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Abstract. The stability of wall modes in fluid flow through a flexible tube of radius R surrounded by
a viscoelastic material in the region R < r < HR is analysed using a combination of asymptotic and
numerical methods. The fluid is Newtonian, while the flexible wall is modelled as an incompressible vis-
coelastic solid. In the limit of high Reynolds number (Re), the vorticity of the wall modes is confined
to a region of thickness O(Re−1/3) in the fluid near the wall of the tube. Previous numerical studies on
the stability of Hagen-Poiseuille flow in a flexible tube to axisymmetric disturbances have shown that the
flow could be unstable in the limit of high Re, while previous high Reynolds number asymptotic analyses
have revealed only stable modes. To resolve this discrepancy, the present work re-examines the asymptotic
analysis of wall modes in a flexible tube using a new set of scaling assumptions. It is shown that wall
modes in Hagen-Poiseuille flow in a flexible tube are indeed unstable in the limit of high Re in the scaling
regime Re ∼ Σ3/4. Here Σ is a nondimensional parameter characterising the elasticity of the wall, and
Σ ≡ ρGR2/η2, where ρ and η are the density and viscosity of the fluid, and G is the shear modulus of
the wall medium. The results from the present asymptotic analysis are in excellent agreement with the
previous numerical results. Importantly, the present work shows that the different types of unstable modes
at high Reynolds number reported in previous numerical studies are qualitatively the same: they all belong
to the class of unstable wall modes predicted in this paper.

PACS. 83.50.-v Deformation; material flow – 47.15.Fe Stability of laminar flows – 47.60.+i Flows in ducts,
channels, nozzles and conduits

1 Introduction

The flow of fluid through flexible-walled tubes and chan-
nels is a prototypical situation encountered in many bio-
logical systems and in some biotechnological applications.
The flow of blood and other fluids in the body takes place
through flexible tubes, and the separation and purification
processes in bio-technological processes often involve flow
in tubes and channels made up of polymer matrices and
membranes. Traditionally, these flows have been analysed
using models similar to those for the flow in a rigid tube.
However, the dynamics of fluid flow past flexible solid sur-
faces is qualitatively different from that of rigid surfaces
because of the coupling between the fluid and wall dy-
namics, and the elasticity of the surface could affect the
fluid flow. In particular, this coupling could influence the
transition from laminar to turbulent flow in such systems,
and this has indeed been observed in earlier experiments.
Experiments conducted by Krindel and Silberberg [1] in a
gel-walled tube indicate that there is an anomalous drag
force at a Reynolds numbers (Re) as low as about 600, and
the authors concluded that this is due to a transition to
a turbulent flow at a Reynolds number which is far lower
than the critical Reynolds number for the flow through a
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rigid tube (around 2100). The transition Re was found to
depend on the elasticity of the wall in addition to the fluid
properties indicating that the wall dynamics plays a sig-
nificant role in the transition events. Motivated by these
experimental results, there has been a renewed interest in
the recent years in the the understanding of the stabil-
ity of fluid flow through flexible tubes and channels [2–7].
The salient results of these studies that are pertinent to
the present work are summarised below.
1. The Hagen-Poiseuille flow in a flexible tube could

become unstable even in the limit of zero Reynolds
number [2] when the dimensionless velocity (V η/GR)
increases beyond a critical value. Here, V is the maxi-
mum velocity in the tube, η is the fluid viscosity, G is
the modulus of elasticity of the wall material and R is
the tube radius. The instability is driven by the trans-
port of energy from the mean flow to the fluctuations
due to the deformation work done by the mean flow at
the flexible surface. This class of modes are referred to
as ‘viscous modes’. A similar instability was predicted
for the case of Couette flow past a flexible surface by
Kumaran, Fredrickson and Pincus [8].

2. The existence of unstable modes even in the low Re
limit in the case of fluid flow past soft solid surfaces was
recently confirmed experimentally by Kumaran and
Muralikrishnan [7]. The critical velocity required for
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initiating the instability in the experiments was found
to be in good agreement with the theoretical predic-
tions of [8], with no adjustable parameters, for a wide
range of gel thicknesses and elastic moduli. These new
experiments have provided convincing evidence for the
viscous instability predicted in [2] and [8].

3. The stability of Hagen-Poiseuille flow in a flexible tube
was analysed in the limit of high Re in [3]. In this limit,
the flow is inviscid in the core of the tube, and there
is a wall layer of thickness O(Re−1/2) smaller than the
tube radius where the viscous stresses are O(Re−1/2)
smaller than the inertial stresses. An asymptotic anal-
ysis in the small parameter Re−1 was used, and in
the leading approximation the real part of the growth
rate is zero, indicating that the perturbations are
neutrally stable at this level of approximation. The
O(Re−1/2) correction to the growth rate due to the
viscous stresses in the wall layer turns out to be neg-
ative, indicating that the flow is stable in the limit
of high Re. These modes are referred to as ‘inviscid
modes’.

4. The low Reynolds number analysis [2,8] showed that
the fluid flow could become unstable when the di-
mensionless velocity is increased beyond a critical
value, but the high Reynolds number analysis [3] indi-
cated that the inviscid modes are always stable. The
above asymptotic results are rather paradoxical, be-
cause they seem to suggest that the flow in the low
Reynolds number regime could become unstable, while
the flow in the high Reynolds number regime is always
stable. In order to resolve this paradox, a numerical
continuation of the unstable viscous modes into the
intermediate Reynolds number regime was undertaken
in [4] for the case of Couette flow in a flexible channel,
and in [5] for the case of Hagen-Poiseuille flow in a flex-
ible tube. In these studies, it was found that the lowRe
instability does persist into the intermediate and high
Reynolds number regime, but the critical Reynolds
number is much larger than the Reynolds number at
which the inviscid modes are observed for a given set
of fluid and wall properties. In addition, a boundary
layer of thickness O(Re−1/3) smaller than the width
of the channel thickness or tube radius was observed
for these unstable modes in the high Reynolds num-
ber regime. This is very different from the boundary
layer of thickness O(Re−1/2) for the inviscid modes.
The numerical results of both these studies showed
that the critical Reynolds number in this case scales
as Re ∝ Σα, where the exponent α is between 0.7 and
0.75. Here, the parameter Σ = (ρGR2/η2), where ρ is
the fluid density. The O(Re−1/3) scaling is character-
istic of a set of modes called ‘wall modes’.

There has been considerable work done on the instability
leading to the collapse of a flexible tube due to the dif-
ference between the internal and external pressures (see,
for example [9,10]). This has physiological relevance, since
similar flows are encountered in air flow through respira-
tory passages. In these studies, the flow is in the turbulent
regime, and the cross-sectional area of the tube is related

to the difference between the internal and external pres-
sures. The present analysis is qualitatively different from
these studies, because the basic flow is laminar, and the
instability of the laminar flow in a tube with viscoelastic
walls is examined. The instability leads to oscillations of
the walls and a modification of the flow, but does not re-
sult in a significant change in the tube geometry. There
have been some other studies which have focussed on the
numerical computation of fluid flow in a tube with an elas-
tic membrane insertion. Pedrizzetti [11] numerically com-
puted the unsteady flow in a circular tube with a finite
length elastic membrane in the otherwise rigid duct, using
the theory of finite elasticity for the membrane. This nu-
merical study showed that when a steady fluid discharge
is imposed on the downstream rigid duct, the fluid-wall
interaction develops travelling waves along the membrane
whose period depends on the membrane elasticity. The
presence of viscous stresses in the membrane was found
to stabilise the instability. The author concluded that the
stationary oscillations observed in the computations could
be related to the ‘divergence’ instability in boundary layer
flow past compliant walls (see, for example [12]).

The present study addresses the stability of wall modes
in a flexible tube using a combination of asymptotic and
numerical methods. Wall modes are a class of solutions
in the high Reynolds number limit where the vorticity in
the fluid is confined to a very thin layer near the wall of
the tube (referred henceforth as the ‘wall layer’) of thick-
ness O(Re−1/3) smaller than the radius of the tube. The
damping rate of these modes is O(Re−1/3) smaller than
the strain rate in the fluid. These modes are distinct from
the inviscid modes, because in the case of wall modes the
velocity components in the inviscid flow in the bulk of the
tube are small compared to the tangential velocity in the
wall layer. These modes were first studied in [13] and [14]
for the case of Hagen-Poiseuille flow in a rigid tube, and
these asymptotic studies showed that wall modes are al-
ways stable in a rigid tube. However, these studies also
showed that the wall modes are the least stable modes in
a rigid tube, and so it is important to study the stability
characteristics of the wall modes in flow through a flexible
tube. Since the vorticity in the fluid is confined near the
wall of the tube, the elasticity of the wall can affect the
stability of the wall modes in the case of fluid flow through
flexible tubes.

