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Spontaneous motion of droplets during the demixing transition
in binary fluids
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The convective interaction between a pair of droplets coarsening during the demixing transition of
a binary fluid is examined. The starting point is the moeéquation for binary fluids, and the
droplet sizes are considered to be large enough that thermal fluctuations are neglected. Droplet
motion is induced by the convective coupling in the concentration equation, where there is a flux of
concentration due to the fluid velocity, and a reciprocal effect in the momentum equation. The effect
of the convective force density is separated into two parts—one due to the sharp concentration
gradients at the droplet interface, and the other due to the variation in the matrix. It is shown that
the dominant contribution to the fluid velocity field is due to the sharp concentration variation at the
interface, and this is proportional to the square of the droplet flux at the surface. The surface flux is
determined by solving the diffusion equation in the matrix between the droplets, and matching the
solution to that in the interfacial region. The analysis indicates that there is an attractive interaction
if the two droplets have radii larger or smaller than the critical radius, while the interaction is
repulsive if the radius of one droplet is larger and the other smaller than the critical radius. The
magnitude of the induced droplet velocity is estimated.2@0 American Institute of Physics.
[S0021-960600)50521-2

I. INTRODUCTION servation equation, which is the reciprocal of the convective

) ) transport term in the mass conservation equation in the
There are two different types of morphologies that COUIdmodel H® equations for a binary fluid. Further, it was also

develop during the late stages of the demixing transition insuggested that this force is caused by the sharp gradient in

binary fluids. In a nearly_ symmetric querjch, demixing PT9"\he concentration at the droplet interface. An analysis of the
ceeds due to the formation and coarsening of random inter-

faces which separate the two phases. In an asymmetr{gouon of a droplet in a steady concentration gradient was

quench, droplets of the minority phase nucleate in the majorc_:arrled out by TanaK4 to illustrate the effect of concentra-

ity phase, and then grow due to diffusive transport or Brown-ti_on gradient on droplet motion. Simulations in a t\NQ dimen-
ian motion. The evolution of the morphology is very differ- sional systertf have also demonstrated the attractive inter-
ent in the two cases; the characteristic length scale of &ction between growing droplets in a supersaturated matrix.
random interface increases proportional tto', while the Though experimental systems involve a large number of
characteristic droplet radius during droplet growth increaseglroplets simultaneously interacting with each other, the basic
proportional tot % in the case of diffusive growth as well physics of the interaction is better illustrated by first consid-
as Brownian motion, whergis the time after the quench. ering a pair of droplets growing in a supersaturated matrix.
There have been many theoretical stutiiéand computer Moreover, the multipole expansion method used here for cal-
simulation§® which have shown that there is a qualitative culating the interactions can be easily extended to a system
difference in the droplet growth process between metal alwith many droplets. The interaction between a pair of drop-
loys and fluid mixtures. This difference is because droplejgts of equal radius was analyzed earfiemd it was found
coarsening could be enhanced by convective transport of Mgn ¢ there is an attractive interaction between the droplets due
terial, in addition to the usual diffusion process that is re-;; .onvective effects. In the present case, the analysis is ex-

spons'|ble for the 'Fl’al’_l?é)ort of material in solid latticés: tended to droplets of different sizes, and the droplet defor-
Experimental studi¢$™'® have also shown that the growth L . : .
mation is also examined. The calculation of the flow induced

process is very different from the diffusion controlled growth : L . . .
due to concentration variations is carried out in two steps. In

processes in metal alloys and magnetic systems. he fi it is sh hat the sh . di
In addition to diffusive transport and Brownian motion, the first step, it Is shown that the sharp concentration gradi-

another mechanism for the coalescence of droplets has beER!S at the interface provide the dominant contribution to be
identified in recent experiment&3in these experiments, it COnvective force density and the induced fluid velocity, and
was observed that even when the droplets are Sufﬁcienﬂywe fluid velocity field is related to the flux at the surface. In
large that Brownian motion is negligible, coalescence take$he second step, the diffusion equation for the concentration
place due to the spontaneous motion of droplets towardfeld around a pair of droplets is solved to obtain the surface
each other. It was suggested that this could be due to thiux, and the motion of the droplets. The principal result of
force exerted by the convective term in the momentum conthis analysis is that there is spontaneous droplet motion due
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to a contribution to the surface force density when the sur- 1
face flux is nonzero, and this contribution is large compared ~ Jij(X) = %
to surface tension effects under nonequilibrium conditions.

