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The initial growth rates for the hydrodynamic modes of the shear flow of a three-dimensional
collection of inelastic spheres is analyzed using two models. The first is the generalized Navier—
Stokes equations, derived for the shear flow of inelastic spheres using the Chapman—Enskog
procedure, where the energy equation has an additional dissipation term due to inelastic collisions.
The second is the solution of the linearized Boltzmann equation, where the distribution function in
the base state is determined using a Hermite polynomial expansion in the velocity moments. For
perturbations with variations in the velocity and gradient directions, it is found that the solutions
obtained by two procedures are qualitatively similar, though there are quantitative differences. For
perturbations with variations in the vorticity direction, it is found that there are qualitative
differences in the predictions for the initial growth rate of the perturbations2001 American
Institute of Physics.[DOI: 10.1063/1.1378789

I. INTRODUCTION analytical methods, it became appatént* that there is the
development of inhomogeneities and formation of clusters as
Rapid flows of granular materials are widely encoun-the flow progresses.
tered in nature as well as in industrial applications. A large  In order to understand these phenomena, stability analy-
number of chemical processes involve fluidized bed and cirses of a set of model equations for the granular flow were
culating bed reactors where the particles transfer momentumindertakert®> ° These equations are similar to the Navier—
and energy due to instantaneous collisions. Numerous gestokes equations for hard sphere gases, and assume a similar
physical flows such as rock slides and avalanches also iferm for the transport coefficients. However, the energy
volve regions where the grains are in a rapid state of motionequation has an additional term which represents the dissipa-
Dynamical descriptions for these flows are not as well develtion of energy due to inelastic collisions. Since the mean
oped as, for example, the Navier—Stokes equations fovelocity depends on the spatial coordinate, it is not possible
simple fluids. This is partly because of the complex interacto obtain a closed form eigenvalue problem for a shear flow.
tion between the particles and the turbulent flow of the gas iConsequently, a transformation is made where the wave vec-
practical applications such as fluidized beds. But even gor is a function of time, and the variation of the perturbation
simple system such as a collection of particles interactingimplitude for this form of the wave vector is examined. It
with each other through inelastic hard sphere collisions exwas found that the initial growth rate for the most unstable
hibits many complex phenomena at the macroscopic levelode is positive?® At later times, it is found that the initially
such as convection rolls and pattern formation. The derivaunstable perturbations become stalélowever, there are
tion of macroscopic dynamical equations from a knowledge‘layering” modes with variations in the gradient direction
of the microscopic particle dynamics remains a challenge foyhich are unstable even in the long time limit.
granular flows where the coefficient of restitution of interpar-  Another class of problems that has received attention
ticle collisions is not close to 1. recently is the homogeneous cooling state of a gas of inelas-
The simplest model flow that has been widely analyzedic particles®?° Here, the base state is a gas of inelastic
is the homogeneous shear flow of a granular material in thgrains in which the “temperature{mean square velocity of
absence of gravity. In this case, there is a balance betweehe particles is decreasing with time due to inelastic colli-
the source of energy due to the macroscopic imposed flovgions. The stability of the homogeneous state of the system is
and the energy dissipation due to the inelastic collisions bedetermined using a stability analysis about this cooling state.
tween particles. Constitutive models have been developel is found that the homogeneous state is unstable due to the
for this flow using methods similar to those used in the ki-clustering of particle$® In addition, there is the inelastic
netic theory of gase’.* In addition, there have been system- collapse mechanisf which is also observed in these sys-
atic derivations of kinetic equations up to Burnett order starttems. Both the clustering and collapse mechanisms also exist
ing from the Boltzmann equation and using an expansionn forced systems such as shear flows. The present study is
with the Knudsen number and the inelasticity of the particleabout a steady state where there is a source of energy due to
collisions as the small parameté%Sheared granular flows the mean shear, and energy dissipation due to inelastic colli-
have also been investigated using molecular dynamics typgions.
computer simulations. While the early simulati6rg (for a Since many of the previous studies of shear flow have
review see Ref. I0argely confirmed the results obtained by been based on Navier—Stokes type equations, with the trans-
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port coefficients determined using the Chapman—Enskog-e)'?, and terms correct t®(e*) are retained in the expan-
procedure starting from the Boltzmann equation, it is of in-sion. The parameter (1e)'? is preferred to the traditional
terest to examine whether the scaling laws for the hydrody¢1—e?)¥?in the present case, because the coefficient of res-
namic modes obtained using these two models are the santéution is expressed as=1— €2, and there is no need to
It is expected that the continuum equations can be obtainecarry out factors of 2 in the definition @& The relationship
using an asymptotic analysis in the limit of small elasticity between the results of the two approaches for a homoge-
(1—e)<1, but it is of importance to determine the interval neous shear flow are given in Kumardr?
of the parameter (% €) where they accurately reproduce the The solution of the Boltzmann equation is obtained us-
macroscopic dynamics. In the present paper, the initialng an expansion in a set of basis functions, which are cho-
growth rates of the hydrodynamic modes of the homogesen to be Hermite polynomials in the present case. Similar
neous sheared state is analyzed using the Boltzmann equeglculations have been carried out for spheres at
tion for inelastic spheres. The Boltzmann equation is morequilibriun?®**in the absence of flow, and it is known that
fundamental than the continuum Navier—Stokes equationghe solutions for the growth rate are related to the transport
since the Navier—Stokes equations assume that the only retoefficients close to equilibrium. It can be shown that the
evant variables that determine the dynamics of the systergigenvalues for the linearized Boltzmann equation for a con-
are the mass, momentum, and energy. However, the Boltservative system are real and discrete in the limit of long
mann equation already contains certain simplifying assumpwavelengths, and the eigenfunctions form an orthogonal ba-
tions. The most important of these is the assumption that theis set. In a homogeneous system, there are five eigenvalues
pair distribution function is the product of the pair correla- which are zero, and the corresponding eigenfunctions are the
tion function and the single particle velocity distributions mass, energy, and the three components of the momentum,
before collision(assumption of molecular chaosThis as-  which are conserved in collisions. All other eigenvalues are
sumption breaks down in very dense systems where there anggative, indicating that other types of transients decay over
correlated collisions between pairs of particles. time scales comparable to the collision frequency. If pertur-