The stability of wall modes in a flexible tube was anal-
ysed using an asymptotic analysis in the high Reynolds
number limit by Kumaran [15]. This analysis mainly fo-
cussed on the regime Re � 1, and Λ ≡ Re1/3(G/ρV 2) ∼
1. Here, Re ≡ RV ρ/η is the Reynolds number, ρ, η are
respectively the density and viscosity of the Newtonian
fluid, V is the maximum velocity of the Hagen – Poiseuille
flow, G is the shear modulus of the wall material, and
R is the radius of the flexible tube. A scaling analysis
showed that the elastic stresses in the wall and the nor-
mal stresses in the fluid were balanced in the limit Λ ∼ 1.
In the wall layer, the inertial and viscous fluid stresses
are of the same magnitude. However, in the wall mate-
rial the elastic stress are large compared to the inertial
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stresses in the limit Λ ∼ 1. An asymptotic analysis in the
small parameterRe−1/3 was used to determine the growth
rate, which showed that there are multiple solutions to the
growth rate. In the limit Λ → ∞, which corresponds to
elastic stresses in the wall very large compared to viscous
stresses in the fluid (i.e. the rigid tube limit), the solutions
to the growth rate converged to the solutions of Gill [14]
for the case of wall modes in a rigid tube. In the opposite
limit of Λ → 0, which corresponds to a wall with very
small elasticity, the growth rates were again found to be
stable. The transition from Λ� 1 to Λ� 1 was found to
be smooth. However, there is one mode in the limit Λ� 1
in a flexible tube whose growth rate does not converge to
any of the rigid tube modes, but the frequency of this
mode diverges as Λ in the limit of a rigid tube (Λ→∞),
and the decay rate was found to decrease as Λ−1/2 in the
limit Λ→∞. It was then concluded in [15] that this rep-
resents the least stable wall mode in a flexible tube. An
increase in wall flexibility (i.e. a decrease in the elasticity
of the wall medium) has a stabilising effect on this mode.

This least stable wall mode in a flexible tube, which
is absent in the case of a rigid tube, was continued nu-
merically to the Λ � 1 regime in [6]. That study showed
that this particular mode becomes unstable when Λ was
decreased below a transition value at a given Re, with
Re ranging between 1000 and 10 000. The neutral stabil-
ity curves for this unstable mode was obtained using a
numerical continuation scheme, and the Reynolds num-
ber for which there is a cross-over from stable to unstable
modes was determined as a function of the parameter Σ.
The parameter Σ, defined as Σ ≡ ρGR2/η2, is a flow-
independent quantity which is proportional to the shear
modulus G of the flexible tube. The numerical results re-
vealed that the Re for neutral modes decreases propor-
tional to Σ1/2 in the limit Σ � 1, and shows rather com-
plex behaviour in the intermediate regime. In the limit
Σ � 1, the Reynolds number at which there is a transi-
tion from stable to unstable modes increases proportional
to Σα, where α was found to be between 0.7 and 0.75. In-
terestingly, the numerical continuation of ‘viscous modes’
to the intermediate Re regime in [5] for the case of Hagen-
Poiseuille flow in a flexible tube and in [4] for the case of
Couette flow past a flexible surface, also showed that the
Reynolds number for neutral modes scales as Re ∼ Σα

for Σ � 1, where α was again found to be between 0.7
to 0.75. In addition, in both these studies, the numerical
eigenfunctions showed the existence of a boundary layer
of thickness of O(Re−1/3) in the limit Re� 1.

The above discussion illustrates that the previous nu-
merical studies on the stability of Hagen-Poiseuille flow in
a flexible tube show the presence of unstable modes even
in the limit of high Re, with Re ∼ Σ3/4. This behaviour
is characteristic of both ‘intermediate Reynolds number
modes’ [4,5] and ‘wall modes’ [6], and both these modes
were characterised by the presence of a boundary layer of
thickness of O(Re−1/3) near the wall of the tube where
viscous effects are dominant. However, the earlier high Re
asymptotic analysis of wall modes in a flexible tube [15],
which included this O(Re−1/3) viscous wall layer, pre-

dicted only stable modes. It is important to note that the
earlier asymptotic analysis was restricted to the regime
Re1/3(G/ρV 2) ∼ 1, which implies that Re ∼ Σ3/5. In ad-
dition, the other high Re asymptotic analysis [3], which
probed the regime Re ∼ Σ1/2 (i.e. the inviscid modes),
showed that the flow is stable in the limit of high Reynolds
number. However, the numerical studies [4–6] showed the
existence of unstable modes in the scaling regime more
close to Re ∼ Σ3/4 for Σ � 1.

The previous numerical results therefore raise the fol-
lowing important questions on the stability of Hagen-
Poiseuille flow in a flexible tube: (i) Is it possible to predict
the numerically observed high Reynolds number unstable
modes by an asymptotic analysis at high Re? (ii) Both the
‘intermediate Re modes’ [5] and the numerically observed
unstable wall modes [6] exhibit the scaling behaviour close
to Re ∼ Σ3/4 and both these modes also show the ex-
istence of a boundary layer of thickness Re−1/3 where
viscous effects are confined: are these two modes quali-
tatively similar in the limit of high Re? (iii) Can the nu-
merically observed unstable modes exist in the limit of
infinite Re? This question assumes relevance because the
generalisation of classical theorems of hydrodynamic sta-
bility to inviscid flow in a flexible tube [16] predicted that
the Hagen-Poiseuille flow in a flexible tube is always sta-
ble in the inviscid limit to axisymmetric disturbances. In
view of this theorem, is it then possible to have unstable
modes in the limit of infinite Re, which involve viscous
effects in the fluid in an important way? In other words,
are there viscous unstable solutions to the complete linear
stability equations governing the fluid-flexible wall prob-
lem, which do not reduce to the inviscid solutions in the
high Reynolds number limit?

The present work answers the above questions by re-
examining the earlier asymptotic analysis [15] in order to
determine whether the stable wall modes predicted by that
analysis is a consequence of the scaling approximations
made in that study. It is first useful to see how the two
different scalings Re ∼ Σ3/5 and Re ∼ Σ3/4 come about
from simple physical considerations. In the study of Ku-
maran [15], the normal inertial stresses in the outer layer
are balanced with the elastic stresses in the wall. As ar-
gued in [15], the normal stresses in the outer layer scale
as Re−1/3ρV 2, where V is the characteristic velocity of
the laminar flow. The elastic stresses in the wall are esti-
mated to be of the order of G, the shear modulus of the
wall material. A balance between Re−1/3ρV 2 ∼ G implies
(ρV 2/G)1/2 ∼ Re1/6 and it can be readily verified that
Σ ≡ Re2/(ρV 2/G) ∼ Re5/3 and hence Re ∼ Σ3/5. Thus,
a balance between the normal stresses in the outer layer
and the elastic stresses in the wall yields Re ∼ Σ3/5. This
scaling regime immediately implies that the tangential vis-
cous stresses in the wall layer are O(Re−1/3) small com-
pared to the elastic stresses in the wall medium. Indeed,
the growth rates of [15] were determined without balanc-
ing the viscous shear stresses and the elastic stresses at
the interface. In contrast, in the present study, the scal-
ing regime Re ∼ Σ3/4 is considered which is obtained by
a balance between the tangential viscous stresses in the
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wall layer and the elastic stresses in the wall medium at
the fluid-wall interface. The viscous shear stresses in the
wall layer can be estimated to be of the order of V η/(δR),
where η is the viscosity of the fluid and δR ∼ Re−1/3R
is the length scale for variation in the wall layer. A bal-
ance between this viscous stress and the elastic stresses
in the wall implies V ηRe1/3/R ∼ G, and this yields
(ρV 2/G)1/2 ∼ Re1/3 and hence Re ∼ Σ3/4. Thus the
scaling Re ∼ Σ3/4 implies a balance between the viscous
shear stresses in the fluid and elastic stresses in the wall
medium.

An asymptotic analysis in the limit of high Re is car-
ried out in Section 2 in the parameter regime Re ∼ Σ3/4,
and this analysis shows that the wall modes in a flexi-
ble tube are indeed unstable in the limit of high Re. The
scaling assumptions made in the present study, and con-
sequently the ensuing asymptotic analysis, are different
from that of [15] and the reason why the earlier analysis
predicted only stable modes is discussed in Section 2. The
results from the present asymptotic analysis show that the
same analysis predicts both the numerical results of inter-
mediate Re modes [5] and wall modes [6]: the numerical
results of these earlier studies are just two of the multi-
ple solutions predicted by the present asymptotic analy-
sis. This result shows that the ‘intermediate Re modes’
of [5] and the numerically predicted wall modes of [6] are
qualitatively the same in the limit of high Re (which also
implies Σ � 1). The mechanism driving this high Re in-
stability is the transfer of energy from mean flow to fluc-
tuations due to the deformation work done by the fluid
shear stresses on the flexible surface in the wall layer (for
a discussion on this point, see [5,6]).