ﬁ XiX]'
X[ Ix®

. )

A further simplification is possible in the expression for the
II. ANALYSIS velocity (5) by realizing that the convective force density due
to the contribution proportional tb[ c] in the expression of

The system consists of two dropletsand B with radii {6 free energy is longitudinal

R, andRg separated by a vector distancegrowing due to
diffusion in a matrix with a concentration, which is higher o6f [c]

than the saturation concentration. The free energy of the sys- dic Sc =af[c] ®

tem is assumed to be of the usual Cahn—Hilliard square gra-

dient form with an additional contribution due to the kinetic and therefore does not contribute to the transverse part of the
energy of the fluid velocity field. The equation for the velocity in the fluid is
then given by

f[c]+§(&ic)2+ gu? : 1)

F[c]=J dx

where indicial notation has been used for the vectdrs,

=(dldx;), p is the fluid density an@; is the velocity. Itis  thare are two length scales of interest in the problem, the
not necessary to specify c] because, as discussed later, they,aqhitde of the droplet radit® and the interfacial thick-

motion of the droplets depends only on the square gradienfossh The fluid velocity field can be separated into two
term in ghe free energy. The conventional model  .,ninytions—one due to the sharp gradients in the concen-
gquaﬂon% are used for the concentration and velocity field 1o field at the droplet surface and the second due to the
in the fluid variation in the concentration in the matrix between the two
SE droplets. It can be shown as follows that the velocity due to

3tCZA'9i25—C_vit9iC+§ the nonequilibrium correction to the concentration field at
the interface is large compared to that due to the variation in

vi(x)z—Kf dx’ Jij(x—x’)ﬁjc(x’)aﬁc(x’). 9

A2 , of[c] the matrix. For this purpose, it is useful to consider a specific
=Adf —Kajet e TVidictE, @ model for the free energf/ [c],

— 92 oF X 2 2
p&tvi—uﬁjvﬁﬁicgﬂ%i, 3 f[c]=§(c—cd) (c—cm)?, (10

whereu is the fluid viscosity, and and {; are the appropri- where y is a constant, and, and c,, are the equilibrium

ate noise sources required to satisfy the fluctuation dissipgsyoplet and matrix concentrations, respectively. The flux of
tion theorem. The convective force density, which is the secpaterial from the matrix to the droplet causes interface mo-
ond term on the right side of3), is reciprocal to the oy and the concentration in the reference frame fixed on

convective term in the mass conservation E), and these e interface is determined from the concentration equation
two terms are required to ensure that the Poisson bracket

relations are satisfied. The Langevin noise sources are ne- ’
glected in the late stages of spinodal decomposition when the ™ U(Xs) .= A d, Sc
Brownian motion is negligible. In the concentration equa-

tion, the convective transport is considered to be small com- = Ad5[—KdZe+2x(c—cy)
pared to the diffusion of solute, and the conditions for this

. . . . . . X(Cc— 2C—Cy— 11
assumption to be valid are examined a little later. With this (€= Cm)(2€=Ca=Cn)], (D
simplification, the concentration equation is wherez is the coordinate normal to the interface, ancs)

= is the normal velocity of the interface due to the flux of
atc=A(9i2%. (4)  solute. The equilibrium concentration profile is
The momentum equation is further simplified by neglecting c :Cd+cm_ Cd_Cmtan Z (12)
fluid inertia, which is small in realistic systef® give © 2 2 h/’
2 oF | whereh=[2K/x(cq—cm)?]¥2is the interfacial thickness. In
mdivit+| diC— =0, (5) .
J oc|, the above expression, curvature affects have been neglected

h h The ab since the interface thickness is small compared to the radius
where[---], reg)resen_';st eltrz(ijnsver_se component. The abovg; ihe droplet. It is useful to express the concentration profile
equation can be easily solved to give asc=(cqt+Ccy)/2+ p(cy—cy)/2. The equilibrium interface

