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Hydrodynamic modes of a sheared granular flow from the Boltzmann
and Navier–Stokes equations
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The initial growth rates for the hydrodynamic modes of the shear flow of a three-dimensional
collection of inelastic spheres is analyzed using two models. The first is the generalized Navier–
Stokes equations, derived for the shear flow of inelastic spheres using the Chapman–Enskog
procedure, where the energy equation has an additional dissipation term due to inelastic collisions.
The second is the solution of the linearized Boltzmann equation, where the distribution function in
the base state is determined using a Hermite polynomial expansion in the velocity moments. For
perturbations with variations in the velocity and gradient directions, it is found that the solutions
obtained by two procedures are qualitatively similar, though there are quantitative differences. For
perturbations with variations in the vorticity direction, it is found that there are qualitative
differences in the predictions for the initial growth rate of the perturbations. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1378789#
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I. INTRODUCTION

Rapid flows of granular materials are widely encou
tered in nature as well as in industrial applications. A la
number of chemical processes involve fluidized bed and
culating bed reactors where the particles transfer momen
and energy due to instantaneous collisions. Numerous
physical flows such as rock slides and avalanches also
volve regions where the grains are in a rapid state of mot
Dynamical descriptions for these flows are not as well dev
oped as, for example, the Navier–Stokes equations
simple fluids. This is partly because of the complex inter
tion between the particles and the turbulent flow of the ga
practical applications such as fluidized beds. But eve
simple system such as a collection of particles interac
with each other through inelastic hard sphere collisions
hibits many complex phenomena at the macroscopic le
such as convection rolls and pattern formation. The der
tion of macroscopic dynamical equations from a knowled
of the microscopic particle dynamics remains a challenge
granular flows where the coefficient of restitution of interp
ticle collisions is not close to 1.

The simplest model flow that has been widely analyz
is the homogeneous shear flow of a granular material in
absence of gravity. In this case, there is a balance betw
the source of energy due to the macroscopic imposed fl
and the energy dissipation due to the inelastic collisions
tween particles. Constitutive models have been develo
for this flow using methods similar to those used in the
netic theory of gases.1–4 In addition, there have been system
atic derivations of kinetic equations up to Burnett order sta
ing from the Boltzmann equation and using an expans
with the Knudsen number and the inelasticity of the parti
collisions as the small parameters.5,6 Sheared granular flow
have also been investigated using molecular dynamics
computer simulations. While the early simulations7–10 ~for a
review see Ref. 10! largely confirmed the results obtained b
2251070-6631/2001/13(8)/2258/11/$18.00
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analytical methods, it became apparent11–14 that there is the
development of inhomogeneities and formation of clusters
the flow progresses.

In order to understand these phenomena, stability an
ses of a set of model equations for the granular flow w
undertaken.15–19 These equations are similar to the Navie
Stokes equations for hard sphere gases, and assume a s
form for the transport coefficients. However, the ener
equation has an additional term which represents the diss
tion of energy due to inelastic collisions. Since the me
velocity depends on the spatial coordinate, it is not poss
to obtain a closed form eigenvalue problem for a shear fl
Consequently, a transformation is made where the wave
tor is a function of time, and the variation of the perturbati
amplitude for this form of the wave vector is examined.
was found that the initial growth rate for the most unsta
mode is positive.15 At later times, it is found that the initially
unstable perturbations become stable.17 However, there are
‘‘layering’’ modes with variations in the gradient directio
which are unstable even in the long time limit.

Another class of problems that has received attent
recently is the homogeneous cooling state of a gas of ine
tic particles.13,20 Here, the base state is a gas of inelas
grains in which the ‘‘temperature’’~mean square velocity o
the particles! is decreasing with time due to inelastic coll
sions. The stability of the homogeneous state of the syste
determined using a stability analysis about this cooling st
It is found that the homogeneous state is unstable due to
clustering of particles.13 In addition, there is the inelastic
collapse mechanism20 which is also observed in these sy
tems. Both the clustering and collapse mechanisms also e
in forced systems such as shear flows. The present stud
about a steady state where there is a source of energy d
the mean shear, and energy dissipation due to inelastic c
sions.

Since many of the previous studies of shear flow ha
been based on Navier–Stokes type equations, with the tr
8 © 2001 American Institute of Physics
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2259Phys. Fluids, Vol. 13, No. 8, August 2001 Hydrodynamic modes of a sheared granular flow
port coefficients determined using the Chapman–Ens
procedure starting from the Boltzmann equation, it is of
terest to examine whether the scaling laws for the hydro
namic modes obtained using these two models are the s
It is expected that the continuum equations can be obta
using an asymptotic analysis in the limit of small elastic
(12e)!1, but it is of importance to determine the interv
of the parameter (12e) where they accurately reproduce th
macroscopic dynamics. In the present paper, the in
growth rates of the hydrodynamic modes of the homo
neous sheared state is analyzed using the Boltzmann e
tion for inelastic spheres. The Boltzmann equation is m
fundamental than the continuum Navier–Stokes equatio
since the Navier–Stokes equations assume that the only
evant variables that determine the dynamics of the sys
are the mass, momentum, and energy. However, the B
mann equation already contains certain simplifying assu
tions. The most important of these is the assumption that
pair distribution function is the product of the pair correl
tion function and the single particle velocity distribution
before collision~assumption of molecular chaos!. This as-
sumption breaks down in very dense systems where there
correlated collisions between pairs of particles.