Since an infinite shear flow involves a linear variation in bations of wavelengtlk are imposed on the system, the ei-
the mean velocity in the gradient direction, it is not possiblegenvalues corresponding to the two transverse components
to obtain an eigenvalue problem for systems with variation®f the momentum and the energy decay proportiong*o
in the flow direction. It is necessary to use a time-dependerindicating that they are diffusive. The eigenfunctions corre-
wave vector in the gradient direction, which is “turning” sponding to the density and longitudinal momentum occur as
with the mean flow, as indicated in the analysis, in order toa complex conjugate pair, where the imaginary part is pro-
obtain an eigenvalue problethin the present analysis, we portional tok indicating propagating modes, while the real
set the time equal to zero in the transformed wave vector tgart is proportional td?. The effect of inelastic collisions on
get solutions for the growth rate at zero time. For perturbathe initial amplification rates is examined in this analysis.
tions with variations in the flow direction, it is known from The perturbations are expressed in terms of a basis set con-
previous studies on the Navier—Stokes equations that thouggisting of products of Hermite polynomials as before, and
the initial growth rate indicates that the system is unstablesolved to determine the initial growth rates of the linearized
the system could still be stable in the long time limit. This is Boltzmann equation. Though the number of solutions of the
because a perturbation with wave vector in the flow directiorgrowth rate depends on the number of basis functions used in
will be rotated toward the gradient direction, and perturbathe expansion, it is observed that as in the case of conserva-
tions in this direction are stable. However, the most impor-ive hard sphere gases, the solutions for the slowly decaying
tant result of this analysis concerns the stability of perturbamodes are insensitive to the number of basis functions used.
tions with variation in the vorticity direction perpendicular to It is expected that in an inelastic system, there will be only
the direction of shear, and this is not affected by the rotatiofour solutions which have zero growth rates because energy
of the wave vector by the mean flow. The stability of theis not conserved in collisions.
flow in the vorticity direction perpendicular to the plane of The calculation of the initial amplification rates from the
shear is not probed by two-dimensional theories or simulageneralized Navier—Stokes equations, derived from the Bolt-
tions, and the presence of unstable modes in this directiommann equation using the Chapman—Enskog procedure by
indicates that studies restricted to two dimensions may noBela and Goldhirschijs discussed in Sec. Il. In Sec. IIl, the
accurately capture the dynamics of three-dimensional shesalculation of the distribution function at steady state for a
flows. The stability of perturbations in the vorticity direction homogeneous shear flow is discussed. This solution is used
has not received as much attention in the literature as thode Sec. IV to determine the initial growth rates of the linear-
in the flow and gradient directions. ized Boltzmann equation.

First, the velocity distribution in the base state, which is
the homogeneous shear flow, is calculated by solving thg -\ epa|17ED NAVIER-STOKES EQUATIONS
Boltzmann equation. An expansion in a basis set consisting
of products of Hermite polynomials of the velocity compo- The Navier—Stokes equations for sheared granular flows
nents is used. The Boltzmann equation is a nonlinear equalerived by Sela and Goldhirsttare used in the present
tion, and it is difficult to determine the coefficients in the analysis. They used an expansion in the limit<kh and
expansion in general. In the present case, the coefficients até —e) <1, where the Knudsen number Kn is the ratio of the
determined using an expansion in the parameter(l mean free path to the scale of description. Attention is re-
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stricted to the dilute limit, for simplicity, where the Knudsen andC,=(3/2) is the specific heat at constant volume, dnd
number is set equal to zero, and the results of Sela ang the diameter of a particle. In the above-mentioned equa-
Goldhirsch correct tdD(1—e€) are incorporated. A coordi- tions, the temperatur€* is expressed in terms of energy per
nate system is chosen where the flow is alongdtigection,  unit mass of a particle, so that it has units of thelocity)?,

the velocity gradient along the direction and the vorticity while the viscosity and thermal conductivity are also ex-
vector is along the direction. Variables with a superscript pressed per unit mass of a particle.

asterisk are used in the present section to denote dimensional The equations are expressed in terms of Fourier modes
variables, while variables without the superscript in Sec. lllin the shear and gradient directions. In order to obtain an
are scaled as specified. The Navier—Stokes mass, momegigenvalue problem, it is necessary to assume that the wave

tum, and energy equations for the present case are vectors are time dependent and “turn” with the mean ffSw,

" . . " . N e and the wave vectors are chosen to Io(t*)=k*(0),
d p*+(9x(p*ux)+(9y(p*uy)+o7z(p*uz)—0, (1) I*(t*)=1*(0)— y*t*k*(0), and m*(t*)=m*(0). The
P (FF U% U GX U + Uk T Uk Uk arul) perturbations are assumed to be of the form

* * * * pk ) — *_I_"* * * *+ *\s*
:_ﬁfp**’ﬁ:T:X+8;T:y+o7;7':z, ) p* (X*,y*,Z* 1% ) = pg + p* (t*)exp( k™ X* +ul*y
+um*z¥),
o (T US U2 S U3 FE U+ U2 E ) )
. P ug (X*,y*, 2% t%) = y*y* + 05 (t* ) exp(tk* X* + ol *y*
=—dy P* + 5 Tyt Iy Ty 95 Thx 3 .