OF concentration is then
Ui(X): f dx’ \]ij(X_X,) ﬂjC(X,)W ) (6)
1 4
where the Oseen tensdy; is Vo= —tank(ﬁ). (13
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Cy

< the length scale for the variation of is R. With this sim-
plification, the concentration equation reduces to

gc* =Dafc*, (18

~gtm ¢ where the diffusion coefficierid = A y(cq— cpm)?. If the mo-
tion of the interface is due to diffusion, the left-hand side of
(a) (b) the above equation can be estimated as*(R), whereu,
the normal velocity of the interface, 8(Dc*/R(cy—Cp)).
FIG. 1. Schem_atic of the variation of the con_centrati_on fi(_eld on the scale oit is easily seen that in the late stage when the supersatura-
the droplet radiuga) and on the scale of the interfacial thicknébs tion is small ancc* <(cq—c,.), the left-hand side of18) is
small compared to the right-hand side. However, there is
droplet motion due to convective effects as well, and it is
The nonequilibrium correction to the interfacial concentra-shown a little later that the velocity field in this case scales as
tion profile is determined by linearizing the concentration(K(c..— cy)?R/L?u), wherep is the fluid viscosity and. is
equation in the departure from equilibriugh= ¢y— i, the distance between the interacting droplets. It can easily be
verified from (1) that the surface tensiom~K(cq—cy)?/h,
) 4 (14) and therefore the fluid velocity due to convective effects
’ scales as €(C.—Cy)?RWL?(cy—cy)?n). This velocity
could be significant even though the ratio.tcp,)/(cq
—cy) and(h/L) are small, because the ratia/7) could be
quite large. For example, the surface tension and viscosity
for water areO(10™ 2 kg/s’) and 10 2 kg/m/s, respectively,
and so the ratido/7) is O(10 m/s). Therefore, even if the
ratio (RWWL?)(C..—Ccm)?/(cqy—Cm)? is O(10 #), the convec-
tive velocity is still of O(1 mm/s). The ratio of the convec-
tive and diffusive terms in the conservation equation is
O(ohR?/L29D)(c..—¢pm)?/(Cy—Cm)2. In the present analy-
sis, this parameter is considered to be small, and diffusion is
where the constants of integration are determined from thggnsidered to be dominant in the leading approximation. In

requirement that they=0 andd+ ¢=0 in the droplet phase the absence of convection, the concentration equation re-
z* — —, where the concentration is equal to the equilib-qyces to

rium concentration. It is not necessary to obtain the numeri-

3yi-1
2

1,

u(Xs)
- A

2
Taz* e:F J

where the dimensionless coordina#® =(z/h), and D
=Ax(cq—Cm)? is the bulk diffusion coefficient. The above
fourth order equation can be integrated twice to obtain

3y2-1
o

1 2
- Eﬁz* ¢+

h z*
f dy(—#e(y))+z* —log(2)
0

5 , (15)

cal solution to Eq(14) for ¢, but is sufficient to recognize gic* =0. (19
the following limiting behavior of the functiom(z*), It can also be inferred that the convective force density in the
porexp(2z*) for ¥ — — oo, _matrix, whi_ch is_ proportional t(ﬁjzc, i_s _also zero in the Iea(_j-
(16) ing approximation. Consequently, it is sufficient to consider
_2u(xgh for 7+ the fluid flow due to the convective force density at the in-
- p ¢ lorz—e terface alone.

o o For sharp interfaces, the integral (® can be separated
The above limiting behavior is accurate only orh atthe g the product of integrals over the coordinate normal to
interface, and this is not applicable for-R because there is e interfacez and the area of the droplét

a correction due to curvature effects. A schematic of the
variation in the concentration field on the scale of the droplet _ N2
radius is shown in Fig.(®), and on the scale of the interface vi(X)= _KJ dA J”(X_XS)J dz gic(x")a7e(x’), (20
thicknessh is shown in Fig. 1b).