Since an infinite shear flow involves a linear variation
the mean velocity in the gradient direction, it is not possi
to obtain an eigenvalue problem for systems with variatio
in the flow direction. It is necessary to use a time-depend
wave vector in the gradient direction, which is ‘‘turning
with the mean flow, as indicated in the analysis, in order
obtain an eigenvalue problem.15 In the present analysis, w
set the time equal to zero in the transformed wave vecto
get solutions for the growth rate at zero time. For pertur
tions with variations in the flow direction, it is known from
previous studies on the Navier–Stokes equations that tho
the initial growth rate indicates that the system is unsta
the system could still be stable in the long time limit. This
because a perturbation with wave vector in the flow direct
will be rotated toward the gradient direction, and perturb
tions in this direction are stable. However, the most imp
tant result of this analysis concerns the stability of pertur
tions with variation in the vorticity direction perpendicular
the direction of shear, and this is not affected by the rotat
of the wave vector by the mean flow. The stability of t
flow in the vorticity direction perpendicular to the plane
shear is not probed by two-dimensional theories or simu
tions, and the presence of unstable modes in this direc
indicates that studies restricted to two dimensions may
accurately capture the dynamics of three-dimensional s
flows. The stability of perturbations in the vorticity directio
has not received as much attention in the literature as th
in the flow and gradient directions.

First, the velocity distribution in the base state, which
the homogeneous shear flow, is calculated by solving
Boltzmann equation. An expansion in a basis set consis
of products of Hermite polynomials of the velocity comp
nents is used. The Boltzmann equation is a nonlinear eq
tion, and it is difficult to determine the coefficients in th
expansion in general. In the present case, the coefficient
determined using an expansion in the parametere5(1
Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP
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2e)1/2, and terms correct toO(e4) are retained in the expan
sion. The parameter (12e)1/2 is preferred to the traditiona
(12e2)1/2 in the present case, because the coefficient of
titution is expressed ase512e2, and there is no need to
carry out factors of 2 in the definition ofe. The relationship
between the results of the two approaches for a homo
neous shear flow are given in Kumaran.21,22

The solution of the Boltzmann equation is obtained u
ing an expansion in a set of basis functions, which are c
sen to be Hermite polynomials in the present case. Sim
calculations have been carried out for spheres
equilibrium23,24 in the absence of flow, and it is known tha
the solutions for the growth rate are related to the transp
coefficients close to equilibrium. It can be shown that t
eigenvalues for the linearized Boltzmann equation for a c
servative system are real and discrete in the limit of lo
wavelengths, and the eigenfunctions form an orthogonal
sis set. In a homogeneous system, there are five eigenva
which are zero, and the corresponding eigenfunctions are
mass, energy, and the three components of the momen
which are conserved in collisions. All other eigenvalues
negative, indicating that other types of transients decay o
time scales comparable to the collision frequency. If pert
bations of wavelengthk are imposed on the system, the e
genvalues corresponding to the two transverse compon
of the momentum and the energy decay proportional tok2

indicating that they are diffusive. The eigenfunctions cor
sponding to the density and longitudinal momentum occu
a complex conjugate pair, where the imaginary part is p
portional tok indicating propagating modes, while the re
part is proportional tok2. The effect of inelastic collisions on
the initial amplification rates is examined in this analys
The perturbations are expressed in terms of a basis set
sisting of products of Hermite polynomials as before, a
solved to determine the initial growth rates of the lineariz
Boltzmann equation. Though the number of solutions of
growth rate depends on the number of basis functions use
the expansion, it is observed that as in the case of conse
tive hard sphere gases, the solutions for the slowly decay
modes are insensitive to the number of basis functions u
It is expected that in an inelastic system, there will be o
four solutions which have zero growth rates because ene
is not conserved in collisions.

The calculation of the initial amplification rates from th
generalized Navier–Stokes equations, derived from the B
zmann equation using the Chapman–Enskog procedure
Sela and Goldhirsch,6 is discussed in Sec. II. In Sec. III, th
calculation of the distribution function at steady state fo
homogeneous shear flow is discussed. This solution is u
in Sec. IV to determine the initial growth rates of the linea
ized Boltzmann equation.

II. GENERALIZED NAVIER–STOKES EQUATIONS

The Navier–Stokes equations for sheared granular flo
derived by Sela and Goldhirsch6 are used in the presen
analysis. They used an expansion in the limit Kn!1 and
(12e)!1, where the Knudsen number Kn is the ratio of t
mean free path to the scale of description. Attention is
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2260 Phys. Fluids, Vol. 13, No. 8, August 2001 V. Kumaran
stricted to the dilute limit, for simplicity, where the Knudse
number is set equal to zero, and the results of Sela
Goldhirsch correct toO(12e) are incorporated. A coordi
nate system is chosen where the flow is along thex direction,
the velocity gradient along they direction and the vorticity
vector is along thez direction. Variables with a superscrip
asterisk are used in the present section to denote dimens
variables, while variables without the superscript in Sec.
are scaled as specified. The Navier–Stokes mass, mo
tum, and energy equations for the present case are

] t* r* 1]x* ~r* ux* !1]y* ~r* uy* !1]z* ~r* uz* !50, ~1!

r* ~] t* ux* 1ux* ]x* ux* 1uy* ]y* ux* 1uz* ]z* ux* !

52]x* p* 1]x* txx* 1]y* txy* 1]z* txz* , ~2!

r* ~] t* uy* 1ux* ]x* uy* 1uy* ]y* uy* 1uz* ]z* uy* !

52]y* p* 1]x* tyx* 1]y* tyy* 1]z* tyx* , ~3!

r* ~] t* uz* 1ux* ]x* uz* 1uy* ]y* uz* 1uz* ]z* uz* !

52]z* p* 1]x* tzx* 1]y* tzy* 1]z* tzz* , ~4!

rCv~] t* T* 1ux* ]x* T* 1uy* ]y* T* 1uz* ]z* T* !

5]x* ~K* ]x* T* !1]y* ~K* ]y* T* !1]z* ~K* ]z* T* !

2p* ~]x* ux* 1]y* uy* 1]z* uz* !1]x* ~L* ]x* r* !

