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Temperature of a granular material “fluidized” by external vibrations
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The scaling for the temperature of a granular material “fluidized” by external vibrations is determined in the
limit where the dissipation of energy in a collision due to inelasticity, or between successive collisions due to
viscous drag, is small compared to the energy of the particles. An asymptotic scheme is used, where the
dissipation of energy is neglected in the leading approximation, and the Boltzmann equation for the system is
identical to that for a gas at equilibrium in a gravitational field. The density variation in the “fluidized”
material is given by the Boltzmann distribution, and the velocity distribution is given by the Maxwell-
Boltzmann distribution. However, the “temperature” of the material is not specified by thermodynamic con-
siderations, but is determined by a balance between the source of energy due to the vibrating surface and the
dissipation of energy. This balance indicates that the dependence of temperature on the amplitude of the
vibrating surface is sensitively dependent on the mechanism of dissip@tielastic collisions or viscous
drag, and also on whether the amplitude function for the velocity of the vibrating surface is symmetric or
asymmetric about zero velocity. However, the temperature turns out to have the same functional dependence
on the properties of the system in two and three dimens{@Hk163-651X98)08004-7

PACS numbg(s): 81.05.Rm, 46.16-z, 05.70.Ln, 62.90tk

[. INTRODUCTION of the experimental and simulation results carried out so far
is that there is no unanimity regarding the dependence of the
There has been increasing interest in the dynamics ofranular temperature on the amplitude of vibration of the
granular materials which are set into motion by external vi-surface and the inelasticity of the particles. The simulations
brations. A typical configuration involves a(two-  of Luding, Hermann, and Blumdi] indicate that the granu-
dimensional or three-dimensiondled of particles supported lar temperature varies &x<UZ® while the experimental re-
on a horizontal plate which is vibrated with a certain ampli-sults of Warret al. [8] show a dependence of the forfn
tude function and frequency. Under certain conditions of vi-xUéAl where U, is the amplitude of the velocity of the
bration amplitude and frequency, the material becomes “fluyiprating plate. However, this type of scaling has not been
idized,” and the motion of the individual particles is gained by theoretical analyses, and theoretical models for
qualitatively similar to the motion of molecules in a gas alihe one-dimensional vibration of a particle show a scaling

equmbnum.. However, there is a significant d|ﬁereng¢ be'relation of the formTU3. The scaling relations are derived
tween a fluidized granular material and a gas at equilibrium

— the temperature of the gas, which gives the magnitude ap the present analysis in the limit where the dissipation of

the velocity fluctuations, is a thermodynamic property speci€N€rgy of a particle in a collision or between successive col-
fied by ambient conditions, while the temperature of a granu!isions is small compared to the energy of the particles. The
lar material depends on the balance between the source BSults indicate that the scaling of the temperature is sensitive
energy, due to the vibrating surface, and the dissipation of© the mechanism of energy dissipatiGnelastic collisions
energy due to inelastic collisions or viscous drag on the paror Viscous dragas well as to the form of the amplitude
ticles. function of the vibrating surface.

Some unusual features in granular materials subject to In this analysis, scaling relations are derived in the limit
vibrations, such as the formation of convection cfllsand  where the maximum velocity of the vibrating plate is small
the presence of compression and transverse wi@jdsave compared to the velocity fluctuations in the granular me-
been reported. The transition from a liquidlike condensedlium. It is shown a little later that in this limit, the dissipa-
state to a gaslike fluidized state has also been stu@ied]. tion of energy during a collision due to inelasticity, or be-
More recently, there have been simulations that have obiween successive collisions due to viscous drag, is small
tained the properties of the fluidized state, such as the grangompared to the energy of a particle. The parameter regime
lar temperature and the variation in the height of the centewhere the above approximation is valid is determined self-
of mass[5,6]. Experimental information on the velocity dis- consistently a little later.
tribution functions has been obtained using high speed pho- Two density regimes are considered, depending on the
tography|7,8] for a two-dimensional array of spheres. Thesemagnitude of the paramet&r, whereN is the number of
experiments have yielded information on the moments of thgarticles per unit width of the vibrated material ands the
velocity distribution and the spatial pair correlation function radius of a particle(Note that Nr is the number of mono-
in these materials. Though the velocity distribution functionlayers of particles when the granular material is at ydat.
is similar in shape to the Maxwell-Boltzmann distribution for the “dense limit” Nr=1, a particle collides with many other
a gas at equilibrium, there have been significant systematiparticles in between successive collisions with the vibrating
differences observed in the experiments. A significant featursurface. In this case, the distribution function is obtained
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using an asymptotic analysis. In the leading order approxi{z* u*), and doing an ensemble average over the velocities
mation, the system is considered nondissipative, and the dignd orientations of the particles.

