow in a rigid tube in the limit of
large wall elasticity.

(D) Regular inviscid modes

These are observed in the limit Re � 1 and ρV 2/G ∼ O(1), and they do not
exist in the flow past rigid surfaces. In the limit of high Re, the flow is inviscid in
the core of the tube, and there is a wall layer of thickness O(Re−1/2) smaller than
the tube radius where the viscous stresses are O(Re−1/2) smaller than the inertial
stresses. The destabilizing mechanism in this case is the work done by the pressure
forces on the wall material. This type of instability has been observed in flows past
walls made of spring-backed plates. The instability observed in Carpenter & Garrad
(1986), which is a Kelvin–Helmholtz-type instability where the discontinuity of the
mean velocity profile at the interface is the driving force, belongs to this category.
Asymptotic and numerical studies of regular inviscid modes have also been carried
out by Carpenter & Gajjar (1990) for a Blasius boundary layer past a compliant
wall and Davies & Carpenter (1997) for fully developed flow in a two-dimensional
channel with compliant walls. Regular inviscid modes were analysed by Kumaran
(1995b) for a parabolic profile, and in this paper for non-parabolic velocity profiles in
flexible tubes with walls of finite thickness made of a viscoelastic material. Both these
studies used an asymptotic analysis in the small parameter Re−1/2 and, in contrast
to the previous studies mentioned above, these analyses revealed that regular inviscid
modes are stable for the velocity profiles considered in these studies.

(E) Singular inviscid modes

For non-parabolic flows in a flexible tube, in the Re→∞ limit, the leading-
order inviscid stability equation contains a singularity where the wave speed of the
disturbances equals the local fluid velocity. This singularity is absent in the stability
of parabolic flows to axisymmetric disturbances, and this qualitatively modifies the
nature of the instability. The flow structure near the singular point is similar to
that near a critical layer in the flow past rigid surfaces, and the mechanism of
instability is the work done by the Reynolds stresses in the critical layer. However,
there are important differences between these and rigid surface modes. The critical
Re scales as Re ∼ Σ1/2 in the limit Σ � 1 (where the non-dimensional parameter Σ
is proportional to the shear modulus of the wall medium), in contrast to the rigid
surface instability (Type C in this classification) where the critical Re approaches
the finite value appropriate to that for flow past a rigid surface in the limit Σ � 1.
Consequently, this mode of instability does not exist in a rigid tube. In addition, the
shape of the neutral stability curve in the (Re, k)-plane is very different from that in
the flow past rigid surfaces. For the singular inviscid modes, Re ∼ k−1 in the limit
k � 1, has a minimum at a finite value of k and Re ∼ k in the limit k � 1 (see the
Appendix). The instability analysed in this paper belongs to this class of modes.

(F) High Reynolds number wall modes

For these modes, the vorticity is confined to a layer of thickness O(Re−1/3) at the
wall. These are distinct from the inviscid modes where the vorticity is confined to a
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region of thickness O(Re−1/2). Wall modes are stable for flow in a rigid tube, but the
wall flexibility modifies these modes in a flexible tube. A scaling analysis (Kumaran
1998a) indicates that the elastic stresses in the wall affect the damping of the wall
modes when the dimensionless number Λ ≡ Re1/3(G/ρV 2)1/2 ∼ O(1), and in this
regime the elastic stress is large compared to the inertial stress in the wall material.
This analysis shows that there is one mode in a flexible tube whose growth rate does
not converge to any of the rigid tube modes, but which has a diverging frequency in
the limit Λ→∞. This is the least-stable wall mode in a flexible tube. This least-stable
wall mode was continued numerically Kumaran (1998c) to the Λ� 1 regime, and it
was observed that this mode becomes unstable when Λ is decreased below a transition
value at a fixed Re. In this case, the critical Reynolds number scales as Re ∼ Σα

where α is between 0.7 and 0.75.
From the above classification, it is clear that the singular inviscid modes analysed

in this paper are qualitatively different from the modes analysed in earlier studies.
Our asymptotic analysis is also different from that carried out in earlier studies on
rigid tubes and spring-backed plates, and it is useful to examine the differences. The
non-parallel analysis of Smith & Bodonyi (1980) for stability of the developing flow
in a rigid tube assumes the scaling Re ∝ k−1/8 in the limit k → 0 along the lower
branch of the neutral curve obtained from the parallel flow stability theory. In a
similar fashion, Carpenter & Gajjar (1990) and Davies & Carpenter (1997) assume
that Re� 1, so that viscous effects are negligible, and consider k → 0 so that only
the leading-order terms in a low-wave-number expansion are included. The analysis
of LaRose & Grotberg (1997) is a little different, because they assume that k → 0,
and neglect the inertial terms in the leading approximation. However, in all these
studies the limit k → 0 is assumed in the asymptotic analysis. In contrast, in our
asymptotic analysis only the limit Re� 1 is assumed, and the wavenumber is an O(1)
quantity. The scaling information of the type used by Smith & Bodonyi (1980) for the
parallel flow stability is not available for the present system, and it is first necessary to
determine the stability using the parallel flow approximation. Moreover, the primary
interest in our study is the critical Reynolds number, which is the lowest Reynolds
number for which neutrally stable modes exist. The wavenumber corresponding to
the critical Reynolds number is O(1) in this paper. Consequently, in our non-parallel
analysis the limit k � 1 is not assumed and we determine the largest corrections due
to non-parallel effects for the most unstable modes which have k ∼ O(1).

3. Problem formulation and governing equations
The system consists of a Newtonian, incompressible fluid of density ρ and viscosity

η flowing in a tube of radius R surrounded by a viscoelastic medium in the region
R < r < HR. In the limit of high Reynolds number, the lengths are scaled by the
tube radius R, the time by (ρR2/G)1/2 and all velocities by (G/ρ)1/2. The scaled
Navier–Stokes mass and momentum equations for the fluid are

∂lvl = 0, (3.1)

∂tvl + vj∂jvl = −∂lpf + εΓ∂2
j vl . (3.2)

In both these equations and in what follows, repeated indices imply a summation
over the index unless stated otherwise. Here, ∂t = (∂/∂t) and ∂l = (∂/∂xl), ε = 1/Re,
and Re is the Reynolds number defined as Re = ρVR/η where V is the average
velocity of the basic laminar flow. The parameter Γ is the non-dimensional average
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velocity of the basic laminar flow and is given by Γ = (ρV
2
/G)1/2. The fluid pressure

pf is non-dimensionalized by the shear modulus G in (3.2). The stresses in the fluid
are given by

τlj = −pfδlj + εΓ (∂lvj + ∂jvl). (3.3)

The flexible wall is modelled as a viscoelastic solid continuum, and the dynamics of
the wall motion is described by the governing equations for an incompressible elastic
material modified to include viscous stresses (Kumaran 1995a, b, 1998b). The wall
dynamics is described by a displacement field ul which characterizes the displacement
of the material points of the wall from their steady-state positions due to fluid stresses
at the interface. In what follows, the subscript g in a quantity implies that it is a
property of the wall medium. The incompressibility condition requires that