1]y* ~L* ]y* r* !1]z* ~L* ]z* r* !1S* 2D* , ~5!

where ] t* 5(]/]t* ), ] i* 5(]/]xi* ), and t* and xi* are the
dimensional time and spatial variables, and indicial notat
is used to represent the components of a vector. The num
densityr* is the number of particles per unit volume, th
stress tensor,t i j* , is given by

t i j* 5m* ~] i* uj* 1] j* ui* 2~2/3!d i j ]k* uk* !, ~6!

the rate of dissipation of energyD* due to inelastic colli-
sions is

D* 54Apr* 2T* 3/2d2~12e!, ~7!

the source of energy due to the mean shear is

S* 52p* ] i* ui* 1t i j* ] j* ui* , ~8!

the viscositym* in the dilute limit ~divided by the particle
mass! is

m* 5
5

16Ap
S 11

5e2

12 D T* 1/2

d2 , ~9!

the thermal diffusivityK* is

K* 5
25

32Ap
S 11

15e2

16 D T* 1/2

d2 , ~10!

and the coefficientL* which relates the diffusion of energ
due to density gradients is

L* 5
125

64Ap
e2

T* 3/2

~r* d2!
~11!
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andCv5(3/2) is the specific heat at constant volume, and
is the diameter of a particle. In the above-mentioned eq
tions, the temperatureT* is expressed in terms of energy p
unit mass of a particle, so that it has units of the~velocity!2,
while the viscosity and thermal conductivity are also e
pressed per unit mass of a particle.

The equations are expressed in terms of Fourier mo
in the shear and gradient directions. In order to obtain
eigenvalue problem, it is necessary to assume that the w
vectors are time dependent and ‘‘turn’’ with the mean flow15

and the wave vectors are chosen to bek* (t* )5k* (0),
l * (t* )5 l * (0)2g* t* k* (0), and m* (t* )5m* (0). The
perturbations are assumed to be of the form25

r* ~x* ,y* ,z* ,t* !5r0* 1 r̂* ~ t* !exp~ik* x* 1i l * y*

1im* z* !,

ux* ~x* ,y* ,z* ,t* !5g* y* 1ûx* ~ t* !exp~ik* x* 1i l * y*

1im* z* !,

uy* ~x* ,y* ,z* ,t* !5ûy* ~ t* !exp~ik* x* 1i l * y*

1im* z* !, ~12!

uz* ~x* ,y* ,z* ,t* !5ûz* ~ t* !exp~ik* x* 1i l * y*

1im* z* !,

T* ~x* ,y* ,z* ,t* !5T0* 1T̂* ~ t* !exp~ik* x* 1i l * y*

1im* z* !.

When attention is restricted to the initial growth rates att*
50, the time-dependent perturbations are expressed
r̂* (t* )5r* 8 exp(s* t* ), ûi* (t* )5ui* 8 exp(s* t* ), and
T̂* (t* )5T* 8 exp(s* t* ). When these expressions are insert
into ~1!, ~2!, ~3!, and ~5! and linearized in the perturbation
to the density, velocity, and temperature, the resulting eq
tions are

s* r* 81r0* ~ik* ux* 81i l * uy* 81im* uz* 8!50, ~13!

r0* ~s* ux* 81g* uy* 8!

52ik* ~~11e!/2!~r0* T* 81r* 8T0* !2m* ~~4/3!k* 2

1 l * 21m* 2!ux* 82~1/3!m* ~k* l * uy* 81k* m* uz* 8!

1m* g* i l * S T* 8

2T0*
D , ~14!

r0* s* uy* 852i l * ~~11e!/2!~r0* T* 81r* 8T0* !

2m* ~k* 21~4/3!l * 21m* 2!uy* 8

2~1/3!~ l * k* ux* 81 l * m* uz* 8!

1m* g* ik* S T* 8

2T0*
D , ~15!

r0* s* uz* 852im* ~~11e!/2!~r0* T* 81r* 8T0* !

2m* ~k* 21 l * 21~4/3!m* 2!uz* 8

2~1/3!~m* k* ux* 81m* l * uy* 8!, ~16!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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r0* Cvs* T* 852K* ~k* 21 l * 21m* 2!T* 82L* ~k* 21 l * 21m* 2!r* 82
11e

2
r0* T0* ~ik* ux* 81i l * uy* 81im* uz* 8!

1m* g* 2S T* 8

2T0*
D 12g* m* ~i l * ux* 81ik* uy* 8!2D* S 3T* 8

2T0*
1

2r* 8

r0*
D . ~17!
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In Eqs. ~13!–~17!, the ideal gas equation of statep* 5(1
1e)r* T* /2 has been used, and the gas constant has bee
equal to 1 because the temperature is expressed in uni
energy~per unit mass of the particle!. The last terms on the
right-hand side of~14! and ~15!, and the third term on the
right-hand side of~17!, account for the variation in the vis
cosity due to variations in the temperature, while the l
term on the right-hand side of~17! accounts for the variation
in the rate of dissipation of energy due to variations in
temperature and density.

For a system of elastic disks, Eqs.~13!–~16! have four
solutions fors* ,26

s1* 52~m* /r0* !k* 2,

s2* 52~m* /r0* !k* 2,

s3* 52
K*

r0* Cp
k* 2, ~18!

s4* 52
1

2 S S K* ~Cp2Cv!

r0* CpCv
1

4m*

3r0*
D k* 2D 1ik* A~Cp /Cv!T* ,

s5* 52
1

2 S S K* ~Cp2Cv!

r0* CpCv
1

4m*

3r0*
D k* 2D 2ik* A~Cp /Cv!T* ,

where (Cp /Cv), the ratio of specific heats, is 5/3 for a gas
elastic spheres. It was verified that the above-mentioned
lutions are recovered both from the Navier–Stokes equat
~13!–~17!, and the linearized Boltzmann equation for t
elastic case. The results of Eq.~18! are compared with thos
of the linearized Boltzmann equation in Sec. V.

