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in viscoelastic fluids could be very different from that in simple fluids. In
addition to the early, transition and late. stage growth, there is an inter-
mediate stage where the scaling laws are different from those predicted
by current theories of spinodal decomposition. Viscoelastic effects have
not been included in the current models for the spinodal decomposition
of fluids.

Current analytical work on the effect of convection and viscoelasticity on
the early and late stages of spinodal decomposition is briefly described. In
the early stages, the effect of viscoelastic stresses was analysed using a sim-
ple Maxwell model for the stress, which was incorporated in the Langevin
equation for the momentum field. The viscoelastic stresses are found to
enhance the rate of decomposition. In the late stages, the pattern formed
depends on the relative composition of the two species. Droplet spinodal
decomposition occurs when the concentration of one of the species is small.
Convective transport does not have a significant effect on the growth of a
single droplet, but it does result in an attractive interaction between non
- Brownian droplets which could lead to coalescence. The effect of con-
vective transport for the growth of random interfaces in a near symmetric
quench was analysed using an 'area distribution function', which gives the
distribution of surface area of the interface in curvature space. It was
found that the curvature of the interface decreases proportional to t in the
late stages of spinodal decomposition, and the surface area also decreases
proportional to t.

2. In the late stages, the type of spinodal decomposition depends on the
relative composition of the two species. For nearly symmetric mixtures,
the coarsening takes place due to the motion of random interfaces. The
characteristic length scale for these interfaces increases proportional to
t1/2 in solids undergoing a magnetisation transition(4, 5]. The scaling
behaviour for fluids is very different, and it is found(6] that the charac-
teristic length increases proportional to t. A qualitative explanation for
this increase was provided on the basis of a capillary instability mecha-
nism by Siggia[12], but a quantitative description of this growth process
is still lacking.

3. The experiments of Tanaka[8] on the droplet growth in late stage de-
composition show that there is an attractive interaction between non
- Brownian droplets, which could lead to the spontaneous approach and
coalescence of these droplets in the late stages of spinodal decomposition.

1 Introduction

In the present article, some analytical work on the early and late stages of spin-
odal decomposition related to the above issues is presented. For the early stage
spinodal decomposition in viscoelastic fluids, Langevin equations which incor-
porate viscoelasticity are formulated, and these are solved using diagrammatic
techniques to determine the effect of viscoelasticity on the rate of decomposi-
tion. The motion of random interfaces in the late stage is analysed using an
'area distribution function', which gives the fraction of area of the interface
having a specified curvature. This is determined using conservation equations
for the rate of change of curvature in the system, and predictions are made for
the change in the average curvature as a function of time. The effect of convec-
tion on the late stage droplet growth and droplet interactions is also analysed.

The classical theories for spinodal decomposition, such as the Cahn - Hilliard

theory for the early stages and the Lifshitz - Slyozov theory for droplet growth,
were developed for metal alloys and for the magnetisation transition in solids.
It might be expected that the decomposition is faster in liquids, due to the
higher diffusion rates. However, there is experimental evidence to indicate that
the decomposition process is qualitatively different due to convective effects
and due to viscoelastic processes. For example,

1. It has been known for some time now from the experiments[l] and theo-
retical studies[2] that convection has an effect on the early stage growth
of fluctuations in spinodal decomposition. However, some recent experi-
ments by Wiltzius and Bates(3] indicate that the spinodal decomposition

2. Effect of viscoelasticity on early stage spinodal decomposition

In the early stage spinodal decomposition in simple fluids (2], the dynamics
of the system is described using a coupled set of Langevin equations for the
concentration and velocity fields in the fluids, which are similar to the model H
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equations[9] for a fluid with conserved order parameter in critical phenomena.
These equations were modified[lO] in order to include viscoelastic effects. The
constitutive equation for the microscopic stress tensor was the simple Maxwell
model with an additional noise source to satisfy the fluctuation dissipation
theorem

It can be shown[10] that the above equations satisfy the necessary fluctuation
dissipation relations, and that they reduce to the equations for a Newtonian
fluid in the limit T = O.