+.um*z*),

FOFurFularur +ukatul +urorul R
p (t z X Yx Yz y Yy ¥z z%z z) U;(X*,y*,Z*,t*):U;(t*)EX[(Lk*X*+L|*y*

== 5 P* + ) Tt Iy Tyt 35 Ty, (4) M), (12)
pC (I T* + Uy ay T* +uy oy T* +u; 9; T%) U (X*,y%, 2%, t%) = 0F (1% ) exp( ck* x* + o * y*
=0y (K* gy T*)+ 9y (K* 9y T*) + 7 (K* 97 T*) +um*z%),
—p*(dx ux +ayuy +dyuz)+dx (L* a5 p*) TH(X*,y*, 25 ) = T8 + T (t%)expl ok* X* + ol * y*
+ 0y (L*d5 p* )+ d5 (L* 95 p*)+ S* —D*, (5 +.um*z*).

where Ji =(d/ot*), df =(alx), andt* andx| are the \yhen attention is restricted to the initial growth rateg’at
dimensional time and spatial variables, and indicial notation_ g  tye time-dependent perturbations are expressed as
is used to represent the components of a vector. The numbslsc (t*) = p* ' expE*t*) 0F (t*) =u*’ expE*t*) and

) I 1 ’

N ) . p
density p* is t*he'nur'nber of particles per unit volume, the F*(t*)=T* exp@*t*). When these expressions are inserted
stress tensorj; , is given by

into (1), (2), (3), and(5) and linearized in the perturbations

7 =p* (dF U + a7 Ul —(2/3) 605 uy ), (6)  to the density, velocity, and temperature, the resulting equa-
tions are
the rate of dissipation of enerdg9* due to inelastic colli-
sions is S*p*,+p3(Lk*U:/+L|*U;,+Lm*u.;/)=o, (13)
D*:4\/;p*2T*3/2dZ(1_e), (7) pS(S*U:"F’y*U;’)
the source of energy due to the mean shear is =— k¥ ((1+e)/2)(pg T* '+ p* ' Tg) — w* ((413k*?
St=—p*afur+ 7t ur, (8) HI*2Em* 2 Uy — (U3 u* (K*1*uf ' +k*m*ul’
the viscosityu* in the dilute limit (divided by the particle *!
mas$ is +ut oyt oTr | (14
L 5 (1+5_62> T*21’2 © postuy’=—u*((1+e)/2)(pg T*'+p*'T)
16w\ 12/ d — (K2 (413)1* 24+ m* 2)ul !
the thermal diffusivityK* is — (UK U + 1 FmFul )
o B (1+ 1552) T*12 10 T+
= s * A% *
32w 16 | d? +u”ytk (2Tz; , (15
and the coefficienL* which relates the diffusion of energy , ,
due to density gradients is pos™ Uz "= —um*((1+e)/2)(pg T*' +p*'T5)
125 T*3/2 _M*(k*2+|*2+(4/3)m*2)u;’
L*Z—EZT (1) KLk k7 I
64 (p*d?) — (U3 Mk e, (16
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* *T*x/ _ _ Wk [(|l*2 * 2 *2\T*k/ _ | X (|*2 * 2 * 2 */_l+e * % T * k! * k7
poC,s*T* = —K*(K*“+1*“+m*9)T L*(kK*+1*+m*9)p > po To (eK* Uy "+ ™ ug "+ um*uz’)
+,u,*’y*2 - +2y* u*(d*ul’ + ok ul ) —-D* ST*,-F—ZP*, (17
273 Y AT

In Egs. (13)—(17), the ideal gas equation of stap¥ =(1  space. For a steady homogeneous flégx,u,t)=F(u) is
+€)p*T*/2 has been used, and the gas constant has been ggily a function of particle velocity. The conservation equa-
equal to 1 because the temperature is expressed in units bn for this distribution function, for a mean flow with strain
energy(per unit mass of the partidleThe last terms on the rate y, is

right-hand side of14) and (15), and the third term on the

right-hand side 0f17), account for the variation in the vis- JuyF(u) _ dcF(u)

_ , 19
cosity due to variations in the temperature, while the last 4 Uy at 19
fcerm on the rlgh_t-h_and_ side ¢17) accounts for th_e yarlat_lon where the collision integral is given by
in the rate of dissipation of energy due to variations in the
temperature and density. dcF(u) P "
For a system of elastic disks, Eq4.3)-(16) have four a dk | du’(e”“F(up)F(up)
solutions fors*,28
—F(u)F(uh)wk, (20)
St =—(p*Ipg)k*?, o _
where the pair distribution function has been set equal to 1
Sh=—(u*Ip})Hk*2, for a dilute granular flow. The coefficierd 2 in the first
K* term in Eq.(20) accounts for the contraction of phase space
st=— ——k*2, (18)  due to inelastic collisions. In Eq20), u, and ul are the
poCp velocities of a pair of particles before collision so that the

post collisional velocities are andu’, k is the unit vector in
> + ok* ‘/(cp/cv)'r*, the.d.irection of ti]re_ line joining_ the.centers of particles at
collision, w=u—u'" is the velocity difference between the
1([K*(C,—C,) 4u* particles, and the above integral is carried outviek=0 so
* (( = P4 k*z) —k*J(Cp/C,)T™, that the particles approach each other prior to collisions.
PoCpCy s An expansion of the following form is assumed for the
where (C,/C,), the ratio of specific heats, is 5/3 for a gas of distribution function:
elastic spheres. It was verified that the above-mentioned so-
lutions are recovered both from the Navier—Stokes equations F(u)=Fo(u)
(13-(17), and the linearized Boltzmann equation for the
elastic case. The results of E48) are compared with those
of the linearized Boltzmann equation in Sec. V.