The concentration field in the matrix is determined by
solving the diffusion equatio). It can be shown, as fol-
lows, that this reduces to the Laplace equation for the con

centration field in the matrix. The concentration field in thetration gradients are significant only over the interfacial re-

o . . .
??/UX ":’] (;,\r):prlessTd ar?:C:t:E errllilrfﬁ Lsthke ?lffirdenci Ig?ion of thicknessh. At equilibrium, it can be shown that the
etween the local concentration a € background co Ceterm—dez aic(x’)&jzc(x’) gives the normal force exerted

trat!on C-. at a Iargg distance from the droplet. The_ concen-by the interface, which is the product of the surface tension,
tration equation(4) is expressed in terms af*, and linear-

ized in the limit (c.—c,)<(cy—C,) appropriate for late mean curvature and the unit normal. The dominant contribu-
stage arowth. to ot;ainm d™ Cm) aPProp tion to the ternw;c at equilibrium isn;d,c, since there are no
g€ 9 ' concentration variations in the tangential direction. The term

wherex, is the position along the surface of the droplet. In
deriving the above equation, the Oseen tendpfx—x')
=Jij(X—=Xs—2n) has been approximated By, (x—Xs). The
error due to this approximation 8(h/R), since the concen-

A1C* = A7 — KPc* + x(Ca— ) 2C* 1. (17)  d7c can be written as
2
In the above equation, it can easily be verified that the first 2. _ 2 101 h_
term on the right i0(h%/R?) smaller than the second, since ~ *) c—a2c+( R: R, 92c+0| gz @)
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where R; and R, are the principal radii of curvature at a matching the inner solution in the interfacial regidi®) with
point on the interface, and the second term on the right-hanthe outer solution obtained by solvirig9) in the intermedi-
side of (21) is because the coordinates measured from a ate regiorh<z<R. In this region, the inner solution for the
curved surface. Using the above relations, the term concentration field scales as,+O(uz(cy—c,)/D) from

(16), which isc,+0(0O(z(c.—cpy) /R)) since the velocity
_ Kf dz aizajzz of the 'interfaceu is O((D/R)(qw— cm)/(cd— cm)). Thu§,' th'e

deviation of the concentration field from its equilibrium

value c,, in the matrix isO(z(c.,—c,)/R), which is small

=— KniJ dz azca§c+ R—+ R (<9Zc)2 compared to the magnitude of the concentration variation in
roe the outer region &.—c,,) in the limit h<z<R. Conse-
1 1 5 quently, it is appropriate to set the concentration at the inter-
=—Kn, R, + R_z) j dz(d,c)°|. (22 face equal to the equilibrium concentratiog while obtain-

ing the outer solution.
At equilibrium, it is easily verified that the first term on the The radius of the droplet in the absence of Brownian
right-hand side of(22) is identically zero, becausé,c,  motion or convection is determined by the Lifshitz—Slyozov
which is the flux of solute at the interface, is zero. The SeCtheory}l where the drop|et concentration is assumed to have
ond term on the right-hand side (#2) is the product of the reached its equilibrium value, but the matrix is supersatu-
unit normal (), the curvature[ (1/R;) +(1/R)], and the rated. The chemical potential for the droplet phase contains
surface tensiork fdz(d,c)% and the negative sign if22)  an additional contribution due to the Laplace pressure arising
indicates that the force due to surface tension is directe¢tom the surface tension between the droplet and matrix,
opposite to the outward unit normaj. In a nonequilibrium  while the chemical potential of the matrix is higher than the
system, the flux at the interface is nonzero, and consequentyquilibrium chemical potential. When the droplet size is
the first term on the right-hand side @?2) is nonzero. More-  smaller than a critical value, the chemical potential of the
over, this term isO(R/h) larger than the second term, and droplet (which contains a contribution proportional to the
consequently provides the dominant contribution to the coninyerse of the radius due to the Laplace pressisdigher
vective force density at the interface, and the second term ofhan that of the matrix, and the droplet shrinks. When the
the right-hand side can be neglected in comparison to thgroplet size is larger than the critical value, the chemical

(ﬂZC)2|Dioo+

first. With this approximation, the velocity field is potential of the droplet phase is lower than that of the super-
saturated matrix and the droplet grows. The critical radius
vi(X)= —Kf dA Jj(X—Xs)Nj(Xs) (for a given supersaturation of the majriis the radius at

which the droplet neither shrinks nor grows. The equilibrium
) concentration of the matrix at the droplet surface depends on
Xf dz 9,¢(Xs+ NZ)d;C(Xs+N2) the radius of the droplet, and the equilibrium concentrations
for two interacting droplets with radiug, andRg are'

oo

(d,6(xs+ n2))?
2

! !

