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Nonequilibrium Stationary States of a Particle in a Gravitational Field
Driven by a Vibrating Surface
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Stationary velocity distribution functions are determined for a particle in a gravitational field driv
by a vibrating surface in the limit of small dissipation. It is found that the form of the distributio
function is sensitive to the mechanism of energy dissipation, inelastic collisions or viscous drag,
also to the form of the amplitude function of the vibrating surface. The velocity distributions obtain
analytically are found to be in excellent agreement with the results of computer simulations in the l
of low dissipation. [S0031-9007(99)08898-5]

PACS numbers: 45.70.Mg, 05.70.Ln
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Recent developments in the physics of granular mat
[1] have illustrated that the dissipative nature of the inte
actions between grains can result in a variety of differe
phenomena. Of particular interest in recent years has b
the dynamics of vibrated granular materials [2,3], whic
exhibit stationary states as well as waves and complex p
terns. In order to describe these diverse states of the m
terial, it is necessary to derive macroscopic descriptio
by averaging over the microscopic details of the motion
and interactions between individual grains. This goal h
proved elusive, however, because a vibrated granular m
terial is a driven dissipative system, and the interactio
between the particles are characterized by a loss of
ergy due to inelastic collisions. The statistical mechani
framework developed for equilibrium or near equilibrium
systems cannot be used in this case. Consequently, p
nomenological models [4] have been used to describe
dynamics of granular materials. The kinetic theories d
veloped for granular flows [5,6] usually assume that th
system is close to “equilibrium” and the distribution func
tion is close to the Maxwell-Boltzmann distribution.

In the search for an understanding of the effects
dissipation on the stationary states, it is useful to study t
simplest model that contains many of the features relev
to granular flows, which is a particle in a gravitationa
field driven by a vertically vibrating surface. One coul
consider dissipation due to inelastic collisions with th
surface and due to fluid drag in this simple exampl
Even for this model, it has not been possible to deri
stationary states by averaging over the interaction betwe
the particle and the surface. The stationary states of a o
dimensional column of particles colliding with a vibrating
surface have been studied extensively [7]. In contrast
the single particle case, the dissipation of energy is d
to the inelastic binary collisions among the particles
the column. Previous studies of a single particle drive
by a vibrating surface usually consider a “thermalizing
base, where it is assumed that the velocity distribution
a particle leaving the base is known [8]. There have al
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been experiments and simulations of a particle driven b
a vibrating surface by Warret al. [9]. The simulations
indicated that the distribution function of particle velocitie
is a Gaussian distribution and the mean-square veloc
scales asT ~ U2, whereU is the magnitude of the velocity
of the vibrating surface. The experiments provided a ve
different scaling law of the typeT ~ U1.04. In the present
analysis, the stationary distributions are derived for a sing
particle colliding with a vibrating surface using a realistic
microscopic model for the interaction of the particle with
the surface.

The stationary states are determined by a balance
tween the source of energy, due to particle collisions wi
the vibrating surface, and dissipation, due to inelastici
of the collisions with the surface or due to fluid drag. Th
limit of weak dissipation, where the dissipation of energ
during a collision due to inelasticity or between successiv
collisions due to viscous drag is small compared to th
energy of a particle, is considered. It is shown that th
stationary distribution function is sensitive to the dissipa
tion mechanism, and to the form of the amplitude functio
for the vibrating surface. The mean and mean-squa
velocities of the vibrating surface depend on the form o
the amplitude function used for the vibrating surface. Th
waveform (A) in Fig. 1 is a symmetric amplitude function
with kUlS ­ 0. The waveforms (B) and (C) are asymmet
ric waveforms; (B) always has a constant value veloci

FIG. 1. Waveforms for the amplitude function of the vibrating
surface.
© 1999 The American Physical Society
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and kU2lS ­ kUl2
S . 0, while (C) has kUlS . 0 and

kU2lS . kUl2
S . Here,k· · ·lS is an average over the distri

bution of velocities of the vibrating surface. It has been r
ported earlier [10–12] that the scaling of the mean-squ
velocity of the particles is a function of the waveform
This analysis indicates that the form of the distributio
function is also sensitively dependent on the nature of
waveform.