1/(K*(C,—C 4u*
SZ:_—<< (* p v)+ M*)k*z
Po CpCy 3po

55 2

I

K
1+k21 Akg{)k(u)}, (21)

whereFy(u) is the Maxwell-Boltzmann distribution

u

1 2
IIl. NUMERICAL METHOD FOR STEADY VELOCITY Fo(u)= (277)3726’(“( - 7)' (22)

DISTRIBUTION _ _ _
The basis functionsp, are chosen as products of Hermite

The analysis is similar to that used earliefor the two- polynomials in the velocity coordinate in the following man-
dimensional shear flow of inelastic disks, and only a briefyer, pue to the symmetry of the distribution function, it is
summary is prov_ideq herg. In order to silrgplify the nOt?tiomnecessary to retain only terms that satisfy(uy,Uy,us,)
the s_caled _velocny is _deflned as=u*/Ty 7%, whereu* is = di(— Uy, — Uy ,U,) and i (Uy,Uy,U) = iUy, Uy, —Uy).
the dimensional velocity, and the “granular temperatufg”  Therefore, only Hermite polynomials of even order in the
is the mean square velocity scaled by the particle mass. Thgs|ocity u,, and functions of the form Héu,)He, _n(uy)
scaled spatial coordinates are definedxas<*/(pgd®) ™,  \wherep is even, are included. Of these functions, it is nec-
where (pgd®) " is the magnitude of the mean free path of @essary to consider two functions separately,
particle, ancpg andd are the number density and the particle
diameter, respectively. The scaled strain rate then becomes ®n-1=(UZ+ us+us—3)/16,
y=v*1(p§d?T5Y?), where y* is the dimensional strain 1 (23)
rate. In the dilute limit, the pair distribution function is 1 and $n=1,
the only independent parameter which affects the scaled disince these correspond to the conserved mass and energy
tribution function is the coefficient of restitutiom The ve-  modes. Herel is the total number of basis functions used. A
locity distribution function, f(x,u,t), is defined such that Gramm-Schmidt orthogonalization procedure is used to en-
f(x,u,t)dxdu is the number of particles in the differential sure that all the basis functions are orthonormal when the
volumedx aboutx in real space andu aboutu in velocity  inner product is defined with the Gaussian as the weighting
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function. There are a total =14 basis functions when all < 10
moments up to the fourth moment of the velocity are re- ﬁ
tained in the expansion. %
The expansion is inserted into the Boltzmann equation, o 1 3

Uy

multiplied by Fq(u) ¢;(u) and integrated over the velocity
coordinates to obtain a nonlinear vector equation of the form

= 10 I
— ¥(Hi+GjjA)) = (M +LijAj+ NijAjA) (24) 31
where summation is carried out over the repeated indices, the \T/ {
K X 1 matricesH; andM); are Z102E :
HUFo(W) = 107 107! 1
UyFolU et (1-e)
Hi=fdu pi(w) == (25)
X FIG. 1. The strain raté¢y/e)—O, the velocity moments (u,u,)/e)—A,
_ ((ui—u?)/e?)— <. The solid lines show the result for calculations with 14
M;= f duf dqu dk Fo(u)FO(uT)(¢i(u’)— ¢'(u))w-k, basis functions, and the broken lines show the results for 5 basis functions.
(26)
the KX K matricesG;; andL;; are where the perturbatioft’ (x,u,t) has the form
A(Fo(u)uygi(u)) f/(x,u,t)=F(u,t)exp(k(t)x+d (t)y+:m(t)z), (31
Gy~ [ du gy TEEBE @) _
Ux where k(t), I(t), and m(t) are the time-dependent wave

numbers in the, y, andz directions, respectivel, and are
Lu=deJduTJdk Fo(WFo(u")(;(u)+ ¢;(u")) given by
k(t)=k(0), I(t)=1(0)—ytk(0), m(t)=m(0).

X(i(u") = ¢i(u))wk, (28) @2
and the third order matrii;j is The above-mentioned form of the distribution function is
. . ; inserted into the Boltzmann equation, and linearized about
Nijk:f duf du f dk Fo(u)Fo(u’) ¢j(u) ¢y(u’) the base state to obtain an equation of the form
(U - & . . ouf gy
X(&(W) = dilw)wk, @9 (A iU+ aluy+ omuy) f— y =2 = 20 (33

whereu’ andu'’ are the velocities after an inelastic collision Uy Jt

of particles which have precollisional velocitiesand u’, where the linearized collision integral is given by

respectively, and is the the unit vector along the line of a3

centers at coI_I|S|on. . N i:j du*f dk(e*Z(F(ub)?(ug)JrF(ug)f(ub))
The solution procedure for determining the coefficients at

A, is identical to that used in KumardhAn expansion is - -

used in the parametar=(1—e)2 and corrections to the —FWf(u)—Fu)f(u)wk. (34)

distribution function have been obtained correcOte®) or  Attention is restricted to the initial growth ratéatt=0) for

(1—e)? in the asymptotic expansion. Results were obtainedarbitrary values of K(0),!(0),m(0)), for which the form of

for two sets of basis functions one consisting of 5 basis functhe expansion is

tions (which include all velocity moments up to second or- . -

den and the second consisting of 14 basis functiémbkich f(ut)=exp(st)f(u), (35

include all velocity moments up to fourth ordeA compari-  wheres is the initial growth rate. A series of the following

son of the strain rate and the velocity moments obtainedorm is assumed for the perturbation to the distribution func-
using these basis sets is shown in Fig. 1. It is observed th:ﬁ- 7

there is good agreement between the two basis sets for the '

dimensionless strain ratg and the momen{u,u,) even ~ ‘-

when the coefficient of restitution is 0.7. However, there are (W= FO(U)El Aidi, (36)
systematic deviations in the anisotropy in the distribution . ) ) ) o
function<u)2(_u§>. The steady distribution obtained using a Where the basis functiong; are defined in a manner similar

of the analysis. are not restricted to even functions wf or those following

the symmetryf (u,,uy ,u,) =f(—u,,—uy,u,). This series is
inserted into EQ.(33), multiplied by the basis function
¢i(u), and integrated over the particle velocities to get the
In the linear analysis, perturbations are imposed on théollowing matrix equation:

distribution function of the form (slij+ kXij+ Y} +imZ; — yGi;— Ci))Aj=M;;A; =0,
f(x,u,t)=F(u)+f'(x,u,t), (30) (37