The momentum and stress equations can be combined to obtain an equation
for the velocity

(Tat + l)O"ij = f1(aiVj + ajVi) + Bij (1)

In the above equation, indicial notation has been used to represent vectors
and tensors, at == (a/at) and ai ==a/aXi, O"ijis the stress tensor, Vi is the
velocity field, f1 is the viscosity of the fluid, T is the relaxation time in the
Maxwell model. Higher order derivatives in the corotational Maxwell model
were neglected, since they represent higher order non - linear corrections to
the stress field. The noise correlation Bij is chosen to satisfy the fluctuation
dissipation theorem, and for this it is necessary to define a free energy for the
system which includes both inertial and elastic effects. The appropriate free
energy is the usual Ginzburg - Landau free energy with additional contributions
due to the kinetic energy and elastic strain energy of the fluid
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where Jij (x - x') is the Oseen tensor
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where G = (ry/T) is the shear modulus. Using the above definition of the free
energy, the constitutive equation for the stress tensor can be recast in the form
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vO"lm

(2)

This is inserted into the concentration equation, and solved using a diagram-
matic perturbation expansion in order to determine the effect of the non -
linearities on the transport coefficient A and the noise correlation.

The results of the analysis indicate that there is a significant increase in
the rate of spinodal decomposition due to the elasticity of the fluid, and this
increase is due to the presence of an additional contribution to the convective
force in (8) (due to the term proportional to the relaxation time T) which gen-
erates an increase in the fluid velocity. This additional fluid velocity increases
the rate of separation of the two phases, and thereby hastens the decomposition
process.

(3)

from which it is evident that the noise correlation is of the form 3. Coarsening of Random Interfaces

T-2(BijBLm) = 2TGT-1J(X - x')J(t - t')(JilJjm + JimJjl) (4)
In the late stages of spinodal decomposition, the kind of structure formed
depends on the relative concentrations of the two phases[ll]. When there is
a bicontinuous structure consisting of the two phases separated by a random
interface. The growth of this interface in a fluid is determined by a balance
between viscous stresses and the normal forces generated by surface tension,
since fluid inertia is negligible. Using simple dimensional arguments, Siggia[12]
obtained the scaling relation I ex t, where I is the characteristic length scale
and t is the time. This scaling law has been observed in experiments of near
symmetric quenches[6]. A more quantitative description of this process can be
obtained as follows.

The shape of an interface is determined by the 'principal curvatures' K1
and K2, which are the extrema of the curvatures at any point of the interface,
or by the magnitude K = (Kf + Kf)1/2 and the angle tan (B) = (K2/ Kd.
The 'area distribution function' A(K, B, t) of the interface is defined so that

The equations for the concentration and the transverse component of the mo-
mentum are

2 JF

at'lj;(x,t) = Aai J'Ij;(x,t) - Vi(x, t)ai'lj;(X,t) + ((x, t) (5)

[ajO"ij(x, t) + ai'lj;~~] 1-= 0 (6)

where inertial effects have been neglected in the momentum equation, and
[. ..h represents the transverse component of the vector. The random noise
((x, t) is white and Gaussian with zero mean and the following second moment
to satisfy the fluctuation dissipation theorem

(((x, t)((x', t')) = 2TAa;J(x - x')J(t - t') (7)
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A(K, B, t)K dK dB is the fraction of the interface having a curvature in the in-
terval dK about K and dB about B at time t. The area distribution function
changes due to a change in the curvature due to the normal motion of the inter-
face, and a change in the surface area due to the tangential motion of material
points along the interface. The conservation equation for the area distribution
function is

4. Droplet interaction

dA - - dK oA - dB oA ocA ( )dt - dt oK dt oB + at 10

where (ocA/ot) is the rate of change of surface area due to the tangential motion
of the interface. The conservation equation is further simplified by averaging
over the coordinate B if one is only interested in the variation of the curvature
K

The spinodal decomposition in a highly asymmetric mixture takes place due
to the growth of droplets of the minority phase in a matrix of the majority
phase. The earlier theories of droplet growth in fluids have identified two
mechanisms[8]

1. the diffusion mechanism, which involves the growth of droplets with ra-
dius larger than a critical value and the shrinking of droplets with radius
smaller than this value due to diffusion of the dispersed phase through
the matrix,

dA(K, t) dK oA(K, t) ocA(K, t)
~ = -di oK + at (11)

2. the coagulation mechanism, where droplets of different sizes undergoing
Brownian motion collide and coalesce to give a larger droplet.

However, some recent experimental work by Tanaka[8] has shown that there
is spontaneous coalescence even between non - Brownian droplets, and it was
suggested that the coalescence may be due to the effect of the concentration
gradients at the interface on the momentum equation. To study this effect, the
interaction between a pair of droplets was examined in the limit where their
separation is large compared to the droplet radius, and Brownian effects are
negligible[13].

