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Nonequilibrium Stationary States of a Particle in a Gravitational Field
Driven by a Vibrating Surface
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Stationary velocity distribution functions are determined for a particle in a gravitational field driven
by a vibrating surface in the limit of small dissipation. It is found that the form of the distribution
function is sensitive to the mechanism of energy dissipation, inelastic collisions or viscous drag, and
also to the form of the amplitude function of the vibrating surface. The velocity distributions obtained
analytically are found to be in excellent agreement with the results of computer simulations in the limit
of low dissipation. [S0031-9007(99)08898-5]

PACS numbers: 45.70.Mg, 05.70.Ln

Recent developments in the physics of granular mattelbeen experiments and simulations of a particle driven by
[1] have illustrated that the dissipative nature of the inter-a vibrating surface by Waret al.[9]. The simulations
actions between grains can result in a variety of differentndicated that the distribution function of particle velocities
phenomena. Of particular interest in recent years has beés a Gaussian distribution and the mean-square velocity
the dynamics of vibrated granular materials [2,3], whichscales ag = U?, whereU is the magnitude of the velocity
exhibit stationary states as well as waves and complex patf the vibrating surface. The experiments provided a very
terns. In order to describe these diverse states of the madlifferent scaling law of the typ& « U'%. In the present
terial, it is necessary to derive macroscopic descriptiongnalysis, the stationary distributions are derived for a single
by averaging over the microscopic details of the motion ofparticle colliding with a vibrating surface using a realistic
and interactions between individual grains. This goal hasnicroscopic model for the interaction of the particle with
proved elusive, however, because a vibrated granular m#éhe surface.
terial is a driven dissipative system, and the interactions The stationary states are determined by a balance be-
between the particles are characterized by a loss of ertween the source of energy, due to particle collisions with
ergy due to inelastic collisions. The statistical mechanicshe vibrating surface, and dissipation, due to inelasticity
framework developed for equilibrium or near equilibrium of the collisions with the surface or due to fluid drag. The
systems cannot be used in this case. Consequently, phienit of weak dissipation, where the dissipation of energy
nomenological models [4] have been used to describe theuring a collision due to inelasticity or between successive
dynamics of granular materials. The kinetic theories de<ollisions due to viscous drag is small compared to the
veloped for granular flows [5,6] usually assume that theenergy of a particle, is considered. It is shown that the
system is close to “equilibrium” and the distribution func- stationary distribution function is sensitive to the dissipa-
tion is close to the Maxwell-Boltzmann distribution. tion mechanism, and to the form of the amplitude function

In the search for an understanding of the effects ofor the vibrating surface. The mean and mean-square
dissipation on the stationary states, it is useful to study thgelocities of the vibrating surface depend on the form of
simplest model that contains many of the features relevarihe amplitude function used for the vibrating surface. The
to granular flows, which is a particle in a gravitational waveform (A) in Fig. 1 is a symmetric amplitude function
field driven by a vertically vibrating surface. One could with (U)s = 0. The waveforms (B) and (C) are asymmet-
consider dissipation due to inelastic collisions with theric waveforms; (B) always has a constant value velocity
surface and due to fluid drag in this simple example.

Even for this model, it has not been possible to derive

stationary states by averaging over the interaction between Gy A/ \/\/\
the particle and the surface. The stationary states of a one-

dimensional column of particles colliding with a vibrating

surface have been studied extensively [7]. In contrast to ® 1111111

the single particle case, the dissipation of energy is due

to the inelastic binary collisions among the particles in
the column. Previous studies of a single particle driven ©
by a vibrating surface usually consider a “thermalizing”

base, where it is assumed that the velocity distribution ofiG. 1. Waveforms for the amplitude function of the vibrating
a particle leaving the base is known [8]. There have alsaurface.
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and (U2)s = (U)? > 0, while (C) has{(U)s > 0 and The stationary distribution function can be determined
(Ug > (U)}. Here,(---)s is an average over the distri- from the conservation equation (3) as follows: If the aver-
bution of velocities of the vibrating surface. Ithas beenreage (U)s = 0 (symmetric amplitude function), and the
ported earlier [10—12] that the scaling of the mean-squareonservation equation reduces to
velocity of the particles is a function of the waveform.
This analysis indicates that the form of the distribution , dF ’ d’F dF
function is also sensitively dependent on the nature of the6’<2F”>' touy —y) + 22U >S<”>’ a2 d—uy> =0,
waveform. ’ (4)