— CA:Ce+ R_A, CB:Ce+ R_By (25)

(23
] ) ) ) .. whereC, is the equilibrium concentration above a plane sur-
Since the droplet concentration has attained its equilibriumg.o ang C'/R,) and (C'/Rg) are the corrections to the

value,d,c=0 in the limitz— —oo. The gradient of the inter-  oq,jilibrium concentration due to the curvature of the droplet.
facial concentration profile in the regiar- is determined |1 is now necessary to solve the Laplace equation for the

by matching the interfacial solution valid fa~h and the  ;oncentration field(19) with the boundary conditions*
outer solution in the matrix valid for~R in the intermedi- _ —cX=c,—c, at the surface of dropleA and c* = —c%

ate regionz>h andz<R. It is shown a little later that this _ . g at the surface of droplé. The critical radiu' is
matching condition reduces to the requirement that the co jiven by R,=C'/(c..—C,), andc* =0 at the interface for
C © e/

centration at the interface obtained from the outer solutiony,yiets with the critical radius. In the theory for late stage
should be equal to the equilibrium matrix concentration, anquoplet growth, droplets with radius larger than the critical

the concentration gradiedic=(j,/D), wherej, is the nor- o 4,5 grow due to diffusion of solute into the droplet, while
mal flux at the interface obtained from the outer solution.qqyiets with radius smaller than the critical radius shrink

With these simplifications, the expression for the fluid veloc-y,,e to diffusion from the droplet to the matrix.

ity reduces to The solution is obtained using multipole expansions,
K where the concentration field is determined as an expansion
vi(X)=— Wf dA Jj(X—Xs)[jn(Xs) 1% (24)  in spherical harmonics in two coordinate systems with ori-
gins at the centers of the two droplets. The solution for the
It can be seen froni24) that the fluid velocity field de- concentration field is obtained as an asymptotic expansion in
pends on the flux of solute at the interface of the droplet. Thehe parametersR,/L) and (Rg/L), whereL is the distance
concentration field and the interfacial flux due to the interacbetween the two droplets. Two spherical coordinate systems
tion between a pair of droplets is examined next. The boundfr 5,64, #4) and (g,6s , ¢g) With origins at the centers of the
ary conditions at the droplet surfaces are determined bywo droplets are chosen as shown in Fig. 2. The concentra-

=_Kf dA Jij(X—Xs)nj(Xs)
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Aom= — CX Som»
RA n—mfm—n—-1 n+q
Anm=— RB) [ qz B (m—n—q-— 1)( q )
for n>0,
Bom=— CE Som @9
Rg\"™™ m-n-1 n+q
oue (8 TR Al
FIG. 2. Coordinate systems used for calculating the concentration field for n>0.

around a pair of droplets.
P P The normal flux at the surfaces of dropktandB are then

obtained from the above solution

L .
tion field is axisymmetric about the line joining the centers’A Darac” v\,

of the two droplets, and the solution for the concentration © o m m-n-1
+
field is given by =-D> > (_(n 1)A”m)(& + > (anm)
n=0 m=0 RA L q=0 RA
0 B RQ“’HRR n+q
2 ( —71 Pn(COq04)) + n+1 P,(coq6g)) |, (26) X [nrmiarT n Pn(cog6,)) (30)
_ o jg=—DdaC* | =R,
whereP,(x) are Legendre polynomials. The coefficieAts
and B, are expressed as an asymptotic expansion in the pa- B (n+1)B,\ [Rg\™
rameters R, /L) and Rg/L), Dngo mzzo T TR T
m—n—1 m+q+1pn
. m NAgm|(RA 9 'RE) (n+q
-3 Anm(%) | + 2 ( R )( Ln+m+q+1)( g | |Polcosie)).
m=
(27 (31

= E Bnm( L )
m=0

and the coefficient®\,,, and B,,,, are chosen to satisfy the
boundary condition$25) at the surfaces of the two droplets.

