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Velocity distribution functions are determined for a bidisperse sedimenting sus-
pension of particles in a gas and for a sheared suspension of inelastic particles.
The distribution functions are determined in two limits. In the kinetic limit,
the dissipation of energy due to inelasticity during a collision or viscous drag
between successive collisions is small compared to the energy of the particles. In
this limit, the distribution function is close to a Maxwell-Boltzmann distribu-
tion and the velocity moments are determined using a perturbation expansion
about this distribution. In the dissipative limit, the energy dissipation due to
inelasticity during a collision or viscous drag between successive collisions is
of the same magnitude as the energy of particle velocity fluctuations. In this
limit, the distribution function is very different from the Maxwell-Boltzmann
distribution and the analytical technique used is specific to the system under
consideration.

Introduction

Suspensions of particles in a gas are encountered in many applications, such as
solids handling and transport, fluidised beds in chemical unit operations, and
in natural systems such as rock slides and snow avalanches. The flow of these
suspensions can be broadly classified into two types:
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1. In slow flows, the distance between the particles is typically small compared
to the particle size. In these flows, there is extended contact between the
particles, and momentum and energy transport occur due to tangential and
normal frictional forces. The examples include flows in bunkers and hoppers
in solids handling systems.

2. In rapid flows, the particles are widely spaced and the inter-particle dis-
tance is usually larger than the particle size. The particles are in vigorous
motion, and momentum and energy transfer takes place due to instanta-
neous particle-particle and particle-wall collisions. These examples include
fluidised beds, pneumatic transport and the vigorous motion of a thin layer
of particles in rock slides and snow avalanches.

distribution function, the change in the distribution due to. convective transport
in real space, and the change due to convective transport in velocity space,
respectively. The term on the right-hand gives the change in the distribution
function due to particle collisions. This can be written as [1]

ac~~f) = n2!dk !du* [f(2) (x, u'; x + rk, u*'; t) - f(2)(x, u; x + rk, u*; t)]

x (47rr2w.k), (2)

The models currently used for slow flows are continuum models and the con-
stitutive relations are adapted from the yield stress equations used in soil
mechanics. At present, no microscopic description is available for slow flows.
Microscopic models for rapid flows have been derived by drawing an analogy
between the vigorous motion of the particles in a suspension and the fluctuat-
ing motion of molecules in a gas which is not at equilibrium. These microscopic
descriptions for rapid flows are the subject of the present article.

where r is the particle radius, k is the unit vector in the direction of the line
joining the centres of the particles at the point of collision, u and u* are the
velocities of the particles before collisions, u' and u*' are the velocities of
the particles after collision, and w = u - u* is the difference in the velocities

of the colliding particles.
Equation (1) for the single particle distribution, f(x, u, t), can only be

solved if the pair distribution function, f(2)(X, u; x+rk, u*, t), is known. How-
ever, a conseryation equation for the pair distribution function contains three
particle distribution functions. In general, a conservation equation for an
n particle distribution function contains an (n + 1) particle distribution
function, and one obtains an infinite hierarchy of equations known as the
BBKGY hierarchy [1]. General methods for solving this hierarchy of equations
are not available. In the kinetic theory of gases, the positions and velocities
of the colliding particles are considered to be uncorrelated (the assumption of
"molecular chaos") and the two particle distribution functions are the prod-
uct of the single particle distribution function. This assumption is valid when
the mean free path, which is the distance a molecule travels between succes-
sive collisions, is large compared to the size of the molecule. Hence there are
no repeated collisions between the same pair of p&rticles. With this assump-
tion, a closed equation for the single particle distribution function, called the
"Boltzmann equation", is obtained [2]:

Microscopic Description of Rapid Flows

The fundamental quantity of interest in a microscopic description of a system
of particles is the "distribution function". It provides the density of particles in
phase space because mechanical properties such as pressure, shear stress and
the energy dissipation rate can be derived from the distribution function. For-
mally, the single particle distribution function, f(x, u, t), is defined such that
nf(x, u, t)dxdu is the number of particles whose centres are in the differential
volume dx about the position x, and whose velocities are in the differential
volume du about u at time t. Here, x and u are the position and velocity,
respectively, and n is the number density of the particles. A conservation
equation for the single particle distribution function can be written as

a(nf) a(uanf) a(aanf) ac(nf)-+ + --
at axa QUa - at ' (1)

a(nf) + a(uanf) + a(aanf) =n2 !dk !du*[f(x,U')!(x+rk,u*',t)
at axa QUa

, 2
- f(x, u)f(x + rk, u*, t)](47rr w.k). (3)

where a is the particle acceleration, Greek subscripts are used to denote the
components of a vector, and repeated subscripts represent a dot product. In
Eq. (1), the terms on the left-hand side are the time rate of change of the

This equation is a non-linear integro-differential equation, and is difficult
to solve in general. However, it can be shown [2] that for a system at
steady state, in the absence of external forces, the distribution function is a
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Maxwell-Boltzmann (MB) distribution. For dense systems where the particle
positions are correlated before a collision, such a simplification is not possible
and some sophisticated mathematical techniques, called cluster expansions,
have been developed for a dense system with hard-sphere molecules. There are
no equally successful methods for a dense system of particles. In the present
study, we will deal exclusively with dilute suspensions and the Boltzmann
equation is the starting point of the description.

While drawing an analogy between gases and dilute suspensions, it should
be noted that there is an important difference: the energy of the molecules in a
gas at equilibrium is conserved but the motion of the particles in a suspension
can only be sustained if there is a continuous source of energy. This is because
dissipation exists due to inelastic collisions or the drag force of the gas. Based
on this distinction, there are two limiting cases for the dynamics of a dilute
suspension:

1. The dynamics will resemble that of the molecules of a gas if the dissipation of
energy during a binary collision (due to inelasticity), or between successive
collisions (due to viscous drag), is small compared to the average energy of
the particle velocity fluctuations. This limit is known as the kinetic limit.

2. In the complementary limit, called the dissipative limit, the change in energy
during a collision or between successive collisions is of the same magnitude
as the energy of fluctuations. The properties are very different from that of
a gas at equilibrium.

The dynamics of suspensions in the kinetic limit are obtained by assuming that
the distribution function is a small perturbation about the MB distribution for
a gas at equilibrium. The deviations from the MB distribution are evaluated

from the velocity moments of the Boltzmann equation. These methods are
fairly standard and are therefore not discussed in detail here. However, the
extension of the Boltzmann H-Theorem to dissipative systems and its conse-
quences and the calculation of the distribution function for suspensions in the
dissipative limit are examined in the next section. Two systems, a bidisperse
suspension of particles settling in a gas and a sheared suspension of inelastic
particles, are considered. The analysis is restricted to spatially homogeneous
suspensions at steady state. Hence the distribution function is independent of
time and the spatial co-ordinates.
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Distribution Function in the Kinetic Limit

In the kinetic limit, the collisional transport in phase space (the two terms
on the right-hand side of Eq. (3)), which represents the rate of transport of
particles into and out of a differential volume in velocity space, is large com-
pared to the terms on the left-hand side. In addition, the particles are nearly
elastic. In this case, a perturbation expansion can be used where the system is
considered to be a collection of elastic particles in the leading approximation,
and the effects of inelasticity, drag and body forces are included in higher order
corrections in a systematic fashion. The leading order distribution function is
a Maxwell-Boltzmann distribution [2]:

1

(
-mc2

)F = (27rT)3/2 exp 2T a
(4)

where m is the mass of the particle, the fluctuating velocity Ca = Ua - Urna

is the difference between the particle velocity and the mean velocity, and T
is the "temperature". Unlike the case of molecular gases, the temperature is
not specified a priori, but is determined by a balance between the source and
dissipation of energy.

I

Bidisperse Particle-Gas Suspension

The system consists of a suspension of particles with masses ml and m2, radii
rl and r2, and terminal velocities VI and V2 settling in a gas. The drag force
on the particles is considered to be a linear function of the particle velocity
and the acceleration is

aia = -(J.ldmi)(Uia - Uia), (5)

where the drag coefficient, J.li,is (67r17ri)in the Stokes regime. The inertia of the
gas is neglected compared to that of the particle. Hydrodynamic interactions
are also neglected so that the dominant effects comprise the inertia of the

, particles and viscous drag due to the gas. There are two important time
scales: the viscous relaxation time, Tv = (mIl J.lI), which is the time taken by a
particle to relax to its terminal velocity after a collision, and the collision time,
Tc = (lj(nIdI2c)), is the time that elapsed betweensuccessivecollisions. Here,
dij = ri + rj and c is the magnitude of the fluctuating velocity. In the kinetic
limit, the collision time is small compared to the viscous relaxation time.

