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Temperature of a granular material ‘‘fluidized’’ by external vibrations

V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

~Received 1 December 1997!

The scaling for the temperature of a granular material ‘‘fluidized’’ by external vibrations is determined in the
limit where the dissipation of energy in a collision due to inelasticity, or between successive collisions due to
viscous drag, is small compared to the energy of the particles. An asymptotic scheme is used, where the
dissipation of energy is neglected in the leading approximation, and the Boltzmann equation for the system is
identical to that for a gas at equilibrium in a gravitational field. The density variation in the ‘‘fluidized’’
material is given by the Boltzmann distribution, and the velocity distribution is given by the Maxwell-
Boltzmann distribution. However, the ‘‘temperature’’ of the material is not specified by thermodynamic con-
siderations, but is determined by a balance between the source of energy due to the vibrating surface and the
dissipation of energy. This balance indicates that the dependence of temperature on the amplitude of the
vibrating surface is sensitively dependent on the mechanism of dissipation~inelastic collisions or viscous
drag!, and also on whether the amplitude function for the velocity of the vibrating surface is symmetric or
asymmetric about zero velocity. However, the temperature turns out to have the same functional dependence
on the properties of the system in two and three dimensions.@S1063-651X~98!08004-0#

PACS number~s!: 81.05.Rm, 46.10.1z, 05.70.Ln, 62.90.1k
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I. INTRODUCTION

There has been increasing interest in the dynamics
granular materials which are set into motion by external
brations. A typical configuration involves a~two-
dimensional or three-dimensional! bed of particles supporte
on a horizontal plate which is vibrated with a certain amp
tude function and frequency. Under certain conditions of
bration amplitude and frequency, the material becomes ‘‘
idized,’’ and the motion of the individual particles i
qualitatively similar to the motion of molecules in a gas
equilibrium. However, there is a significant difference b
tween a fluidized granular material and a gas at equilibri
— the temperature of the gas, which gives the magnitud
the velocity fluctuations, is a thermodynamic property spe
fied by ambient conditions, while the temperature of a gra
lar material depends on the balance between the sourc
energy, due to the vibrating surface, and the dissipation
energy due to inelastic collisions or viscous drag on the p
ticles.

Some unusual features in granular materials subjec
vibrations, such as the formation of convection cells@1# and
the presence of compression and transverse waves@2# have
been reported. The transition from a liquidlike condens
state to a gaslike fluidized state has also been studied@2–4#.
More recently, there have been simulations that have
tained the properties of the fluidized state, such as the gr
lar temperature and the variation in the height of the cen
of mass@5,6#. Experimental information on the velocity dis
tribution functions has been obtained using high speed p
tography@7,8# for a two-dimensional array of spheres. The
experiments have yielded information on the moments of
velocity distribution and the spatial pair correlation functi
in these materials. Though the velocity distribution functi
is similar in shape to the Maxwell-Boltzmann distribution f
a gas at equilibrium, there have been significant system
differences observed in the experiments. A significant fea
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of the experimental and simulation results carried out so
is that there is no unanimity regarding the dependence of
granular temperature on the amplitude of vibration of t
surface and the inelasticity of the particles. The simulatio
of Luding, Hermann, and Blumen@5# indicate that the granu
lar temperature varies asT}U0

1.5 while the experimental re-
sults of Warret al. @8# show a dependence of the formT
}U0

1.41 where U0 is the amplitude of the velocity of the
vibrating plate. However, this type of scaling has not be
obtained by theoretical analyses, and theoretical models
the one-dimensional vibration of a particle show a scal
relation of the formT}U0

2. The scaling relations are derive
in the present analysis in the limit where the dissipation
energy of a particle in a collision or between successive c
lisions is small compared to the energy of the particles. T
results indicate that the scaling of the temperature is sens
to the mechanism of energy dissipation~inelastic collisions
or viscous drag! as well as to the form of the amplitud
function of the vibrating surface.