The rest of this paper is organised as follows. In Sec-
tion 2, an asymptotic analysis is carried out in the limit of
high Re for the case of stability of Hagen-Poiseuille flow
in a flexible tube. Details of the asymptotic analysis are
provided in Appendix A. Numerical results are presented
alongside, and it is shown that the asymptotic and numer-
ical results are in good agreement. The salient conclusions
of the present study are provided in Section 3.

2 Analysis

The system configuration consists of a Newtonian fluid
of density ρ and viscosity η flowing through a tube of
radius R surrounded by a viscoelastic solid with density ρ,
viscosity ηg and coefficient of elasticity G in the annular
region 1 < r < H as shown in Figure 1. Here r and x
are the radial and axial coordinates scaled by the tube
radius R. In this section, the lengths are scaled by R and
velocities by (G/ρ)1/2. The base flow of interest is the
Hagen-Poiseuille velocity profile:

v̄x = ΓU(r) = Γ (1− r2) , (1)

where Γ = (ρV 2/G)1/2 is the nondimensional maximum
velocity in the fluid, and V is the dimensional maximum

x

r

r = 0

r = 1

r = H
Rigid plate

Rigid plate

Flexible wall

Flexible wall

Fig. 1. Schematic diagram showing the configuration and co-
ordinate system considered in Section 2.

velocity of the laminar flow. The non-dimensional Navier-
Stokes equations governing the fluid motion are:

∂ivi = 0 , (2)

(∂t + vj∂j)vi = −∂ipf +Re−1Γ∂2
j vi , (3)

where the subscripts i and j represent components of a
vector, repeated subscripts represent dot products, ∂t ≡
∂/∂t and ∂i ≡ ∂/∂xi. In (2) and (3), vi and pf are the
nondimensional velocity and pressure fields in the fluid
respectively, and the pressure is scaled by G. In the above
equation, Re = RV ρ/η is the Reynolds number of the flow
based on maximum fluid velocity. The stress tensor for the
Newtonian fluid, scaled by G, is

τij = −pδij + ΓRe−1(∂ivj + ∂jvi). (4)

The dynamics of the wall material is governed by dy-
namical equations for an incompressible elastic solid [17]
modified to include viscous effects [2,3,5,6,15,18]. The
dynamics of the solid wall is described by the displace-
ment field ui, scaled by the radius of the tube R, and
this represents the deviation of the material points from
their equilibrium positions due to the fluid stresses. In an
incompressible solid, the displacement field satisfies the
following solenoidal condition:

∂iui = 0. (5)

The momentum balance equation for the wall material is
given by:

∂2
t ui = −∂ipg + ∂2

j ui + ηrΓRe
−1∂2

j ∂tui , (6)

where ηr = ηg/η is the ratio of the viscosities of the solid
and fluid, and pg is the pressure in the wall material. The
first term in the right-hand side is the gradient of the
pressure required to satisfy incompressibility, the second
term is the divergence of an elastic stress due to strain in
the wall medium, while the third term is the divergence
of a viscous stress. The stress tensor in the solid medium,
scaled by G, is

σij = −pgδij + (1 + ηrΓRe
−1∂t)(∂iuj + ∂jui) . (7)

The above form for the momentum equation and the stress
tensor, incorporating frequency-independent coefficients
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of elasticity and viscosity have been used in [18] to de-
scribe the surface fluctuations on polymer gels, and in the
previous stability analyses of Kumaran [2,3,5,6,15] on the
stability of parabolic flow in flexible tubes. The boundary
conditions at the interface between the fluid and the wall
material are the continuity of velocities and stresses:

vi = ∂tui , τij = σij . (8)

In the linear stability analysis, small-amplitude axisym-
metric normal mode perturbations are imposed on the
fluid velocity field and the displacement field in the wall:

vi = v̄(r)δix + ṽi(r) exp[ik(x− ct)],
ui = ũi(r) exp[ik(x− ct)]. (9)

Here v̄(r) = ΓU(r) = Γ (1− r2) is the base flow (Hagen-
Poiseuille) velocity profile, x is the axial coordinate, k a
real wavenumber, c is the complex wavespeed and the flow
is unstable if Im[c] > 0 in the temporal stability analysis.
The above form of perturbations are substituted in the
governing equations in the fluid and the wall medium, and
only the quantities that are linear in the perturbation vari-
ables are retained to obtain the governing linear stability
equations. The resulting non-dimensional equations gov-
erning the linear stability stability of the Hagen-Poiseuille
flow are given by:

(dr + r−1)ṽr + ikṽx = 0, (10)

ik
(
U − c

Γ

)
ṽx − 2rṽr = −ik

p̃f
Γ

+
1
Re

× (d2
r + r−1dr − k2)ṽx, (11)

ik
(
U − c

Γ

)
ṽr = −drp̃f

Γ
+

1
Re

× (d2
r + r−1dr − r−2 − k2)ṽr.

(12)

Here, and in what follows, dr ≡ d/dr, U(r) = (1 − r2) is
the Hagen-Poiseuille velocity profile and Re = RV ρ/η is
the Reynolds number of the flow. For simplicity, the den-
sity of the wall medium and the fluid are set equal in the
present work. The non-dimensional equations governing
the displacement field in the wall material are given by:

(dr + r−1)ũr + ikũx = 0, (13)

−ikp̃g + (1− ikcηrΓRe−1)

×(d2
r + r−1dr − k2)ũx = −k2c2ũx, (14)

−drp̃g + (1− ikcηrΓRe−1)

×(d2
r + r−1dr − r−2 − k2)ũr = −k2c2ũr. (15)

Here ηr = ηg/η is the ratio of viscosities of wall mate-
rial and the fluid. At the interface between the fluid and
the wall, it is necessary to apply the continuity of veloc-
ities and stresses. In the linear analysis, the velocity and
stress fields due to the mean flow and perturbations at
the perturbed interface are expanded in a Taylor series
about their values at the unperturbed interface at r = 1.

Flexible wall

Fluid Outer inviscid core

Wall layer

r = H

r = 1

r = 0

O(Re
-1/3

)

Fig. 2. Schematic diagram showing the flow structure for high
Reynolds number wall modes in fluid flow through flexible
tubes.

The linear terms in the series expansion are retained, and
the higher order terms are neglected. This results in the
following matching conditions at the interface (r = 1):

ṽr = −ikcũr , (16)
ṽx − 2Γ ũr = −ikcũx , (17)

Re−1 Γ (dr ṽx + ikṽr) = (1− ikcηrΓRe−1)
× (drũx + ikũr) , (18)

−p̃f + 2ΓRe−1drṽr = −p̃g + 2(1− ikcηrΓRe−1)drũr .
(19)

Here (16) and (17) are respectively the normal and tangen-
tial velocity continuity conditions at the interface. Equa-
tions (18) and (19) are respectively the tangential and
normal stress continuity conditions at the interface.

In the present analysis, the limit Re � 1 is consid-
ered, and in this limit the flow in the tube can be divided
into two separate regions: an ‘outer layer’ where viscous
stresses are small compared to the inertial stresses, and a
‘wall layer’ near the fluid-wall interface where inertial and
viscous stresses balance each other. A schematic diagram
of the flow structure is shown in Figure 2. Therefore, the
velocity field in the fluid is divided as

ṽi = ṽoi + ṽwi . (20)

The flow in the outer layer is obtained by setting the
viscous terms in the governing equations of the fluid to
zero. However, as is well known, the viscous terms in the
governing equations contain the highest derivatives, and
the neglect of these terms converts the momentum equa-
tions from second order to first order differential equa-
tions. Consequently, it is not possible to satisfy all the
boundary conditions required for the original viscous sec-
ond order differential equations, and only the normal ve-
locity and stress conditions can be satisfied at the inter-
face. To satisfy the tangential velocity and stress condi-
tions, it is necessary to postulate a viscous ‘wall layer’ of
thickness δ where viscous effects are important.