IV. HYDRODYNAMIC MODES
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wherel;; is the identity matrix, and the other matrices are 10"
defined as _
& 19
Xij:f du uyi(u) g;(u), T 107
(1?10'2 i
Yij:f duuyé;(u) gj(u), $10 |
l..
<|r‘7°10'4 3
2= [ duugwew. @8 oot
s (W) 1072 107" 1 10"
uy¢i(u k
G--=f du ¢(u) —=1—,
ij ¢|( ) &ux

FIG. 2. The growth rates for the shear modgs=sy, (O); the energy
modesy; (<), and the reak,, (A) and imaginary parts,| (V) of the

Ci= f duf duT( F(u) ¢-(UT) + F(UT) @:(u)) growth rate of the propagating modes as a function of wave nuknfoeran
! y ! elastic system. The solid lines show the results obtained from the linearized

, Boltzmann equation obtained using a basis set consisting of 20 basis func-
X (i(u") = ¢i(u))wk. tions, and the broken lines show the results of the Navier—Stokes equations.
In Eq.(38), u’ andu'’ are the postcollisional velocities of a
pair of particles with precollisional velocitiasandu®. The

dispersion relation is obtained by setting the determinant of N€ salient features of the behavior, which is common to
the matrix M;; equal to zero, so that there are nontrivial both the solutions of the Navier—Stokes equations as well as

solutions for the amplitude, . the Boltzmann equatign, are as foIIows_. _ _ _
(1) There is one diffusive mode, which is a continuation
of one of the transverse momentum modes in the elastic sys-
V. RESULTS tem, which has a positive initial growth rate in the linkit

It is first useful to analyze the results for the case of_>0’ and has the form

elastic particles, where there is no energy loss during colli-
sions. For a basis set consistingdffunctions, there aré Sa1=Saakl K|, (39
solutions fors. For an elastic system, it can be shown thatWhere Syt

X . . _ is a positive coefficient. A comparison of the
there are five eigenvalues wig=0 for a uniform system

s ; ) growth ratesy; obtained from the Navier—Stokes equation
k=0, 1=0, m=0. The corresponding eigenfunctions of the 5 \he Boltzmann equation is shown in Fig. 3. It is observed
matrix M;; are the mass, the three components O,f the MOthat there is good agreement for small valuesk.0but the
mentgm, and the total efne'rgy..AII other eigenfunctions h,avefnitial growth rate predicted by the Navier—Stokes equation
negative growth rates, indicating that they decay over timgg |, er than that of the Boltzmann equation kor 1. This is
scales proportional to the inverse of the collision frequencyConsistent with the results obtained for a two-dimensional
In the long wave limitk— 0, there are three diffusive modes systen?? The coefficientsy;, shown as a function of the

for which the growth rate is negative and proportionakto coefficient of restitution e in Fig. 4, decreases propor-

Two of these are the transverse momentum modes, whicﬁuonm to (1— e)1/3in the limit (1—e)—0. It is observed that

have identical decay rates, and the third is the energy modg,, ;g the qualitative behavior of this diffusive mode pre-
For the other two propagatingound modes, the real part of

the growth rate is negative and proportionakto while the
imaginary parts are equal in magnitude and opposite in sign,
and magnitude of the imaginary part increases proportional
to k. The variation of the decay rates of the hydrodynamic
modes for an elastic system are shown as a functidniof

Fig. 2. It is observed that the decay rates obtained using the
generalized Navier—Stokes equations and the Boltzmann
equation are identical in the limit of small wave number,
though there are small variations for- O(1). This variation

is to be expected, because descriptions such as the Navier—
Stokes equations are valid only in the hydrodynamic limit
when the wavelength of the fluctuations is large compared to -5

the mean free path. 1072 107" 1 10!
k

A. Perturbations in the velocity direction =0, m=0 FIG. 3. The growth rate for the most unstable diffusive megdas a func-

P . . tion of the wave vectok in the flow direction for(O) e=0.99, (¢) e
The qualitative behavior of the hydrodynamic modes for_ 0.9, and(V) e=0.7. The solid lines show the results from the Boltzmann

p_ert_urbations with wave ve_ctors in the Ve_IOCity_direCtion IS equation, and the broken lines show the results from the Navier—Stokes
similar to that reported earlier for a two-dimensional ffw. equations.
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Sett ko Se2to—Sa3:SprioSpik
= Setp™ Sc2b—S a3+ SpriSpit

107 1(;'1
(1-¢) (1-¢)

FIG. 4. The coefficientsyy (O), Sqak (), Sprc (A), Spik (V), and —sgg FIG. 5. The coefficientsyy, ,Sgy (O), Sgzi (O), Spri (A), Spir (V), and— sy
(©) as a function of (+-e) in the limit k—0. The solid lines show the (¢ as a function of (te) in the limit k—0. The solid lines show the

coefficients obtained using the linearized Boltzmann equation, and the bracoefficients obtained using the linearized Boltzmann equation, and the bro-
ken lines show the coefficients obtained from the generalized Navieren lines show the coefficients obtained from the generalized Navier—
Stokes equations. Stokes equations.

dicted by the two methods are in agreement, there are is a
guantitative difference of about 20 percent in the value of
Sq1x predicted by the two methods. The analytical value ofThe results for the initial growth rates for the variations in
Sq1x can be determined from the Navier—Stokes equations itthe flow direction indicate that the predictions of the Navier—
the limit (1—e)—0, Stokes equation and the Boltzmann equation are qualitatively
Syp=22%(1—e) Y3106 (40) similar, but there are quantitative differences of about 20%

even when the coefficient of restitution is 0.99.
(2) The second diffusive mode, which is a continuation

of the second transverse momentum mode, has the forB. Perturbations in the gradient direction k=0, m=0
similar to that for an elastic system