In this analysis, scaling relations are derived in the lim
where the maximum velocity of the vibrating plate is sm
compared to the velocity fluctuations in the granular m
dium. It is shown a little later that in this limit, the dissipa
tion of energy during a collision due to inelasticity, or b
tween successive collisions due to viscous drag, is sm
compared to the energy of a particle. The parameter reg
where the above approximation is valid is determined s
consistently a little later.

Two density regimes are considered, depending on
magnitude of the parameterNr, whereN is the number of
particles per unit width of the vibrated material andr is the
radius of a particle.~Note that 2Nr is the number of mono-
layers of particles when the granular material is at rest.! In
the ‘‘dense limit’’ Nr>1, a particle collides with many othe
particles in between successive collisions with the vibrat
surface. In this case, the distribution function is obtain
5660 © 1998 The American Physical Society
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57 5661TEMPERATURE OF A GRANULAR MATERIAL . . .
using an asymptotic analysis. In the leading order appro
mation, the system is considered nondissipative, and the
tribution function for the velocity of the particles is identic
to the Maxwell-Boltzmann distribution for a gas of ha
spheres in a gravitational field. However, the ‘‘temperatur
of the material is not fixed from thermodynamic consid
ations, but has to be determined by a balance between
dissipation of energy due to inelastic collisions or visco
drag and the source due to the particle collisions with
vibrating surface. The source and dissipation of energy
calculated using methods from the kinetic theory of gas
and the velocity fluctuations at steady state are estimate
balancing the source and dissipation of energy.

In the ‘‘dilute limit’’ Nr!1 ~which corresponds to a
‘‘Knudsen flow’’!, the frequency of particle collisions with
the vibrating surface is large compared to the frequency
binary collisions. In the leading approximation, binary col
sions are neglected and the velocity distribution for a part
colliding with a vibrating surface is derived. For a symmet
vibrator, the results show that the velocity distribution
identical to one-dimensional Maxwell-Boltzmann distrib
tion for the case where dissipation is due to inelastic co
sions, but could be very different when the dissipation is d
to viscous drag. For an asymmetric vibrator, the single p
ticle distribution is ad function at a specific velocity for
inelastic collisions and for viscous drag.

II. DENSE LIMIT

In the leading approximation, the system is conside
nondissipative, and the distribution function for the partic
velocities is identical to that for a gas at equilibrium in
gravitational field. The leading order density and veloc
distributions are Boltzmann distributions:

r05
Nmg

T
expS 2

mgz

T D , ~1!

f 0~u!5S m

2pTD ~d/2!

expS 2mu2

2T D , ~2!

whered is the dimension,N is the number of particles pe
unit length in the horizontal direction for a two-dimension
system, and the number of particles per unit area in the h
zontal plane for a three-dimensional system,g is the accel-
eration due to gravity,z is the vertical distance in the direc
tion opposite to gravity,T is the temperature in the leadin
approximation, andm is the mass of the particles. Howeve
the temperatureT cannot be determined from the leadin
order solutions, and has to be determined by equating
rate of increase of energy due to particle collisions with
vibrating surface, and the rate of dissipation of energy du
inelastic collisions or viscous drag.

The rate of dissipation of energy due to inelastic co
sions is obtained using methods similar to those used in
kinetic theory of gases. The rate of dissipation of energy,DI
~per unit length in the horizontal direction for a two
dimensional system, and per unit area in the horizontal pl
for a three-dimensional system!, is determined by consider
ing the dissipation of energy in a collision between two p
ticles with vertical positions and velocities (z,u) and
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(z* ,u* ), and doing an ensemble average over the veloci
and orientations of the particles.