tribution function for the velocity of the particles is identical
to the Maxwell-Boltzmann distribution for a gas of hard R . "
spheres in a gravitational field. However, the “temperature” D=~ fo d2po(2)po(2 )f duf du
of the material is not fixed from thermodynamic consider-
ations, but has to be determined by a balance between the
dissipation of energy due to inelastic collisions or viscous
drag and the source due to the particle collisions with the
vibrating surface. The source and dissipation of energy ar&herek is the orientation of the line joining the centers of
calculated using methods from the kinetic theory of gasesthe particles with respect to the vertical and is directed from
and the velocity fluctuations at steady state are estimated Bjie particle with velocityu to the particle with velocity™,
balancing the source and dissipation of energy. AE is the change in the kinetic energy during the collision,
In the “dilute limit" Nr<1 (which corresponds to a ando is 2r in two dimensions and (3° in three dimen-
“Knudsen flow”), the frequency of particle collisions with sions, and is the radius of a particle. It is also important to
the vibrating surface is large compared to the frequency ohote that the integral in Eq3) is carried out only for those
binary collisions. In the leading approximation, binary colli- values ofk for which k-(u—u*) is positive, since the par-
sions are neglected and the velocity distribution for a particldicles do not collide ifk-(u—u*) is negative. The rate of
colliding with a vibrating surface is derived. For a symmetric dissipation of energy is determined using the standard tech-
vibrator, the results show that the velocity distribution isniques of kinetic theory of gas¢8], which have also been
identical to one-dimensional Maxwell-Boltzmann distribu- used for granular materials in shear flp20,11]. The rate of
tion for the case where dissipation is due to inelastic colli-dissipation of energy for a system where the distribution
sions, but could be very different when the dissipation is dudunction is given by 1 and 2 is
to viscous drag. For an asymmetric vibrator, the single par-

xfdkfo(z,u)fo(z*,u*)(AE)[a(u—u*)-k], (3)

ticle distribution is aé function at a specific velocity for B VarN?g(mT)¥(1-¢€?)  in 2 dimensions @
inelastic collisions and for viscous drag. = 4\/mr2N2g(mT)Y41-€?) in 3 dimensions.
Il. DENSE LIMIT The rate of dissipation of energy due to viscous drag is de-

_ o _ _ termined using a drag law of the form
In the leading approximation, the system is considered

nondissipative, and the distribution function for the particle a=—puu, 6)
velocities is identical to that for a gas at equilibrium in a N o
gravitational field. The leading order density and velocityWhereu, the drag coefficient, is given by ¢6yr/m) for a

distributions are Boltzmann distributions: system where the drag force is given by Stokes law and the
fluid has a viscosityy. The rate of dissipation of energy due
Nmg mgz to viscous drag is given by
Po="7 exp( - ?)- @ .
DD=j de(z)f duf(z,u)u(u-u). (6)
(d/2) _ muZ 0
folu)=|—= ex , 2 . .
o(Y) (27TT) p( 2T ) @ The above integral can also be evaluated using the standard