III. NUMERICAL METHOD FOR STEADY VELOCITY
DISTRIBUTION

The analysis is similar to that used earlier21 for the two-
dimensional shear flow of inelastic disks, and only a br
summary is provided here. In order to simplify the notatio
the scaled velocity is defined asu5u* /T0*

1/2, whereu* is
the dimensional velocity, and the ‘‘granular temperature’’T0*
is the mean square velocity scaled by the particle mass.
scaled spatial coordinates are defined asx5x* /(r0* d2)21,
where (r0* d2)21 is the magnitude of the mean free path o
particle, andr0* andd are the number density and the partic
diameter, respectively. The scaled strain rate then beco
g5g* /(r0* d2T0*

1/2), where g* is the dimensional strain
rate. In the dilute limit, the pair distribution function is 1 an
the only independent parameter which affects the scaled
tribution function is the coefficient of restitutione. The ve-
locity distribution function, f (x,u,t), is defined such tha
f (x,u,t)dx du is the number of particles in the differentia
volumedx aboutx in real space anddu aboutu in velocity
Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP
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space. For a steady homogeneous flow,f (x,u,t)5F(u) is
only a function of particle velocity. The conservation equ
tion for this distribution function, for a mean flow with strai
rateg, is

2g
]uyF~u!

]ux
5

]cF~u!

]t
, ~19!

where the collision integral is given by

]cF~u!

]t
5E dkE du†~e22F~ub!F~ub

†!

2F~u!F~u†!!w"k, ~20!

where the pair distribution function has been set equal t
for a dilute granular flow. The coefficiente22 in the first
term in Eq.~20! accounts for the contraction of phase spa
due to inelastic collisions. In Eq.~20!, ub and ub

† are the
velocities of a pair of particles before collision so that t
post collisional velocities areu andu†, k is the unit vector in
the direction of the line joining the centers of particles
collision, w5u2u† is the velocity difference between th
particles, and the above integral is carried out forw"k>0 so
that the particles approach each other prior to collisions.

An expansion of the following form is assumed for th
distribution function:

F~u!5F0~u!F11 (
k51

K

Akfk~u!G , ~21!

whereF0(u) is the Maxwell–Boltzmann distribution

F0~u!5
1

~2p!3/2expS 2
u2

2 D . ~22!

The basis functionsfk are chosen as products of Hermi
polynomials in the velocity coordinate in the following ma
ner. Due to the symmetry of the distribution function, it
necessary to retain only terms that satisfyfk(ux ,uy ,uz)
5fk(2ux ,2uy ,uz) and fk(ux ,uy ,uz)5fk(ux ,uy ,2uz).
Therefore, only Hermite polynomials of even order in t
velocity uz , and functions of the form Hen(ux)Hep2n(uy)
wherep is even, are included. Of these functions, it is ne
essary to consider two functions separately,

fN215~ux
21uy

21uz
223!/A6,

~23!
fN51,

since these correspond to the conserved mass and en
modes. Here,N is the total number of basis functions used.
Gramm–Schmidt orthogonalization procedure is used to
sure that all the basis functions are orthonormal when
inner product is defined with the Gaussian as the weigh
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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function. There are a total ofN514 basis functions when a
moments up to the fourth moment of the velocity are
tained in the expansion.

The expansion is inserted into the Boltzmann equati
multiplied by F0(u)f i(u) and integrated over the velocit
coordinates to obtain a nonlinear vector equation of the fo

2g~Hi1Gi j Aj !5~Mi1Li j Aj1Ni jkAjAk! ~24!

where summation is carried out over the repeated indices
K31 matricesĤ i andMi are

Hi5E du f i~u!
]~uyF0~u!!

]ux
, ~25!

Mi5E duE du†E dk F0~u!F0~u†!~f i~u8!2f i~u!!w"k,

~26!

the K3K matricesGi j andLi j are

Gi j 5E du f i~u!
]~F0~u!uyf j~u!!

]ux
, ~27!

Li j 5E duE du†E dk F0~u!F0~u†!~f j~u!1f j~u†!!

3~f i~u8!2f i~u!!w"k, ~28!

and the third order matrixNi jk is

Ni jk5E duE du†E dk F0~u!F0~u†!f j~u!fk~u†!

3~f i~u8!2f i~u!!w"k, ~29!

whereu8 andu†8 are the velocities after an inelastic collisio
of particles which have precollisional velocitiesu and u†,
respectively, andk is the the unit vector along the line o
centers at collision.

The solution procedure for determining the coefficie
Aj is identical to that used in Kumaran.22 An expansion is
used in the parametere5(12e)1/2, and corrections to the
distribution function have been obtained correct toO(e4) or
(12e)2 in the asymptotic expansion. Results were obtain
for two sets of basis functions one consisting of 5 basis fu
tions ~which include all velocity moments up to second o
der! and the second consisting of 14 basis functions~which
include all velocity moments up to fourth order!. A compari-
son of the strain rate and the velocity moments obtai
using these basis sets is shown in Fig. 1. It is observed
there is good agreement between the two basis sets fo
dimensionless strain rateg and the moment̂ uxuy& even
when the coefficient of restitution is 0.7. However, there
systematic deviations in the anisotropy in the distribut
function ^ux

22uy
2&. The steady distribution obtained using

basis set consisting of 14 functions is used in the remain
of the analysis.

IV. HYDRODYNAMIC MODES

In the linear analysis, perturbations are imposed on
distribution function of the form

f ~x,u,t !5F~u!1 f 8~x,u,t !, ~30!
Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP
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where the perturbationf 8(x,u,t) has the form

f 8~x,u,t !5 f̂ ~u,t !exp~ik~ t !x1i l ~ t !y1im~ t !z!, ~31!

where k(t), l (t), and m(t) are the time-dependent wav
numbers in thex, y, andz directions, respectively,15 and are
given by

k~ t !5k~0!, l ~ t !5 l ~0!2gtk~0!, m~ t !5m~0!.
~32!

The above-mentioned form of the distribution function
inserted into the Boltzmann equation, and linearized ab
the base state to obtain an equation of the form

~] t1ikux1i luy1imuz! f̂ 2g
]uyf̂

]ux
5

]cl f̂

]t
, ~33!

where the linearized collision integral is given by

]cl f̂

]t
5E du†E dk~e22~F~ub! f̂ ~ub

†!1F~ub
†! f̂ ~ub!!