A two-dimensional coordinate system is used for th
analysis, where they axis is directed opposite to gravity
and thex axis is in the horizontal plane. The velocity o
the vibrating surface is periodic, and the frequency of o
cillations of the surface is large compared to the frequen
of particle collisions, so that the velocity of the surface
uncorrelated at successive particle collisions. The valid
of these assumptions is examined by comparing the p
dictions of the analysis with simulation results discuss
later. The particle collisions with the surface are near
elasticfs1 2 ed ø 1g, wheree is the coefficient of restitu-
tion, so that an asymptotic analysis can be used in the sm
parameters1 2 ed. It is useful to describe the stationar
state using a distributionFsuyd, such thatFsuydduy is the
probability that the velocity of a particle that is leaving th
vibrating surface is in the intervalduy aboutuy. The dis-
tribution functionFsuyd is defined only foruy . 0, and
the distribution function for the velocity at any height ca
be inferred fromFsuyd, since the particle executes ballisti
motion between successive collisions

fs y, uyd ­
1
N

Ffsu2
y 1 2gyd1y2g , (1)

whereN is a suitable normalization factor. The velocit
of a particle after a collision with the surfaceuy can be
related to the velocity before a collisionu0

y as follows:

uy 2 U ­ 2es2u0
y 2 Ud , (2)

whereU is the velocity of the surface. Note the require
mentU . 2u0

y for a particle to collide with the surface.
A differential equation forFsuyd at steady state is de-

termined from the condition thatthe “average” accumu-
lation rate in the intervalduy aboutuy , due to collisions
of the particle with velocity in the intervaldu0

y about2u0
y

with the vibrating surface, is equal to the average depl
tion rate in the intervalduy aboutuy, due to collisions of
the particle with velocity in the intervalduy about 2uy

with the vibrating surface. Here, the term “average” de-
notes an average over the distribution of velocities of t
vibrating surface, andu0

y anduy are related by (2). The
resulting conservation equation for the distribution fun
tion correct toOseI d andOskU2lSd is

eI

√
2Fuy 1 u2

y
dF
duy

!
2 2kUlS

√
uy

dF
duy

1 2F

!
1

2kU2lS

√
uy

d2F
du2

y
1

dF
duy

!
­ 0 .

(3)
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The stationary distribution function can be determin
from the conservation equation (3) as follows: If the ave
age kUlS ­ 0 (symmetric amplitude function), and th
conservation equation reduces to

eI

√
2Fuy 1 u2

y
dF
duy

!
1 2kU2lS

√
uy

d2F
du2

y
1

dF
duy

!
­ 0 ,

(4)

the solution of the above equation is

F ­

s
2

pTis
exp

√
2

u2
y

2Tis

!
, (5)

where the mean-square velocityTis is

Tis ­ s2kU2lSyeI d . (6)

If kUlS fi 0 (asymmetric amplitude function), it can
be seen from (3) that the particle velocityuy scales as
skUlSyeId. In this case, ifkU2lS , kUl2

S , the leading order
equation for the distribution function is

eI

√
2Fuy 1 u2

y
dF
duy

!
2 2kUlS

√
uy

dF
duy

1 2F

!
­ 0 .

(7)

It can easily be verified that the solution for the abo
equation is a delta function,

Fsuyd ­ d

√
uy 2

2kUlS

eI

!
. (8)

However, in the vicinity ofuy ­ s2kUlSyeI d, the gradi-
ent of distribution function becomes large, and the high
order derivatives in the conservation equation could b
come significant. It turns out that the width of this regio
is OskUlSye

1y2
I d, and the behavior in this region is dete

mined using the substitutionuy ­ skUlSyeI d s2 1 e
1y2
I yd,

wherey is Os1d. The leading order conservation equ
tion for y, which represents the deviation ofuy from

2kUlSye
1y2
I , is

2

√
kU2lS

kUl2
S

2 1

!
d2F
dy2 1 e2

I

√
y

dF
dy

1 F

!
­ 0 . (9)

The solution of the above equation is, once again,
Gaussian distribution,

Fsyd ­

s
2

pTia
exp

√
2

y2

2Tia

!
, (10)

where

Tia ­
2

e
2
I

√
kU2lS

kUl2
S

2 1

!
. (11)
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The above distributionFsyd is valid for uy . 0, and the
distribution function foruy , 0 is an image of this about
the uy ­ 0 axis. Therefore, the distribution function a
the vibrating surface is a bimodal distribution consistin
of two Gaussian distributions centered at62kUlSyeI .

The stationary distribution when the dissipation is du
to fluid drag is considered next, and the coefficient
restitution for particle-base collisions is set equal to1. The
acceleration of the particle between successive collision
considered to be of the form

duy

dt
­ 2g 2 muy , (12)

where the drag force is considered to be linear in the v
locity and m is the ratio of the drag coefficient and the
mass of a particle, and has units of inverse time. The p
ticle velocity is large compared to the velocity of th
vibrating surface in the limitsmUygd ø 1. Using argu-
ments similar to those used for dissipation due to inelas
collisions, the distribution function can be derived for th
present case. The results are as follows: For a vibrat
surface with a symmetric amplitude function, the distribu
tion function is obtained by solving the equation

up
y

d2F
dup2

y
1

√
1 1

up3
y

3

!
dF
dup

y
1 up2

y F ­ 0 , (13)

whereup
y ­ uyyskU2lSgymd1y3. For a vibrating surface

with an asymmetric amplitude function, the distributio
function is

F ­

s
2

pTya
exp

√
2w2

2Tya

!
, (14)

where the parameterw is defined as

uy ­

√
kUlSg

m

!1y2

s
p

3 1
p

eD wd , (15)

eD ­ skUlSmygd1y2, and

Tya ­

p
3 skU2lS 2 kUl2

Sd
2e

2
DkUl2

S
. (16)