_ _ _ _ _ technigues of kinetic theory of gases, and the rate of dissipa-
whered is the dimensionN is the number of particles per tion of energy per unit length in two dimensions and per unit
unit length in the horizontal direction for a two-dimensional area in three dimensions is given by

system, and the number of particles per unit area in the hori-

zontal plane for a three-dimensional systajris the accel-

eration due to gravityz is the vertical distance in the direc- Dp=

tion opposite to gravityT is the temperature in the leading

approximation, anan is the mass of the particles. However,  The source of energy required to sustain the velocity fluc-

the temperaturd cannot be determined from the leading tuations is provided by the particle collisions with the vibrat-

order solutions, and has to be determined by equating thimg surface. The flux of energy is calculated by averaging

rate of increase of energy due to particle collisions with theover the distribution function of particle velocities as well as

vibrating surface, and the rate of dissipation of energy due téhe probability distribution function of the velocities of the

inelastic collisions or viscous drag. vibrating surface. The probability functioR(U) is defined
The rate of dissipation of energy due to inelastic colli- such thatP(U)dU is the probability of finding the surface

sions is obtained using methods similar to those used in theith a velocity in the intervadU aboutU, and

kinetic theory of gases. The rate of dissipation of enefyy,

(per unit length in the horizontal direction for a two- JU

dimensional system, and per unit area in the horizontal plane U

for a three-dimensional systes determined by consider-

ing the dissipation of energy in a collision between two par-The probability function can be easily determined from the

ticles with vertical positions and velocitiesz,() and time series of the amplitude of the vibrator. Assuming that

2uNT in 2 dimensions

(7)

3uNT in 3 dimensions.

"™du P(U)=1. ®)

min
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the collisions of the particles with the vibrator are elastic, the TABLE |. Temperature scaling in the dense limit.
initial u and the final velocity’ of the particle are given by
Dimension  Dissipation Vibrator T
r_ - _ _ [ I
u;—U (u—U),  u=uy, Uy=Uy, ©) 2 Inelastic Symmetric 22 m(U?)
wherex andy are orthogonal coordinates in the horizontal T (Nr)(1—e?)

plane. The source of energy due to particle collisions with,

. . . Inelastic Asymmetric m(U)?
the vibrating surface is given by

7l (Nr)(1-e?)]?

S=p(0)fumade P(U)fu dusz du, 3 Inelastic Symmetric \/_5 m(U?)
Umin - - T 2(Nr?)(1—e?)
% 3 Inelastic Asymmetric m(U)2
xf duy(U—u,)f(O,u)AE, (10 > T
- m[4(Nr9)(1-e%)]
] ) ] 2 Viscous Symmetric | \F m¥%(U)2g]??
where AE is the change in energy of the particle, and the —_
factor p(0)(U —u,)f(0,u) gives the normal flux of particles _ o LYmo2p
at the surface. The leading contribution to the energy sourc Viscous  Asymmetric mgU)
is obtained by inserting(0,u) =fy(u) and p(0)=pe(0) in 2u
Eq. (10). This integral is difficult to evaluate without know- 3 Viscous Symmetric | \F m¥%(U)2g]?°
ing the form of the distribution functioP(U), but the inte- T 3u
gral can be evaluated using an expansion in the parametgr Viscous Asymmetric ) mg(U)
(mU?/T) in the limit mU?<T. It is shown a little later that 3

this corresponds to the limit where the energy dissipation in
a collision due to inelasticity, or between successive coIIi-Ii
sions due to viscous drag, is small compared to the energy Q
a patrticle. In this limit, the leading order terms in the equa-
tion for the source of energy are