The present paper addresses a class of modes called
the ‘wall modes’ and the wavespeed of wall modes are
O(Re−1/3) small compared to the characteristic veloc-
ity of the base flow [13–15]. According to the non-
dimensionalisation used in the present work, this condition
reduces to c/Γ ∼ Re−1/3, since Γ is the non-dimensional
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maximum velocity of the base velocity profile. Previous
numerical studies in fluid flow through flexible tubes and
channels [4–6] have shown that the Reynolds number of
unstable modes in the high Re limit scales as Re ∼ Σ3/4,
where Σ = ρGR2/η2 is a flow-independent quantity repre-
senting the non-dimensional elasticity of the flexible wall.
As discussed in the previous section, this scaling also im-
plies that the tangential viscous stresses in the wall layer
are of the same order as elastic stresses in the wall at the
interface. Since Γ ≡ (ρV 2/G)1/2, it is easily seen that
Σ ≡ (Re/Γ )2 and thus Re ∼ Σ3/4 implies Γ ∼ Re1/3. It
is therefore convenient to write Γ ≡ Γ0Re

1/3 where Γ0 is
an O(1) quantity. Since c ∼ Re−1/3Γ , and Γ ∼ Re1/3, it
is readily seen that c ∼ 1. Therefore, c is expanded in an
asymptotic series as follows:

c = c(0) +Re−1/3c(1) + · · · (21)

In the limit of high Re, the viscous stresses are confined to
a very thin layer of thickness δ (� 1) near the wall. The
relation between the thickness of the wall layer δ and Re
is determined by a scaling analysis of the x-momentum
equation of the fluid (11). To this end, it is useful to in-
troduce an ‘inner’ coordinate ξ such that (1 − r) = ξδ.
The base flow velocity profile U(r) = (1+r)(1−r) is then
expressed in terms of the new variable ξ:

U(r) = δξ(2 + ξδ) . (22)

The radial derivative dr in the wall layer is expressed
in terms of derivatives in ξ as dr ≡ −δ−1dξ (where
dξ = d/dξ). The continuity equation (10) then indicates
that ṽwr = O(δ)ṽwx in the wall layer. Consequently, it is
convenient to expand the fluid velocities in the wall layer
in the following asymptotic series:

ṽwr = δ(ṽ(0)
wr + δṽ(1)

wr + · · · ) , (23)

ṽwx = ṽ(0)
wx + δṽ(1)

wx + · · · (24)

The scaled continuity equation in the wall layer, to leading
order in δ, is then given by:

−dξṽ(0)
wr + ikṽ(0)

wx = 0 . (25)

The x-momentum equation (11) then transforms in the
wall layer as follows:

ik

[
δξ(2 + ξδ)−Re−1/3 c

(0)

Γ0

]
ṽ(0)
wx − 2δ(1− ξδ)ṽ(0)

wr =

− ik
p̃wf

Re1/3Γ0

+
[
δ−2

Re
d2
ξ ṽ

(0)
wx

]
. (26)

In the above equation, in order to achieve a balance be-
tween the inertial term (the term in the square brackets on
the left side) and the viscous term (the term in the square
brackets on the right side), the small parameter δ should
scale as δ ∼ Re−1/3. The scaled governing equations in
the wall layer and the outer layer, and the solutions for
the fluid velocity field in both the layers are provided in

Appendix A of this paper. This appendix also contains the
solutions to the displacement field in the wall medium.

The scaling of the boundary conditions at the inter-
face (16–19) is considered next. The normal velocity con-
tinuity condition (16) takes the following form:

δ(ṽ(0)
or + ṽ(0)

wr ) = −ikcũr . (27)

Since c ∼ O(1) and the left side in the above equation
is O(δ), the above equation indicates that ũr at r = 1 is
O(δ). The tangential velocity condition (17) yields:

ṽ(0)
wx − 2δ−1Γ0ũr = −ikcũx . (28)

The left side of the above equation is O(1) for the following
reason: ṽwx is O(1) and δ−1ũr is O(1) since ũr at r = 1 is
O(δ). There are two ways to scale the displacement field
in the wall medium. As mentioned before, ũr at r = 1 is
O(δ). So, one possibility is to assume ũr ∼ O(δ) through
out the domain of the wall material. Then the tangential
displacement in the wall ũx ∼ O(δ) since in the bulk of the
wall medium ũx ∼ ũr according to the continuity equation
in the wall medium (13). When ũx ∼ O(δ) in the wall
material, the tangential velocity condition (28) becomes,
to leading order:

ṽ(0)
wx − 2Γ0ũ

(0)
r = 0 . (29)

It is shown in Appendix B of this paper that the above
choice of scalings for the wall displacement field yields sta-
ble wall modes identical to the ones predicted in [15] in the
limit Λ� 1. The physical reason for the stable modes ob-
served for this choice of scaling is discussed at the end of
this section.

Another possibility to scale the displacement field in
the wall is to assume ũx ∼ O(1) in (28) so that the tangen-
tial displacement in the wall medium enters the tangential
velocity boundary condition at r = 1. If ũx ∼ O(1), then
ũr ∼ O(1) in the bulk of the wall medium since according
to the continuity equation in the wall, ũx ∼ ũr. So, the
displacement field in the wall medium are expanded in an
asymptotic series as:

ũx = ũ(0)
x + δũ(1)

x + · · · ,
ũr = ũ(0)

r + δũ(1)
r + · · · (30)

The above expansions are substituted in the boundary
conditions. The normal velocity boundary condition (ṽr =
−ikcũr) becomes:

δ(ṽ(0)
or + ṽ(0)

wr ) = −ik(c(0) + δc(1) + · · · )
× (ũ(0)

r + δũ(1)
r + · · · ) . (31)

To leading order in δ, the above boundary condition yields

ũ(0)
r = 0 . (32)

The first correction to the normal velocity boundary con-
dition yields

(ṽ(0)
or + ṽ(0)

wr ) = −ik(c(0)ũ(1)
r + c(1)ũ(0)

r ) . (33)
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Since ũ(0)
r = 0 at r = 1 (32), the above equation becomes:

(ṽ(0)
or + ṽ(0)

wr ) = −ik(c(0)ũ(1)
r ) . (34)

The tangential velocity boundary condition (ṽx− 2Γ ũr =
−ikcũx) becomes:

ṽ(0)
wx − 2δ−1Γ0(ũ(0)

r + δũ(1)
r + · · · ) =

− ik(c(0) + δc(1) + · · · )(ũ(0)
x + ũ(1)

x + · · · ) . (35)

To leading order in δ, the above equation yields

ũ(0)
r = 0 . (36)

which is identical to what was obtained (32) to leading
order from the normal velocity boundary condition. The
first correction to (35) is given by

ṽ(0)
wx − 2Γ0ũ

(1)
r = −ikc(0)ũ(0)

x . (37)

It should be noted here that the tangential velocity in the
wall layer appears only in the first correction to the tan-
gential velocity continuity. The unscaled tangential stress
condition at the interface is given by

Re−1Γ [dr ṽx + ikṽr] =

(1− ikcηrΓRe−1)[drũx + ikũr] . (38)

On using the scalings for various quantities in the above
equation, we obtain:

Γ0δ(−dξ ṽ(0)
wx + δ2ikṽ(0)

wr ) = (1− ikcηrΓ0δ
2)

× [(drũ(0)
x + ikũ(0)

r ) + δ(drũ(1)
x + ikũ(1)

r )] . (39)

To leading order, the above equation yields:

(drũ(0)
x + ikũ(0)

r ) = 0 . (40)

The first correction to (39) is obtained as:

Γ0[−dξṽ(0)
wx] = (drũ(1)

x + ikũ(1)
r ) . (41)

The above equations show that the tangential stresses in
the wall layer appears only in the first correction. The
unscaled normal stress condition at the interface is given
by

−p̃f + 2Re−1Γdr ṽr = −p̃g + 2(1− ikcηrΓRe−1)drũr .
(42)

As discussed in Appendix A, p̃f ∼ O(1) to leading order.
The pressure in the wall medium p̃g is estimated from
the x-momentum equation in the wall (14), and this re-
veals that p̃g is O(1). On using the scalings for the various
quantities, the above boundary condition becomes:

− (p̃(0)
f + δp̃

(1)
f ) + 2Γ0δ

2(−dξṽ(0)
wr ) = −(p̃(0)

g + δp̃(1)
g )

+ 2(1− ikcηrΓ0δ
2)(drũ(0)

r + δdrũ(1)
r ) . (43)

The leading order and the first correction equations of the
above boundary condition are respectively given by

−p̃(0)
f = −p̃(0)

g + 2drũ(0)
r , (44)

−p̃(1)
f = −p̃(1)

g + 2drũ(1)
r . (45)

The boundary conditions at r = 1 are given below to
leading order in δ. As shown above, both the normal ve-
locity (32) and tangential velocity continuity (36) at r = 1,
to leading order, reduce to:

ũ(0)
r = 0 . (46)

The leading order tangential and normal stress conditions
at the interface reduce, respectively, to:

(drũ(0)
x + ikũ(0)

r ) = 0 , (47)

−p̃(0)
g + 2drũ(0)

r = −p̃of . (48)

At r = H, the displacement field should satisfy the zero
displacement boundary conditions:

ũ(0)
r = 0 , ũ(0)

x = 0. (49)

Note here that the velocity field in the wall layer in the
fluid does not appear to leading order in the boundary
conditions. This is very different from the asymptotic anal-
ysis of [15] where the wall layer quantities appeared at the
leading order. To determine the leading order wavespeed,
we substitute all the eigenfunctions determined previously
in the above boundary conditions. This system of equa-
tions is written in a matrix form as MC = 0, where C
is the vector of constants: {B1, B2, B3, B4, A1}, and A1 is
the constant occurring in the eigenfunction of the outer
layer (69) in the fluid, and B1 · · ·B4 are the constants oc-
curring in (79). The characteristic equation is obtained by
setting Det[M] = 0. It is easily verified that the bound-
ary conditions (46, 47) and (49) are independent of the
constant A1, and hence the homogeneous set of equa-
tions (46, 47) and (49) are solved to obtain the leading
order wavespeed c(0). Once c(0) is determined from this
set of equations, then (48) is used to determine the ampli-
tude of the outer velocity field in the fluid A1. The results
of this calculation indicate that there are multiple solu-
tions for the leading order wavespeed c(0), all of which are
positive and real, indicating that the perturbations are
neutrally stable in the leading approximation.