∂lul = 0. (3.4)

The momentum balance equation for the wall medium is given by

∂2
t ul = −∂lpg + ∂2

j ul + εΓηr∂
2
j vl . (3.5)

The left-hand side of the above equation describes the rate of change of momentum
in a volume element in the wall medium and the three terms on the right-hand side
of the equation are, respectively, the gradient of the pressure, the divergence of an
elastic stress due to the strain in the wall and the divergence of a viscous stress due
to the strain rate. Here, vl = ∂tul is the velocity field at the wall and ηr = ηg/η is the
ratio of wall to fluid viscosity. The stress in the wall medium is given by

σlj = −pgδlj + (∂luj + ∂jul) + εΓηr(∂lvj + ∂jvl). (3.6)

The boundary conditions for the fluid velocity field vl are the symmetry conditions at
the centre of the tube, namely vr = 0 and ∂rvx = 0. The viscoelastic material is fixed
to a rigid support at r = H where the displacement field satisfies ur = 0 and ux = 0.
At the interface between the fluid and the wall, the velocity and stress are continuous:

vl = ∂tul , σlj = τlj . (3.7)

The base flows whose stability is of interest here are (i) the developing flow velocity
profile for fluid flow in a tube, and (ii) the flow in a slightly converging tube. In
non-dimensional form, the base flow is represented as

v̄x = ΓU(r, x), v̄r = Re−1ΓV (r, x). (3.8)

The length required for the flow to develop to 95% of the fully developed state is
given by 0.13RRe, where Re = RVρ/η, and R is the radius of the tube (Tritton 1977;
Duncan, Thom & Young 1960). Since the length scale for flow development is of
O(Re), the radial component of the mean velocity (v̄r) is of O(Re−1) less than the
axial component of the mean velocity. In (3.8) U(r, x) and V (r, x) are respectively
the non-dimensional functional form of the axial and radial velocity profiles of the
base flow. For a fully developed parabolic Poiseuille flow, U(r, x) = 2(1 − r2) and
V (r, x) = 0.

In a developing flow, U(r, x) depends on both r and x and this functional form is
determined numerically by solving the appropriate Navier–Stokes equations. In this
paper, as in the stability analysis of Garg (1981), the mean velocity profiles U(r, x)
were obtained using the method of Hornbeck (1963), and our results are in excellent
agreement with the data provided in Garg (1981) and Hornbeck (1963). The second
type of mean velocity profile analysed here is that in a ‘slightly converging tube’, where
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the angle between the tube wall and the axial direction α� 1 and the product αRe ∼ 1.
A similar limit was considered in the papers of Eagles & Weissman (1975) and Eagles
& Smith (1980) where the stability of slowly varying two-dimensional rigid channels
was considered. This parameter regime is of interest for the following reason. For a
steady unidirectional flow in a cylindrical tube, the inertial terms in the momentum
equations are identically zero. However, if there is a slight taper of angle α in the walls
of the tube, the ratio of the inertial and viscous terms in the momentum equation is
O(αRe). When Re � 1, this ratio could be O(1) even though the taper (α) is small,
and the velocity profile could be significantly different from the parabolic velocity
profile due to the effect of the inertial terms. The velocity profile in the converging
tube depends on the initial velocity profile at the inlet. Our computations show that
a plug velocity profile at the inlet resulted in velocity profiles that are qualitatively
similar to that for the developing flow in a straight circular tube. Consequently, the
instability that is observed for the developing flow velocity profile would be observed
in a converging tube as well. Hence, we chose a parabolic distribution at the inlet of
the converging tube. In a converging tube, a fully developed state cannot occur and
the parabolic flow at the inlet becomes progressively non-parabolic as one proceeds
downstream. The converging tube velocity profiles computed in this work were found
to be in good agreement with the finite difference results of Sutterby (1965).

The stability analyses of spatially developing flows in the Re � 1 limit usually
invoke the ‘parallel flow’ assumption, and neglect the axial gradients in the mean
velocity and the radial component of the mean velocity. According to the parallel
flow assumption, the mean flow is considered to be unidirectional

v̄x = U(r, x) ≈ U(r) and vr = 0, (3.9)

where the mean velocity U(r, x) is determined from the solution of the Navier–
Stokes equations for the base flow at the axial position x. The error made due
to the parallel flow assumption is examined using an asymptotic analysis in § 7.
This approximation permits the use of the classical normal mode analysis. Small
axisymmetric perturbations in the form of Fourier modes are imposed on the fluid
velocity field and the wall displacement field as follows:

vi = ṽi exp (ik(x− ct)), ui = ũi exp (ik(x− ct)). (3.10)

Here, k, the wavenumber of perturbations is real, the wave speed c (= cr + ici) is
complex and perturbations are unstable for ci > 0. The above form for perturbations
is inserted into the governing equations for the fluid velocity field to obtain the
following Orr–Sommerfeld (OS)-type fourth-order ordinary differential equation for
ṽr:

(ΓU − c)(d2
r + r−1dr − r−2 − k2)ṽr − Γ (U ′′ − r−1U ′)ṽr

=
Γ

ikRe
(d2
r + r−1dr − r−2 − k2)2ṽr. (3.11)

Here and in what follows, dr = d/dr, and a prime indicates differentiation with respect
to r. The linearized equation for the displacement field in the wall medium can be
obtained in a similar manner by inserting the expressions for the perturbation to the
displacement field (3.10) into the governing equations for the wall medium (3.4) and
(3.5) to obtain a single fourth-order differential equation for ur:

[(1− ikcεΓηr)(d
2
r + r−1dr − r−2 − k2) + k2c2](d2

r + r−1dr − r−2 − k2)ũr = 0. (3.12)

The boundary conditions for the fluid are the two symmetry conditions at the centre
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of the tube r = 0, ṽr = 0, drṽx = 0. The boundary conditions for the viscoelastic
medium are the zero displacement conditions at r = H , ũr = 0 and ũx = 0. The
boundary conditions at the interface between the fluid and the wall are the continuity
of velocities and stresses applied at the perturbed interface. These are expanded in
a Taylor series about their values at the undisturbed interface r = 1, and the linear
terms retained, to obtain the following conditions at r = 1:

ṽr = −ikcũr, ṽx + drv̄x|r=1 ũr = −ikcũx,

τ̃rr = σ̃rr, drτ̄xr|r=1 ũr + τ̃xr = drσ̄xr|r=1 ũr + σ̃xr.

}
(3.13)

The second term in the left side of the tangential velocity condition (drv̄x|r=1ũr) has
a term proportional to ũr and this represents the variation in the mean velocity at
the surface due to the displacement at the surface (Kumaran 1995a, b). There is a
discontinuity in the first derivative of the tangential stress at the fluid–wall interface
in the base state, and this is reflected in the tangential stress boundary condition.
For the special case of parabolic flow in a flexible tube, the first derivative of
tangential stress is continuous at the fluid–wall interface, and thus this term was not
present in the analysis of Kumaran (1995a, b). The variation in the normal stresses
across the interface is of O(Re−1), and this term is neglected in the parallel flow
approximation. The two fourth-order differential equations (3.11) and (3.12) along
with eight boundary conditions (two at r = 0, two at r = H and four at r = 1 (3.13))
constitute an eigenvalue problem for c for given values of Γ , k and Re. The eigenvalue
problem yields a highly nonlinear equation for c, and it is necessary to have a good
initial guess to obtain solutions to this equation. This is provided by an asymptotic
analysis of the governing equations in the limit of high Reynolds number in the next
section.