A two-dimensional coordinate system is used for the

analysis, where the axis is directed opposite to gravity he solution of the above equation is
and thex axis is in the horizontal plane. The velocity of

the vibrating surface is periodic, and the frequency of os- 2 u?
cillations of the surface is large compared to the frequency F= +T exp(— ) = ) , (5)
of particle collisions, so that the velocity of the surface is " "

uncorrelated at successive particle collisions. The validityyhere the mean-square velocity, is

of these assumptions is examined by comparing the pre- 5
dictions of the analysis with simulation results discussed Tis = (XU%)s/€r). (6)

later. The particle collisions with the surface are nearly ¢ (U)s # 0 (asymmetric amplitude function), it can

glastic[(l —e) K 1],Wh¢ree is th_e coefficient of_restitu- be seen from (3) that the particle velocity scales as
tion, so that an asymptotic analysis can be used in the smatlgws/el)_ In this case, ifU2)s ~ (U2, the Iéading order
parametefl — ¢). It is useful to describe the stationary equation for the distrib,ution function i’s

state using a distributiof (u, ), such thatF (u,)du, is the
probability that the velocity of a particle that is leaving the (
€]

vibrating surface is in the intervalu, aboutu,. The dis-

dF dF
2Fuy + u} d) - 2<U>S<uy T 2F) =0.
tribution function F(x,) is defined only foru, > 0, and “ Uy

y

the distribution function for the velocity at any height can (7)
be inferred from¥ (1, ), since the particle executes ballistic ] N ]
motion between successive collisions It can easily be verified that the solution for the above
1 equation is a delta function,
F(youy) = ~ Fllag + 2¢9)'7], (1)
F(u,) = 6{ u, — 2U)s (8)
whereN is a suitable normalization factor. The velocity Y Y e )
of a particle after a collision with the surfacg can be
related to the velocity before a coIIisimj; as follows: However, in the vicinity ofu, = (2(U)s/e), the gradi-
ent of distribution function becomes large, and the higher
uy — U = —e(—uy, — U), (2)  order derivatives in the conservation equation could be-

come significant. It turns out that the width of this region

whereU is the velocity of the surface. Note the require- 1/2 N .
mentU > —u!, for a particle to collide with the surface. 1S O(U)s/€;™), and the behavior in this region llfzdetef-
v),

A differential equation forF(x,) at steady state is de- mined using the substitutian, = (U)s/€/) (2 + €
termined from the condition thahe “average” accumu- Wherewv is O(1). The leading order conservation equa-
lation rate in the intervaldu, aboutu,, due to collisions tion for v, which represents the deviation af, from
of the particle with velocity in the intervalu), about—u,  2(U)s/¢€;’”, is
with the vibrating surface, is equal to the average deple-
tion rate in the intervaldu, aboutu,, due to collisions of (U?)s d’F ,( dF B
the particle with velocity in the intervafu, about—u, 2 U2 Vo2 Telvy, TF]=0. 0
with the vibrating surface Here, the term “average” de-
notes an average over the distribution of velocities of therhe solution of the above equation is, once again, a
vibrating surface, and; andu, are related by (2). The Gaussian distribution,
resulting conservation equation for the distribution func-

), (10)
2
Tia = i(<U s _ 1). (11)

tion correct toO(e;) andO((U?)y) is )
Fv) = p—— exp(—
E]( dF) — 2(U>S<uy dF ) + “
(3) 1 \ (U3

v2

2Tia

2Fuy + Mi E d7 + 2F

b4 b where
d*F  dF

2U? ,—= + — | =0.

{ >S<u} du% duy>

3249



VOLUME 82, NUMBER 16 PHYSICAL REVIEW LETTERS 19 ARIL 1999

The above distributioF (v) is valid for u, > 0, and the tion. The amplitude of the velocities wefel and—1 for
distribution function foru, < 0 is an image of this about type (A), and+2 and—1 for type (C), and the frequency
the u, = 0 axis. Therefore, the distribution function at of oscillations was set equal #9g /+/T, which is10 times
the vibrating surface is a bimodal distribution consistingthe frequency of collisions for a particle with veloci§T .
of two Gaussian distributions centereda2({U)s/€;. In the simulation, the particle was given an initial velocity,
The stationary distribution when the dissipation is dueand the velocity of the particle was updated at each col-
to fluid drag is considered next, and the coefficient oflision using the collision rule (2). The velocity was first
restitution for particle-base collisions is set equal téThe  updated forl0° collisions without sampling to remove the
acceleration of the particle between successive collisions idependence on the initial particle velocity at the beginning