2F~u! f̂ ~u†!2F~u†! f̂ ~u!!w"k. ~34!

Attention is restricted to the initial growth rates~at t50! for
arbitrary values of (k(0),l (0),m(0)), for which the form of
the expansion is

f̂ ~u,t !5exp~st! f̃ ~u!, ~35!

wheres is the initial growth rate. A series of the following
form is assumed for the perturbation to the distribution fun
tion f̃ ,

f̃ ~u!5F0~u!(
i 51

K

Ãif i , ~36!

where the basis functionsf i are defined in a manner simila
to that for the steady distribution, but the functions includ
are not restricted to even functions ofuz or those following
the symmetryf (ux ,uy ,uz)5 f (2ux ,2uy ,uz). This series is
inserted into Eq.~33!, multiplied by the basis function
f i(u), and integrated over the particle velocities to get t
following matrix equation:

~sIi j 1ikXi j 1i lYi j 1 imZi j 2gGi j 2Ci j !Ãj5Mi j Ãj50,
~37!

FIG. 1. The strain rate~g/e!—s, the velocity moments (2^uxuy&/e)—n,
(^ux

22uy
2&/e2)—L. The solid lines show the result for calculations with 1

basis functions, and the broken lines show the results for 5 basis funct
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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where I i j is the identity matrix, and the other matrices a
defined as

Xi j 5E du uxf i~u!f j~u!,

Yi j 5E du uyf i~u!f j~u!,

Zi j 5E du uzf i~u!f j~u!, ~38!

Gi j 5E du f i~u!
]uyf j~u!

]ux
,

Ci j 5E duE du†~F~u!f j~u†!1F~u†!f j~u!!

3~f i~u8!2f i~u!!w"k.

In Eq. ~38!, u8 andu†8 are the postcollisional velocities of
pair of particles with precollisional velocitiesu andu†. The
dispersion relation is obtained by setting the determinan
the matrix Mi j equal to zero, so that there are nontriv
solutions for the amplitudesAj .

V. RESULTS

It is first useful to analyze the results for the case
elastic particles, where there is no energy loss during co
sions. For a basis set consisting ofN functions, there areN
solutions fors. For an elastic system, it can be shown th
there are five eigenvalues withs50 for a uniform system
k50, l 50, m50. The corresponding eigenfunctions of th
matrix Mi j are the mass, the three components of the m
mentum, and the total energy. All other eigenfunctions h
negative growth rates, indicating that they decay over ti
scales proportional to the inverse of the collision frequen
In the long wave limitk→0, there are three diffusive mode
for which the growth rate is negative and proportional tok2.
Two of these are the transverse momentum modes, w
have identical decay rates, and the third is the energy m
For the other two propagating~sound! modes, the real part o
the growth rate is negative and proportional tok2, while the
imaginary parts are equal in magnitude and opposite in s
and magnitude of the imaginary part increases proportio
to k. The variation of the decay rates of the hydrodynam
modes for an elastic system are shown as a function ofk in
Fig. 2. It is observed that the decay rates obtained using
generalized Navier–Stokes equations and the Boltzm
equation are identical in the limit of small wave numb
though there are small variations fork;O(1). This variation
is to be expected, because descriptions such as the Na
Stokes equations are valid only in the hydrodynamic lim
when the wavelength of the fluctuations is large compare
the mean free path.

A. Perturbations in the velocity direction lÄ0, mÄ0

The qualitative behavior of the hydrodynamic modes
perturbations with wave vectors in the velocity direction
similar to that reported earlier for a two-dimensional flow22
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The salient features of the behavior, which is common
both the solutions of the Navier–Stokes equations as we
the Boltzmann equation, are as follows.

~1! There is one diffusive mode, which is a continuatio
of one of the transverse momentum modes in the elastic
tem, which has a positive initial growth rate in the limitk
→0, and has the form

sd15sd1kuku2/3, ~39!

where sd1k is a positive coefficient. A comparison of th
growth ratesd1 obtained from the Navier–Stokes equatio
and the Boltzmann equation is shown in Fig. 3. It is observ
that there is good agreement for small values ofk, but the
initial growth rate predicted by the Navier–Stokes equat
is lower than that of the Boltzmann equation fork;1. This is
consistent with the results obtained for a two-dimensio
system.22 The coefficientsd1k , shown as a function of the
coefficient of restitution 12e in Fig. 4, decreases propor
tional to (12e)1/3 in the limit (12e)→0. It is observed that
though the qualitative behavior of this diffusive mode pr

FIG. 2. The growth rates for the shear modessd15sd2 (s); the energy
modesd3 (L), and the realspr ~n! and imaginary partuspiu ~,! of the
growth rate of the propagating modes as a function of wave numberk for an
elastic system. The solid lines show the results obtained from the linear
Boltzmann equation obtained using a basis set consisting of 20 basis
tions, and the broken lines show the results of the Navier–Stokes equat

FIG. 3. The growth rate for the most unstable diffusive modes1 as a func-
tion of the wave vectork in the flow direction for~s! e50.99, ~L! e
50.9, and~,! e50.7. The solid lines show the results from the Boltzma
equation, and the broken lines show the results from the Navier–St
equations.
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dicted by the two methods are in agreement, there are
quantitative difference of about 20 percent in the value
sd1k predicted by the two methods. The analytical value
sd1k can be determined from the Navier–Stokes equation
the limit (12e)→0,

sd1k522/3~12e!1/3p1/6. ~40!

~2! The second diffusive mode, which is a continuati
of the second transverse momentum mode, has the f
similar to that for an elastic system

sd252sd2kk
2. ~41!

The value ofsd2k obtained from the Navier–Stokes equ
tions is identical to that for an elastic system, but the va
obtained from the Boltzmann equation is not exactly
same, as shown in Fig. 4. In the limit (12e)→0, the ana-
lytical expression forsd2k from the Navier–Stokes equation
is identical to that obtained for an elastic system.

sd2k5
5

16Ap
. ~42!

