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Spontaneous motion of droplets during the demixing transition
in binary fluids

V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

~Received 1 December 1999; accepted 7 March 2000!

The convective interaction between a pair of droplets coarsening during the demixing transition of
a binary fluid is examined. The starting point is the modelH equation for binary fluids, and the
droplet sizes are considered to be large enough that thermal fluctuations are neglected. Droplet
motion is induced by the convective coupling in the concentration equation, where there is a flux of
concentration due to the fluid velocity, and a reciprocal effect in the momentum equation. The effect
of the convective force density is separated into two parts—one due to the sharp concentration
gradients at the droplet interface, and the other due to the variation in the matrix. It is shown that
the dominant contribution to the fluid velocity field is due to the sharp concentration variation at the
interface, and this is proportional to the square of the droplet flux at the surface. The surface flux is
determined by solving the diffusion equation in the matrix between the droplets, and matching the
solution to that in the interfacial region. The analysis indicates that there is an attractive interaction
if the two droplets have radii larger or smaller than the critical radius, while the interaction is
repulsive if the radius of one droplet is larger and the other smaller than the critical radius. The
magnitude of the induced droplet velocity is estimated. ©2000 American Institute of Physics.
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I. INTRODUCTION

There are two different types of morphologies that co
develop during the late stages of the demixing transition
binary fluids. In a nearly symmetric quench, demixing p
ceeds due to the formation and coarsening of random in
faces which separate the two phases. In an asymm
quench, droplets of the minority phase nucleate in the ma
ity phase, and then grow due to diffusive transport or Brow
ian motion. The evolution of the morphology is very diffe
ent in the two cases; the characteristic length scale o
random interface increases proportional tot21, while the
characteristic droplet radius during droplet growth increa
proportional tot21/3 in the case of diffusive growth as we
as Brownian motion, wheret is the time after the quench
There have been many theoretical studies1–7 and computer
simulations8,9 which have shown that there is a qualitati
difference in the droplet growth process between metal
loys and fluid mixtures. This difference is because drop
coarsening could be enhanced by convective transport of
terial, in addition to the usual diffusion process that is
sponsible for the transport of material in solid lattices.10,11

Experimental studies12–15 have also shown that the growt
process is very different from the diffusion controlled grow
processes in metal alloys and magnetic systems.

In addition to diffusive transport and Brownian motio
another mechanism for the coalescence of droplets has
identified in recent experiments.12,13 In these experiments, i
was observed that even when the droplets are sufficie
large that Brownian motion is negligible, coalescence ta
place due to the spontaneous motion of droplets towa
each other. It was suggested that this could be due to
force exerted by the convective term in the momentum c
10980021-9606/2000/112(24)/10984/8/$17.00

Downloaded 30 Sep 2004 to 144.16.64.4. Redistribution subject to AIP
n
-
r-
ric
r-
-

a

s

l-
t
a-
-

en

ly
s
s

he
-

servation equation, which is the reciprocal of the convect
transport term in the mass conservation equation in
model H16 equations for a binary fluid. Further, it was als
suggested that this force is caused by the sharp gradie
the concentration at the droplet interface. An analysis of
motion of a droplet in a steady concentration gradient w
carried out by Tanaka17 to illustrate the effect of concentra
tion gradient on droplet motion. Simulations in a two dime
sional system18 have also demonstrated the attractive int
action between growing droplets in a supersaturated ma

Though experimental systems involve a large numbe
droplets simultaneously interacting with each other, the ba
physics of the interaction is better illustrated by first cons
ering a pair of droplets growing in a supersaturated mat
Moreover, the multipole expansion method used here for
culating the interactions can be easily extended to a sys
with many droplets. The interaction between a pair of dro
lets of equal radius was analyzed earlier,5 and it was found
that there is an attractive interaction between the droplets
to convective effects. In the present case, the analysis is
tended to droplets of different sizes, and the droplet de
mation is also examined. The calculation of the flow induc
due to concentration variations is carried out in two steps
the first step, it is shown that the sharp concentration gra
ents at the interface provide the dominant contribution to
convective force density and the induced fluid velocity, a
the fluid velocity field is related to the flux at the surface.
the second step, the diffusion equation for the concentra
field around a pair of droplets is solved to obtain the surfa
flux, and the motion of the droplets. The principal result
this analysis is that there is spontaneous droplet motion
4 © 2000 American Institute of Physics
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10985J. Chem. Phys., Vol. 112, No. 24, 22 June 2000 Motion of droplets during demixing
to a contribution to the surface force density when the s
face flux is nonzero, and this contribution is large compa
to surface tension effects under nonequilibrium condition