Figure 3 illustrates the presence of multiple modes, all
of which are neutrally stable in the leading order. In this
figure, the c(0) obtained from the asymptotic analysis is
plotted as straight lines, and different straight lines denote
the different neutrally stable modes obtained in the lead-
ing order. The asymptotic results for c(0) are compared
with the wavespeed cnum obtained from the neutral sta-
bility results of a full numerical solution of the governing
equations at different values ofRe ranging from 103 to 106.
The numerical method employed to obtain these results is
explained a little later. Figure 3 shows that the asymp-
totic and numerical results are in good agreement, and
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Fig. 3. Comparison of the asymptotic results (lines) obtained
from the present analysis with the numerical results (symbols):
Variation of the leading order wavespeed c(0) with the Reynolds
number Re for the different multiple solutions: H = 5, k =
1, ηr = 0.

the numerical results also show the existence of multiple
harmonics in the wavespeed. Moreover, the high Reynolds
number asymptotic wavespeed c(0) is well predicted by the
numerical method even when Re = 103, and the small pa-
rameter δ = Re−1/3 = 0.1 for Re = 103. Figure 4 shows
the error in the asymptotic wavespeed c(0) when compared
with the wavespeed obtained from the full numerical solu-
tion. The asymptotic analysis carried out above predicts
that the first correction to the wavespeed is O(Re−1/3)
smaller than the leading wavespeed c(0), and hence c(0) is
in error by O(Re−1/3). This prediction of the asymptotic
analysis is in good agreement with the numerical results
presented in Figure 4, which shows that the relative error
(defined as |cnum − c(0)|/cnum) between asymptotic (c(0))
and numerically obtained (cnum) wavespeeds indeed de-
creases as Re−1/3.

Since the flow is neutrally stable in the leading approx-
imation, it is necessary to calculate the next correction
to the wavespeed c(1) in order to determine the stabil-
ity of the system. The first correction c(1) is calculated
from the O(δ) correction to the characteristic equation
Det(M) = 0. This correction to Det(M) is determined
by substituting the displacement eigenfunctions correct
to O(δ) (i.e. both the leading order and first correction
to ũr, ũx) in the boundary conditions. It is also neces-
sary to determine the first corrections to the outer layer
fluid pressure p̃(1)

of . However, the leading order contribu-
tions to the wall layer quantities (57) are sufficient for this
level of approximation. All the eigenfunctions are then
inserted into the boundary conditions, and the determi-
nant of the characteristic matrix Det(M) is expanded in
δ. It should be noted that the tangential velocity conti-
nuity condition at the interface and the fluid tangential
stresses in the wall layer appear only at the O(δ) correc-
tion to the characteristic equation. The ratio of wall to
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Fig. 4. Variation of error in the leading order wave speed
c(0) determined from the asymptotic analysis with Reynolds
number Re for the different multiple solutions: H = 5, k =
1, ηr = 0.

fluid viscosities ηr is considered to be an O(1) quantity,
and hence does not appear at the first correction to the
characteristic equation. The leading order determinant of
this expansion yields an expression for c(0) which was al-
ready determined, and the first correction to the deter-
minant in the small parameter δ yields an expression for
c(1). The expression for c(1) is solved from the first cor-
rection to the characteristic equation, and it turns out
that c(1) is a complex quantity. The flow is unstable if
Im[c(1)] > 0 and stable if Im[c(1)] < 0, and so Im[c(1)] is
set to zero to determine the scaled velocity Γ0 required for
neutrally stable modes. As mentioned before, the leading
order characteristic equation admits multiple real solu-
tions for c(0). For each of the multiple solutions c(0) there
is a first correction c(1), and each of these c(1) is solved
to determine neutrally stable modes. Hence, correspond-
ing to the multiple solutions to c(0), there are multiple
solutions for the scaled velocity Γ0 required for neutrally
stable modes, and if Γ > Γ0Re

1/3 the flow is unstable.
Thus the first correction to the wavespeed shows that there
are multiple unstable solutions in the limit of high Re.
Figure 5 shows the comparison between asymptotic and
numerical results for Γ0, for the different multiple solu-
tions obtained from the asymptotic analysis. It should be
recalled here that Γ0 = ΓRe−1/3 is the scaled maximum
velocity of the base flow. In Figure 5, if Γ > Γ0Re

1/3 then
the flow is unstable. This figure again shows that there
is good agreement between asymptotic and numerical re-
sults for Γ0 even at Re = 103. Figure 6 shows that the
relative difference between the asymptotic and numerical
results for Γ0 decreases as Re−1/3, as predicted by the
asymptotic analysis.

The numerical scheme used to solve the complete dif-
ferential equations and boundary conditions governing
the stability of the system (Eqs. (10–19)) is briefly out-
lined here. The method is identical to that used in our
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previous studies on fluid flow through flexible tubes [5,6,
19]. The governing equations for the velocity field in the
fluid and the displacement field in the flexible wall are re-
duced to two fourth-order differential equations. There are
two linearly independent solutions for the velocity field in
the fluid which are consistent with the symmetry condi-
tions at the centre of the tube. For r → 0, the linearly
independent solutions are obtained as a Frobenius series
in r. This series solution is extended up to a small but
finite value of r. Using these as the initial conditions, the
governing stability equations are numerically integrated
to the fluid-wall interface at r = 1 using a fourth order
Runge-Kutta scheme with adaptive step size control. A
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Fig. 7. Variation of the absolute value of velocity field in the
fluid with Reynolds number Re for the continuation of viscous
mode [5] : Data from full numerical solution for H = 2, k =
1, ηr = 0.

Gram-Schmidt orthonormalisation procedure was imple-
mented in order to overcome the stiff nature of the gov-
erning equations in the limit of high Re. There are two
linearly independent solutions for the displacement field in
the wall consistent with the zero displacement conditions
at r = H. Both of these are determined using a fourth-
order Runge-Kutta technique. The solutions for the fluid
velocity and wall displacement fields at the interface are
inserted into the boundary conditions to obtain the char-
acteristic matrix. The characteristic equation is obtained
by setting the determinant of the matrix to zero, and this
is solved to determine the wavespeed c. The characteris-
tic equation is a highly nonlinear equation, and the high
Reynolds number asymptotic results obtained in this sec-
tion are used as starting guesses, and an iterative Newton-
Raphson method was used to obtain the wavespeed. This
numerical method was validated extensively in our previ-
ous studies [5,6,19], by comparing the numerical results
with the different asymptotic results that exist in the sta-
bility of flow through flexible tubes, as well as with the
known numerical results in the case of stability of fluid
flow in rigid tubes.

It is instructive to examine the eigenfunctions of the
neutral modes obtained from the full numerical solution,
in order to verify whether the scaling assumptions made
in the asymptotic analysis for the fluid velocities and wall
displacements are consistent with the numerical solution.
The eigenfunctions are calculated using the normalisation
condition that the absolute value of the ṽr eigenfunction
at the fluid-wall interface satisfies |ṽr|r=1 =

√
2Re−1/3.