~3! The third diffusive mode, which is a continuation o
the energy mode in elastic systems, has a finite decay ra
the limit k→0. In the limit (12e)!1,sd3}(12e) as shown
in Fig. 5. The value ofsd3 predicted by the Navier–Stoke
equations issd3528(12e)Ap/3 in the limit (12e)→0,
but the value predicted by the Boltzmann equation differs
about 20%.

~4! The real and imaginary parts of the propagati
modes have the form

spr52sprkuku2/3,
~43!

spi56spikuku2/3,

wheresprk andspik are positive, and decrease proportional
(12e)1/3 in the limit 12e!1 as shown in Fig. 4. The pre
dictions of these coefficients are also quantitatively differ
by the two procedures. The analytical expression forsprk and
spik from the Navier–Stokes equations is

sprk5221/3~12e!1/3p1/6, ~44!

FIG. 4. The coefficientssd1k ~s!, sd2k ~h!, sprk ~n!, spik ~,!, and2sd3

~L! as a function of (12e) in the limit k→0. The solid lines show the
coefficients obtained using the linearized Boltzmann equation, and the
ken lines show the coefficients obtained from the generalized Nav
Stokes equations.
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spik531/2221/3~12e!1/3p1/6. ~45!

The results for the initial growth rates for the variations
the flow direction indicate that the predictions of the Navie
Stokes equation and the Boltzmann equation are qualitati
similar, but there are quantitative differences of about 2
even when the coefficient of restitution is 0.99.

B. Perturbations in the gradient direction kÄ0, mÄ0

The variation of the hydrodynamic modes with wa
number l in the gradient direction is considered next. T
predictions of the generalized Boltzmann equation are v
similar to those for a two-dimensional system, but there
some qualitative differences in predictions of the Navie
Stokes equation.

~1! The asymptotic behavior for the least stable mo
from the generalized Boltzmann equation has the usual f

sd152sd1l l
2, ~46!

wheresd1l is a positive coefficient, and this coefficient ten
to a constant value in the limit (12e)→0, as shown in Fig.
5. However, the Navier–Stokes equations provide a differ
form

sd152sd1l8 l 4, ~47!

wheresd1l8 is also a positive coefficient, but this coefficie
increases proportional to (12e)21 in the limit (12e)→0,
as shown in Fig. 5. The asymptotic value ofsd1l8 from the
Navier–Stokes equations is

sd1l8 5
375

4096~12e!p3/2. ~48!

~2! The second diffusive mode, corresponding to one
the shear modes in an elastic system, is also stable and
the behavior

sd252sd2l l
2, ~49!

wheresd2l is a positive coefficient. The coefficients obtaine
from the Boltzmann equation and the Navier–Stokes eq

o-
–

FIG. 5. The coefficientssd1l ,sd1l8 ~s!, sd2l ~h!, sprl ~n!, spil ~,!, and2sd3

~L! as a function of (12e) in the limit k→0. The solid lines show the
coefficients obtained using the linearized Boltzmann equation, and the
ken lines show the coefficients obtained from the generalized Nav
Stokes equations.
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tions are in good agreement, and are identical to the va
sd2k for the perturbations in the velocity direction.

~3! The third diffusive mode, which is a continuation o
the energy mode in an elastic system, has a negative gro
rate, which attains a constant value in this limitl→0, be-
cause energy is dissipated in collisions. The magnitude of
growth rate decreases proportional to (12e) in the limit
(12e)→0.

~4! The real (spr) and imaginary (spi) parts of the propa-
gating modes have the asymptotic behavior

spr52sprl l
2, spi56spil l , ~50!

wheresprl and spil are positive coefficients. The numeric
values of the coefficients determined from the Boltzma
equation and the Navier–Stokes equations are in good ag
ment. The coefficient sprl increases proportional to
(12e)21 in the limit (12e)→0, while the coefficientspil

attains a finite value in this limit. The asymptotic values
sprl and spil from the Navier–Stokes equations in the lim
(12e)→0 are

sprl5
1

8~12e!Ap
, spil51. ~51!

These are, however, different from the coefficients for
elastic system even whene50.99.

C. Perturbations in the vorticity direction kÄ0, lÄ0

The growth rates of the hydrodynamic modes in the v
ticity direction (k50,l 50) show unusual behavior. For low
values of the wave vectorm, the growth rates of the five
modes are all real, and there are no propagating modes
the value ofm is increased, there is a crossover to three r

TABLE I. Initial growth rates for perturbations with wave vector in th
vorticity direction from the Boltzmann equation.

e50.99,
m50.001

e50.99,
m50.01

e50.9,
m50.01

e50.9,
m50.1

s1 1.21731023 9.48531023 1.16631022 8.60631022

s2 3.04531025 2.88731024 8.70731024 7.20031023

s3 23.0803105 22.25531022 29.04131024 20.1930
19.30931023i 10.1133i

s4 21.30931023 22.25531022 21.27431022 20.1930
29.30931023i 20.1133i

s5 23.54631022 23.401 20.2925 22.7564

TABLE II. Initial growth rates for perturbations with wave vector in th
vorticity direction from the generalized Navier–Stokes equations.

e50.99,
m50.001

e50.99,
m50.1

e50.9,
m50.01

e50.9,
m50.3

s1 9.726531024 2.31531022 9.71831023 0.1507
s2 21.77031027 21.77031023 21.83731025 21.65331022

s3 21.7703107 21.77031023 21.83731025 21.65331022

s4 21.02931023 23.86131022 21.03031022 20.345
10.1306i 10.379i

s5 24.72031022 23.86131022 20.472 20.345
10.1306i 20.379i
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and two complex conjugate solutions for the growth ra
similar to that for an elastic system. This behavior is o
served in the solutions of the Boltzmann equation, as sho
in Table I, and the Navier–Stokes equations, as shown
Table II. The value of the wave numbermc at which there is
a crossover from five diffusive to three diffusive and tw
propagating modes is shown in Fig. 6. The qualitative beh
ior of mc obtained from the Boltzmann equation and Navie
Stokes equations are similar, and both methods indicate
mc}(12e) for (12e)→0, but there is a quantitative differ
ence in the prediction of the two equations. The scaling
havior of the hydrodynamic modes for variations in the vo
ticity direction from the Boltzmann equation are as follow
There are five diffusive modes, two of which are stable a
three are unstable. One of the stable modessd3 , which is a
continuation of the energy mode in an elastic system, te
to a finite value in the limitm→0, as shown in Fig. 7. The
other four modes have the behavior

sd15sd1mm, ~52!

sd25sd2mm, ~53!

sd452sd4mm, ~54!

sd552sd5mm, ~55!