II. ANALYSIS

The system consists of two dropletsA andB with radii
RA andRB separated by a vector distanceL growing due to
diffusion in a matrix with a concentrationc` which is higher
than the saturation concentration. The free energy of the
tem is assumed to be of the usual Cahn–Hilliard square
dient form with an additional contribution due to the kine
energy of the fluid

F@c#5E dxF f @c#1
K

2
~] ic!21

r

2
v i

2G , ~1!

where indicial notation has been used for the vectors] i

[(]/]xi), r is the fluid density andv i is the velocity. It is
not necessary to specifyf @c# because, as discussed later, t
motion of the droplets depends only on the square grad
term in the free energy. The conventional modelH
equations16 are used for the concentration and velocity fie
in the fluid

] tc5L] i
2 dF

dc
2v i] ic1j

5L] i
2F2K] j

2c1
d f @c#

dc G2v i] ic1j, ~2!

r] tv i5m] j
2v i1] ic

dF

dc
1z i , ~3!

wherem is the fluid viscosity, andj andz i are the appropri-
ate noise sources required to satisfy the fluctuation diss
tion theorem. The convective force density, which is the s
ond term on the right side of~3!, is reciprocal to the
convective term in the mass conservation Eq.~2!, and these
two terms are required to ensure that the Poisson bra
relations are satisfied. The Langevin noise sources are
glected in the late stages of spinodal decomposition when
Brownian motion is negligible. In the concentration equ
tion, the convective transport is considered to be small co
pared to the diffusion of solute, and the conditions for t
assumption to be valid are examined a little later. With t
simplification, the concentration equation is

] tc5L] i
2 dF

dc
. ~4!

The momentum equation is further simplified by neglect
fluid inertia, which is small in realistic systems5 to give

m] j
2v i1F] ic

dF

dc G
'

50, ~5!

where@¯#' represents the transverse component. The ab
equation can be easily solved to give

v i~x!5E dx8 Ji j ~x2x8!F] j c~x8!
dF

dc~x8!G
'

, ~6!

where the Oseen tensorJi j is
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Ji j ~x!5
1

8pm Fd i j

uxu
1

xixj

uxu3G . ~7!

A further simplification is possible in the expression for t
velocity ~5! by realizing that the convective force density d
to the contribution proportional tof @c# in the expression of
the free energy is longitudinal

] ic
d f @c#

dc
5] i f @c# ~8!

and therefore does not contribute to the transverse part o
velocity field. The equation for the velocity in the fluid i
then given by

v i~x!52KE dx8 Ji j ~x2x8!] j c~x8!]k
2c~x8!. ~9!

There are two length scales of interest in the problem,
magnitude of the droplet radiusR and the interfacial thick-
nessh. The fluid velocity field can be separated into tw
contributions—one due to the sharp gradients in the conc
tration field at the droplet surface and the second due to
variation in the concentration in the matrix between the t
droplets. It can be shown as follows that the velocity due
the nonequilibrium correction to the concentration field
the interface is large compared to that due to the variatio
the matrix. For this purpose, it is useful to consider a spec
model for the free energyf @c#,

f @c#5
x

2
~c2cd!2~c2cm!2, ~10!

where x is a constant, andcd and cm are the equilibrium
droplet and matrix concentrations, respectively. The flux
material from the matrix to the droplet causes interface m
tion, and the concentration in the reference frame fixed
the interface is determined from the concentration equat

2u~xs!]zc5L]z
2FdF

dc G
5L]z

2@2K]z
2c12x~c2cd!