4. High Reynolds number limit
For Re� 1, the viscous terms in the OS-like equation (3.11) are O(ε) smaller than

the inertial terms, where ε = Re−1. An asymptotic analysis in the small parameter
ε is suitable, and the leading-order inviscid stability equation, which is obtained by
neglecting the viscous terms in (3.11), is the axisymmetric counterpart of the Rayleigh
equation:

(d2
r + r−1dr − r−2 − k2)ṽr − Γ (U ′′ − r−1U ′)

(ΓU − c) ṽr = 0. (4.1)

There are two different classes of neutrally stable modes for ṽr(r) depending on the
magnitude of c, when c is real (ci = 0) (see Chap. 4 of Drazin & Reid 1981). If
cr > max(ΓU), the solutions of the differential equation are regular for all r in the
range 0 < r < 1, and this class of solutions is classified as ‘regular inviscid modes’.
However, if cr is in the range 0 < cr < max (ΓU), and if (U ′′ − r−1U ′) 6= 0, (this is
usually the case for non-parabolic velocity profiles) the point where cr = U is a regular
singular point of the differential equation and ṽr(r) is a singular neutral solution. The
point at which ΓU = c is called the critical point, rc, and the region around rc is
referred to as the ‘critical layer’, and neutrally stable modes having a critical layer
are called ‘singular inviscid modes’. For parabolic flows, there are no singular neutral
modes because (U ′′ − r−1U ′) = 0 (Kumaran 1995b), but in non-parabolic flows there
could be both regular and singular neutral modes.
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4.1. Analysis of regular inviscid modes

For these modes, the leading-order inviscid stability equation (4.1) is regular for
0 6 r 6 1, and an analysis similar to that of Kumaran (1995b) is suitable. The fluid
velocity field can be divided into two regions – an outer region with velocity ṽoi and
a wall layer with velocity ṽwi where the viscous effects are important: ṽi = ṽoi + ṽwi.
The first correction to the fluid velocity fields are O(ε1/2) smaller than the leading
contribution and the velocities are expanded in an asymptotic series as follows:

ṽoi = ṽ
(o)
oi + ε1/2ṽ

(1)
oi + · · · , c = c(o) + ε1/2c(1) + · · · . (4.2)

The leading-order governing equation for the ‘outer’ solution is

(d2
r + r−1dr − r−2 − k2)ṽ(o)

or − (U ′′ − r−1U ′)
(U − c(o)/Γ )

ṽ(o)
or = 0, (4.3)

where the base flow velocity profile U is obtained numerically. A fourth-order Runge–
Kutta integrator was used to solve (4.3), using the value of the solution near r → 0 as
the initial condition. This initial condition was determined using a series expansion
in r subject to the condition that ṽor = 0 at r = 0. During the numerical integration,
c(o)/Γ is fixed, and the solution for the radial velocity in the fluid is

ṽor = A1φ
(o), (4.4)

where the constant A1 has to be determined using the boundary conditions at the
interface. Note that the solution of the differential equation (4.3) contains only one
unknown constant, because the other has been fixed by the zero radial velocity
condition along the axis. It is convenient to fix c(o)/Γ in the analysis and then treat
Γ as the eigenvalue to be obtained from the problem. This is because the equation
(4.3) is integrated only once in this procedure, and Γ is then calculated from the
characteristic matrix (discussed below) obtained using the boundary conditions. The
solutions for the axial velocity ṽox and pressure p̃(o) are obtained from ṽor using the
continuity and x-momentum equations respectively.

There is a wall layer of thickness O(ε1/2) at the interface and the governing equations
in the wall layer can be obtained by rescaling the r-coordinate as (1 − r) = ε1/2y in
the governing equations. It turns out that the leading-order velocity and pressure in
the wall layer are sufficient for the present analysis. The scaled equations in the wall
layer of the present analysis are identical to those obtained in Kumaran (1995b) (see
equations (2.27) to (2.29) of that paper), and we do not repeat them here. The wall
layer governing equations can be solved analytically, and the solutions are given in
Kumaran (1995b) (see equations (2.30) to (2.32) of that paper). The leading-order
solutions of the displacement field in the gel are modified Bessel functions of the
first and second kind (see Kumaran 1995b), and there are four constants in the
wall eigenfunction to be determined from the boundary conditions at r = H and
the interface conditions at r = 1. The leading-order velocity and stress boundary
conditions at the interface (r = 1) are

ṽ(o)
or = −ikc(o)ũ(o)

r , ṽ
(o)
ox + ṽwx +U ′wΓ ũ

(o)
r = −ikc(o)ũ(o)

x , (4.5)

τ̃(0)
orr = σ̃(0)

rr , σ̃
(0)
xr = 0. (4.6)

The velocity and the pressure fields in the fluid, the velocity in the wall layer, and the
displacement and pressure fields in the wall medium are substituted in the boundary
conditions at r = 1 (4.5), (4.6) and in the zero displacement conditions at r = H . The
eigenfunction for the wall layer velocity enters only in the tangential velocity boundary
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condition in the leading approximation, and hence the other five boundary conditions
are used to assemble the leading-order characteristic matrix M (of order 5×5). The
eigenvalue Γ is determined by solving the characteristic equation Det (M) = 0, and
the amplitude of the wall layer velocity is determined from the tangential velocity
boundary condition. The characteristic equation admits multiple solutions for Γ for
a given value of c(o)/Γ and thus c(o) can be found. It turns out that the characteristic
equation admits only real values of c(o) as solutions thus indicating that the flow
is neutrally stable in the leading approximation. Thus it is necessary to calculate
the O(ε1/2) correction to the leading-order wave speed c(o) in order to determine the
stability of the system.

The O(ε1/2) governing equations for the outer variables can be recast into a single
second-order, inhomogeneous, ordinary differential equation:

(d2
r + r−1dr − r−2 − k2)ṽ(1)

or − Γ (U ′′ − r−1U ′)
(ΓU − c(o))

ṽ(1)
or = c(1)Γ (U ′′ − r−1U ′)

(ΓU − c(o))2
ṽ(o)
or . (4.7)

This equation is qualitatively different from the first correction equation of Kumaran
(1995b) due to the presence of the inhomogeneous term in the right-hand side of
the equation. For the parabolic profile (Kumaran 1995b), the term (U ′′ − r−1U ′)
is identically zero and the first-correction equation is identical to the leading-order
equation (4.3). For non-parabolic profiles, however, the equation (4.7) has to be solved
numerically. Since ṽ(1)

or is a linear function of c(1), the fluid velocity field in the outer
layer correct to O(ε(1/2)) is

ṽor = A1(φ
(o) + ε1/2c(1)φ(1)), (4.8)

where φ(o) is the eigenfunction obtained from the leading-order equation (4.3) and
φ(1) is obtained by the numerical solution of (4.7). The O(ε(1/2)) corrections to the
gel displacement field can be obtained analytically (see Kumaran 1995b). Using these
eigenfunctions for the fluid and the gel, the characteristic matrix which includes the
O(ε1/2) correction to the velocity and displacement field M is calculated, and the
eigenvalues can be computed using Det (M) = 0. The results show that the real and
imaginary parts of c(1) are equal in magnitude. It was also observed that the real and
imaginary parts of c(1) are negative for all the mean velocity profiles and parameter
values of Γ considered in the analysis, thus indicating that the flow is stable due to
the presence of the wall layer. We found the regular modes to be always stable in
the parameter space explored which typically ranged from k = 1 to 10 and Γ = 1 to
10. However, it was not possible to derive a stronger stability criterion, such as the
energy balance analysis of Kumaran (1995b), for the present mean velocity profiles.