,°
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As noted earlier, the distribution function is a Maxwell-Boltzmann distri-
bution in the leading approximation. The mean velocities and "temperatures"
for the two species are also equal. The first correction to the distribution
function can be obtained using an asymptotic analysis where the distribution
function is expressed as

dH " / / ( ( ))
8c!i

(
8aia

))dt = L..t dx dUi (1 + log Ii at - Ii 8ca .,
(10)

li(Ci) = Fi(ci)[1 + 8<Pi(ci)]. (6)

When the viscous relaxation time is large compared to the time that elapsed
between collisions, the asymptotic expansion in Eq. (6) can be used for the
distribution function. The leading order equation for the rate of change of H
is

The small parameter, 8, will be specified a little later. When this is inserted
into the Boltzmann equation, a linear equation for the perturbation, <Pi,is
obtained:

d,:'l ~ ~J dx J dk J du; J du; [(F:Fi ~ F,F;) log (~~) (WkJ].
(11)

2

8(aiaFi) = 8Lnj / dk / dCj: [F(Ci)F(Cj}[<p(c~)
8Cia . 11=

+ <p(cj) - <P(Ci)- <p(Cj)](7rd;jw.k), (7)

It can be shown [2]from the above equation that the leading order distribution
function is a Maxwell-Boltzmann distribution, Eq. (7), from the Boltzmann
H-Theorem. The first correction to (dH/dth is

where Ci and Cj are the velocities of the colliding particles before the collision

and c~ and cj are the velocities after the collision. Note that the velocity co-
ordinate has been transformed from the particle velocity, Ui, to the fluctuating
velocity, Ci. This transformation is trivial because the mean velocities of the
two species are equal in the leading approximation.

Equation (7) does not provide the magnitude for 8. However, it can be
obtained from the equivalent of the Boltzmann H-Theorem [2] for this system.
The function, H, is defined as

d: 11= -822;:/ dx [/ dCi / dCjFi(Ci)Fj(cj}[«Pi(C~) + <Pj(cj)'1

-<Pi(Ci) - <Pj(Cj))2(w.k)] - / dCiFi (~:::)]. (12)

H = L / dx / dcdi log (Ii) .,

At steady state, the first correction to (dH/dt) is also zero. In the above
equation, the first term on the right-hand side is proportional to 82T;1 while
the second term is proportional to T;;1. Thus, it can be inferred that 8 -

(Tc/Tv)1/2. In addition, a comparison of Eqs. (7) and (12) shows that
(8) 8aia 8aia-"-J-

8ca Tv'
(13)

The time derivative of H is

dH / [/ 81i
]dt = L dCi dx(1 + logUd)8i,

- [~f dx f dC.«t + logC/;j)8~' - /; ~:: - kCa;/;lOg/;j)]
(9)

This provides the estimate, C "-J 8Um, for the fluctuating velocity and T "-J

82miUm for the temperature. (Here, it has been assumed that the mean
velocity of the suspension and the terminal velocities of the two species are

- of the same magnitude.)
The first correction to the distribution function is obtained by solving

Eq. (7) using the Enskog expansion [2] for the present case. The following
functional form is assumed for <Pi:

The underlined term in the above expression can be reduced to a surface
integral in velocity space which is zero, and therefore

<Pi(Ci) = A(Ci)Ci.Um (14)

1
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where Ci = (m;/2cilTl/2) is 0(1). It is not possible to obtain an explicit
solution for A(Ci). However, this can be expanded in an appropriate orthog-
onal function space and the series solution can be obtained. However, the
magnitude of the difference in the mean velocities of the two species can be
obtained without explicitly solving the equation. It can be easily seen that the
difference between the mean velocity of species, i, and the mean velocity of

the suspension, J dciFic5if?i, is 0(c52Um) since Ci '" c5Um.