3~c2cm!~2c2cd2cm!#, ~11!

wherez is the coordinate normal to the interface, andu(xs)
is the normal velocity of the interface due to the flux
solute. The equilibrium concentration profile is

ce5
cd1cm

2
2

cd2cm

2
tanhS z

hD , ~12!

whereh5@2K/x(cd2cm)2#1/2 is the interfacial thickness. In
the above expression, curvature affects have been negle
since the interface thickness is small compared to the ra
of the droplet. It is useful to express the concentration pro
as c5(cd1cm)/21c(cd2cm)/2. The equilibrium interface
concentration is then

ce52tanhS z

hD . ~13!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The nonequilibrium correction to the interfacial concent
tion profile is determined by linearizing the concentrati
equation in the departure from equilibriumf5c2ce ,

2
u~xs!

h
]z* ce5

D

h2 ]z*
2 F2

1

2
]z*

2 f1S 3ce
221

2 DfG , ~14!

where the dimensionless coordinatez* 5(z/h), and D
5Lx(cd2cm)2 is the bulk diffusion coefficient. The abov
fourth order equation can be integrated twice to obtain

F2
1

2
]z*

2 f1S 3ce
221

2 DfG
5

uh

D F E
0

z*
dy~2ce~y!!1z* 2 log~2!G , ~15!

where the constants of integration are determined from
requirement that thef50 anddz* f50 in the droplet phase
z* →2`, where the concentration is equal to the equil
rium concentration. It is not necessary to obtain the num
cal solution to Eq.~14! for f, but is sufficient to recognize
the following limiting behavior of the functionf(z* ),

f}exp~2z* ! for z* →2`,
~16!

f5
2u~xs!h

D
z* for z* →`.

The above limiting behavior is accurate only forz;h at the
interface, and this is not applicable forz;R because there is
a correction due to curvature effects. A schematic of
variation in the concentration field on the scale of the drop
radius is shown in Fig. 1~a!, and on the scale of the interfac
thicknessh is shown in Fig. 1~b!.

The concentration field in the matrix is determined
solving the diffusion equation~4!. It can be shown, as fol
lows, that this reduces to the Laplace equation for the c
centration field in the matrix. The concentration field in t
matrix is expressed asc5c`1c* , wherec* is the difference
between the local concentration and the background con
tration c` at a large distance from the droplet. The conce
tration equation~4! is expressed in terms ofc* , and linear-
ized in the limit (c`2cm)!(cd2cm) appropriate for late
stage growth, to obtain

] tc* 5L] i
2@2K] j

2c* 1x~cd2cm!2c* #. ~17!

In the above equation, it can easily be verified that the fi
term on the right isO(h2/R2) smaller than the second, sinc

FIG. 1. Schematic of the variation of the concentration field on the scal
the droplet radius~a! and on the scale of the interfacial thickness~b!.
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the length scale for the variation ofc* is R. With this sim-
plification, the concentration equation reduces to

] tc* 5D] j
2c* , ~18!

where the diffusion coefficientD5Lx(cd2cm)2. If the mo-
tion of the interface is due to diffusion, the left-hand side
the above equation can be estimated as (uc* /R), whereu,
the normal velocity of the interface, isO(Dc* /R(cd2cm)).
It is easily seen that in the late stage when the supersa
tion is small andc* !(cd2cm), the left-hand side of~18! is
small compared to the right-hand side. However, there
droplet motion due to convective effects as well, and it
shown a little later that the velocity field in this case scales
(K(c`2cm)2R/L2m), wherem is the fluid viscosity andL is
the distance between the interacting droplets. It can easil
verified from~1! that the surface tensions;K(cd2cm)2/h,
and therefore the fluid velocity due to convective effe
scales as (s(c`2cm)2Rh/L2(cd2cm)2h). This velocity
could be significant even though the ratio (c`2cm)/(cd

2cm) and ~h/L! are small, because the ratio~s/h! could be
quite large. For example, the surface tension and visco
for water areO(1022 kg/s2) and 1023 kg/m/s, respectively,
and so the ratio~s/h! is O(10 m/s). Therefore, even if the
ratio (Rh/L2)(c`2cm)2/(cd2cm)2 is O(1024), the convec-
tive velocity is still of O(1 mm/s). The ratio of the convec
tive and diffusive terms in the conservation equation
O(shR2/L2hD)(c`2cm)2/(cd2cm)2. In the present analy-
sis, this parameter is considered to be small, and diffusio
considered to be dominant in the leading approximation
the absence of convection, the concentration equation
duces to

] j
2c* 50. ~19!

It can also be inferred that the convective force density in
matrix, which is proportional to] j

2c, is also zero in the lead
ing approximation. Consequently, it is sufficient to consid
the fluid flow due to the convective force density at the
terface alone.