4.2. Analysis of singular inviscid modes

The wave speeds are in the range 0 < cr/Γ < max (U) for this class of modes and
the critical point, at which U = cr/Γ , is a regular singular point of the differential
equation. It is well known (Drazin & Reid 1981, Chap. 4) that viscous effects are
important in a ‘critical layer’ of thickness O(Re−1/3) near a critical point. Two linearly
independent solutions to the differential equation can be obtained using a Frobenius
expansion in the variable (r − rc) near the singular point rc:

φ1(r) = (r − rc)P1(r), (4.9)

φ2(r) = P2(r) +

(
U ′′c − r−1

c U
′
c

U ′c

)
φ1(r) log (r − rc), (4.10)
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where P1(r) and P2(r) are series expansions in (r − rc). P1(r) is analytic at r = rc, the
second linearly independent solution φ2(r) has a logarithmic branch point at r = rc
and P2(r) is analytic at r = rc. The coefficients of the terms in P1(r) and P2(r) can
be readily found using symbolic computation. The term log (r − rc) is regular when
(r − rc) > 0, but could have multiple values log (r − rc) = log |r − rc| ± iπ when
(r − rc) < 0, and it is necessary to specify the correct branch of the multi-valued
solution given by φ2(r) (Drazin & Reid 1981, Chap. 4). The inviscid theory does not
prescribe the proper branch of the logarithm, and it is necessary to investigate the
region near r = rc in more detail. The fourth-order OS-like equation is rescaled near
r = rc by introducing the ‘inner variable’ ψ ∼ (r− rc)/Re−1/3 in the critical layer, and
the viscous terms enter into the leading-order equations near r = rc. The resulting
fourth-order differential equation is solved, and the inviscid limit of these solutions
is taken to identify the proper branch of the logarithm in the inviscid eigenfunction
φ2(r). The result shows that log (r − rc) = log |r − rc| + iπ, for the axisymmetric case
which is of interest here. Thus the effects of viscous stresses near rc are incorporated
in the inviscid calculation by choosing the correct branch for the logarithm in the
singular eigenfunction φ2. A similar procedure is used in the ‘triple deck’ analysis of
Carpenter & Gajjar (1990) for the stability of boundary layer flow past a compliant
surface when the critical layer is well separated from the wall layer.

The solution for the velocity in the tube is obtained by numerical integration
using the series solutions in the critical layer as the initial conditions. The ranges
of r for the numerical integration are r = rc + ε to r = 1 and from r = rc − ε to
r = 0, where ε is a small quantity ∼ 10−4. Near r → 0, the differential equation has
two eigenfunctions. One of these decays (∼ r) and the other grows (∼ 1/r). During
the numerical integration from r = rc − ε to r = 0, the numerical eigenfunctions
acquire the ‘growing eigenfunction’ (1/r) behaviour as r → 0 and care has to be
taken to separate out the 1/r behaviour. The eigenfunctions for the wall displacement
field obtained analytically for regular modes are used for this calculation. Using the
boundary conditions at r = 0, r = 1 and r = H , a 6 × 6 characteristic matrix is
assembled whose determinant is set to zero in order to find the eigenvalues. It was
found convenient to fix the value of cr/Γ and treat Γ as the unknown eigenvalue.
After the singular neutral modes are identified, it is necessary to determine whether a
small variation in the flow parameters renders these modes unstable. For modes that
are not neutral, ci 6= 0, there is no singular point for the governing equation (4.3) and
the stability of these modes is determined using a numerical procedure that is identical
to the calculation of regular neutral modes. In this procedure, the parameter Γ is
varied by a small amount from its value for the neutral modes and the imaginary part
of the wave speed ci is determined. This calculation shows that the neutral mode does
become unstable for a small increase in the parameter Γ , and the flow is unstable
in the inviscid limit. This result is observed for both developing flows and flows
in converging tubes, and this verifies the prediction in Kumaran (1996) that these
flows could be unstable in the inviscid limit. It is of interest to determine whether this
instability is captured by an analysis of the complete stability equations and the values
of the Reynolds number up to which this instability persists. This is accomplished
using a numerical solution of the complete equations governing the stability.

5. Numerical solution of the complete stability equations
Equations (3.11) and (3.12) are two fourth-order ordinary differential equations for

the fluid velocity field and the wall displacement field respectively. There are two
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Figure 1. Comparison of asymptotic ( +, × ) with numerical ( —, · · · ) results: (a) real part and

(b) imaginary part of wave speed vs. Re; X = 0.001, k = 1, H = 2.

solutions for the fluid velocity field consistent with the symmetry conditions at the
centre of the tube, and two solutions for the gel displacement field consistent with
the zero displacement condition at r = H . The numerical method used for deter-
mining these eigenfunctions is a fourth-order Runge–Kutta integrator with adaptive
step size control along with a Gram–Schmidt orthonormalization procedure. The
eigenfunctions for the fluid velocity field and gel displacement field are substituted
into the four boundary conditions at the interface between fluid and the gel and a
4× 4 characteristic matrix is obtained. The determinant of this matrix is set equal to
zero to obtain the wave speed c. A Newton–Raphson iteration technique was used to
obtain the solution using the known solutions in the high Reynolds number limit as
the initial guess.