Figure 7 shows the variation of various dynamical quan-
tities in the fluid evaluated at r = 1 with the Reynolds
number. By construction, |ṽr |r=1 scales as Re−1/3 (23).
The figure shows that |ṽx| is an O(1) quantity (com-
pare with the asymptotic expansion 24), and |dr ṽx| indeed
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H = 2, k = 1, ηr = 0. The dotted line is the reference straight
line with slope Re−1/3.

scales as Re1/3 as was anticipated in the asymptotic anal-
ysis. Thus, the results from the full numerical solution for
the eigenfunctions of various dynamical quantities in the
fluid are consistent with the scaling assumptions made in
the asymptotic analysis. Figure 8 shows the variation of
the wall displacement field with Re. This figure clearly
shows that |ũr|r=1 scales as O(Re−1/3) (see Eq. (27)),
while |ũr| evaluated at some interior point in the wall
medium is O(1) (see Eq. (30)). Both these numerical re-
sults are in agreement with the scaling assumptions made
in the asymptotic analysis. Moreover, as anticipated in
the asymptotic analysis, |ũx| is O(1) both at r = 1 and at
some interior point in the wall medium. Importantly, even
though |ũx| is O(1) at r = 1, |drũx| scales as O(Re−1/3)
at the interface. This result is again consistent with the
outcome of the asymptotic analysis, which indicated that
the tangential stresses of the wall at the interface is zero
to leading order (see Eq. (40)), and the next correction
to the tangential stresses at the interface is O(Re−1/3)
(see Eq. (39)). Therefore, the results for eigenfunctions
from the full numerical solution are consistent with the
scaling assumptions of the asymptotic analysis. Figure 9
shows the variation of the thickness of the wall layer thick-
ness δ with the Reynolds number. The wall layer thick-
ness may be estimated by computing the ratio ṽx/drṽx
from the full numerical solution. As Figure 9 shows, the
wall layer thickness δ decreases as Re−1/3 in the limit of
large Re as predicted by the asymptotic analysis, and this
shows that the numerically observed modes are indeed the
wall modes. Figures 10, and 11 show the variation of |ṽr|
and |ṽx| in the fluid with r, and here the eigenfunctions
are calculated subject to the normalisation condition that
|ṽr| =

√
2 at r = 1. These figures show that the velocities

are large very close to the wall (r = 1), and there is a
small region near the wall where the fluid velocity varies

0.001

0.01

0.1

104 105 106 107

T
hi

ck
ne

ss
 o

f 
th

e 
w

al
l l

ay
er

, δ

Reynolds number, Re

line with slope Re-1/3

Fig. 9. Variation of the thickness of the wall layer δ with
Reynolds number Re for the continuation of viscous mode [5]:
Data (symbols) from full numerical solution for H = 2, k =
1, ηr = 0.
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Fig. 12. Comparison of the asymptotic results (lines) obtained
from the present analysis with the numerical results (dotted
lines with symbols) for intermediate Reynolds number modes
of [5]. ηr = 0 for all the cases plotted.

rapidly. Both these observations indicate that the numer-
ical eigenfunctions clearly exhibit the behaviour that is
characteristic of wall modes.

The results obtained from the asymptotic analysis are
now compared with the previous numerical results of [5]
and [6]. As mentioned before, the asymptotic analysis
yields multiple unstable modes, and each of these modes
are characterised by the leading order wavespeed c(0) and
the scaled velocity required for instability Γ0. The com-
parison of the present asymptotic results with the pre-
vious numerical results reveals that the c(0) (which is
a real quantity) with the lowest magnitude (called the
‘first harmonic’) and the Γ0 necessary for instability cor-
respond to the intermediate Reynolds number mode of [5].
It should be recalled here that [5] continued numerically
the zero Reynolds number unstable mode of [2] to interme-
diate Reynolds number. Figure 12 shows the comparison
of asymptotic results of the present study with the numer-
ical results of [5], where the Reynolds number required for
instability is plotted as a function of the non-dimensional
parameter Σ. This comparison shows that the previous
numerical results are accurately captured by the present
asymptotic results, and the Reynolds number required for
unstable modes scales as Re ∝ Σ3/4. The next higher har-
monic of the asymptotic results, i.e. the c(0) with magni-
tude higher than the first harmonic, and the Γ0 necessary
for instability, correspond to the numerical results of [6].
It should be recalled that [6] continued numerically the
stable wall mode of [15] to intermediate Reynolds num-
ber, and found that the wall mode becomes unstable in
that parameter regime. Figure 13 shows the comparison
between the present asymptotic results with the numerical
results of [6]. This again shows that the asymptotic results
are in good agreement with the previous numerical results.
Though the comparison between the present asymptotic
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Fig. 13. Comparison of the asymptotic results (lines) obtained
from the present analysis with the numerical results (dotted
lines with symbols) of [6] for continuation of wall modes. ηr = 0
for all the cases plotted.

and previous numerical results is shown only for a few
parameters in these figures, it was ascertained that the
asymptotic analysis accurately predicts the numerical re-
sults for all the results reported in [5,6]. Also, it was always
found that the lowest harmonic from the present asymp-
totic analysis corresponds to the result of [5], and the next
higher harmonic of the present analysis corresponds to the
result of [6].

More importantly, the results from the present asymp-
totic analysis captures both the numerical results of [5]
and [6]. Thus the present study unifies the numerically
observed unstable modes for Hagen-Poiseuille flow in a
flexible tube into a single class of modes, namely the high
Reynolds number wall modes. There are of course, multi-
ple unstable modes predicted by the present asymptotic
analysis as shown in Figure 5, but the lowest harmonic for
c(0) corresponds to the mode with lowest Γ0, and hence
this is the most unstable mode. The high Reynolds num-
ber results of [5] were obtained as a continuation of the
zero Reynolds number unstable modes, while the high
Reynolds number results of [6] were obtained as a nu-
merical continuation of the stable wall modes. Since the
present asymptotic analysis shows that both these previ-
ous numerical results are qualitatively similar in the limit
of Re� 1, it is of interest to examine the nature of the nu-
merical continuation of these high Reynolds number wall
modes for low Reynolds numbers. Figure 14 shows the re-
sults from the numerical continuation of different neutral
modes predicted by the high Reynolds number asymptotic
analysis. There are, of course, more unstable modes, but
only the first five harmonics are plotted here for clarity.
At Re � 1, all these modes obey the scaling behaviour
Re ∼ Σ3/4, and all these modes are the continuations
of the present asymptotic analysis. The lowest harmonic
(termed Mode 1 in the figure) continues to the limit of zero
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Fig. 14. The neutral stability curves for different modes ob-
tained from the numerical continuation of the asymptotic re-
sults: Ret vs. Σ for H = 5, k = 1, ηr = 0. The dotted lines are
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Reynolds number, and the scaling behaviour at Re � 1
is given by Re ∼ Σ. This mode continues to the zero
Reynolds number viscous mode of [2], and this mode also
corresponds to the intermediate Reynolds number results
of [5] in the Re� 1 regime. The higher harmonics (termed
Modes 2 to 5) in Figure 14 all show the scaling behaviour
Re ∼ Σ3/4 for Re � 1, and this behaviour is similar to
that of the lowest harmonic Mode 1 at Re� 1. However,
as shown in Figure 14, for Re � 1, the higher harmon-
ics show the scaling behaviour Re ∼ Σ1/2 which is very
different from that of Mode 1. This class of modes with
Re ∼ Σ1/2 for Re � 1 are qualitatively different from
the ‘viscous mode’ [2]. However, for a given set of fluid
and wall parameters, i.e. for a fixed Σ, the viscous mode
(Mode 1) becomes unstable at much lower Re than the
other modes (Modes 2 to 5 and the other higher harmonics
that are not shown in this figure), and hence the Mode 1
of the high-Re asymptotic analysis is the most unstable
mode even in the low Re regime.

The physical mechanism driving the wall mode insta-
bility can be explained using an energy balance analysis,
as was done in the previous numerical studies [5,6]. It was
shown in those studies that there is an instability when the
transfer of energy from mean flow to fluctuations due to
the shear work done by the fluid at the flexible surface is
larger than the rate of viscous dissipation of energy in the
wall layer. It is also useful to note that the wall mode in-
stability analysed in this study is not a continuation of the
wall modes in a rigid tube because the transition Reynolds
number for unstable wall modes in a flexible tube scales as
(ρR2G/η2)3/4 in the limit of large wall elasticity, i.e. the
rigid tube limit, whereas the wall modes in a rigid tube
are stable in the same limit.

Before closing this section, it is useful to summarise
the important qualitative differences between the present

asymptotic analysis and the previous high-Re asymptotic
analysis of Kumaran [15]:

1. The analysis of Kumaran [15] mainly focussed on the
regime Λ ∼ 1, where Λ ≡ Re1/3G/(ρV 2), and Λ ∼ 1
implies Re ∼ Σ3/5. This scaling implies that the nor-
mal stresses in the outer layer are of the same order as
the elastic stresses in the wall medium, but the tan-
gential viscous stresses are subdominant compared to
the elastic stresses at the interface. In contrast, the
present asymptotic analysis directly accesses the scal-
ing regime Re ∼ Σ3/4 observed in numerical studies,
which implies Λ ∼ Re−1/3, i.e. Λ � 1 for Re � 1.
This scaling regime implies that the tangential viscous
stresses are balanced by the elastic stresses of the wall
at the interface. In [15], the results for the limiting case
Λ� 1 showed that the wall modes are stable in a flexi-
ble tube, while the present analysis shows that the wall
modes are unstable in the same limit Λ ∼ Re−1/3 � 1
using a different set of scaling assumptions for the wall
displacement field.