For sharp interfaces, the integral in~9! can be separated
into the product of integrals over the coordinate normal
the interfacez and the area of the dropletA:

v i~x!52KE dA Ji j ~x2xs!E dz ] ic~x8!] j
2c~x8!, ~20!

wherexs is the position along the surface of the droplet.
deriving the above equation, the Oseen tensorJi j (x2x8)
5Ji j (x2xs2zn) has been approximated byJi j (x2xs). The
error due to this approximation isO(h/R), since the concen-
tration gradients are significant only over the interfacial
gion of thicknessh. At equilibrium, it can be shown that th
term2K*dz ] ic(x8)] j

2c(x8) gives the normal force exerte
by the interface, which is the product of the surface tensi
mean curvature and the unit normal. The dominant contri
tion to the term] ic at equilibrium isni]zc, since there are no
concentration variations in the tangential direction. The te
] j

2c can be written as

] j
2c5]z

2c1S 1

R1
1

1

R2
D ]zc1OS h2

R2D , ~21!
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where R1 and R2 are the principal radii of curvature at
point on the interface, and the second term on the right-h
side of ~21! is because the coordinatez is measured from a
curved surface. Using the above relations, the term

2KE dz ] iz] j
2z

52KniE dzF]zc]z
2c1S 1

R1
1

1

R2
D ~]zc!2G

52KniF ~]zc!2u2`
` 1S 1

R1
1

1

R2
D E dz~]zc!2G . ~22!

At equilibrium, it is easily verified that the first term on th
right-hand side of~22! is identically zero, because]zc,
which is the flux of solute at the interface, is zero. The s
ond term on the right-hand side of~22! is the product of the
unit normal (ni), the curvature@(1/R1)1(1/R2)#, and the
surface tensionK*dz(]zc)2; and the negative sign in~22!
indicates that the force due to surface tension is direc
opposite to the outward unit normalni . In a nonequilibrium
system, the flux at the interface is nonzero, and conseque
the first term on the right-hand side of~22! is nonzero. More-
over, this term isO(R/h) larger than the second term, an
consequently provides the dominant contribution to the c
vective force density at the interface, and the second term
the right-hand side can be neglected in comparison to
first. With this approximation, the velocity field is

v i~x!52KE dA Ji j ~x2xs!nj~xs!

3E dz ]zc~xs1nz!]z
2c~xs1nz!

52KE dA Ji j ~x2xs!nj~xs!F ~]zc~xs1nz!!2

2 G
2`

`

.

~23!

Since the droplet concentration has attained its equilibr
value,]zc50 in the limit z→2`. The gradient of the inter-
facial concentration profile in the regionz→` is determined
by matching the interfacial solution valid forz;h and the
outer solution in the matrix valid forz;R in the intermedi-
ate regionz@h andz!R. It is shown a little later that this
matching condition reduces to the requirement that the c
centration at the interface obtained from the outer solut
should be equal to the equilibrium matrix concentration, a
the concentration gradient]zc5( j n /D), wherej n is the nor-
mal flux at the interface obtained from the outer solutio
With these simplifications, the expression for the fluid velo
ity reduces to

v i~x!52
K

2D2E dA Ji j ~x2xs!@ j n~xs!#
2. ~24!

It can be seen from~24! that the fluid velocity field de-
pends on the flux of solute at the interface of the droplet. T
concentration field and the interfacial flux due to the inter
tion between a pair of droplets is examined next. The bou
ary conditions at the droplet surfaces are determined
Downloaded 30 Sep 2004 to 144.16.64.4. Redistribution subject to AIP
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matching the inner solution in the interfacial region~16! with
the outer solution obtained by solving~19! in the intermedi-
ate regionh!z!R. In this region, the inner solution for th
concentration field scales ascm1O(uz(cd2cm)/D) from
~16!, which is cm1O(O(z(c`2cm) /R)) since the velocity
of the interfaceu is O((D/R)(c`2cm)/(cd2cm)). Thus, the
deviation of the concentration field from its equilibrium
value cm in the matrix isO(z(c`2cm)/R), which is small
compared to the magnitude of the concentration variation
the outer region (c`2cm) in the limit h!z!R. Conse-
quently, it is appropriate to set the concentration at the in
face equal to the equilibrium concentrationcm while obtain-
ing the outer solution.