Spik:3l/2271/3(1_e)l/3,n_l/6. (45)

The variation of the hydrodynamic modes with wave
Sa2= — Saz2kk’. (41)  numberl in the gradient direction is considered next. The
The value ofsy, obtained from the Navier—Stokes equa- predictions of the generalized Boltzmann equation are very

tions is identical to that for an elastic system, but the valueSlmllar to thos_e for.a nNo—dlm(_enS|onql s_ystem, but therg are
obtained from the Boltzmann equation is not exactly the>°Me qualitative differences in predictions of the Navier—

same, as shown in Fig. 4. In the limit {le)—0, the ana- Stokes equation.

lytical expression fosg,, from the Navier—Stokes equations (1) The asymptotlc behavior for the least stable mode
is identical to that obtained for an elastic system. from the generalized Boltzmann equation has the usual form
5 Su1=—Saull%, (46)
Sd2k= 16\7 (42) wheresyy, is a positive coefficient, and this coefficient tends

to a constant value in the limit (e)—0, as shown in Fig.

(3) The third diffusive mode, which is a continuation of 5 However, the Navier—Stokes equations provide a different
the energy mode in elastic systems, has a finite decay rate {gym

the limit k—0. In the limit (1—e)<<1,543%(1—e) as shown
in Fig. 5. The value ofy; predicted by the Navier—Stokes Sg1=—Squl*, (47)
equations issyz=—8(1—e)\/#/3 in the limit (1-e)—0,
but the value predicted by the Boltzmann equation differs b
about 20%.

(4) The real and imaginary parts of the propagating
modes have the form

wheresj,, is also a positive coefficient, but this coefficient
¥ncreases proportional to (1e) ! in the limit (1—e)—0,
as shown in Fig. 5. The asymptotic value gjf;, from the
Navier—Stokes equations is

375
S =—g kl k|2/3, [
pr pr Sdll 409&1_9) 7T3;2' (48)

(43

Spi= ispik|k|2/3’

: (2) The second diffusive mode, corresponding to one of

wheresl,%k_ andsy are positive, and decrease proportional ©0e shear modes in an elastic system, is also stable and has
(1—e)7"in the limit 1—e<1 as shown in Fig. 4. The pre- e pehavior

dictions of these coefficients are also quantitatively different
by the two procedures. The analytical expressiorsfgy and Sa2=—Saz1l %, (49

Spik from the Navier—Stokes equations is wheresg,, is a positive coefficient. The coefficients obtained

Sprk=2""(1—-e)R371, (44)  from the Boltzmann equation and the Navier—Stokes equa-
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TABLE |I. Initial growth rates for perturbations with wave vector in the 15
vorticity direction from the Boltzmann equation.
e=0.99, e=0.99, e=0.9, e=0.9,
m=0.001 m=0.01 m=0.01 m=0.1
s, 1.217x10°%  9.485<10°° 1.166x10°2  8.606x10°2
S, 3.045¢10°°  2.887x10°* 8.707x 104  7.200x10° %
s;  —3.080x10° —2.255x10°%2 —9.041x10"* —0.1930
+9.309¢10 3, +0.1133
s, —1.309<10% -—2.255<10°2 —1.274x10°2 —0.1930
—9.309x10 3, —-0.1133
S —3.546<10°2 —-3.401 —0.2925 —2.7564 " N '
> 107 1072 107" 1

(i-e)

. . . . FIG. 6. Wave vectom, for the crossover from five diffusive hydrodynamic
tions are in good agreement, and are identical to the valugodes to three diffusive and two propagating modes as a function of

Sqok for the perturbations in the velocity direction. (1—e). The solid lines shows the result obtained from the generalized Bolt-
(3) The third diffusive mode. which is a continuation of Zmann equation, and the broken line shows the result obtained from the
. L - ier—Stok ions.
the energy mode in an elastic system, has a negative growdf/er~Stokes equations
rate, which attains a constant value in this lihit:0, be-

growth rate decreases proportional to(@) in the limit  gjmjlar to that for an elastic system. This behavior is ob-

(1-e)—0. served in the solutions of the Boltzmann equation, as shown
(4) The real 6,,) and imaginary §,;) parts of the propa- i Taple 1, and the Navier—Stokes equations, as shown in

gating modes have the asymptotic behavior Table II. The value of the wave number, at which there is
spr:_sprllzv Spi= = Spill, (500 @ crossover from five diffusive to three diffusive and two

o . . propagating modes is shown in Fig. 6. The qualitative behav-
wheres,, andsy; are positive coefficients. The numerical jor of m_ obtained from the Boltzmann equation and Navier—
values of the coefficients determined from the Boltzmanngioyes equations are similar, and both methods indicate that
equation and the N.ay|er—Stok.es equations are |n.good agregy «(1—e) for (1—e)—0, but there is a quantitative differ-
ment. jhe coefficient s, increases proportional 10 ence in the prediction of the two equations. The scaling be-
(1—€)~" in the limit (1—€)—0, while the coefficienSyi  hayior of the hydrodynamic modes for variations in the vor-
attains a finite value in this limit. The asymptotic values Oficity girection from the Boltzmann equation are as follows.
Spri @ndsy; from the Navier—Stokes equations in the limit There gre five diffusive modes, two of which are stable and