DI52E
0

`

dzr0~z!r0~z* !E duE du*

3E dk f 0~z,u! f 0~z* ,u* !~DE!@s~u2u* !–k#, ~3!

wherek is the orientation of the line joining the centers
the particles with respect to the vertical and is directed fr
the particle with velocityu to the particle with velocityu* ,
DE is the change in the kinetic energy during the collisio
and s is 2r in two dimensions and (2r )2 in three dimen-
sions, andr is the radius of a particle. It is also important
note that the integral in Eq.~3! is carried out only for those
values ofk for which k–(u2u* ) is positive, since the par
ticles do not collide ifk–(u2u* ) is negative. The rate o
dissipation of energy is determined using the standard te
niques of kinetic theory of gases@9#, which have also been
used for granular materials in shear flow@10,11#. The rate of
dissipation of energy for a system where the distribut
function is given by 1 and 2 is

DI5HAprN2g~mT!1/2~12e2! in 2 dimensions

4Apr 2N2g~mT!1/2~12e2! in 3 dimensions.
~4!

The rate of dissipation of energy due to viscous drag is
termined using a drag law of the form

a52mu, ~5!

wherem, the drag coefficient, is given by (6phr /m) for a
system where the drag force is given by Stokes law and
fluid has a viscosityh. The rate of dissipation of energy du
to viscous drag is given by

DD5E
0

`

dzr~z!E duf ~z,u!m~u–u!. ~6!

The above integral can also be evaluated using the stan
techniques of kinetic theory of gases, and the rate of diss
tion of energy per unit length in two dimensions and per u
area in three dimensions is given by

DD5H 2mNT in 2 dimensions

3mNT in 3 dimensions.
~7!

The source of energy required to sustain the velocity fl
tuations is provided by the particle collisions with the vibra
ing surface. The flux of energy is calculated by averag
over the distribution function of particle velocities as well
the probability distribution function of the velocities of th
vibrating surface. The probability functionP(U) is defined
such thatP(U)dU is the probability of finding the surface
with a velocity in the intervaldU aboutU, and

E
Umin

Umax
dU P~U !51. ~8!

The probability function can be easily determined from t
time series of the amplitude of the vibrator. Assuming th
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5662 57V. KUMARAN
the collisions of the particles with the vibrator are elastic,
initial u and the final velocityu8 of the particle are given by

uz82U52~uz2U !, ux85ux , uy85uy , ~9!

wherex and y are orthogonal coordinates in the horizon
plane. The source of energy due to particle collisions w
the vibrating surface is given by

S5r~0!E
Umin

Umax
dU P~U !E

2`

U

duzE
2`

`

dux

3E
2`

`

duy~U2uz! f ~0,u!DE, ~10!

whereDE is the change in energy of the particle, and t
factor r(0)(U2uz) f (0,u) gives the normal flux of particles
at the surface. The leading contribution to the energy sou
is obtained by insertingf (0,u)5 f 0(u) and r(0)5r0(0) in
Eq. ~10!. This integral is difficult to evaluate without know
ing the form of the distribution functionP(U), but the inte-
gral can be evaluated using an expansion in the param
(mU2/T) in the limit mU2!T. It is shown a little later that
this corresponds to the limit where the energy dissipation
a collision due to inelasticity, or between successive co
sions due to viscous drag, is small compared to the energ
a particle. In this limit, the leading order terms in the equ
tion for the source of energy are

S05
Nmg

T S T^U&12A2

p
AmT^U2&1O~mU3! D . ~11!

In the present analysis, we distinguish between two ty
of vibrations. For symmetric vibrations, the probability di
tribution for the velocity of the surfacePs(U) is symmetric
about U50, and the average velocity of the surface^U&
50. A sinusoidal amplitude variationA5A0cos(vt) is an
example of a symmetric amplitude function with maximu
velocity U0. For symmetric amplitude functions^U&50, and
the leading order term in Eq.~11! is proportional to^U2&.
For asymmetric vibrations for which the probability distrib
tion Pa(U) is asymmetric aboutU50, and^U&Þ0. A saw-
tooth amplitude functionA5A0@(t/t0)2 int(t/t0)#2A0 /2 is
an asymmetric amplitude function, where int(x) denotes the
highest integer that is lower thanx. In the latter case, the
velocity has a constant positive valueA0 /t0, except for inte-
ger values oft/t0, where the velocity is undefined since th
amplitude is discontinuous. During the time that the veloc
is undefined, there are no collisions between the particle
the surface, and collisions occur only when the surface
moving with a constant velocityA0 /t0. Consequently, for
asymmetric amplitude functions,^U&Þ0, and the leading
order term in Eq.~11! is proportional tô U&.