The radius of the droplet in the absence of Browni
motion or convection is determined by the Lifshitz–Slyoz
theory,11 where the droplet concentration is assumed to h
reached its equilibrium value, but the matrix is supersa
rated. The chemical potential for the droplet phase conta
an additional contribution due to the Laplace pressure aris
from the surface tension between the droplet and mat
while the chemical potential of the matrix is higher than t
equilibrium chemical potential. When the droplet size
smaller than a critical value, the chemical potential of t
droplet ~which contains a contribution proportional to th
inverse of the radius due to the Laplace pressure! is higher
than that of the matrix, and the droplet shrinks. When
droplet size is larger than the critical value, the chemi
potential of the droplet phase is lower than that of the sup
saturated matrix and the droplet grows. The critical rad
~for a given supersaturation of the matrix! is the radius at
which the droplet neither shrinks nor grows. The equilibriu
concentration of the matrix at the droplet surface depends
the radius of the droplet, and the equilibrium concentratio
for two interacting droplets with radiusRA andRB are11

cA5Ce1
C8

RA
, cB5Ce1

C8

RB
, ~25!

whereCe is the equilibrium concentration above a plane s
face, and (C8/RA) and (C8/RB) are the corrections to the
equilibrium concentration due to the curvature of the drop
It is now necessary to solve the Laplace equation for
concentration field~19! with the boundary conditionsc*
52cA* 5c`2cA at the surface of dropletA and c* 52cB*
5c`2cB at the surface of dropletB. The critical radius11 is
given by Rc5C8/(c`2Ce), andc* 50 at the interface for
droplets with the critical radius. In the theory for late sta
droplet growth, droplets with radius larger than the critic
radius grow due to diffusion of solute into the droplet, wh
droplets with radius smaller than the critical radius shri
due to diffusion from the droplet to the matrix.

The solution is obtained using multipole expansion
where the concentration field is determined as an expan
in spherical harmonics in two coordinate systems with o
gins at the centers of the two droplets. The solution for
concentration field is obtained as an asymptotic expansio
the parameters (RA /L) and (RB /L), whereL is the distance
between the two droplets. Two spherical coordinate syste
(r A,uA ,fA) and (r B,uB ,fB) with origins at the centers of the
two droplets are chosen as shown in Fig. 2. The concen
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tion field is axisymmetric about the line joining the cente
of the two droplets, and the solution for the concentrat
field is given by

c* 5 (
n50

` S An

r A
n11 Pn~cos~uA!!1

Bn

r B
n11 Pn~cos~uB!! D , ~26!

wherePn(x) are Legendre polynomials. The coefficientsAn

andBn are expressed as an asymptotic expansion in the
rameters (RA /L) and (RB /L),

An5 (
m50

`

AnmS RA

L D m

,

~27!

Bn5 (
m50

`

BnmS RB

L D m

and the coefficientsAnm and Bnm are chosen to satisfy th
boundary conditions~25! at the surfaces of the two droplet
For this purpose, it is necessary to express the spherical
monics in the coordinate system centered at dropletA in
terms of those centered at dropletB and vice versa. Thes
relations are provided by Hobson19

S 1

r A
D n11

Pn~cos~uA!!

5S 1

L D n11

(
q50

` S n1q
q D S r B

L D q

Pq~cos~uB!!,

~28!

S 1

r B
D n11

Pn~cos~uB!!

5S 1

L D n11

(
q50

` S n1q
q D S r A

L D q

Pq~cos~uA!!

for r A,L and r B,L. Using the above relations, the coef
cientsAnm andBnm are

FIG. 2. Coordinate systems used for calculating the concentration
around a pair of droplets.
Downloaded 30 Sep 2004 to 144.16.64.4. Redistribution subject to AIP
n

a-

ar-

A0m52cA* d0m ,

Anm52S RA

RB
D n2mF (

q50

m2n21

Bq~m2n2q21!S n1q
q D G

for n.0,
~29!

B0m52cB* d0m ,

Bnm52S RB

RA
D n2mF (

q50

m2n21

Aq~m2n2q21!S n1q
q D G

for n.0.

The normal flux at the surfaces of dropletA andB are then
obtained from the above solution

j A52D] rAc* ur A5RA

52D (
n50

`

(
m50

` F S 2
~n11!Anm

RA
D S RA

L D m

1 (
q50

m2n21 S nBqm

RA
D

3S RB
m1q11RA

n

Ln1m1q11 D S n1q
n D GPn~cos~uA!!, ~30!

j B52D] rBc* ur B5RB

52D (
n50

`

(
m50

` F S 2
~n11!Bnm

RB
D S RB

L D m

1 (
q50

m2n21 S nAqm

RB
D S RA

m1q11RB
n

Ln1m1q11 D S n1q
q D GPn~cos~uB!!.