To determine the exact values, it is necessary to use the moment expansion
method [3] where the Boltzmann equation is multiplied by different moments
of the velocity distribution to obtain conservation equations for the velocity
moments. However, the present analysis provides a clearer insight into the
effect of velocity-dependent forces on the dynamics of the system in the kinetic
limit.

Sheared Suspension of Inelastic Particles

The shear flow of a suspension of slightly inelastic particles in the kinetic
limit has been studied in detail. The analysis is very similar to that for a gas
of hard-sphere molecules in shear flow [2]. Hence the details of the analysis
are not discussed here. The major differences are that the collisions between
particles are inelastic and the temperature of the suspension is determined by
a balance between the input of energy and dissipation due to shear flow and
inelastic collisions, respectively. The Enskog expansion is used to determine
the deviation of the distribution function from the MB distribution in Eq. (4):

f = F(1 + c5if?) (15)

where if?,the deviation from the Maxwell-Boltzmann distribution, has the fol-
lowing form in a shear flow:

if?= A(C)Ca8aT + B(C)CaCj3(8aUj3) (16)

where C = (mc/T)1/2, and 8aUj3and 8aT are the gradients in the mean strain
rate and temperature, respectively. Using the above expansion, constitutive
equations can be derived for the density, momentum and "temperature" of the
suspension. The conservation equation for the granular temperature contains
a source term and dissipation term due to the shear work and inelastic colli-
sions, respectively. A balance between these gives the granular temperature at
steady state. To extend the analysis to the dense limit, attempts have been

I
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made to use a pair distribution function which is not just a single particle
distribution function, but also includes the effect of excluded volume. The
distribution function most commonly used is the Carnahan-Starling approxi-
mation for a system of dense gases.

Distribution Functions in the Dissipative Limit

In contrast to the kinetic limit, no standard methods exist to determine the
distribution function in the dissipative limit. The method used has to be

designed for the system under consideration. This is illustrated in the examples
that follow.

Bidisperse Particle-Gas Suspension

In the dissipative limit, the number density of the particles is sufficiently small.
Thus, the viscous relaxation time, Tvi = (mil JLi),is small compared to the time
that elapsed between successive collisions, Teij = 1/(nid~j(Ul - U2». In this
limit, a perturbation expansion in the small parameter, f. = (Tvt/Tcl2)' is used
to calculate the distribution function. In the leading approximation, the effect
of collisions is neglected and the particles are considered to settle at their
terminal velocities. In this case, the distribution functions are delta functions
at the terminal velocities of the two species.

The distribution function that includes the effect of collisions between par-

ticles settling at their terminal velocities can be determined using a flux balance
in velocity space. The balance equation for the distribution function is

8aiaf - N in
(u. ) - N~ut(Ui),-- . . .

8Uia
(17)

where Nt and Niout are the flux of particles entering and leaning a differential
volume due to collisions. In the collisional limit, the number of particles with

velocities 0(U1 - U2) that are different from their terminal velocities is small.
Therefore, in the calculation of the leading order estimate of Nfn and Niut, it
is assumed that the colliding particles are moving at their terminal velocities.
The collisional fluxes are determined by relating the angle made by the line

joining the centres of the particles at the point of collisions to the change in the
velocity. The details of the calculation are found in Kumaran and Koch [7].
The collisional fluxes are inserted into Eq. (17) to determine the distribution
function
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Fig. 1. Schematic of the shape of the distribution function in a bidisperse suspension. The
zero levels of the distribution function of the two species have been separated for clarity.
The dotted line represents the projection ofthe surface onto the (ux. Uy) plane and the solid
line shows the distribution function on this surface.

fi = (Efik/1f) (cos (Xi))1-erik(2Mi ) -e/'ikv(e/,ik-3). , (18)

where I':= (TvI/Tc12) and 'Yik = (Tvi/TvI) (Tc12/Tcik)'