FIG. 6. Wave vectormc for the crossover from five diffusive hydrodynami
modes to three diffusive and two propagating modes as a function
(12e). The solid lines shows the result obtained from the generalized B
zmann equation, and the broken line shows the result obtained from
Navier–Stokes equations.

FIG. 7. The initial growth ratessd1 ~s!, sd2 ~h!, 2sd3 ~,!, 2sd4 ~L!,
2sd5 ~n!, 2spr ~1!, anduspiu ~3! as a function of wave numberm obtained
from the linearized Boltzmann equation.
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wheresd1m , sd2m , sd4m , andsd5m are positive coefficients
At the critical valuemc , the growthsd1 , sd2 , andsd4 , vary
continuously. The growth ratessd3 and sd5 assume equa
values atmc , and give rise to two complex conjugate grow
rates for m.mc . The variation of the coefficientssd1m ,
sd2m , sd3 , sd4m , and sd5m are shown as a function of (1
2e) in Fig. 8. This figure indicates thatsd3}(12e) in the
limit (1 2e)→0, in agreement with the results for the velo
ity and strain rate directions. The coefficientssd1m andsd5m

attain constant values in this limit, while the coefficien
sd2m andsd4m decrease proportional to (12e)1/2.

Three of the growth rates determined from the Navie
Stokes equations,sd1 , sd3 , andsd5 are qualitatively similar
to those determined from the Boltzmann equation, and th
is a coalescence of the growth ratessd3 andsd5 to generate
propagating modes with complex conjugate growth rate
the crossover valuemc . However, the numerical values pre
dicted by the Navier–Stokes equations vary by about 2
from those of the predictions of the Boltzmann equation.
the limit (12e)→0, the coefficientssd1m and sd5m assume
the values

sd1m51, ~56!

sd5m51, ~57!

while the growth rate for the energy modesd3 converges to
the value

sd352
8~12e!Ap

3
. ~58!

However, the predictions of the Navier–Stokes eq
tions are qualitatively different. The growth ratessd1 andsd5

are qualitatively similar to those predicted by the Boltzma
equation, but there are numerical differences. However,
growth ratessd2 and sd4 are not predicted by the Navier
Stokes equations. Instead, the Navier–Stokes equations
dict two growth rates that are negative and equal, and h
the value (25m2/16Ap), identical to that for the shea
modes in an elastic system.

VI. CONCLUSIONS

The present study attempted to examine the suitability
the generalized Navier–Stokes equations for the study

FIG. 8. The coefficientssd1m ~s!, sd2m ~h!, 2sd3 ~,!, sd4m ~L!, andsd5m

~n! as a function of (12e) in the limit m→0.
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rapid granular flows. A comparison was made between
results of the generalized Navier–Stokes equations, mod
to include the dissipation due to inelastic collisions, and
solution of the Boltzmann equation for the initial grow
rates of the hydrodynamic modes of a three-dimensio
sheared granular flow. The Boltzmann equation already c
tains the assumption of molecular chaos, which states
the pair distribution function is the product of single partic
distribution functions for colliding particles. In addition, th
dilute limit was considered, where the pair distribution fun
tion was set equal to 1. But the Boltzmann equation is m
general than the Navier–Stokes equations because it is
assumed that the only relevant variables are the mass,
menta, and energy of the particles. The effect of these
sumptions can be inferred from a comparison of the res
of the Boltzmann and Navier–Stokes equations. For mos
the comparisons, attention was restricted to the low w
number ~hydrodynamic! limit, where the length scales ar
large compared to the mean free path, since a hydrodyna
description is only valid in this limit. The growth rates fo
perturbations in the velocity, gradient, and shear directi
were considered.

The growth rate for perturbations in the velocity dire
tion is very different from that for an elastic system. There
one mode, which is a continuation of one of the transve
momentum modes in an elastic system, which is unsta
The growth rate for this mode increases proportional tok2/3

in the limit k→0, wherek is the wave vector of the pertur
bations in the velocity direction. The continuation of th
propagating modes are stable, but their real and imagin
parts are also proportional tok2/3 in the limit k→0. Theuku2/3

behavior of the diffusive modes is also observed in ot
systems where there is a large velocity gradient. For
ample, in ‘‘thermostated’’ sheared hard sphere gases, w
each molecule experiences a drag force proportional to
velocity, theuku2/3 behavior of the decay rate is observed f
certain types of thermostats.27 This is due to the ‘‘turning’’ of
the wave vector by the mean shear flow, as can be see
considering a convection-diffusion equation with mean v
locity ux5gy,

] tc1]x~gyc!5D~]x
21]y

2!c, ~59!

wherex andy are the gradient and flow directions, andD is
the diffusion coefficient. The Fourier transform of the abo
equation is

] tc1k
]c

] l
52D~k21 l 2!c, ~60!

wherek and l are the wave vectors in thex andy directions.
The solution of Eq.~60! is

c~k,l ,t !5c0~ t !exp@2Dt~k21 l 22gtkl1 1
3g

2t3k2!#.
~61!

From Eq. ~61!, it is clear that though the behavior o
the concentration field is diffusive at small times@c
}exp(2Dk2t)#, the behavior at long times in thex direction
is not diffusive but is of the form@c}exp(2Dg2t3k2/3#,
which gives the decay rate proportional touku2/3. However,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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there are three significant differences between the beha
of a thermostatted gas and the present system.