Two tests were carried out to verify the accuracy of the numerical method. The
first compares the results from this numerical method with the asymptotic results
discussed in § 4.1 for regular inviscid modes. In § 4.1, the wave speed c was calculated
using an asymptotic expansion for regular modes, and these results are correct to
O(Re−1/2). Thus the asymptotic solution to the wave speed c is in error by a factor
of O(Re−1). Figure 1 shows the comparison between the asymptotic results ca and
numerical results cn for the real and imaginary parts of the wave speed. There is
excellent agreement between the asymptotic and numerical results for Re > 1000. The
ratio of the magnitude of the error in the asymptotic growth rate and the magnitude
of the numerical growth rate was computed and it decreases proportional to Re−1

for Re � 1, as it should, since the asymptotic analysis is correct only to O(Re−1/2).
Thus, our numerical method is consistent with the asymptotic results obtained in
§ 4.1. The results of our numerical scheme were also compared with the numerical
results of the linear stability of developing flow in a rigid tube. It is appropriate to
compare our numerical scheme with that of Garg (1981), since the base flow used
there was also obtained using the method of Hornbeck (1963). Though the analysis
of Garg (1981) was a spatial stability analysis, it is possible to compare the present
results with it because both spatial and temporal stability analyses yield the same
result for the wave speed for neutral modes. The rigid tube results of Garg (1981)
can be recovered from the numerical procedure used in this study by considering
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Figure 2. Comparison of rigid tube results of Garg (1981) for different values of X (lines) with
flexible tube results (symbols).

limit of large elasticity, i.e. G/(ρV 2) � 1 at a fixed value of H . Figures 3 and 4 in
Garg (1981) were electronically scanned and the neutral values were extracted from
the digitized image. In figure 2, the flexible tube solution is shown as a function of
the parameter G/(ρV 2). Our numerical procedure captures the frequency of the rigid
tube results very well and the frequency converges to the rigid tube value even when
G/(ρV 2) ∼ 10. The rigid tube results were also recovered by fixing G/(ρV 2) and
taking the limit as (H − 1) → 0. Therefore, the numerical method is consistent with
the asymptotic results for a flexible tube obtained in this paper, as well as with the
previous numerical stability analyses for a rigid tube.

6. Results
6.1. Developing flow velocity profile

First, we consider the results obtained for the stability of developing flow velocity
profiles. It is convenient to define a ‘transition Reynolds number’ (Ret) which refers
to the transition from stable to unstable modes for a given wavenumber k. The Ret
at which the developing flow profile at an axial position becomes unstable depends
on the following parameters: the wavenumber k, the dimensionless base flow velocity
Γ , the ratio of wall thickness to fluid thickness H , and the ratio of gel to fluid
viscosities ηr . The values of the wave speed obtained from the asymptotic analysis of
the singular inviscid modes were used as initial guesses for the numerical analysis,
and the initial Reynolds number was set to 105. A numerical continuation procedure
was then used to obtain the neutral curve at lower values of the Reynolds number.
The results are plotted in terms of Re vs. Σ, where Σ = (ρGR2/η2) = (Re/Γ )2 is
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Figure 4. Transition Reynolds number Ret vs. wavenumber k for a developing flow velocity profile
at X = 0.05, Σ = 109, H = 2.

a parameter that depends only on the material properties of the fluid and the wall,
and it is independent of the flow parameters. The case ηr = 0, where the wall is
purely elastic, is discussed first. Figure 3 shows the Reynolds number for neutrally
stable modes as a function of Σ for X = 0.050 and different wavenumbers k, where
X = x∗/(RRe) is the non-dimensional axial distance from the entrance of the tube.
The area below each of the curves represents the stable region and the area above the
curve represents the unstable region. For a given Σ, the Ret has a minimum at finite k,
indicating that the most unstable modes have finite wavelength. This plot can be used
to determine the critical Reynolds number Rec, which is the Reynolds number below
which fluctuations are stable for all k. In figure 4 the transition Reynolds number is
plotted against the wavenumber for a given Σ, and the minimum of this curve is Rec
with kc being the corresponding critical wavenumber. Our calculations indicate that
kc is an O(1) quantity, thus supporting the validity of the parallel flow approximation.



Stability of non-parabolic flow in a flexible tube 225

105

104

103

102

101

104 106 108 1010

R

Rec

X = 0.001

X = 0.015

X = 0.05

X = 0.09

Figure 5. Critical Reynolds number Rec vs. Σ for different axial positions for H = 2.

The conventional Re vs. k graphs for the present neutral modes look very similar for
all the cases considered, with the minimum Re occurring at some k ∼ O(1). This is
in contrast to the results of LaRose & Grotberg (1997) where there could be two
minima in the (Re, k)-plane. Consequently, in the following discussion we present only
the results of Rec vs. Σ for velocity profiles at different axial positions.

The behaviour of the Reynolds number for the neutral modes in the limiting cases
of k � 1 and k � 1 for a given Σ can be obtained by a simple asymptotic analysis of
the inviscid governing equations. The analysis in the Appendix shows that the scaling
of the Reynolds number with k in the limiting cases k � 1 and k � 1 is respectively
Re ∼ k−1 and Re ∼ k. This scaling is completely different from the conventional
‘lower’ and ‘upper’ branch scalings for developing flow stability in a rigid tube.
Therefore, the present modes are not a perturbation of the already known branches
for the stability of developing flow in a rigid tube. Figure 5 shows the variation
of Rec with Σ for different axial stations. In figure 6 we show the variation of the
critical Reynolds number with the axial distance from the entry for a given value of
Σ. It is found that Rec initially decreases with X, and then increases, indicating that
the developing flow at an intermediate axial station is the most unstable profile. It
is of interest to compare the present critical Re curve with the critical Re obtained
for the stability of developing flow through a rigid tube. The computations of Garg
(1981) show that the critical Reynolds number is around 12 000 for the most unstable
developing velocity profile. It can be seen from figure 5 that the critical Re in a flexible
tube can be much lower than that in a rigid tube and the flexible tube curve does
not approach the rigid tube value in any asymptotic limit, indicating that the present
instability is qualitatively different from that of the rigid tube instability. This is also
reflected in the fact that there is no transition from unstable to stable modes in the
(Re, k)-plane as the Reynolds number is increased in a flexible tube, in contrast to
the developing flow in a rigid tube where there is a second transition from unstable
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Figure 7. Critical Reynolds number Rec vs. Σ: Comparison with the results of
Kumaran (1998b) for parabolic flow in a flexible tube for H = 2.

to stable modes as the Reynolds number is increased in the (Re, k)-plane, and the
unstable region is restricted to a finite band of Re.

Figure 7 shows the critical Re vs. Σ results for the developing flow profile, along
with the results obtained by Kumaran (1998b) for the parabolic profile. In that
analysis, the unstable modes were a continuation of the low-Re viscous unstable
modes (Type A in our classification) to the intermediate Reynolds number regime.
This figure shows that the developing flow always has a much lower Rec than the
parabolic flow for a given Σ. At high Re there is a significant region where the flow
is developing, and the present instability can play an important role in the stability
of fluid flow through flexible tubes. A comparison cannot be made at a Reynolds
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Figure 8. Effect of ratio of viscosity of wall medium to fluid, ηr , on the critical Reynolds number
for a developing flow velocity profile at X = 0.09, H = 2.

number of O(1) or lower, because the entrance length for the development of the
velocity profile is of the same magnitude as the tube radius, and the parallel flow
approximation would not be valid. However, when the flow Re is O(102) or higher,
the error incurred due to the parallel flow approximation is small (as discussed in
§ 7), and our analysis reveals that the inviscid instability of a developing flow velocity
profile is more unstable than the viscous instability of a fully developed flow. In the
analysis of Kumaran (1998b), the critical Re for parabolic flow was found to scale as
Rec ∼ Σa, where the exponent a was found to vary between 0.7 to 0.75. In the present
case, the scaling relation turns out to be Rec ∼ Σ1/2.