The distribution function, Eq. (18), shown in Fig. 1, is very different from
the MB distribution. Some of its salient features are described here. The

distribution is non-zero only in finite regions of the velocity space and has a
divergence at the terminal velocities of the two species. The first correction
to the velocity moments can be determined using the distribution function,
Eq. (18). The analysis shows that the difference between the particle velocity
and the mean velocity, (vz), is 0(1':)smaller than the terminal velocity in the
limit I':«1. Meanwhile, the mean square velocities are 0(1':) smaller than
the square of the terminal velocity. The distribution function is highly
anisotropic. The ratio of the mean square velocity in the vertical and hori-
zontal directions four in the limit I':-+ O. In addition, the distribution function
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r

1

is highly skewed. Hence the ratio, ((v~)/ (v;)3/2, diverges proportional to C1/2
in the limit I':-+ O.

Sheared Suspension of Inelastic Particles

For the sake of simplicity, the system considered here is a two-dimensional
. suspension of inelastic disks. Nevertheless, the analysis can easily be extended
to a three-dimensional suspension of spherical particles. The disks are of radius
r, number density n and coefficient of elasticity e in a channel with width L.
The channel is bounded by walls at y = (L/2) and y = -(L/2) moving with

velocities +Uw and -Uw in the x direction, respectively. Here, the co-ordinate
y is perpendicular to the walls of the channel and the x co-ordinate is along the
flow direction. The particle-particle collisions are described by the standard
laws for collisions between smooth elastic disks. The change in the particle

velocity due to a wall collision is given by

u~ - Ux = (1 - ed(:!:Uw - ux)y u~ - Uy = -(1 - en)Uy , (19)

\
l

where (ux, Uy) and (u~, u~) are the particle velocity before and after the wall
collision, respectively, and et and en are the tangential and normal coefficients
ofrestitution which are less than one. In the equation for u~ - ux, the positive
sign for Uw is used for a collision with the wall at y = +(L/2) and the negative
sign for the wall at y = -(L/2).

In the dissipative limit, (nrL) « 1, particle-wall collisions are more
frequent than particle-particle collisions. In the absence of inter-particle colli-
sions, a particle with a non-zero velocity in the y direction collides repeatedly
with the walls. Its velocity after i collisions evolves as

Ux + (-I)i(1 + (-I)(i-l)eDU = e;u~O), Uy = (-I)ie~u~O), (20)

j

where U = (1 - et)Uw/(1 + et), u~O)and u~O)are the particle velocities before
the first collision, and the first collision is assumed to take place with the wall
at y = +(L/2). It can be seen that in the limit of large i, the particle velocity
converges towards (:!:U,O). Consequently, in the absence of particle collisions,
it is expected that the velocities of all the particles converge towards (:!:U,0),
which is independent of their initial velocities and depends only on the wall
velocity and the coefficients of restitution.

In the limit of small Uy, however, it cannot be assumed that particle-wall
collisions are more frequent than particle-particle collisions. The frequency of
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Fig. 2. The contours, Ci, of the particle velocities in the Ux - Uy plane where the index, i,
represents the number of times the particle has collided with the walls after it has acquired
a velocity in the y direction due to a binary collision. The solid lines show the location of
particles whose first collision is with the wall at y = +(£/2) while the broken lines show the
location of particles whose first collision is with the wall at y = -(£/2). The coefficients of
restitution, et and en, are both 0.7.

particle-wall collisions per unit length of the channel in the x direction scales
as nruy while that for particle-particle collisions is proportional to n2r2 LU.

This is because the difference in particle velocities scales as U for uy « U.
Therefore, the frequency of particle-particle collisions is the same as that of
particle-wall collisionsfor (Uy/U) rv €. To determine the effect of collisions to
leading order in small €, it is assumed that half of the particles have velocities
(U,O) and the remaining half velocities (-U, 0) prior to collision. Consider a
collision between particle A with velocity (U,O) and particle B with velocity
(-U,O). The velocity after collision is given by

UAx = - V cos (28) UAy = -V sin (28) ,

uBx = V cos (28) UBy = V sin (28) ,
(21)

where 8 is the angle made by the line joining the centres of the particles at the
point of collision with the x-axis. Therefore, binary collisions tend to transport
particles onto a circle of radius, U, in velocity space as shown in Fig. 2. The

subsequent collisions with the walls modify the velocity of the 0articles as
indicated by Eq. (20), so that the velocity after i collisions, (U~i),Uyi»),is given
by the parametric relations:

Ii
I
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U~i)+ (1+ (-l)(i-1)eDU = e~Ucos(X)

u~i) - (1 + (-1)(i-1)eDU = eWcos(x)

u~i) = e~U sin (X)

The above equations show that the particle positions are located along the
ellipses Ci centred at (::1:(1+ (-1)(i-1)e~)U, 0) with radii e~U and e~U lying
along the x and y directions as shown in Fig. 2.