2. In the analysis of Kumaran [15], the tangential dis-
placement term is sub-dominant in the tangential ve-
locity condition (28) and in the present study (see Ap-
pendix B) it is shown that it is this assumption which
resulted in the stable modes reported in that study.
For this scaling, the wall medium is ‘tangentially rigid’
since the tangential displacement field in the wall is
sub-dominant compared to the tangential fluid veloc-
ity in the wall layer. Since the flexible tube becomes
‘tangentially rigid’, there is no possibility of transfer of
energy from mean flow to fluctuations through shear
deformation work done by the fluid at the interface.
Whereas, for the unstable wall modes analysed in the
present work, the tangential displacement term present
in the right-hand side of (37) is of the same order as
the other two terms in the tangential velocity bound-
ary condition, and hence there is a possibility of en-
ergy transfer from mean flow to fluctuations thereby
rendering the flow unstable.

3. In the present work, both the inertial and elastic terms
are of the same order in the wall medium, while in [15],
the inertial stresses in the wall medium are O(Re−1/3)
smaller than the elastic stresses, and hence do not enter
the analysis in the leading order.

4. In the present work, the wall layer quantities and fluid
shear stresses do not appear in the determination of
the leading order wavespeed c0, while they appear at
the leading order in the analysis of Kumaran [15].

3 Concluding remarks

Previous numerical studies on the stability of Hagen-
Poiseuille flow in a flexible tube showed that the flow
could be unstable at high Reynolds number, while pre-
vious high Reynolds number asymptotic analyses (that of
both wall modes and inviscid modes) predict only stable
modes. This discrepancy prompted the present asymptotic
analysis which re-examined the asymptotic analysis of wall
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modes with a fresh set of scaling assumptions. The present
asymptotic analysis shows that the Hagen-Poiseuille flow
does become unstable in the limit of high Re in the pa-
rameter regime Re ∝ Σ3/4, which is the regime where the
previous numerical studies revealed unstable modes. The
present analysis unifies many of the numerically known
unstable modes at high Re [5,6] into one class of modes,
viz., high Reynolds number wall modes, where the vis-
cous effects in the fluid are confined in a layer of thickness
O(Re−1/3) near the wall. Thus, the present work explains
why there exist unstable modes at high Reynolds number
in fluid flow through flexible tubes where viscous effects
in the fluid are confined in a small region of thickness
O(Re−1/3) smaller than the tube radius. Moreover, the in-
stability obtained in the present asymptotic analysis is not
a continuation of the wall modes in a rigid tube, because
the critical Reynolds number for the wall mode instabil-
ity in a flexible tube is proportional to (ρGR2/η2)3/4 in
the limit of large wall elasticity (i.e. the rigid tube limit),
whereas the wall modes in a rigid tube are always stable.
The physical mechanism driving the wall mode instability
in flexible tubes is the transfer of energy from the mean
flow to the fluctuations due to the deformation work done
by the mean flow in the wall layer on the flexible surface.
When this shear work done by the fluid at the surface is
greater than the rate of viscous dissipation of energy in
the wall layer, the flow becomes unstable.

Appendix A

In this appendix, the details of the asymptotic analysis of
the fluid governing equations are provided, and the solu-
tions for the fluid velocity field in the outer and wall layers
are derived. The solutions for the leading order and first
correction to the displacement field in the wall medium
are also provided here.

Without loss of generality, the small parameter δ of
the asymptotic analysis can be defined as δ = Re−1/3. In
the x momentum equation (26), in order for the pressure
in the wall layer to be of the same magnitude as the other
terms, we require p̃wf ∼ O(1) and hence p̃wf is expanded
as: p̃wf = p̃

(0)
wf + · · · . The scaled x-momentum equation in

the wall layer, to leading order in the small parameter δ,
is given by:

ik

[
2ξ − c(0)

Γ0

]
ṽ(0)
wx − 2ṽ(0)

wr = −ik
p̃

(0)
wf

Γ0
+ d2

ξ ṽ
(0)
wx . (50)

The r-momentum equation (12) in the fluid is scaled sim-
ilarly to obtain the following equation:

δ2ik

[
2ξ − c(0)

Γ0

]
ṽ(0)
wr = δ−1dξp̃

(0)
wf + δ2d2

ξ ṽ
(0)
wr . (51)

To leading order in δ the above equation reduces to
dξ p̃

(0)
wf = 0. A single governing equation for ṽ(0)

wx in the
wall layer is obtained by differentiating (50) with respect

to ξ and on using the continuity equation (25) and the
condition dξp̃

(0)
wf = 0 :[
d2
ξ − ik

(
2ξ − c(0)

Γ0

)]
dξṽ(0)

wx = 0 . (52)

It is convenient to define another variable

y = (2ik)1/3[−c(0)/(2Γ0) + ξ] , (53)

and the general solution of the above equation (52) in
terms of this new variable y is given by

ṽ(0)
wx = C1 + C2Ai(y, 1) + C3Bi(y, 1) . (54)

Here Ai(y, 1) and Bi(y, 1) are the generalised Airy func-
tions [20]:

Ai(y, 1) =
∫ y

∞
dy Ai(y) , Ai(y,−1) = dyAi(y) , (55)

Bi(y, 1) =
∫ y

∞
dy Bi(y) , Bi(y,−1) = dyBi(y) , (56)

and Ai(y) and Bi(y) are the Airy functions which are
the solutions of the Airy equation (d2

y + y)ψ(y) = 0. The
constants C1, C2 and C3 in (54) are determined by match-
ing the solution for the tangential velocity in the wall
layer with the tangential velocity in the outer layer. It
is shown below (Eq. (64)) that the tangential velocity in
the outer layer is O(δ) smaller than the tangential ve-
locity in the wall layer, and hence the matching condi-
tion requires that ṽ(0)

wx → 0 for ξ → ∞. The Airy func-
tions Ai(y, p) are convergent in the limit ξ →∞ only for
(−π/3) < Arg(ξ) < (π/3), and so it is necessary to choose
Arg(i1/3) = π/6 in (53). In this domain, the Airy function
Bi(y, p) diverges, and so the matching condition with the
outer layer requires that C1 = 0 and C3 = 0. As a result,
the solution for the velocities and pressure in the wall layer
is given by

ṽ(0)
wx = C2Ai(y, 1) , (57)

ṽ(0)
wr = C2 2−1/3(ik)2/3[yAi(y, 1)−Ai(y,−1)] , (58)

p̃
(0)
wf = 0 . (59)

The leading order fluid pressure in the wall layer p̃(0)
wf is

identically zero, and so it is necessary to estimate the next
dominant contribution to the fluid pressure in the wall
layer. The next dominant contribution to the fluid pres-
sure in the wall layer is obtained from the r-momentum
balance (12) which shows that the next highest contribu-
tion is O(δ2) smaller than ṽwx. For future reference, the
magnitudes of various dynamical quantities in the wall
layer are:

ṽwx ∼ 1, ṽwr ∼ δ, τ̃wrr ∼ δ2, τ̃wxr ∼ δ . (60)

The equations for the inviscid outer flow in the tube are
obtained by formally setting Re−1 = 0 in the governing
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equations of the fluid (11) and (12):

(dr + r−1)ṽor + ikṽox = 0 , (61)

ik
(
U − c

Γ

)
ṽox − 2rṽor = −ik

p̃of
Γ

, (62)

ik
(
U − c

Γ

)
ṽor = −drp̃of

Γ
· (63)

As mentioned in Section 2 (Eq. (44)), in order to achieve
a balance between normal stresses in the fluid and the
wall material, it is necessary to stipulate that the radial
velocity in the outer layer ṽor ∼ δ. In the outer layer, the
radial and tangential velocities are of the same order, and
so the tangential velocity ṽox ∼ δ. The fluid pressure in
the outer layer can then be estimated from the outer layer
x-momentum equation (62). This shows that p̃of ∼ O(1).
For future reference, the magnitudes of the velocity and
stress fields in the outer flow are given below:

ṽox ∼ δ, ṽor ∼ δ, τ̃orr ∼ p̃of ∼ 1, τ̃wxr ∼ δ3 . (64)

In the above equation, the normal stress in the outer layer
τ̃orr is of the same magnitude as the fluid pressure p̃of
in the outer layer. According to the above estimates, the
outer layer velocities and pressure are expanded in an
asymptotic series:

ṽor = δ(ṽ(0)
or + δṽ(1)

or + · · · ) , (65)

ṽox = δ(ṽ(0)
ox + δṽ(1)

ox + · · · ) , (66)

p̃of = (p̃(0)
of + δp̃

(1)
of + · · · ) . (67)

The governing inviscid equations in the outer layer (61, 62)
and (63) are reduced to a single equation, which, to leading
order in δ, takes the following form:

U [d2
r + r−1dr − r−2 − k2]ṽ(0)

or = 0 . (68)