It is useful at this point to compare the instability observed in this paper and the
instability of developing flow in a rigid tube analysed in Smith & Bodonyi (1980) and
Garg (1981). The Reynolds number Rec for singular inviscid modes in a flexible tube
scales as Σ1/2 where Σ ≡ (ρR2/η2)G is a non-dimensional parameter proportional to
the shear modulus of the wall medium. The critical Reynolds number increases as
the square root of the wall elasticity for the inviscid instability of developing flow in
a flexible tube. However, G→∞ is the rigid tube limit, and the earlier linear stability
analyses of developing flow in a rigid tube indicate that the critical Reynolds number
is around 12 000. This clearly demonstrates that the singular inviscid modes obtained
in this paper will not reduce, in any asymptotic limit, to the results of the stability
of developing flow in a rigid tube. Therefore, the instability analysed in this paper is
qualitatively different from that of developing flow in a rigid tube. Figure 8 shows
Rec vs. Σ for various values of the ratio of gel to fluid viscosities ηr . An increase
in ηr increases the Rec for a given Σ, indicating that the viscosity of the wall has
a stabilizing effect on the present instability. This is in contrast with the results of
Kumaran (1998b), where ηr was found to have a complex dependence on the stability
characteristics. In our analysis, neutral stability curves have been computed for Re
as low as 100 using the parallel flow approximation. At such low Re, the previously
neglected ‘non-parallel’ terms could influence the stability of the flow. The variation in
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the neutral stability curves due to the largest of the non-parallel terms is determined
in § 7.

6.2. Slightly converging tube

The stability of velocity profiles that occur in a tube which is slightly tapering along
the axial direction is considered here. This convergence could occur in flexible tubes
due to applied pressure gradients, and in the experiments of Krindel & Silberberg
(1979), the authors observed a convergence and estimated that the slope was around
1× 10−3. As mentioned in § 3, the convergence of the tube significantly influences the
base velocity profile when αRe ∼ 1. In the present calculations, the velocity profile at
the inlet is considered to be parabolic, and it turns progressively non-parabolic further
downstream in the tube. In figure 9 the Rec vs. Σ curves at various axial distances
are shown. The inviscid instability mechanism is operative even if the velocity profile
is only slightly different from the inlet parabolic flow. The critical Re is always less
than that for a parabolic flow for a given Σ. As the flow becomes progressively
non-parabolic, the critical Re decreases for a given Σ.

7. Error due to the parallel flow assumption
In the parallel flow stability analysis, the terms that contained the gradient of the

mean flow axial velocity and the mean radial velocity were neglected, because it was
assumed that they are O(Re−1) smaller than leading-order terms in the limit Re� 1.
It might then be expected that there is a correction of O(Re−1) in the governing
equations due to the inclusion of the non-parallel terms, and this would result in a set
of partial differential equations for the velocity perturbations. However, some recent
work by Govindarajan & Narasimha (1997) suggests that the largest correction to
the governing equations is O(Re−1/3) smaller than the leading-order terms, and the
parallel flow approximation can still be used to evaluate this correction, as discussed
below.
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Consider the following linearized partial differential equations governing the x- and
r-components of the velocity perturbations. Here the quantities with an overbar are
mean flow velocities and those without are velocity perturbations:

∂tvx + vx∂xvx + vx∂xvx + vr∂rvx + vr∂rvx = −∂xp+ ΓRe−1[∂2
r + r−1∂r + ∂2

x]vx, (7.1)

∂tvr + vr∂rvr + vr∂rvr + vx∂xvr + vx∂xvr = −∂rp+ ΓRe−1[∂2
r + r−1∂r − r−2 + ∂2

x]vr.

(7.2)

The mean flow quantities for the non-parabolic flows of interest in this study are
scaled as follows: vx = ΓU, vr = ΓRe−1V , ∂xvx = ΓRe−1∂xU, ∂xvr = ΓRe−2∂rV . The
‘normal modes’ for the disturbance velocities are (see Gaster 1972; Govindarajan &
Narasimha 1997)

vi = ṽi(r, x) exp

[
i

∫
k(x) dx− iωt

]
, (7.3)

where ṽi(x, r) is in general a function of r and x, ω is the frequency of perturbations and
the wavenumber k(x) is also a function of x in general. In the above equation, ω ≡ ikc,
is the frequency of perturbations. On substituting this form for the disturbances in the
linearized partial differential equations, and retaining all quantities that are of O(Re−1),
a single fourth-order partial differential equation can be obtained in terms of ṽx and
ṽr . This equation contains terms representing the derivatives of the eigenfunction in
the x-direction and the derivative of the wavenumber in the x-direction. Since the
axial derivative of the mean velocity along the x-direction is O(Re−1) smaller than
its radial derivative, the axial derivatives of the disturbance velocities will at most be
of O(Re−1) smaller than the leading-order contributions. However, as shown below,
there are larger corrections due to the axial variation of the mean velocity in the
critical layer.

Since the thickness of the critical layer is O(Re−1/3) smaller than the radius of the
tube, it is appropriate to use a new coordinate η = (r− rc)/Re−1/3. The eigenfunctions
are expanded in an asymptotic series as follows:

ṽr = χ(η) = χo(η) + Re−1/3χ1(η) + · · · . (7.4)

The mean flow velocity is expanded near the critical layer as

U = Uc +U ′c(r − rc) +U ′′c (r − rc)2/2 + · · · . (7.5)

The leading-order and O(Re−1/3) correction to the governing equations near the
critical layer can then be obtained:

d4
ηχ0 − ikU ′cη d2

ηχ0 = 0, (7.6)

U ′′c
2
η2 d2

ηχ0 +U ′cη d2
ηχ1 − (U ′′c − r−1

c U
′
c)χ0 +

[
iV d3

ηχ0

k

]
=

1

ik
(d4
ηχ1 + 2r−1

c d3
ηχ0), (7.7)

where dη = d/dη . The leading-order equation (7.6) is identical to that obtained in
the parallel flow approximation. However the first correction equation contains an
additional term that is due to the radial velocity in the critical layer (the term inside
the square brackets in (7.7)). Thus, the largest non-parallel term is O(Re−1/3) smaller
than the leading-order terms in the equations for a parallel flow. This O(Re−1/3)
term is incorporated, and the next correction in the critical layer is of O(Re−2/3) and
is neglected here. A similar analysis can easily be carried out in the wall layer to
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estimate the error due to the parallel approximation. This analysis reveals that the
O(1) and O(Re−1/2) equations in the wall layer do not contain any terms due to axial
gradients in the mean velocity profile or the radial component of the mean velocity,
and hence the error due to the parallel flow approximation is O(Re−1) smaller than
the leading-order terms in the wall layer.