ions, it is apparent that this condition is valid for-%&?
<1 (for Nr~1 in two dimensions oNr?~1 in three dimen-
siong, which corresponds to the limit where the coefficient
of restitution is close to 1 and the dissipation of energy in a
Nmg > collision due to inelasticity is small compared to the energy
. 2 3 of the particle. For systems where the dissipation is due to
SO_?( T(U)+2 \g\/ﬁw )+O(mu ))' e viscous drag, it can be inferred that this condition is valid in
the limit where wT¥¥m?g)<1. Since the fluctuating ve-
In the present analysis, we distinguish between two typekocity of the particles scales a3 {m)*?, the rate of dissipa-
of vibrations. For symmetric vibrations, the probability dis- tion of energy scales agT/m and the distance between
tribution for the velocity of the surfacB4(U) is symmetric ~ collisions scales ag py) ~* in two dimensions andrép,) ~*
aboutU=0, and the average velocity of the surfagdé) in three dimensio_ns, the_ r_atio of the dissipation of energy
=0. A sinusoidal amplitude variatioA=A,cos(t) is an between succel.j,zswelgolllsmn; and the energy of a particle
example of a symmetric amplitude function with maximum scales —as uT™“(m™*Nrg) in two dimensions —and
velocity U. For symmetric amplitude functioq&))=0, and 4T 7(m**Nr“g) in three dimensions. Therefore the condi-
the leading order term in Eq11) is proportional to{U2). tion that the square of the amplitude of velocity fluctuatlo_ns_
For asymmetric vibrations for which the probability distribu- ' small compared to the temperature corresponds to the limit
tion P,(U) is asymmetric about)=0, and(U)+0. A saw- where the d|35|pat|on of energy between successive colli-
tooth gmplitude function= Ag[ (t/ty) — int(t/tg)]— Ag/2 is sions due to viscous drag is small compared to the energy of

: : y . a particle for situations wherdr~1 in two dimensions and
an asymmetric amplitude function, where ijt(denotes the 2 ; ; ;
: . . (Nr9)~1 in three dimensions.

highest integer that is lower than In the latter case, the
velocity has a constant positive valdg/ty, except for inte- IIl. DILUTE LIMIT
ger values ot/t,, where the velocity is undefined since the . o )
amplitude is discontinuous. During the time that the velocity In the dilute (Knudsen limit, the frequency of particle
is undefined, there are no collisions between the particle angellisions with the vibrating surface is large compared to the
the surface, and collisions occur only when the surface iéreéquency of binary collisions. In the leading approximation,
moving with a constant velocity,/t,. Consequently, for the d|str|.but|on functlon for a smgle partlcle_on.a y|brat|ng
asymmetric amplitude function§U)#0, and the leading §urface is considered. The_qudm_g order dlstr|but|on_func—
order term in Eq(11) is proportional to{U). tions for the cases where d|SS|pat|_on is due to inelastic col-

A balance betweesS,, Eq. (11), and the rate of dissipa- lisions _and viscous drag are conS|_dered separately, and_ the
tion of energy(4) or (7) gives the relations for the tempera- COITection to the distribution function due to binary colli-
tures shown in Table |. Before examining these temperatur§ONS between particles is then estimated.
relations, it is useful to recall that this analysis is restricted to
the limit where the square of the amplitude of the velocity of
the surface is small compared to the temperature, and to In the collision model for a single particle on a vibrating
examine the parameter regimes where this assumption gurface the velocity after collision, is related to the veloc-
valid. For systems where dissipation is due to inelastic colity before collisionu, by

A. Dissipation due to inelastic collisions
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u,—U=—e(—u,—U), (12)  terms proportional t&J andU? in the flux balance condition
are retained. The resulting equation is
wheree is the coefficient of restitution, and is the velocity

of the vibrating surface. Note the requireméht —uy, for a ,dF dF ,[ d’F dF
; : ; —— . €| 2Fu,+u;—|—-2Uu,—+2U°\ u,—+ —| =
particle to collide with the wall. Inserting,=(1—e) in Eq. Zdu, du, duf du,
(12), and retaining terms up 19(¢,), the equation fou, is (19)
U, —U,= U+ (2—€)U. (13  An ensemble average over the distribution of velocitiesf

the vibrating surface is carried out, to give
For an asymmetric vibrator with an amplitude function of
the form A=Aq[(t/tg) —int(t/tg) 1—Ag/2, it can easily be
seen that the velocity of the particle at the vibrating surface €
at steady state is (£e)U/(1—e€), and the distribution func-
tion is aé function at this velocity. The distribution function
at any heightz can be inferred from this,