~31!

The fluid velocity field can now be calculated using E
~24!, and the velocity of the surface of the droplet there
evaluated. It is convenient to determine the radial velocity
the droplet surface using an expansion in Legendre poly
mials

vAr~u I !5(
i 5n

`

VA
~n!Pn~cos~uA!!. ~32!

The radial velocity does not contain a component prop
tional to P0(cos(uA)) due to the incompressibility require
ment. The coefficientsVAr

(n) are determined using Eq.~24!
and the orthogonality condition for Legendre polynomials

VA
~n!52

K

2D2 (
J5A,B

E dxJs8 nj~xJs8 !@ j ~xJs8 !#2

E dxAs ni~xAs!Ji j ~xAs2xJs8 !
~2n11!

4pRA
2 Pn~cos~uA!!.

~33!

The coefficientVAr
(1) provides the translational velocity of th

droplet, while the higher order terms give the rate of def
mation. The details of the calculation of the integrals in~33!
are provided in the Appendix, and the results forVA

(n) for 0
<n<5 correct toO(1/L5) are also listed in the Appendix.

Due to symmetry considerations, the droplets are c
strained to move along the line joining their centers, and

ld
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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velocity perpendicular to the line joining their centers
zero. The translational velocity of the droplet along the li
joining the centers is determined as the average of the ve
ity over along the line joining the centers over the surface
the droplet:

VA5
1

SE dS cos~uA!vAr , ~34!

whereS is the surface of the droplet, and the factor cos(uA)
provides the component of the radial along the line join
the centers. It can be easily verified that when the velocit
expanded in a Legendre polynomial series~32!, the integral
~34! provides

VA5VA
~1! . ~35!

It is useful to examine the motion and deformation of t
droplets when the distance of separation is large compare
the droplet radius. The leading order contribution to t
mean velocity of the droplet,VA

(1) , proportional to (1/L2), is

VA
~1!5

4KcA* cB* RB

5L2 1O~1/L3!. ~36!

In the limit of largeL, this velocity is positive if the produc
(cA* cB* ) is positive, and the droplets approach each ot
along their line of centers. Thus, two droplets with ra
greater than or less than the critical radius approach e
other, while a pair of droplets with one larger and the oth
smaller than the critical radius move away. This physi
reason for this behavior is shown in Fig. 3. When the t
droplets are either larger or smaller than the critical rad
the flux on the part of the droplet surface facing the ot
droplet is smaller than that on the part not facing the ot
droplet. Since the velocity at a point on the surface depe
on the square of the normal flux at that point from~24!, this
variation of the flux results in the two droplets coming t
wards each other. When one of the droplets is larger and
other smaller than the critical radius, the flux in between
two droplets is larger than that on the parts of the surface
facing the other droplet. This results in the droplets mov
away from each other.

The leading order contribution to the deformation ra
VA

(2) , proportional to (1/L3), is

VA
~2!5

4KcA* cB* RARB

L3 1O~1/L4!. ~37!

This coefficient is also positive forcA* cB* .0, indicating that
droplets which approach each other deform into prol
spheroids which are elongated along the line joining the c
ters, while the coefficient is negative forcA* cB* ,0 indicating
that droplets which move apart deform into oblate sphero
which are compressed along the line joining their center

III. CONCLUSIONS

The interaction between a pair of droplets in the dem
ing transition in a binary fluid has been examined in the l
stages where the Brownian diffusion is not important. T
modelH concentration and momentum equations were u
as the starting point for the analysis, and inertial effects
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Brownian motion were neglected in this analysis. The co
vective interaction arises due to the presence of the con
tive terms in the concentration equation, and the recipro
term in the momentum equation required for satisfying
fluctuation dissipation theorem. The effect of the convect
term in the momentum equation was separated into two p
—one due to the sharp concentration gradients at the in
face and the other due to the variations in the matrix betw
two droplets. It was shown that the dominant effect is due
the sharp concentration variations at the interface under n
equilibrium conditions, and this effect was proportional
the square of the solute flux at the interface. The flux at
interface was determined by solving the diffusion equation
the matrix between the two droplets, and matching the so
tion with that in the interfacial region.