The above scaling arguments show that the largest correction to the equations due
to the neglect of the axial gradient of the mean flow and the radial component of the
mean flow is O(Re−1/3) smaller than the leading-order terms, and this leading-order
correction is due to the term vr∂rvx in the linearized partial differential equation
(7.1). If we incorporate this largest correction, the error incurred is at most of
O(Re−2/3), since we have neglected certain terms which are of O(Re−2/3) in the critical
layer. On including such a term in the OS-type equation, one obtains after defining
L = (∂2

r + r−1∂r − r−2 − k2)(
U − ω

kΓ

)
Lṽr − (U ′′ − r−1U ′)ṽr =

1

ikRe
[L2ṽr + V∂r(∂

2
r + r−1∂r − r−2)ṽr]. (7.8)

This fourth-order equation is an ordinary differential equation, and it contains all
terms that are O(Re−1/3) and O(Re−1/2) smaller than the leading-order terms in the
critical and wall layers. This equation also contains some additional terms which are
of higher order than O(Re−1/2), but since the problem is to be solved numerically this
is not a major issue. This equation incorporates the spatial development of the flow
due to the dependence of U on x, the dependence of k on x and the dependence of
the eigenfunction on x.

For a non-parallel flow, spatial neutral stability is defined as ∂xφ/φ = 0 where φ is
the perturbation to the variable under consideration. The eigenfunction has the form
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φ = φ̃(r, x) exp
[
i
∫
k(x) dx− iωt

]
, and the criterion ∂xφ/φ = 0 becomes

Re

(
ik +

∂xφ̃

φ̃

)
= 0, (7.9)

where Re denotes the real part of a complex number. The neutral stability curve
then depends on the variable under consideration and the radial coordinate (r).
In this analysis of the non-parallel flow, the gradients of the eigenfunctions (∂xφ̃)
are neglected since these terms are O(Re−1) smaller than the leading-order terms.
Therefore, the definition of the neutral stability reduces to ki = 0, which is the same
as the definition for the parallel flow approximation. This definition for spatial neutral
stability coincides with the temporal neutral stability, for which ωi = 0. Figure 10
shows the neutral curve Rec vs. Σ obtained using the above definition of stability
ci = 0 along with the neutral curve obtained from the parallel flow approximation,
for X = 0.015. It is observed from these plots that the non-parallel effects are indeed
marginal, and they become significant only near Re ∼ 102.

8. Conclusions
The stability of non-parabolic velocity profiles in a flexible tube was analysed in

the limit of high Reynolds numbers using asymptotic analyses, and the results were
extended to the moderate Reynolds number regime using a numerical approach. Two
specific flows were considered: (i) the developing flow velocity profiles that occur prior
to the formation of a parabolic velocity profile, and (ii) the velocity profiles that occur
in a slightly converging tube. Both these flows were treated as locally parallel, and the
classical temporal stability theory was used to determine their stability; an asymptotic
analysis showed that the non-parallel effects do not alter the neutral stability curves
significantly. In the limit of high Reynolds numbers, two classes of modes are possible:
the regular inviscid modes (Type D), which are akin to the inviscid modes observed
in Kumaran (1995b) for parabolic flow in a flexible tube, and singular inviscid modes
(Type E) which do not appear for parabolic flows. An asymptotic analysis in the
small parameter Re−1/2 indicated that the regular inviscid modes are always stable.
This is in contrast with the studies of Davies & Carpenter (1997) and Carpenter &
Garrad (1986) which found instability for the regular inviscid modes for flow past
spring-backed walls.

The singular inviscid modes cannot be studied using the above asymptotic expan-
sion, and special care has to be taken to determine the eigenfunctions in the inviscid
limit. The singular inviscid modes were found to give rise to an instability in the
inviscid limit, thus verifying such a prediction in Kumaran (1996). Interestingly, both
the non-parabolic velocity profiles are stable in a rigid tube in the inviscid limit. The
main reason for the instability of non-parabolic profiles is the presence of the critical
layer in the fluid due to the singularity in the inviscid stability equations, which is
absent for parabolic flows. This critical layer gives rise to a convective transport of
energy from mean flow to fluctuations in certain cases, thus rendering the flow unsta-
ble. For a detailed discussion on energy balance arguments, the reader is referred to
Kumaran (1995b). For developing flow in a rigid tube, the neutral stability curve has
characteristic ‘upper’ and ‘lower’ branches, and the flow is unstable only over a finite
range of Reynolds numbers at a fixed wavenumber. The neutral stability curve in the
present case is qualitatively different from this rigid tube behaviour, and the transition
Reynolds number scales proportional to k−1 at small wavenumber, has a minimum at
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finite wavenumber and increases proportional to k for large wavenumber. The critical
Reynolds number scales proportional to Σ1/2 in the limit of large elasticity Σ � 1, in
contrast to the finite value assumed by the critical Reynolds number in the rigid tube
case.

A numerical method was devised to continue the results from the high-Re to
the intermediate-Re regime. The numerical results reveal that the inviscid instability
mechanism can exist even at very moderate Re like 100. Importantly, the critical
Reynolds number for the case of non-parabolic velocity profiles is very low when
compared with the parabolic profile results of Kumaran (1998b) for a given Σ, and
hence the inviscid instability mechanism could be very powerful in rendering the flow
in a flexible tube unstable. This is because at moderate to high Re, there is a significant
region in the entrance of the tube where the velocity profile is not parabolic, and in
these situations, the present instability mechanism could be very important. In the
case of velocity profiles in a slightly converging tube, even slight deviations from
the parabolic velocity profiles were found to be sufficient for the inviscid instability
mechanism to be operative. More importantly, the critical Re for the converging
flow profiles were found to be much less than the critical Re for the parabolic flow.
The dominant effects of flow non-parallelism are incorporated to O(Re−1/2) using an
asymptotic analysis, and it was found that non-parallel terms do not have a significant
effect on the neutral stability curves.

Appendix. Low- and high-wavenumber asymptotic analysis
The behaviour of the Reynolds number of the neutral modes in the limiting cases of

k � 1 and k � 1 for a given Σ can be obtained by a simple asymptotic analysis of the
inviscid governing equations for the singular inviscid modes. The following analysis
shows that the shape of the neutral curve for the present instability is completely
different from that observed for instabilities on rigid surfaces. Specifically, we show
below that the scaling of the Reynolds number with k in the limiting cases k � 1
and k � 1 is respectively Re ∼ k−1 and Re ∼ k. This scaling is completely different
from the conventional ‘lower’ and ‘upper’ branch scalings for flow past rigid surfaces.
We first turn to the low-wavenumber (or, long-wavelength) analysis of the inviscid
governing equations.