This equation is solved for ṽ(0)
or , and the solution consistent

with the zero radial velocity boundary condition at the
centre of the tube r = 0 is given by:

ṽ(0)
or = A1I1(kr) , (69)

where A1 is a constant that has to be determined from the
boundary conditions at the interface. From the continuity
equation and the x-momentum equation in the outer layer,
the expressions for ṽ(0)

or and p̃(0)
of are evaluated as follows:

ṽ(0)
ox = iA1I0(kr) ,

p̃
(0)
of = (A1/k)[−ikΓ0(1− r2)I0(kr) − 2Γ0irI1(kr)] . (70)

Here, I0 and I1 are modified Bessel functions of the first
kind. The equation governing the first correction to the
velocity field ṽ

(1)
or in the outer layer is given by:

U [d2
r + r−1dr − r−2 − k2]ṽ(1)

or −
c(1)[d2

r + r−1dr − r−2 − k2]ṽ(0)
or = 0 . (71)

It is easily verified that the solution for the first correction
to the velocity field is identical to the leading-order veloc-
ity field, and therefore we can set ṽ(1)

or = 0 without loss of
generality. With this, the solution for the first correction
to the velocity and the pressure fields in the outer layer
are:

ṽ(1)
or = 0 , ṽ(1)

ox = 0 , p̃(1)
of = c(0)ṽ(0)

ox . (72)

The equations governing the displacement field in the wall
medium (13–15) are scaled using the expansions (30), and
the leading order governing equations in the wall medium
are given by

(dr + r−1)ũ(0)
r + ikũ(0)

x = 0 , (73)

− k2(c(0))2ũ(0)
x = −ikp̃(0)

g + (d2
r + r−1dr − k2)ũ(0)

x ,

(74)

− k2(c(0))2ũ(0)
r = −drp̃(0)

g + (d2
r + r−1dr − r−2− k2)ũ(0)

r .

(75)

While deriving the above equations, the ratio of wall to
fluid viscosities ηr is assumed to be an O(1) quantity. It is
important to note here that as a consequence of the scal-
ings used in the present work, the inertial stresses in the
wall medium are of the same order of magnitude as the
elastic stresses in the wall medium. In the earlier anal-
ysis of Kumaran [15], however, the scaling assumptions
resulted in inertial stresses in the wall being O(δ) small
compared to elastic stresses in the wall medium. As a re-
sult, the governing equations in the wall medium in the
present analysis contain the wavespeed c(0) (74) and (75),
while the governing equations in the wall medium of the
previous asymptotic analysis of Kumaran [15] was inde-
pendent of the wavespeed. The governing equations for
the first correction to the displacements are:

(dr + r−1)ũ(1)
r + ikũ(1)

x = 0 , (76)

− k2(c(0))2ũ(1)
x − 2kc(0)c(1)ũ(0)

x =

− ikp̃(1)
g + (d2

r + r−1dr − k2)ũ(1)
x , (77)

− k2(c(0))2ũ(1)
r − 2kc(0)c(1)ũ(0)

r =

− drp̃(1)
g + (d2

r + r−1dr − r−2 − k2)ũ(1)
r . (78)

It should be noted here that both the leading order and
first correction governing equations in the wall medium
do not contain the wall to fluid viscosity ratio ηr. The
solution to the leading order radial displacement field ũ(0)

r

are found by solving (73, 74) and (75):

ũ(0)
r = B1K1(γr) +B2K1(kr) +B3I1(γr) +B4I1(kr) ,

(79)

where γ = k[1− (c(0))2]1/2, and K0 and K1 are the mod-
ified Bessel functions of the second kind. The constants,



V. Shankar and V. Kumaran: Asymptotic analysis of wall modes in a flexible tube revisited 621

B1, B2, B3 and B4 are determined from the zero displace-
ment conditions at r = H and from the velocity and stress
continuity conditions at the interface. The tangential dis-
placement ũ(0)

x and the pressure in the wall p̃(0)
g are deter-

mined respectively from the continuity equation (13) and
the x-momentum equation (14) in the wall. The equa-
tions governing the first correction to the displacement
field (76), (77) and (78) are solved for ũ(1)

r :

ũ(1)
r = B1[k2c(0)c(1)rK0(γr)/γ]−B3[k2c(0)c(1)rI0(γr)/γ] .

(80)

Appendix B

In this appendix, it is shown that if the displacements in
the wall medium are assumed to be O(δ), then the result-
ing leading order wavespeed c(0) is always stable as found
in the earlier asymptotic analysis of Kumaran [15]. The
normal velocity continuity condition (27) indicates that
ũr at r = 1 is O(δ). If ũr is assumed to be O(δ) through-
out the wall medium, then ũx is also O(δ) according to the
continuity equation (13) in the wall medium. Therefore,
the displacement field in the wall is scaled as follows:

ũr = δ(ũ(0)
r + δũ(1)

r + · · · ) , ũx = δ(ũ(0)
x + δũ(1)

x + · · · ) .
(81)

The above expansions are substituted in the boundary
conditions at the interface. The normal velocity continuity
(ṽr = −ikcũr) becomes:

δ(ṽ(0)
or + ṽ(0)

wr ) = −ik(c(0) + δc(1))δ(ũ(0)
r + δũ(1)

r ) . (82)

To leading order in δ, this yields:

ṽ(0)
or + ṽ(0)

wr = −ikc(0)ũ(0)
r . (83)

The tangential velocity continuity condition (ṽx−2Γ ũr =
−ikcũx) becomes:

ṽ(0)
wx − 2Γ0δ

−1δ(ũ(0)
r + ũ(1)

r + · · · ) =

− ik(c(0) + δc(1))δ(ũ(0)
x + ũ(1)

x + · · · ) . (84)

To leading order, this condition yields:

ṽ(0)
wx − 2Γ0ũ

(0)
r = 0 . (85)

The tangential stress continuity condition (18) can be sim-
ilarly scaled, and to leading order, this gives:

Γ0[−dξṽ(0)
wx] = (drũ(0)

x + ikũ(0)
r ) . (86)

The normal stress balance (19), on using the above scaling
for the displacement field, yields:

−p̃(0)
of + 2δ2Γ0[−dξ ṽ(0)

wr ] = δ[−p̃(0)
g + 2drũ(0)

r ] . (87)

Here, it should be recalled that, as discussed in Section 2,
the pressure in the outer layer in the fluid is O(1). The
pressure in the wall medium p̃g can be estimated from the
x-momentum equation (14) in the wall, and this shows
that p̃g ∼ δ, since ũx ∼ δ. To leading order in δ, the above
equation yields:

p̃
(0)
of = 0 . (88)

Therefore, for this choice scaling of wall displacement
quantities, the fluid pressure in the outer layer is zero in
the leading approximation, and the fluid pressure in the
outer layer is O(δ). The momentum equations in the outer
layer then indicate that ṽ(0)

or and ṽ(0)
ox are zero in the leading

approximation. On noting the above conclusions regard-
ing the outer layer velocities, the leading order boundary
conditions at the interface become:

ṽ(0)
wr = −ikc(0)ũ(0)

r , (89)

ṽ(0)
wx − 2Γ0ũ

(0)
r = 0 , (90)

Γ0[−dξṽ(0)
wx] = (drũ(0)

x + ikũ(0)
r ) . (91)

It is easily verified the equations (89) and (90) are suffi-
cient to determine the leading order wavespeed c(0), since
these two equations can be used to eliminate ũ(0)

r to give
the following characteristic equation for c(0):

2Γ0ṽ
(0)
wr + ikc(0)ṽ(0)

wx = 0 . (92)

Here the velocities ṽ(0)
wr and ṽ

(0)
wx have to be evaluated at

the wall (r = 1 or ξ = 0). The solutions determined for
the wall layer quantities (57) can be used in the above
characteristic equation to determine c(0). It can be fur-
ther verified that, on using the solutions to the wall layer
velocities, the above equation (92) reduces to

Ai(ywall,−1) = 0 , (93)

where ywall denotes that the variable y (53) should
be evaluated at the wall i.e. ξ = 0, which gives
ywall = (2ik)1/3(−c(0)/(2Γ0)). The above characteristic
equation (93) is identical to the characteristic equation
obtained by Kumaran [15] (see equation 35 in that pa-
per) in the limit Re1/3G/(ρV 2) → 0. There are multiple
solutions to the equation Ai(ywall,−1) = 0, and all these
solutions are negative real quantities (see [15]). Therefore
the solutions to ywall are negative and real, which implies
that from the definition ywall, the various solutions to c(0)

have negative imaginary parts indicating that the flow is
stable for this choice of scalings of the wall displacement
field. It is further interesting to note that the leading or-
der wavespeed for this class of ‘stable wall modes’ (also
discussed in [15]) are determined purely from the fluid
eigenfunctions, and the wall medium eigenfunctions do not
enter at the leading approximation in determining c(0).
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