The distribution function along each of these contours is obtained by a flux

balance in velocity space. The details of the calculation are not given here.
The reader is referred to [8] for the details. The distribution function, !i(X), is
defined such that nh(x)dx is the number of particles in the differential angle,
dX, about X on the contour Ci. This is given by

for 0 < X < 7r

for 7r < X < 27r. (22)

]

-1
!o(X) i 2€

h(x) = --;i n [1 + (en)jlsin(x)\n j=1

(23)

where !o(X), the distribution function after the binary collision, is

!o(X) = 2Isi~(x)1[cos(~- %)] .
(24)

It can be easily shown that this distribution function is normalised:

CX) (27r

2: Jo dxh(x) = 1.i=O 0
(25)

The moments of the velocity distribution function can be easily calculated

using the distribution function, Eq. (23). It is found that (u;) -t U2 and

(u~) rv V2€ in the limit € -t O. In addition, the cross-correlation, (UXUy) '"
U2dog (c1), and the shear stress decrease proportional to dog (c1) in this
limit. The qualitative behaviour of the velocity moments are the same for a
three-dimensional suspension of elastic spheres as well as for suspensions of
inelastic disks and spheres.

Conclusions

The derivation of the velocity distribution function for dilute particle suspen-
sions in the kinetic and dissipative limits was discussed. In the kinetic limit, the
distribution function is close to a Maxwell-Boltzmann distribution for a gasat
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equilibrium. For a sheared suspension, the asymptotic scheme for determining
the distribution function is similar to that used in the Chapman-Enskog the-
ory for dense gases. However, there is a minor difference: the "temperature" is
not externally imposed, but is determined by a balance between the source
of energy and dissipation due to shearing and inelastic collisions, respectively.
For a bidisperse sedimenting suspension, the analysis is different from that
used in the Chapman-Enskog theory due to a velocity-dependent drag force.
The Boltzmann H-Theorem can be used to show that the magnitude of the
fluctuating velocity scales as /sUm, where Um is the mean velocity of the sus-
pension. The difference in the mean velocity of the two species scales as /j2Um,
where the small parameter /S'" (Tc/Tv)1/2 with Tc and Tv being the time that
elapsed between collisions and the viscous relaxation, respectively. Therefore,
it can be inferred from the Boltzmann H-Theorem that the fluctuating velocity
is small compared to the mean velocity of the suspension.

The distribution function in the dissipative limit is very different from the
MB distribution. For a bidisperse sedimenting suspension, the distribution
function is non-zero only in a finite region of the velocity space. It also has
a divergence at the terminal velocities of the two species. The distribution
function is highly anisotropic and the mean square velocity in the vertical
direction is four times that in the horizontal direction. In addition, it is highly
skewed and the skewness increases proportional to (Tv/Tc)-1/2 in the limit,
Tv «Tc.

For a sheared suspension of two dimensional disks, the dissipative limit
corresponds to the regime € =: (nrL) « 1, where n is the particle number
density, r is the particle radius and L is the width of the channel. In this
limit, the frequency of particle-wall collisions is large compared to that of
particle-particle collisions. The distribution function is sharply peaked around
(ux,Uy) = (:!:U,0) and is non-zero only along certain contours in the velocity
space. This is shown in Fig. 2. The distribution function is highly anisotropic
and the mean square velocity normal to the walls is O(€) smaller than that in
the flow direction. The cross-correlation, (UXUy),which is proportional to the
shear stress, is O(€log (C 1)) smaller than the mean square velocity in the flow
direction.