A balance betweenS0, Eq. ~11!, and the rate of dissipa
tion of energy~4! or ~7! gives the relations for the tempera
tures shown in Table I. Before examining these tempera
relations, it is useful to recall that this analysis is restricted
the limit where the square of the amplitude of the velocity
the surface is small compared to the temperature, an
examine the parameter regimes where this assumptio
valid. For systems where dissipation is due to inelastic c
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lisions, it is apparent that this condition is valid for 12e2

!1 ~for Nr;1 in two dimensions orNr2;1 in three dimen-
sions!, which corresponds to the limit where the coefficie
of restitution is close to 1 and the dissipation of energy in
collision due to inelasticity is small compared to the ener
of the particle. For systems where the dissipation is due
viscous drag, it can be inferred that this condition is valid
the limit where (mT1/2/m1/2g)!1. Since the fluctuating ve
locity of the particles scales as (T/m)1/2, the rate of dissipa-
tion of energy scales asmT/m and the distance betwee
collisions scales as (rr0)21 in two dimensions and (r 2r0)21

in three dimensions, the ratio of the dissipation of ene
between successive collisions and the energy of a par
scales as mT1/2/(m1/2Nrg) in two dimensions and
mT1/2/(m1/2Nr2g) in three dimensions. Therefore the cond
tion that the square of the amplitude of velocity fluctuatio
is small compared to the temperature corresponds to the
where the dissipation of energy between successive c
sions due to viscous drag is small compared to the energ
a particle for situations whereNr;1 in two dimensions and
(Nr2);1 in three dimensions.

III. DILUTE LIMIT

In the dilute ~Knudsen! limit, the frequency of particle
collisions with the vibrating surface is large compared to
frequency of binary collisions. In the leading approximatio
the distribution function for a single particle on a vibratin
surface is considered. The leading order distribution fu
tions for the cases where dissipation is due to inelastic
lisions and viscous drag are considered separately, and
correction to the distribution function due to binary col
sions between particles is then estimated.

A. Dissipation due to inelastic collisions

In the collision model for a single particle on a vibratin
surface the velocity after collisionuz is related to the veloc-
ity before collisionuz8 by

TABLE I. Temperature scaling in the dense limit.

Dimension Dissipation Vibrator T

2 Inelastic Symmetric 2A2

p

m^U2&

~Nr !~12e2!

2 Inelastic Asymmetric m^U&2

p@~Nr !~12e2!#2

3 Inelastic Symmetric A2

p

m^U2&

2~Nr2!~12e2!

3 Inelastic Asymmetric m^U&2

p@4~Nr2!~12e2!#2

2 Viscous Symmetric FA2

p

m3/2^U&2g

2m G2/3

2 Viscous Asymmetric mĝ U&
2m

3 Viscous Symmetric FA2

p

m3/2^U&2g

3m G2/3

3 Viscous Asymmetric mĝ U&
3m
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57 5663TEMPERATURE OF A GRANULAR MATERIAL . . .
uz2U52e~2uz82U !, ~12!

wheree is the coefficient of restitution, andU is the velocity
of the vibrating surface. Note the requirementU.2uz8 for a
particle to collide with the wall. Insertinge I5(12e) in Eq.
~12!, and retaining terms up toO(e I), the equation foruz8 is

uz82uz5e Iuz1~22e I !U. ~13!