(1-e)—0 are three are unstable. One of the stable mosjgs which is a
1 continuation of the energy mode in an elastic system, tends
Sori=—————=» Spi=L1. (51)  to a finite value in the limitm—0, as shown in Fig. 7. The
8(1-e)\m other four modes have the behavior
These are, however, different from the coefficients for an ¢ _—5 (52)
. dl dim''h
elastic system even when=0.99.
Sd2= Sd2mM, (53
C. Perturbations in the vorticity direction k=0, I=0
Sa4= — SgamM, (54)
The growth rates of the hydrodynamic modes in the vor- _ 5
ticity direction (k=0,l=0) show unusual behavior. For low Sd5= ~ SasmM, (59)
values of the wave vectam, the growth rates of the five
modes are all real, and there are no propagating modes. As = 10" 4
the value ofmis increased, there is a crossover to three real 2
&
|
TABLE II. Initial growth rates for perturbations with wave vector in the &
vorticity direction from the generalized Navier—Stokes equations. '%
1)
e=0.99, e=0.99, e=0.9, e=0.9, I X
m=0.001 m=0.1 m=0.01 m=0.3 & ;
I H
s1 9.7265¢10 4  2.31510°%  9.718<10°%  0.1507 & i
s, —1770x10°7 —1.770x10°® —1.837X10°° —1.653x10? “ 10 , X
s —1.770x10°  —1.770x107® —1.837x10°° —1.653x10 2 & 1078 102 107 1
sy —1.029x10°3 —3.861x10°2 -1.030x10°% -0.345 m
+0.1306 +0.379
ss —4.720x10°%2 —3.861x10°2 —0.472 —0.345 FIG. 7. The initial growth ratesy, (O), Sg (), —Sgz (V), —Sqa (O),
+0.1306 -0.372 —Sgs (A), —Spr (+), and|s,;| (X) as a function of wave numben obtained

from the linearized Boltzmann equation.

Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2266 Phys. Fluids, Vol. 13, No. 8, August 2001 V. Kumaran

rapid granular flows. A comparison was made between the
10" | results of the generalized Navier—Stokes equations, modified
to include the dissipation due to inelastic collisions, and the
solution of the Boltzmann equation for the initial growth
rates of the hydrodynamic modes of a three-dimensional
sheared granular flow. The Boltzmann equation already con-
tains the assumption of molecular chaos, which states that
the pair distribution function is the product of single particle
distribution functions for colliding particles. In addition, the
dilute limit was considered, where the pair distribution func-
tion was set equal to 1. But the Boltzmann equation is more
general than the Navier—Stokes equations because it is not
FIG. 8. The coefficientsy;m, (O), Sgom (0), —Sds (V) Sgam (€ ), andsgsm assumed that the only relevant variables are the mass, mo-
(A) as a function of (+e) in the limit m—0. menta, and energy of the particles. The effect of these as-
sumptions can be inferred from a comparison of the results
of the Boltzmann and Navier—Stokes equations. For most of
L the comparisons, attention was restricted to the low wave
At the critical valuemc, the growthSys, Sz, andsgs, Vary  pmner (hydrodynamig limit, where the length scales are
continuously. The .grov.vth ratesy; and sgs assume equal large compared to the mean free path, since a hydrodynamic
values am, and give rise to two complex conjugate growth description is only valid in this limit. The growth rates for

rates form>m.. The variation of the coefﬂuer_nsdlm, perturbations in the velocity, gradient, and shear directions
Sdoms Sd3» Sgam. andSysy are shown as a function of (1 were considered

I'_e') in Fig. 8. Th's figure lnd|ca.t(ra]sr:hexg3ocl(1¥e) r']n thel The growth rate for perturbations in the velocity direc-

.|m|t (3 —e).—>0, n ggregment Vlyl't t eﬁre_su ts for tde VEIOC- tion is very different from that for an elastic system. There is
ity an strain rate |rect|_ons..T € coe |c.|e|sgqm andSdsm  one mode, which is a continuation of one of the transverse
attain constant values in this limit, while the Coeff'c'emsmomentum modes in an elastic system, which is unstable

H 1/2
Sazm @NdSqqy decrease proportional to (1e) ™= _ The growth rate for this mode increases proportionatd
Three of the growth rates determined from the Navier— yhe jimit k— 0, wherek is the wave vector of the pertur-

Storlfes eguatlon_sdé, de3, e;]ndsd5| are qualitatively 5|mgarh bations in the velocity direction. The continuation of the
FOt ose determined from the Boltzmann equation, and t erﬁropagating modes are stable, but their real and imaginary
is a coalc_escence of th_e growth ratgs a_md Sqs t0 generate parts are also proportional k8% in the limit k—0. The|k|2*
propagating modes with complex conjugate growth rates ajgpayior of the diffusive modes is also observed in other
the crossover valum, . However, the numerical values pre- o qioms where there is a large velocity gradient. For ex-
dicted by the Navier—Stokes equations vary by about 25(y&mple, in “thermostated” sheared hard sphere gases, where

fLomllthlosi of theoprer?lctlonfsf_qf the Boltzrr:jann equation. Ing4 0k molecule experiences a drag force proportional to its
the limit (1-€)—0, the coefficientsy;m and sgsm assume velocity, the|k|?® behavior of the decay rate is observed for

S mvSaem ™ Sa3r— Saam—Sdsm

1072 107"
(1-)

wheresSyim, Sd2m» Sdam, andsgsy, are positive coefficients.

the values certain types of thermostatéThis is due to the “turning” of
Saim=1, (56)  the wave vector by the mean shear flow, as can be seen by
considering a convection-diffusion equation with mean ve-
Susm=1, (57) locity u,= vy,
while the growth rate for the energy modg; converges to
the value ’ V ® ? diC+dy(yyc)=D(d;+d;)c, (59
8(1—e) NC wherex andy are the gradient and flow directions, abds
Sgz=— —3 (58 the diffusion coefficient. The Fourier transform of the above
equation is
However, the predictions of the Navier—Stokes equa- ;
. - . - C
tions are qqahtaﬂyel_y different. The grovvth ragg andsys dct+k—=—D(K2+I1?)c, (60)
are qualitatively similar to those predicted by the Boltzmann al

equation, but there are numerical differences. However, theh K and h tors in theandy directi
growth ratessy, and sy, are not predicted by the Navier— Wh ere latf‘ a][eE eegva_lve vectors in theandy directions.
Stokes equations. Instead, the Navier—Stokes equations pr-tl;:‘-e solution of Eq(60) is

dict two growth Zates that are r_legatlve and equal, and have c(k,1,t)=co(t)exy — Dt(k2+12— ytkl + 1y2t3k2)].