The above studies indicate that the distribution function in the kinetic

limit is close to a Maxwell-Boltzmann distribution for a hard sphere gas. It
can be determined using a perturbation analysis in which the MB distribution
is the leading approximation. The distribution function in the dissipative limit

i

'II

i
I"

i
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I
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is very different from the MB distribution and the analytical technique used is
specific to the system under consideration.

Discussion

J. R. A. Pearson To what physical systems and/or phenomena do your
approximate theories apply and provide physical insight?

V. K umaran The theories derived here apply to the rapid flows of suspensions
of particles in a gas, such as shear flows or settling suspensions in the kinetic
and dissipative limits. In real systems, the flow may be in either of these limits,
or in the intermediate regime. If the flow is in either of these limits, the theory
applies without modifications. If it is in the intermediate regime, approximate
distribution functions, such as the one devised by Kumaran, Tsao and Koch [9]
can be used. The present analysis is useful for devising these approximation
distribution functions since it provides the limiting behaviour to which any
valid solution should converge.

In real systems, different points in the flow have different parameter values.
In these cases, it would be necessary to use different distribution functions at
different points in the flow to get a complete description. In this sense, the
present description has an advantage over continuum descriptions. This is
because in the latter, the same description is used throughout the flow even
though the flow conditions could be very different.

M. J. Adams Could your method be adapted to describe the behaviour
of fluidised beds which show complex behaviour such as the formation of
bubbles?

V. Kumaran This analysis cannot be easily adapted to gas fluidised beds due
to the complexity of the interaction between the gas and the fluid. The simple
Stokes law for the interaction between the particles and the gas would not
suffice. A more complete description of the gas-particle interaction at high
Reynolds number in dense suspensions would be necessary. In addition, the
assumption of molecular chaos would not be a good one for a fluidised bed
where the particle density is quite high. However, the present analysis could
be used to describe a vibrated fluidised bed where the fluidisation is due to
the vibration of the bottom surface of the bed. In this case, the dynamics of
the particles can be described by simple laws. It has also been experimentally
observed that the density of the suspension is low enough to justify the use of
the present theories for dilute suspensions.
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M. E.Cates The limit € ~ 1 corresponds to the usual definition of Knudsen
flow in gases for which the viscosity is independent of density. Your results are
different. Why?

V. K umaran The difference is in the boundary conditions used for the shear
flow. For a gas sheared between two surfaces, the size of the molecules is small
compared to that of the surface roughness on the surfaces. Therefore, the
stochastic Maxwell boundary condition is used. This is because it is assumed
that a fraction of the molecules incident on a surface are reflected elastically
while the rest are reflected with a random velocity chosen so that the aver-

. age temperature of the reflected molecules is equal to the temperature of the
surface. In the present system, the size of the particles is large compared to
the size of the surface roughness. Hence deterministic boundary conditions are
used. This leads to a difference in the behaviour of the two systems.

J. Goddard Tsao and Koch [10] had recently performed an analysis of the
shear flow of a particle suspension in which they reported the existence of two
states of suspension, that is, an "ignited" and "collapsed" state. How are these
states related to the asymptotic limits you talked about?

V. Kumaran The analysis of Tsao and Koch was for the shear flow of a
suspension of particles in a gas where it is subjected to a shear flow. The
"collapsed" state corresponds to a dilute suspension where most of the par-
ticles travel along the streamlines. Collisions also occur due to the relative
velocity between particles travelling on different streamlines separated by a
distance less than the particle diameter. The analysis of the collapsed state
resembles closely the analysis for the dissipative limit of a bidisperse particle
suspension discussed here, although the mechanism that induces particle col-
lisions is different. The analysis of the ignited state is very similar to that for
the kinetic limit of a bidisperse suspension. Therefore, the "collapsed" and
"ignited" states correspond to the dissipative and kinetic limits.
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M. Lal Can simulation methods, such as the lattice Boltzmann simulation,
be used for these suspensions?

V. K umaran If one is interested in simulating the behaviour of the particles
using some simple assumptions (such as Stokes law) about their interaction
with gas, it is easier to use discrete particle simulation procedures such as
molecular dynamics or event-driven simulation. If one is interested in treating
exactly the complex interaction between them, a technique like the lattice
Boltzmann simulation would then be useful.