The results of the analysis indicate that convective
fects do result in spontaneous motion of the droplets. If b
droplets have radii that are larger or smaller than the crit
radius, then the droplets approach each other, while if
has a larger radius and the other has a smaller radius,
there is a repulsive interaction. The physical reason for thi
shown in Fig. 3. In addition, the deformation of the drople
could also be determined in the present analysis, and it
found that droplets attracted to each other deform into p
late spheroids along the line of centers, while droplets t
are repelled deform into oblate spheroids.

It is useful to estimate the magnitude of the droplet v
locities. It can easily be verified from~1! that the surface

FIG. 3. Variation in the surface flux due to the interaction between t
droplets~a! both of which have radii larger than the critical radius;~b! both
of which have radii smaller than the critical radius;~c! one has radius larger
and the other smaller than the critical radius.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tensions;K(cd2cm)2/h, wherecd is the droplet concen
tration andcm is the concentration in the matrix which is i
equilibrium with the droplet phase. Therefore the fluid velo
ity due to convective effects scales as (s(c`

2cm)2Rh/L2(cd2cm)2h). The ratio (R/L);1, and (h/L)
;1023 for typical values ofR;1 mm and h;1 nm. The
surface tension and viscosity for water areO(1022 kg/s2)
and 1023 kg/m/s, respectively, and so the ratio (s/h) is
O(10 m/s). Therefore, even if the ratio (c`2cm)2/(cd

2cm)2 is in the range 1022– 1024, the velocity is
1 – 100mm/s, which could be significant.

APPENDIX

The calculation of the integrals in~33! is discussed in
this section. The expression forVA

(n) can be separated int
two parts, VAA

(n) and VAB
(n) , which represent the Legendr

modes of the velocity induced at the surface of dropletA due
to the flux at the surface of dropletA andB, respectively,

VAA
~n!52

K

2D2 E dxAs8 nj~xAs8 !@ j ~xAs8 !#2

3E dxAs ni~xAs!Ji j ~xAs2xAs8 !
~2n11!

4pRA
2 Pn~cos~uA!!,

~A1!

VAB
~n!52

K

2D2 E dxBs8 nj~xBs8 !@ j ~xBs8 !#2E dxAs ni~xAs!

3Ji j ~xAs2xAs8 2L !
~2n11!

4pRA
2 Pn~cos~uA!!.

The first componentVAA
(n) is determined as follows. The

coordinate system shown in Fig. 2 is employed, where
azimuthal angle betweenxAs8 and the line joining the center
of the two droplets isuA8 , and the azimuthal and meridiona
angles betweenxAs andxAs8 are (u* ,f* ), respectively. The
azimuthal angle between the vectorxAs and the line joining
the centers of the droplets is then given by
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e

cos~uA!5cos~u* !cos~uA8 !2sin~u* !sin~uA8 !cos~f* !.
~A2!

The functionni(xAs)Ji j (xAs2xAs8 )nj (xAs8 ) can be expressed
in terms of the anglesuA8 , u* , andf* :

n~xAs!Ji j ~xAs2xAs8 !nj~xAs8 !

5
3 cos~u* !21

8pmRA~2A2!@12cos~u* !#1/2. ~A3!

Using the above expressions, the componentVAA
(n) is

VAA
~n!5

1

8pm E dxAs8 @ j ~xAs* !#2hnPn~cos~uA8 !!, ~A4!

where

hn5
1

Pn~cos~uA8 !!

2n11

2 E
0

p

duA ni~xAs!

3Ji j ~xAs2xAs8 !nj~xAs!Pn~cos~uA!!. ~A5!

Using ~A3!, the coefficientshn for 0<n<5 areh050, h1

5(8/5), h25(8/7), h35(16/15), h45(80/7), and h5

5(40/39), respectively.
The second componentVAB

(n) is determined using an
asymptotic expansion in the parameters (RA /L) and (RB /L)

VAB
~n!5

1

8pm E dxBs8 nj~xBs8 !

3@~xBs8 !#2(
n

(
m

gmn

Lm Pn~cos~uB8 !!, ~A6!

where the coefficientsgmn determined as follows. The coor
dinate system shown in Fig. 2 is used for the analysis,
the product
ni~xAs!Ji j ~xAs2xBs8 !nj~xBs8 !5S cos~u* !

r
1

~RA2RB cos~u* !2L cos~uA!!~RA cos~u* !2RB1L cos~uB8 !!

r 3 D , ~A7!
e

ts
whereuB8 is the azimuthal angle of the vectorxBs8 in a spheri-
cal coordinate system centered at dropletB, anduA andfA

are the azimuthal and meridional angles of the vectorxAs in
a coordinate system centered at dropletA,

r 5~RA
21RB

21L222RARB cos~u* !22RAL cos~uA!