For an asymmetric vibrator with an amplitude function
the form A5A0@(t/t0)2 int(t/t0)#2A0 /2, it can easily be
seen that the velocity of the particle at the vibrating surfa
at steady state is (11e)U/(12e), and the distribution func-
tion is ad function at this velocity. The distribution functio
at any heightz can be inferred from this,

f ~uz ,z!5ndS uz2gz2
~11e!U

12e D . ~14!

For a symmetric vibrator, the distribution function can
determined using a flux balance condition. The zero net
condition across the vibrating surface indicates that the t
flux of particles with velocity in the intervalduz8 about2uz8
incident on the surface is equal to the flux of particles w
velocity in the intervalduz aboutuz reflected from the sur-
face. The flux of particles incident on the surface is

Ni~uz!duz5~U1uz8!F~uz8!duz8 . ~15!

In the above equation, we have used the symmetry cond
F(2uz8)5F(uz8) for the free flight of a particle in the ab
sence of drag forces. Using Eq.~13! to expressuz8 in terms of
uz , the flux of particles entering the intervalduz is

Ni~uz!5~1/e!~U1uz8!F~uz8!. ~16!

The flux of particles reflected from the surface having vel
ity in the intervalduz aboutuz is given by

Nr~uz!5~uz2U !F~uz!. ~17!

At steady state, the distribution function is determined fro
the equationNi(uz)5Nr(uz). This equation relates the dis
tribution function at the velocity before collision with that
the velocity after collision, and is a difference equation
the velocity distribution. This equation is difficult to solve
general, but a solution can be obtained in the limite I!1,
where the difference between the velocities before and a
collision is small compared to the velocity of a particle.
this limit, the distribution functionF(uz8) can be expanded in
a Taylor series aboutuz85uz :

F~uz8!5F~uz!1~uz82uz!
dF

duz
1

~uz82uz!
2

2

d2F

duz
2

1O~uz82uz!
3. ~18!

The above expansion is inserted into the flux balance co
tion Ni(uz)5Nr(uz), and the resulting equation is expand
in the parametere I . It is also useful to note at this point tha
the velocity of the vibrating surfaceU;e I

1/2uz , and so only
e

x
al

n

-

r
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terms proportional toU andU2 in the flux balance condition
are retained. The resulting equation is

e I S 2Fuz1uz
2 dF

duz
D22Uuz

dF

duz
12U2S uz

d2F

duz
2

1
dF

duz
D 50.

~19!

An ensemble average over the distribution of velocitiesU of
the vibrating surface is carried out, to give

e I S 2Fuz1uz
2 dF

duz
D12^U2&S uz

d2F

duz
2

1
dF

duz
D 50. ~20!

It is useful to express the above equation in terms of a sc
velocity uz* 5uz /(2^U2&/e I)

1/2 to obtain the final equation
for the velocity distribution function:

uz* F91~uz*
211!F812uz* F50, ~21!

where primes denote differentiation with respect touz* . It
can also be easily verified that the third and higher or
terms in the Taylor series expansion~20! make subdominan
contributions to the differential equation for the velocity di
tribution function, and so the differential equation~21! is
correct to leading order in smalle I . Equation~21! can be
easily solved to obtain the Maxwell-Boltzmann distributio
for F,

F5
1

A2p
expS 2

uz*
2

2 D . ~22!

B. Dissipation due to viscous drag

In this section, the single particle distribution function
derived for the case where particle collisions with the vibr
ing surface are elastic, but there is dissipation of energy
to viscous drag, and the drag force is linear in the parti
velocity as before. The acceleration of the particle is

duz

dt
52g2muz . ~23!

If the particle has a velocityuz after a collision with the
vibrating surface, the vertical velocity before the next su
cessive collision in the limit of small dissipation (muz /g)
!1 is

uz952uz1
2muz

2

3g
. ~24!

The velocity of the particle after the next successive collis
uz8 is

~uz82U !52~uz92U !. ~25!