The model H momentum equation for the fluid in the absence of Brownian
motion and fluid inertia is

To solve the above equations it is necessary to formulate constitutive relations
for (dK/dt) and (ocA/ot). If one assumes that the only fluid properties affect-
ing the motion of the interface are the viscosity J.land surface tension '"Y,and
the only relevant length scale at a point on the interface is the inverse of the
curvature, the constitutive relations have the form

dK - - anK2
dt - J.l

1 ocA an K
A at = ;- (12)

The conservation equation and the constitutive relations can be solved using
a similarity variable TJ= (anKt/J.l) for the case where the area distribution
function is a constant at t = O.

A = Ao(l - TJ)a
A=O

for TJ::; 1
for TJ2: 1

(13)

2

[

JF

]J.lOjVi + oi'!/}J'l/J -L =0

The second term on the left side of the above equation, which is reciprocal to
the convective term in the concentration equation, has two contributions -
one due to the square gradient of the concentration field and the other due
to the dependence of the free energy on the concentration. The latter does
not contribute to the transverse component of the momentum field, and the
equation (14) can be solved using the Landau - Ginzburg form of the free energy
to obtain

(14)

where a = (a2/al). Therefore, the specific shape of the distribution function
depends on the parameters a2 and al in the constitutive relations, but the rate
of change of mean curvature and the area of the interface are both proportional
to r1.

Vi (x) = !dx' Jij (x - x') [- K Oi'l/J(x') 0;'l/J(x')] (15)

In the late stages of spinodal decomposition, the dominant contribution to the
fluid velocity is from the interfacial region where the concentration gradients are
sharp. In this region, the gradient of the concentration can be approximated
as Oi'l/J = nioz'l/J,where ni is the unit normal to the interface and z is the
coordinate normal to the interface. It turns out that the induced velocity is
zero if the interface is at equilibrium, but it could be non - zero if the interface
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is moving due to the flux of solute across the interface. If the outward normal
velocity of the droplet interface is u(xs) at the point Xs on the surface, the
velocity induced in the fluid due to this motion is

the Maxwell model is set equal to zero. The results of the analysis indicate
that viscoelasticity tends to increase the rate of spinodal decomposition.

J (K(D.1/J)2U(xs)2 )Vi = - dxsJij(x - xs)nj(xs) 2D2

where D.1/Jis the difference in the equilibrium concentration of the droplet and
matrix, and D is the coefficient of diffusion.

The fluid velocity at any point is determined by carrying out the integral
in (16) over the surface of the droplet. For a uniformly growing droplet with
u(xs) independent of Xs, it can be shown that the fluid velocity is identically
zero. However, if there is an interaction between two droplets, the flux at the
interface of a droplet is not uniform, and the flux at points on the surface of
the droplet facing towards the second droplet is smaller than at points facing
away from the second droplet. In this case, it can be shown using a dipole
approximation for the concentration field that there is a spontaneous motion
of the equal sized droplets towards each other, and the velocity along the line
of centers is

(16)

2. The coarsening of a random interface in a symmetric fluid mixture in the
late stages was described using a 'curvature distribution function', which
gives the probability that a differential surface area of the interface has a
certain curvature. A conservation equation was written for the curvature
distribution function, and this was solved using constitutive models for
the rate of change of curvature and surface area. This model gives the
scaling for the mean curvature as a function of time which is in agreement
with experimental results.

3. The interaction between droplets in the late stage of spinodal decomposi-
tion was studied. It was found that a variation in the fll!x at the interface
due to the droplet interaction could cause an attraction between the non
- Brownian droplets, thereby increasing the rat~of coalescence in the

late stages. This provides an explanation for earlier experimental obser-
vations which found that non - Brownian droplets tend to attract and

spontaneously coalesce in the late stages of spinodal decomposition.

v = 2Kc;RLi
3f.1,L3

where Li is the vector in the direction of the line joining the centers of the
droplets, and Cs is the difference in concentration between the matrix and the
surface of the droplet which drives the flux. The above analysis indicates that
there is a spontaneous attractive motion of droplets towards each other pro-
vided there is a departure of the interface from its equilibrium profile, and there
is a variation in the concentration at the surface of the interacting droplets.
This provides an explanation for the spontaneous coalescence of non - Brownian
droplets in the spinodal decomposition of a binary fluid.

(17)
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