Low-wavenumber analysis

The non-dimensional inviscid governing equations for the fluid are the following:

(dr + r−1)ṽr + ikṽx = 0, (A 1)

ik(ΓU − c)ṽr = −drp̃f , (A 2)

ik(ΓU − c)ṽx + ΓU ′ṽr = −ikp̃f. (A 3)

At the interface (r = 1), the continuity of normal velocity is given by ṽr = −ikcũr . In
order for the wall deformations to affect the fluid flow, c should scale as k−1. Thus,
we expand

c = k−1c(0) + c(1) + · · · . (A 4)

From the continuity equation, it can be seen that ṽx = O(k−1)ṽr , and we expand

ṽx = k−1ṽ(0)
x + ṽ(1)

x + · · · , (A 5)

ṽr = ṽ(0)
r + kṽ(1)

r + · · · . (A 6)
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The continuity equation then reads

(dr + r−1)ṽ(0)
r + iṽ(0)

x = 0. (A 7)

Consider now the x-momentum equation. On using the expansion for c, ṽx and ṽr the
x-momentum equation becomes

i(ΓU − k−1c(0))ṽ(0)
x + ΓU ′ṽ(0)

r = −ikp̃f. (A 8)

The first term in the left-hand side indicates that for singular modes to exist in the
limit of low k, i.e. for ΓU = c(0)k−1 somewhere in the flow, Γ should to scale as k−1

in the low-k limit. Therefore, we expand

Γ = Γ (0)k−1 + Γ (1) + · · · . (A 9)

The scaling for p̃f should be of O(k−2) in order for a balance to exist between the
left- and right-hand sides of the x-momentum equation. So, p̃f is expanded as

p̃f = k−2p̃
(0)
f + · · · . (A 10)

The scaled x-momentum equation then becomes in the low-k limit

i(Γ (0)U − c(0))ṽ(0)
x + Γ (0)U ′ṽ(0)

r = −ikp̃(0)
f . (A 11)

The r-momentum equation simply gives drp̃
(0)
f = 0 in the leading approximation. The

governing equation for ṽ(0)
r in the limit of low k can then be obtained by combining

the scaled continuity, x-momentum and r-momentum equations:

(Γ (0)U − c(0))(d2
r + r−1dr − r−2)ṽ(0)

r − Γ (0)(U ′′ − r−1U ′)ṽ(0)
r = 0. (A 12)

Thus, from the analysis of the x-momentum equation, we have obtained the scaling
for Γ in the limit of low k and we find that Γ ∼ k−1 in this limit. The governing
equations for the wall medium can be similarly scaled, but since we have obtained the
scaling for Γ , we do not need them here. For the inviscid modes studied in this paper,
the scaling for the Reynolds number is given by Re = Σ1/2Γ . For a fixed Σ, this
implies Re ∼ Γ . Since Γ ∼ k−1 in the low-k limit, we obtain the scaling for Re in the
k → 0 limit as Re ∼ k−1. This is the scaling for the ‘lower branch’ (the k → 0 branch)
in the Re vs. k neutral curve for a fixed Σ. This Re ∼ k−1 behaviour is completely
different from the conventional lower branch scalings for developing flow in a rigid
tube, which is Re ∼ k−1/8. We now turn to the scaling of the Reynolds number in the
limit k � 1.

High-wavenumber analysis

We note that k ≡ k∗R (k∗ is the dimensional wavenumber of perturbations and R
is the radius of the tube), and in the high-wavenumber limit k � 1. This implies
that we are considering waves of wavelengths much smaller than the tube radius.
Consequently, in this limit, the curvature effects of the axisymmetric geometry do
not appear in the leading-order governing equations (when scaled appropriately; see
below), and the system appears identical to flow past a planar flexible surface. All the
variation in the dynamical quantities takes place in a region very near the interface
between the fluid and the wall. In this limit, the appropriate length scale is not R
(the radius of the tube), but 1/k∗ (the wavelength of perturbations). Therefore, we
define a new independent variable η = (1 − r∗/R)k, i.e. η = (1 − r)k, where η is an
O(1) quantity and k � 1. This scaling ensures that we are very near the fluid–wall
interface (r∗/R = 1).
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The dimensional continuity and momentum equations for the Fourier components
of the velocities are given by

d∗r ṽ
∗
r + r∗−1

ṽ∗r + ik∗ṽ∗x = 0, (A 13)

ρik∗(U∗ − c∗)ṽ∗x + ρd∗rU
∗ṽ∗r = −ikp̃∗ + µ(d∗r

2
+ r∗−1

d∗r − k∗2)ṽ∗x, (A 14)

ρik∗(U∗ − c∗)ṽ∗r = −d∗r p̃
∗
f + µ(d∗r

2
+ r∗−1

d∗r − r∗2 − k∗2)ṽ∗r . (A 15)

Using the scaled variable η, the continuity equation takes the form

−dηṽ
∗
r + iṽ∗x = 0. (A 16)

The dimensional base flow velocity profile is given by U∗ = VU, where V is the
characteristic dimensional velocity of the base flow, and U is the non-dimensional
functional form of the profile. Very near the interface, the dimensional base velocity
can be expanded as

U∗ = V [U|r=1 +U ′|r=1(1− r∗/R) + · · ·]. (A 17)

Using the fact that U|r=1 = 0 and expressing r∗/R in terms of the variable η defined
above, we have

U∗ = (k−1V )U ′|r=1 η. (A 18)

From this, it can be seen that in limit of high k, the appropriate velocity scale is k−1V ,

and consequently the pressure scale is ρk−2V
2
. In this limit, the appropriate scale for

the dimensional wave speed c∗ is also k−1V , and we define c = c∗/(k−1V ). Using these
scales to non-dimensionalize the x-momentum equation, we have, to leading order in
k,

i(U ′|r=1η − c)ṽx +U ′ṽr = −ip̃f +
µk2

ρVR
(d2
η − 1)ṽx. (A 19)

For the case of inviscid modes, we consider µk2/(ρVR) � 1. The r-momentum
equation can be scaled similarly and we obtain

i(U ′|r=1η − c)ṽr = dηp̃f +
µk2

ρVR
(d2
η − 1)ṽr. (A 20)

The dimensional normal velocity continuity at r = 1 is given by ṽ∗r = −ik∗c∗ũ∗r . Using
the scaling for ṽ∗r , c∗ and k∗ in this equation, we can obtain the scale for ũ∗r and this
turns out to be ũ∗r = (k−1R)ũr . From the mass conservation equation for the wall
medium, we also have ũ∗x = (k−1R)ũx. The pressure in the wall medium is scaled

with the same scale as the fluid pressure, i.e. ρk−2V
2
. The dimensional x-momentum

balance in the wall medium is given by

−k∗2c∗2ρũ∗x = −ik∗p̃∗g + G(d∗2r + (r∗)−1d∗r − k∗2)ũ∗x. (A 21)

Using the scalings for k∗, c∗, ũ∗x, p̃∗g in (A 21), we obtain

−c2ũx = −ip̃g +
Gk2

ρV
2
(d2
η − 1)ũx. (A 22)

The elastic stresses in the wall medium will be of the same order as the inertial stresses
when Gk2/ρV

2 ∼ O(1). This implies that (k/Γ )2 ∼ O(1), and hence Γ ∼ k. Therefore,
for a fixed Σ, the Reynolds number for the modes analysed in this paper scales as
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Re = Σ1/2Γ , i.e. Re ∼ k in the limit of k � 1. To summarize, in the limit of low k,
the scaling relation is Re ∼ k−1 and in the limit of high k, Re ∼ k. Consequently,
the critical Reynolds number occurs at k ∼ O(1). We conclude that the scalings of
both the upper and lower branches for singular inviscid modes in a flexible tube are
completely different from the conventional scalings of Tollmien–Schlichting modes for
developing flow in a rigid tube. Therefore, the present modes are not a perturbation
of the already known branches for the stability of developing flow in a rigid tube.
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