For this purpose, it is necessary to express the spherical har-

monics in the coordinate system centered at droplen
terms of those centered at dropRtand vice versa. These
relations are provided by Hobsbh

1 n+1
(—) Pn(cog6a))

F'a

n+q

:I_n-%-lOC
|l

BHESS

L q=0

rg\
)(f) Pq(cod 6g)),
(28)

1 n+1
(—) Pn(cog 0g))

E

for ra<L andrg<L. Using the above relations, the coeffi-
cientsA,, andB,, are

>

q=0

1 n+1l *
.

(n+q

A q
) (f) Pq(cos 6,))

The fluid velocity field can now be calculated using Eq.
(24), and the velocity of the surface of the droplet thereby
evaluated. It is convenient to determine the radial velocity of
the droplet surface using an expansion in Legendre polyno-
mials

Oar(61)= 2 VRVPn(COS 0)). (32
The radial velocity does not contain a component propor-
tional to Py(cos(f,)) due to the incompressibility require-
ment. The coefficient/!) are determined using Eq24)

and the orthogonality condition for Legendre polynomials

K s
V== 07,3, | 6660
2D° ;5RB

2n+1)
jdXAsn(XAs)‘Ju(XAs XJS) 4mRZ Pn(cog6a)).

(33

The coeﬁicient\/(l) provides the translational velocity of the

droplet, while the higher order terms give the rate of defor-

mation. The details of the calculation of the integral$36)

are provided in the Appendix, and the results Yti[’) for O

<n<5 correct toO(1/L°) are also listed in the Appendix.
Due to symmetry considerations, the droplets are con-

strained to move along the line joining their centers, and the
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velocity perpendicular to the line joining their centers is ‘ _ ‘

zero. The translational velocity of the droplet along the line \ 7 “ /
joining the centers is determined as the average of the veloc-

ity over along the line joining the centers over the surface of —_— - - .~
the droplet: ’

f\/f\

(@)

1
VA:§J ds COS GA)UAM (34)

whereSis the surface of the droplet, and the factor &g(
provides the component of the radial along the line joining \ f
the centers. It can be easily verified that when the velocity is

” ~ /

expanded in a Legendre polynomial seri@g), the integral

(34) provides — - - —_—
VA=V (35) J/ N Ve \

It is useful to examine the motion and deformation of the
droplets when the distance of separation is large compared to )
the droplet radius. The leading order contribution to the ;

mean velocity of the droplet{&”, proportional to (1L?), is AN / \ * o
4KcicgR

Vi =—£ 7= +0(LY), (36) — -— -~

In the limit of largeL, this velocity is positive if the product V4 \ / ~

(cacg) is positive, and the droplets approach each other f ;

along their line of centers. Thus, two droplets with radii (©)

greater than or less than the critical radius approach each o _ _

other, while a pair of droplets with one larger and the OtheIFIG' 3. Variation in the surface flux due to the interaction between two

.. . . . droplets(a) both of which have radii larger than the critical radi{s), both
smaller than the critical radius move away. This physicalyf which have radii smaller than the critical radits) one has radius larger

reason for this behavior is shown in Fig. 3. When the twoand the other smaller than the critical radius.

droplets are either larger or smaller than the critical radius,

the flux on the part of the droplet surface facing the other

droplet is smaller than that on the part not facing the otheBrownian motion were neglected in this analysis. The con-

droplet. Since the velocity at a point on the surface dependsgective interaction arises due to the presence of the convec-
on the square of the normal flux at that point fr¢24), this  tive terms in the concentration equation, and the reciprocal
variation of the flux results in the two droplets coming to-term in the momentum equation required for satisfying the

wards each other. When one of the droplets is larger and thiguctuation dissipation theorem. The effect of the convective

other smaller than the critical radius, the flux in between theerm in the momentum equation was separated into two parts
two droplets is larger than that on the parts of the surface not-one due to the sharp concentration gradients at the inter-
facing the other droplet. This results in the droplets movingface and the other due to the variations in the matrix between

away from each other. two droplets. It was shown that the dominant effect is due to
The leading order contribution to the deformation ratethe sharp concentration variations at the interface under non-
v, proportional to (1%), is equilibrium conditions, and this effect was proportional to
AKC* CXRAR f[he square of the sol_ute flux at the interfe_lce. _The flux _at the
Vng%’*B +O(1L4. (37)  interface was determined by solving the diffusion equation in
L the matrix between the two droplets, and matching the solu-