2

dF dF
+2<U2)(uz—+—

dF
2Fu,+u?— 5
dLlZ duz

fau, 0. (20

It is useful to express the above equation in terms of a scaled
velocity u¥ =u,/(2(U?)/¢)¥? to obtain the final equation
(1+e)U for the velocity distribution function:

f(u,,2)=nd uz—gz—? . (19

UEF"+ (ux 2+ 1)F ' +2uf F=0, @D

determined using a flux balance condition. The zero net flixan also be easily verified that the third and higher order
condition across the vibrating surface indicates that the totgbrms in the Taylor series expansit20) make subdominant
flux of particles with velocity in the intervalu, about—u; contributions to the differential equation for the velocity dis-
incident on the surface is equal to the flux of particles withtripution function, and so the differential equati¢®l) is
velocity in the intervaldu, aboutu, reflected from the sur- cgrrect to leading order in sma#, . Equation(21) can be

face. The flux of particles incident on the surface is easily solved to obtain the Maxwell-Boltzmann distribution
for F,
N;(u,)du,=(U+u,)F(uy)du,. (15
1 u*2

In the above equation, we have used the symmetry condition F=—exp — i) (22
F(—u})=F(uj) for the free flight of a particle in the ab- V2m 2
sence of drag forces. Using E3.3) to expressi, in terms of
u,, the flux of particles entering the intervdli, is B. Dissipation due to viscous drag

In this section, the single particle distribution function is
derived for the case where particle collisions with the vibrat-
. . ing surface are elastic, but there is dissipation of energy due
.Th? flux O.f particles reflected Trom the surface having VeIOC'to viscous drag, and the drag force is linear in the particle
ity in the intervaldu, aboutu, is given by

velocity as before. The acceleration of the particle is

Nr(uz):(uz_U)F(uz)- (17) dUZ
W=—g—/¢uz. (23)

Ni(u,) =(1/e)(U+uj)F(uy). (16)

At steady state, the distribution function is determined from
the equationN;(u,)=N,(u,). This equation relates the dis-
tribution function at the velocity before collision with that at
the velocity after collision, and is a difference equation for
the velocity distribution. This equation is difficult to solve in
general, but a solution can be obtained in the limi1,
where the difference between the velocities before and after

collision is small compared to the velocity of a particle. In us=—u,+
this limit, the distribution functior-(u,) can be expanded in
a Taylor series about,=u,:

If the particle has a velocity, after a collision with the
vibrating surface, the vertical velocity before the next suc-
cessive collision in the limit of small dissipation.(,/9)
<1lis

Z,uug
39

(24)

The velocity of the particle after the next successive collision
, 2 u, is
E(W) = F ! dF+(uZ—uZ) d°F
(uz)=F(uy)+(u, uz)d—uz T2 a2 (u,—U)=—(ul—U). (25
+0(u,—u,)®. (18 For an asymmetric vibrator with a sawtooth amplitude func-
tion, the steady state requiremerjt=u, provides the distri-
The above expansion is inserted into the flux balance condibution function equivalent of Eq14),
tion N;(u,) =N,(u,), and the resulting equation is expanded
. . . . 3 <U> 1/2
in the parameteg, . It is also useful to note at this point that g
u,— Y -gz|. (26)

the velocity of the vibrating surfade ~ €;2u,, and so only f(uz,2)=ng
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For a symmetric vibrator, the number conservation condilimit, the form of the distribution function also depends on
tion requires that the flux of particles reflected with a veloc-the dissipation mechanism and the symmetric or asymmetric
ity in the intervaldu, aboutu, is equal to the flux of particles nature of the vibrating surface.