For an asymmetric vibrator with a sawtooth amplitude fun
tion, the steady state requirementuz85uz provides the distri-
bution function equivalent of Eq.~14!,

f ~uz ,z!5ndFuz2S 3g^U&
m D 1/2

2gzG . ~26!
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For a symmetric vibrator, the number conservation con
tion requires that the flux of particles reflected with a velo
ity in the intervalduz aboutuz is equal to the flux of particles
reflected with velocities in the intervaluz8 aboutduz8 , where
uz anduz8 are related by Eqs.~24! and ~25!.

Nr~uz!duz5Nr~uz8!duz8 . ~27!

The fluxes of particles reflected with velocitiesuz anduz8 are

Nr~uz!duz5uzF~uz!duz , ~28!

Nr~uz8!duz85uz8F~uz8!S 11
4muz

3g Dduz . ~29!

Equating the two fluxes and using a derivation similar to t
for the preceding subsection in the weak dissipation lim
the equation for the distribution function is

2uz* F9~uz* !1F8~uz* !S 41
2uz*

3

3 D 12uz*
2F~uz* !50,

~30!

where uz* 5uz /(^U2&g/m)1/3. The solution for the above
equation is not a Maxwell-Boltzmann distribution, but has
slow decay proportional touz

23 in the limit uz@1.

IV. CONCLUSIONS

The distribution function for a vibrofluidized bed wa
analyzed in the limit where the dissipation of energy in
collision due to inelasticity or between successive collisio
due to viscous drag is small compared to the energy of
ticles. Two cases, the dense limit where binary collisions
more frequent than particle collisions with the vibrating s
face, and the complementary dilute limit where the parti
collisions with the vibrating surface are more frequent th
binary collisions, were considered. In addition, two types
dissipation mechanisms, inelastic collisions and visc
drag, and two types of amplitude functions for the vibrati
surface were considered. It was found that the dependen
the temperature on the velocity of the vibrating surface
mains the same for the dense and dilute limits, though
forms of the distribution functions are very different. Whe
the dissipation is due to viscous drag, the scaling of the
locity is sensitive to whether the amplitude function of t
vibrating surface is symmetric or asymmetric. In the dilu
J.
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limit, the form of the distribution function also depends o
the dissipation mechanism and the symmetric or asymme
nature of the vibrating surface.

An examination of the relations in Table I indicates that
the dense limit, the dependence of the temperature on
properties of the granular material is the same in two a
three dimensions. The temperature scales as the square
amplitude of the velocity of the vibrator for a system wi
inelastic collisions for both symmetric and asymmetric a
plitude functions, but the dependence on the coefficien
restitution is different. In particular, the temperature scales
(12e2)21 for a symmetric vibrator, but has a much larg
value}(12e2)22 for an asymmetric vibrator. For the cas
where dissipation is due to viscous drag, the tempera
scales asU0

4/3 for a symmetric vibrator, and proportional t
U0 for an asymmetric vibrator, whereU0 is the amplitude of
the velocity of the vibrator.

The present results provide definite scaling laws for
temperature of a vibrated granular material in the limit whe
(mU0

2/T)!1, which corresponds to the limit where the di
sipation of energy in a collision due to inelasticity, or b
tween successive collisions due to viscous drag, is sm
compared to the energy of a particle. These results indic
that the scaling of the temperature on the amplitude of
velocity could vary betweenT}U0 andT}U0

2 depending on
the mechanism of dissipation and the symmetry of the vib
tor. These also provide possible explanations for the sca
behavior observed in previous experiments. The scaling
T}U0

1.41 in the experiments of Warret al. @8# could be be-
cause dissipation occurs due to a combination of inela
collisions and viscous drag, and the exponent is between
values ofT}U0

2 and T}U0
(4/3) for the two cases. However

the same explanation cannot be provided for the simulati
of Luding et al. @5#, and it is possible that the approximatio
that T@mU0

2 is not valid in this case. It would be useful t
systematically probe the parameter regime where (mU0

2/T)
!1 in simulations to examine whether the predicted scali
for the temperature are observed in this case, and then
ceed to the intermediate regime and examine the scaling
havior.
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