~1! The anomalous behavior of the diffusive mode
observed only for certain types of thermostats~where the
drag coefficient is a function only of the local density a
temperature!, but is not present in other types of thermost
~where the drag coefficient is a function of the density a
temperature in the uniform flow!. In the present case, thi
type of anomalous scaling is observed for values of the
efficient of restitution less than 0.99.

~2! The diffusive mode is stable for thermostated s
tems, as indicated by the solution 61, and it is one of
propagating modes which goes unstable, whereas in
present case the diffusive mode with the anomalous sca
is unstable.

~3! In diffusive systems a crossover is expected from
s}k2 behavior at small times~high frequencies or slow driv
ing! to the s}uku2/3 at long times~low frequencies or large
driving!. This crossover in inelastic particle systems occ
at (12e) in the range 1023– 1024, indicating that diffusive
motion is not likely to be observed for systems of practi
interest.

The scaling behavior predicted by the Navier–Stok
equations are identical to those predicted by the Boltzm
equation, but the numerical values differ quantitatively
about 20%.

The initial growth rate of perturbations in the gradie
direction is also similar to that for at two-dimensional sy
tem. However, there is one qualitative difference between
predictions of the Boltzmann and Navier–Stokes equatio
which is the behavior of one of the stable shear modes.
Boltzmann equation predicts that the magnitude of the de
rate increases proportional tol 2, whereas the Navier–Stoke
equations provide an asymptotic behavior proportional tol 4,
wherel is the wave number in the gradient direction. The
are also quantitative differences in the predictions of
growth rates.

The initial growth rates of the perturbations in the vo
ticity direction show unusual behavior. At very low values
the wave numberm, there are five real solutions to the initia
growth rate, in contrast to the three real and two comp
conjugate solutions for the velocity and gradient directio
As the wave number is increased, there is a crossove
three real and two complex conjugate solutions. The Bo
mann equation predicts that in the limitm→0, two of the
solutions are positive, indicating the presence of two
stable modes. The two unstable solutions and two of
stable solutions for the growth rate vary proportional to
wave vectorm in the limit m→0, while the third stable so
lution, which is a continuation of the energy mode in elas
systems, converges to a finite value in this limit. Three of
solutions of the Navier–Stokes equations are qualitativ
similar to those of the Boltzmann equation, but the solutio
for the transverse momentum modes are similar to those
an elastic system, with the difference that the viscosity n
depends on the coefficient of restitution. This is because
ance laws for only five velocity moments are used in
Navier–Stokes model, and the equations for the transv
momentum modes are decoupled from the mass, longitud
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momentum, and energy modes as shown in the followi
When all the second moment equations are retained, t
are additional couplings between equations for all the sec
moments resulting in a qualitatively different set of scali
relations.

The increase of the growth rate proportional tom in the
limit m→0 is unusual, and does not seem to have been
served before. Whereas the scaling of the growth rate p
portional tok2/3 in the flow direction can be explained from
kinematic considerations, the scaling proportional tom is due
to the presence of inelastic collisions. This can be inferred
considering a simplified version of the Navier–Stokes eq
tions for the limitk50 andl 50. In this case, the equation
for the velocities in thex and y directions decouple from
those for the velocity in thez direction, and it is necessary t
consider only the mass,z momentum, and energy equation

s* r* 81 im* r0* uz* 850, ~62!

s* r0* uz* 852 im* T0* r* 82 im* r0* T* 82m* m* 2uz* 8 ,
~63!

r0* Cvs* T* 852K* m* 2T* 82r0* T0* im* uz* 8

2D* S T* 8

T0*
1

2r* 8

r0*
D , ~64!

where m* g25D* has been used to simplify the last tw
terms on the right-hand side of~17!. In the limit m* →0, one
of the solutions, corresponding to the decay rate of ene
fluctuations, assumes a finite values* 52(D* /r0* CvT0* ).
The other two solutions which are proportional tom* in the
limit m* →0 are real. These can be determined as follo
From Eq.~62!, uz* 852(s* r* 8

/im* r0* ), and if we neglect
the diffusive term proportional tom* 2 in Eq. ~63!, we get

T* 8

T0*
52

r* 8

r0*
S 11

s* 2

m* 2T0
D . ~65!

This is inserted into Eq.~64! to provide, at leading order,

22D* 1~r0* CvT0* s* 1D* !S 11
s* 2

m* 2T0*
D 50. ~66!

It is easily verified that due to the presence of the dissipa
due to inelastic collisions, Eq.~66! provides real roots

s* 56m*AT0* . ~67!

Another issue of interest is the significant change in
scaling behavior when the coefficient of restitution
changed from 1.00 to 0.99, and whether this is a continu
change or a discontinuous one. For the two-dimensio
system,22 it was observed that the change is continuous, a
the scalings for an elastic system are recovered for (12e)
,1024. Calculations for the three-dimensional case show
similar behavior. Therefore, though the change from
usual hydrodynamic scalings to the unusual scalings repo
here is gradual, it is not likely to be of practical interest sin
the parameter regime for the usual hydrodynamic scaling
not relevant to practical systems.

The significant result of this analysis is that perturbatio
in the vorticity direction show unusual behavior, and the
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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are qualitative differences between the predictions of
Boltzmann equation and the Navier–Stokes equations. T
indicates that it is necessary to include dynamical equat
of all the second moments in order to accurately capture
dynamics of the system. There are two solutions for
growth rate which are real and positive, indicating that p
turbations are unstable in the vorticity direction. It should
noted that in the vorticity direction, there is no variation
the wave vector due to the rotation imposed by the sh
flow, and therefore the initial growth rate is identical to th
calculated using a linear analysis even at long times. Th
fore, the present analysis indicates that the flow is unstab
perturbations in the vorticity direction. Since variations
the vorticity direction are not captured by two-dimension
simulations and analyses, the present analysis indicates
the dynamics of a three-dimensional shear flow could
very different from that predicted by two-dimensional stu
ies.
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