reflected with velocities in the interval, aboutdu, , where An examination of the relations in Table | indicates that in
u, andu, are related by Eq$24) and(25). the dense limit, the dependence of the temperature on the
properties of the granular material is the same in two and
N (u,)du,=N,(uj)du; . (27 three dimensions. The temperature scales as the square of the

_ _ - ’ amplitude of the velocity of the vibrator for a system with
The fluxes of particles reflected with velocitiesandu, are inelastic collisions for both symmetric and asymmetric am-
plitude functions, but the dependence on the coefficient of

N;(uz)du,=uzF(uz)dug, (28 restitution is different. In particular, the temperature scales as
(1—e?) "1 for a symmetric vibrator, but has a much larger
! —u’ ’ 4pu, value = (1—e?) 2 for an asymmetric vibrator. For the case
N, (u))du,=u,F(u))| 1+ —=|du,. (29 (1—e%) “fo ymn -
39 where dissipation is due to viscous drag, the temperature

scales asJj” for a symmetric vibrator, and proportional to

Equating the two fluxes and using a derivation similar to thatU for an asymmetric vibrator. wheté. is the amolitude of
for the preceding subsection in the weak dissipation limit,; ° asy . ' 0 P
the velocity of the vibrator.

the equation for the distribution function is The present results provide definite scaling laws for the
temperature of a vibrated granular material in the limit where
+2u;‘2F(u;‘)=0, (m U%/T)<1, which corresponds to the limit where the dis-
(30) sipation of energy in a _collision due to inelasticity, or be-
tween successive collisions due to viscous drag, is small
where u¥ =u,/((U?)g/u)*. The solution for the above compared to the energy of a particle. These results indicate
equation is not a Maxwell-Boltzmann distribution, but has athat the scaling of the temperature on the amplitude of the

uxs

J’_
4 3

2UFF"(u)+F'(u})

slow decay proportional ta; * in the limit u,>1. velocity could vary betweeffixUg andT=U§ depending on
the mechanism of dissipation and the symmetry of the vibra-
IV. CONCLUSIONS tor. These also provide possible explanations for the scaling

behavior observed in previous experiments. The scaling of
The distribution function for a vibrofluidized bed was TU3“!in the experiments of Waret al. [8] could be be-
analyzed in the limit where the dissipation of energy in acause dissipation occurs due to a combination of inelastic
collision due to inelasticity or between successive collisiongollisions and viscous drag, and the exponent is between the
due to viscous drag is small compared to the energy of pafzajues ofT«U2 and T=U§" for the two cases. However,
ticles. Two cases, the dense limit where binary collisions arghe same explanation cannot be provided for the simulations
more frequent than particle collisions with the vibrating sur-of | yding et al.[5], and it is possible that the approximation

face, and the complementary dilute limit where the partidethatT>mU(2) is not valid in this case. It would be useful to

cpllisions Wi.th the vibrating 'surface are more frequent thar%ystematically probe the parameter regime whemngT)
binary collisions, were considered. In addition, two types of

N ) : : _ . <1 in simulations to examine whether the predicted scalings
dissipation mechanisms, inelastic collisions and viscou

q d tWo t f litude functi for the vibrati Yor the temperature are observed in this case, and then pro-
rag, and two types ot amplitude tunctions for the vibraling oo 14 the intermediate regime and examine the scaling be-
surface were considered. It was found that the dependence Rkvior

the temperature on the velocity of the vibrating surface re-
mains the same for the dense and dilute limits, though the
forms of the distribution functions are very different. When
the dissipation is due to viscous drag, the scaling of the ve-
locity is sensitive to whether the amplitude function of the The author would like to thank Dr. S. Warr and Dr. S.
vibrating surface is symmetric or asymmetric. In the diluteLuding for instructive discussions.
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