considered to be of the form of the simulation, and samples were than taken for another
du, 4 % 10° collisions in order to determine the distribution
o T 8 T By, (12)  function. The results are shown in Figs. 2 and 3 for the

different forms of dissipation and for a symmetric ampli-

where the drag force is considered to be linear in the veg, e function for the vibrating surface. Similar agreement
locity and w is the ratio of the drag coefficient and the js tound for the asymmetric amplitude form of the am-
mass of a particle, and has units of inverse time. The passivde function as well. From the figures, it is seen that
ticle velocity is large compared to the velocity of the ihere is excellent agreement between the asymptotic re-
V|brat|ng_ s_urface in the “m'('“U/_g) <1 Using argu- sylt and the simulations when the small parameter in the
ments similar to those used for dissipation due to 'neIaSt"é\naIysis i0.01 and 0.03, thereby confirming the validity
collisions, the distribution function can be derived for the ¢ 1o analysis. However, there is some discrepancy be-

present case. The results are as follows: For a vibratingeen the asymptotic analysis and the numerical simula-
surface with a symmetric amplitude function, the distribu-4;, for €; = 0.1 for the present case, though it was found

tion function is obtained by solving the equation that the agreement is improved if the frequency of oscil-

2 w3 F lations of the vibrating surface is increased. In addition,
u, ) + (1 L) T + uf,zF =0, (13) there are discrepancies for a symmetric amplitude function
uy 3 uy ’ for small values of velocity, because of the invalidity of the

assumption that the particle velocity is large compared to
the velocity of the vibrating surface.
The dependence of the mean-square velocity on the ve-

where i} = uy/(<U_2>5g/,u)_1/3. For a vibrating surface
with an asymmetric amplitude function, the distribution

function is locity of the vibrating surface is identical to that obtained
2 —w? [10] for an ensembile of particles driven by a vibrating sur-
F= 7Tys exp( 2Ty, ) (14)  face, where the frequency of particle-particle collisions is
large compared to particle-wall collisions. However, the
where the parameter is defined as form of the distribution function is very different in the
- 12 two cases, since the leading order distribution function (in
_ s& the absence of dissipation) is a Maxwell-Boltzmann distri-
my T ( ) W3+ Jepw), (15) bution for all amplitude functions and dissipation mecha-

nisms in that case. The present predictions are also in
ep = (Usu/g)"/?, and
_ VB(UYs — (U)3)
Ty = = . (16)
2ep(U)s 0.6}
The velocity distribution function for the present case
is sharply peaked at-(3(U)sg/u)/? at the vibrating
surface, and the distribution functionds1) for velocities
O(ep{U)sg/u)"/? different from these peak positions.  F(u/T%?)
The distribution function (14) is valid for, > 0, and 02}
the leading order distribution for, < 0 is a mirror
image of this about the:, = 0 axis. Therefore, the
distribution function at the vibrating surface is a bimodal 0000 02 03 12 16 20 24 23
distribution consisting of two Gaussian functions centered am
2 (u,/TE?)
at =(3U)sg/u)">. N _
The distribution functions predicted by the analysis were™!G. 2. Velocity distribution F(u,/\/T;;) as a function of
found to be in agreement with computer simulations. In(”y/\/T_”) for a single particle colliding with a vibrating surface

the simulati the vibrai f dri ith with a symmetric amplitude function, where dissipation is due
e simulations, the vibrating surtace was driven with &, inelasticity. Here[T, is given by (6). Solid line: analytical
waveform of type (A) in Fig. 1 for a symmetric amplitude resylt (5); (O): € = 0.01; (A): & = 0.03; (O): ¢ = 0.1;

function, and type (C) for an asymmetric amplitude func-(<¢): ¢, = 0.3.
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0.8 dissipation. It is found that the distribution function is
o sensitive to the type of dissipation (inelastic collisions or

viscous drag), and to the amplitude function of the vibrat-

0.6}
ing surface. These distribution functions have been veri-
fied by computer simulations. These distribution functions

F /Tﬂ%)- are rare examples of analytically determined dynamical

y/ Lis

stationary states in systems far from equilibrium.
0.2}
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