the value (5m?/16yx), identical to that for the shear (61)

modes in an elastic system. o .
From Eg. (61), it is clear that though the behavior of

the concentration field is diffusive at small timds
«exp(—Dk?)], the behavior at long times in thedirection

The present study attempted to examine the suitability ofs not diffusive but is of the forn{cxexp(—Dt3k%3],
the generalized Navier—Stokes equations for the study oivhich gives the decay rate proportional [td?°. However,

VI. CONCLUSIONS
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there are three significant differences between the behavienomentum, and energy modes as shown in the following.
of a thermostatted gas and the present system. When all the second moment equations are retained, there
(1) The anomalous behavior of the diffusive mode isare additional couplings between equations for all the second
observed only for certain types of thermostaighere the moments resulting in a qualitatively different set of scaling
drag coefficient is a function only of the local density andrelations.
temperaturg but is not present in other types of thermostats = The increase of the growth rate proportionahtan the
(where the drag coefficient is a function of the density andimit m—0 is unusual, and does not seem to have been ob-
temperature in the uniform flowIn the present case, this served before. Whereas the scaling of the growth rate pro-
type of anomalous scaling is observed for values of the coportional tok?? in the flow direction can be explained from
efficient of restitution less than 0.99. kinematic considerations, the scaling proportionahts due
(2) The diffusive mode is stable for thermostated sys-to the presence of inelastic collisions. This can be inferred by
tems, as indicated by the solution 61, and it is one of theconsidering a simplified version of the Navier—Stokes equa-
propagating modes which goes unstable, whereas in tH#ons for the limitk=0 andl=0. In this case, the equations
present case the diffusive mode with the anomalous scalinfpr the velocities in thex andy directions decouple from
is unstable. those for the velocity in the direction, and it is necessary to
(3) In diffusive systems a crossover is expected from theconsider only the masg,momentum, and energy equations,
sxk? behavior at small timeghigh frequencies or slow driv-

; X . * % Lim*ofut =
ing) to the sx|k|?? at long times(low frequencies or large Sp Im*pouz =0, (62)
driving). This crossover in inelastic particle systems occurs  g* pEur = —im*TEp* ' —im* p& T* ' — w*m*2u?’
at (1—e) in the range 10°-10 4, indicating that diffusive (63
motion is not likely to be observed for systems of practical
interest. PeC,S*T* = —K*m*2T* " — p* T um* u¥’

The scaling behavior predicted by the Navier—Stokes T* 2p*
equations are identical to those predicted by the Boltzmann —D* + , (64)

L

equation, but the numerical values differ quantitatively by

about 20%. where ©* y’=D* has been used to simplify the last two

The initial growth rate of perturbations in the gradient terms on the right-hand side ¢£7). In the limit m* —0, one
direction is also similar to that for at two-dimensional sys-of the solutions, corresponding to the decay rate of energy
tem. However, there is one qualitative difference between th@yctuations, assumes a finite valsé= — (D*IpEC,TE).
predictions of the Boltzmann and Navier—Stokes equationsthe other two solutions which are proportionalntss in the
which is the behavior of one of the stable shear modes. Thgmit m* —0 are real. These can be determined as follows.
Boltzmann equation predicts that the magnitude of the decagrom Eq.(62), ur’=—(s*p,,/tm*pf), and if we neglect
rate increases proportional &, whereas the Navier—Stokes the diffusive term proportional tm* 2 in Eq. (63), we get
equations provide an asymptotic behavior proportionaf to

. . . e 2
wherel is the wave number in the gradient direction. There T_*': _ i( 14 s 65)
are also quantitative differences in the predictions of the  Tg i m*%Ty/’

growth rates.

The initial growth rates of the perturbations in the vor-
ticity direction show unusual behavior. At very low values of
the wave numbem, there are five real solutions to the initial —2D*+(p5C,Tgs* +D*)
growth rate, in contrast to the three real and two complex
conjugate solutions for the velocity and gradient directions!t is easily verified that due to the presence of the dissipation
As the wave number is increased, there is a crossover t@ue to inelastic collisions, E466) provides real roots
three real and two complex conjugate solutions. The Boltz- . « %
mann equation predicts that in the limm—0, two of the soEm \/ﬁ' 67
solutions are positive, indicating the presence of two un-  Another issue of interest is the significant change in the
stable modes. The two unstable solutions and two of thecaling behavior when the coefficient of restitution is
stable solutions for the growth rate vary proportional to thechanged from 1.00 to 0.99, and whether this is a continuous
wave vectom in the limit m— 0, while the third stable so- change or a discontinuous one. For the two-dimensional
lution, which is a continuation of the energy mode in elasticsystent? it was observed that the change is continuous, and
systems, converges to a finite value in this limit. Three of thehe scalings for an elastic system are recovered for €)L
solutions of the Navier—Stokes equations are qualitatively<10™ 4. Calculations for the three-dimensional case show a
similar to those of the Boltzmann equation, but the solutionssimilar behavior. Therefore, though the change from the
for the transverse momentum modes are similar to those farsual hydrodynamic scalings to the unusual scalings reported
an elastic system, with the difference that the viscosity nowhere is gradual, it is not likely to be of practical interest since
depends on the coefficient of restitution. This is because bathe parameter regime for the usual hydrodynamic scalings is
ance laws for only five velocity moments are used in thenot relevant to practical systems.

Navier—Stokes model, and the equations for the transverse The significant result of this analysis is that perturbations
momentum modes are decoupled from the mass, longitudinah the vorticity direction show unusual behavior, and there

This is inserted into Eq(64) to provide, at leading order,

* 2
1+

) =0. (66)

m* 2T
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