This coefficient is also positive farc >0, indicating that ~ ion with that in the interfacial region. _

droplets which approach each other deform into prolate  The results of the analysis indicate that convective ef-
ters, while the coefficient is negative fof ¢ <0 indicating ~ droplets have radii that are larger or smaller than the critical
that droplets which move apart deform into oblate spheroidé2dius, then the droplets approach each other, while if one

which are compressed along the line joining their centers. Nas a larger radius and the other has a smaller radius, then
there is a repulsive interaction. The physical reason for this is

shown in Fig. 3. In addition, the deformation of the droplets

could also be determined in the present analysis, and it was
The interaction between a pair of droplets in the demix-found that droplets attracted to each other deform into pro-

ing transition in a binary fluid has been examined in the latdate spheroids along the line of centers, while droplets that

stages where the Brownian diffusion is not important. Theare repelled deform into oblate spheroids.

modelH concentration and momentum equations were used It is useful to estimate the magnitude of the droplet ve-

as the starting point for the analysis, and inertial effects andbcities. It can easily be verified frorfil) that the surface

Ill. CONCLUSIONS
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tensiono~K(cy—cm)?/h, wherecy is the droplet concen-
tration andc,, is the concentration in the matrix which is in

equilibrium with the droplet phase. Therefore the fluid veloc-

ity due to convective effects scales aso(€.
—cm)?RIVL2(cy—cm)27). The ratio R/IL)~1, and (/L)
~10"3 for typical values ofR~1 um andh~1nm. The
surface tension and viscosity for water aP¢10 2 kg/<s’)
and 103 kg/m/s, respectively, and so the ratio/@) is
O(10 m/s). Therefore, even if the ratioc{—cy)?/(cq
—cy)? is in the range 10°-10 %, the velocity is
1-100um/s, which could be significant.

APPENDIX

The calculation of the integrals i83) is discussed in
this section. The expression fM&”) can be separated into
two parts, Vi and V{3, which represent the Legendre
modes of the velocity induced at the surface of dropleiue
to the flux at the surface of droplétandB, respectively,

(m K . AdL] (Xp9) 12
VAA_ — ﬁ dXAs nj(XAs)[J (XAS)]

n+1)
JdXAsn(XAs)‘]lj(XAs XAS) p R2

Po(CoS 0n)),
(A1)
K

ViE= -~ 5p2 f Oas Nj(as) [} (Xee) 2 f dXas Mi(Xno)

(2n+1)

X Jij(Xas— Xas— L) R2 Pn(cog6,)).

The first componeny{), is determined as follows. The

coordinate system shown in Fig. 2 is employed, where the

azimuthal angle betweex},, and the line joining the centers
of the two droplets i9,, and the azimuthal and meridional
angles betweeRr,s andx,¢ are (0*,¢*), respectively. The
azimuthal angle between the vectgy; and the line joining
the centers of the droplets is then given by

cog 6*) N

V. Kumaran

coq 0,) = cog 6* )cod ) — sin( 6% )sin( 6,) cog ™).
(A2)
The functionn;(xas)Jij(Xas—Xas)Nj(Xas) Can be expressed
in terms of the angle#,, 6*, and ¢*:
N(Xas)Jij(Xas— Xas)Nj(Xas)

3cog6*)—1

= . A3
8muRA(2+2)[ 1~ cog 6*)]"? A9
Using the above expressions, the componéf} is
VXX_S deAs[](XAs)]Zh Pn(cog6,)), (A4)
where
hoo 1 2I’H—1f77d(9
n_Pn(COS(QII_\)) 2 0 A ni(XAs)
X Jjj(Xas™ Xas)Nj(Xas) Pr(COK O)). (A5)
Using (A3), the coefficientsh, for 0=n<5 arehy,=0, h;
=(8/5), h,=(8/7), hy=(16/15), h,=(80/7), and hg

=(40/39), respectively.
The second componentY}) is determined using an
asymptotic expansion in the paramete®s (L) and (Rg/L)