The velocity distribution function for the present cas
is sharply peaked at6s3kUlSgymd1y2 at the vibrating
surface, and the distribution function isOs1d for velocities
OseDkUlSgymd1y2 different from these peak positions
The distribution function (14) is valid foruy . 0, and
the leading order distribution foruy , 0 is a mirror
image of this about theuy ­ 0 axis. Therefore, the
distribution function at the vibrating surface is a bimoda
distribution consisting of two Gaussian functions center
at 6s3kUlSgymd1y2.

The distribution functions predicted by the analysis we
found to be in agreement with computer simulations.
the simulations, the vibrating surface was driven with
waveform of type (A) in Fig. 1 for a symmetric amplitude
function, and type (C) for an asymmetric amplitude fun
3250
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tion. The amplitude of the velocities were11 and21 for
type (A), and12 and21 for type (C), and the frequency
of oscillations was set equal to20gy

p
T , which is10 times

the frequency of collisions for a particle with velocity
p

T .
In the simulation, the particle was given an initial velocity
and the velocity of the particle was updated at each co
lision using the collision rule (2). The velocity was first
updated for105 collisions without sampling to remove the
dependence on the initial particle velocity at the beginnin
of the simulation, and samples were than taken for anoth
4 3 105 collisions in order to determine the distribution
function. The results are shown in Figs. 2 and 3 for th
different forms of dissipation and for a symmetric ampli
tude function for the vibrating surface. Similar agreemen
is found for the asymmetric amplitude form of the am
plitude function as well. From the figures, it is seen tha
there is excellent agreement between the asymptotic
sult and the simulations when the small parameter in t
analysis is0.01 and0.03, thereby confirming the validity
of the analysis. However, there is some discrepancy b
tween the asymptotic analysis and the numerical simu
tion for eI $ 0.1 for the present case, though it was foun
that the agreement is improved if the frequency of osc
lations of the vibrating surface is increased. In addition
there are discrepancies for a symmetric amplitude functi
for small values of velocity, because of the invalidity of the
assumption that the particle velocity is large compared
the velocity of the vibrating surface.

The dependence of the mean-square velocity on the v
locity of the vibrating surface is identical to that obtaine
[10] for an ensemble of particles driven by a vibrating su
face, where the frequency of particle-particle collisions
large compared to particle-wall collisions. However, th
form of the distribution function is very different in the
two cases, since the leading order distribution function (
the absence of dissipation) is a Maxwell-Boltzmann distr
bution for all amplitude functions and dissipation mecha
nisms in that case. The present predictions are also

FIG. 2. Velocity distribution Fsuyy
p

Tis d as a function of
suyy

p
Tis d for a single particle colliding with a vibrating surface

with a symmetric amplitude function, where dissipation is du
to inelasticity. Here,Tis is given by (6). Solid line: analytical
result (5); ssd: eI ­ 0.01; snd: eI ­ 0.03; shd: eI ­ 0.1;
sed: eI ­ 0.3.
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FIG. 3. Velocity distributionFsup
yd as a function offup

y ­
uyyskU2lSgymd1y3g for a single particle colliding with a vibrat-
ing surface with a symmetric amplitude function, where diss
pation is due to viscous drag. Solid line: solution of Eq. (13
ssd: skU2lSm2yg2d1y3 ­ 0.01; snd: skU2lSm2yg2d1y3 ­ 0.03;
shd: skU2lSm2yg2d1y3 ­ 0.1; skU2lSm2yg2d1y3 ­ 0.3.

agreement with the simulation results of Warret al. [9],
where the distribution function for a symmetric waveform
and dissipation due to inelasticity was found to be a Gau
ian distribution with mean-square velocity proportional t
kU2lS. The experimental results of Warret al. [9], how-
ever, gave a result of the typeT ~ kU2l0.52

S . Further analy-
sis [13] indicates that this could result if the drag law
nonlinear, and is of the formsduyydtd ­ 2g 2 muyjuyj,
which is appropriate for turbulent flows.

In summary, stationary velocity distribution function
have been derived for a particle in a gravitational fie
colliding with a vibrating surface in the limit of small
i-
);

ss-
o

is

s
ld

dissipation. It is found that the distribution function i
sensitive to the type of dissipation (inelastic collisions
viscous drag), and to the amplitude function of the vibra
ing surface. These distribution functions have been ve
fied by computer simulations. These distribution functio
are rare examples of analytically determined dynami
stationary states in systems far from equilibrium.
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