22RBL cos~uB8 !!1/2 ~A8!

is the distance between the positionxAs on dropletA andxBs8
on dropletB, and

cos~u* !52cos~uA!cos~uB8 !2sin~uA!sin~uB8 !cos~fA!

~A9!
is the cosine of the angle between the vectorsxAs andxBs8 .
The expression~A7! is expanded in a Taylor series in th
parameter~1/L!

ni~xAs!Ji j ~xAs2xBs8 !nj~xBs8 !5
l m~uA ,fA,uB!

Lm ~A10!

and the coefficientsgmn are evaluated from the coefficien
l m

gmn5
~2n11!

4pRA
2 E dxAs l m~uA ,fA,uB!Pn~cos~uA!!. ~A11!

The following coefficientsgmn for (0<m<5) and (0<n
<5) are not zero:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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g11522 cos~uB8 !,

g215RB23 cos~uB8 !2RB ,

g22522 cos~uB8 !RA ,

g315~2 cos~uB8 !RA
2 !/514 cos~uB8 !RB

226 cos~uB8 !3RB
2,

g3252RARB26 cos~uB8 !2RARB ,

g335~212 cos~uB8 !RA
2 !/5,

g415~23RA
2RB!/51~9 cos~uB8 !2RA

2RB!/52~3RB
3 !/2

112 cos~uB8 !2RB
32~25 cos~uB8 !4RB

3 !/2,

g425~6 cos~uB8 !RA
3 !/7112 cos~uB8 !RARB

2

218 cos~uB8 !3RARB
2, ~A12!

g435~18RA
2RB!/52~54 cos~uB8 !2RA

2RB!/5,

g445~220 cos~uB8 !RA
3 !/7,

g515~218 cos~uB8 !RA
2RB

2 !/516 cos~uB8 !3RA
2RB

2

2~33 cos~uB8 !RB
4 !/4,

1~65 cos~uB8 !3RB
4 !/22~105 cos~uB8 !5RB

4 !/4,

g525~212RA
3RB!/71~36 cos~uB8 !2RA

3RB!/726RARB
3

148 cos~uB8 !2RARB
3250 cos~uB8 !4RARB

3,

g535~4 cos~uB8 !RA
4 !/31~138 cos~uB8 !RA

2RB
2 !/5

242 cos~uB8 !3RA
2RB

2,

g545~40RA
3RB!/72~120 cos~uB8 !2RA

3RB!/7,

g555~210 cos~uB8 !RA
4 !/3.

Using the above relations, the results forVAA
(n) and VAB

(n) for
0<n<5, correct toO(1/L5), are

VAA
~0!50,

VAA
~1!5

K

m F4cA* cB* RB

5L2 2
4

5L3 ~cA*
2RARB1cB*

2RB
2 !

1
12cA* cB* RB

2RA

5L4

2
8

5L5 „~cA*
21cB*

2!RB
2RA~RA1RB!…G ,
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VAA
~2!5

K

m F4cA* cB* RARB

L3 2
4RARB

35L4 ~5cA*
2RA18cB*

2RB!

1
12cA* cB* RA

2RB
2

5L5 ,

VAA
~3!5

K

m F8cA* cB* RA
2RB

15L4 2
8RA

2RB

105L5 ~7cA*
2RA116cB*

2RB!G ,
VAA

~4!5
K

m

40cAcBRA
3RB

77L5 ,

VAA
~5!50, ~A13!

VAB
~0!50,

VAB
~1!5

K

m F2
cA* cB* RARB

L3 1
RARB~cA*

2RA1cB*
2RB!

L4

2
cA* cB* RARB~20RARB2RA

2RB
2 !

5L5 G ,
VAB

~2!5
K

m F2
cA* cB* RA

2RB

L4 1
RA

2

L5 ~cA*
2RARB2cB*

2RB
2 !G ,

VAB
~3!5

K

m F2
6cA* cB* RA

3RB

5L5 G ,
VAB

~4!50,

VAB
~5!50.
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