:_f dXBs n; (XBS)
X[ PS S TaPa(cos o)) (A6)

where the coefficientg,,, determined as follows. The coor-
dinate system shown in Fig. 2 is used for the analysis, and
the product

(Ra—Rg cog 6*)—L coq 64))(Ra cOg6*)—Rg+L coq6g))

Ni(Xas)Jij (Xas— Xgs)Nj(Xgs) = r

wheredj is the azimuthal angle of the vect} in a spheri-
cal coordinate system centered at drofdeand 6, and ¢,
are the azimuthal and meridional angles of the vegjqrin
a coordinate system centered at dropiet
r=(Ri+R3+L%— 2RsRg cog 6* ) —2RAL co 0,)

—2RgL cog 65))*? (A8)

is the distance between the positiog, on dropletA andxg,
on dropletB, and

cog 6% ) = — c0g f)c0g ) — Sin( 6)SIN( H5) COK Pp)
(A9)

r3 ’ (A7)

is the cosine of the angle between the vectgrsand xg;.
The expressiorfA7) is expanded in a Taylor series in the
parametel1/L)

I m( O, Pa.08)

X (AL0)

ni(XAs)‘Jij(XAS_XIIBS)nj(Xl,Bs):
and the coefficientg,,, are evaluated from the coefficients
Im

(2n+1)

Imn= —2_J dXAs m(aA ¢A-‘98)P (COSGA)) (Al]—)

The following coefficientsg,,, for (0=m=5) and (0<n
<5) are not zero:
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911= —2 cog bg),
921=Rg—3 c08 63)°Rg,
U22=—2 C0g Og) R,
031=(2 cog 05)R3)/5+ 4 cog 05)R3— 6 cos 05)°R3,
32— 2RARg— 6 €05 63)°RaRs,
gss=(— 12 cog 5)R3)/5,
0a1=(—3R3Rg)/5+ (9 cog 05)°RaRg)/5— (3R3)/2
+12 cog 0p)?R3— (25 cos 05)*R3)/2
Uao=(6 cog O5)R3)/7+ 12 co% 05) RAR3
—18 co$ 05)°RAR3, (A12)
Jas= (18R3Rg)/5— (54 cos 0) 2R3Rg)/5,
9as= (—20 cog 6)R3)/7,
Us1=(— 18 cog 05)RaR3)/5+ 6 cog 0) *RAR3
— (33 cos605)Ry)/4,
+(65 co% 05)°Re)/2— (105 co$65)°R) /4,
Uso=(— 12R3Rg)/7+ (36 co% 05)°RaRg)/7— 6RARS
+48 cog 05)°RAR3 — 50 cog 05) “RARS,
Us3= (4 cog 05)R%)/3+ (138 co$05) RAR3)/5
— 42 co$ 65)°RaR3,
gsa= (40R3Rg)/7— (120 co$03)°RiRs)/7,
gss= (— 10 cos 6)R4)/3.

Using the above relations, the results ¢ and V{} for
0=<n<=5, correct toO(1/L"), are

ViQ=0,

K |4chcy Rg 4

(| A" ® *2 *2
Via | 52 Ls(CA RaRg+C3°R2)
12k ci RARA
5L4

8 *2 *2\p2
_T((CA +Cg“)RgRA(RA+Rg)) |,

Motion of droplets during demixing ~ 10991
K|4ciciRaRs 4R,R
2 A~BTAMB ANB *2
Vii=— 3 352 (5CA°Ra+8CE°Rg)
12} ¢} RAR3
5L°
K[8ciciRiRs 8RAR
3 A~B" AT'B A''B %2 2
V,(A\A): 15L4 105_5 (7CA RA+ 1&* RB)
@_ 54CX:ACBRARB
AAT M 77L5 '
V=0, (A13)
ViE=0,
1K CACERARg  RaRg(CA’Ra+CE°Rg)
VAB:; - L3 L4
_ CxChRARg(20RARs— RARZ)
5L° ’
2 K[ CcAcgRiRs R% s
VAB=; _T_"F(CA RaRs—C;“Rg) |,
AB M 5L5 ’
V=0,
ViS=0.
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