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A Langevin approach to computing the orientation moments of a dilute suspension of spheroids in

a simple shear flow at arbitrary €let number is presented. In this method we obtain the equations
governing the time evolution of the orientation averages using a generalized Langevin equation
approach and develop a computational technique for computing the evolution of the moments from
these equations. These results are compared with those available in the literature obtained from other
methods and show good agreement. The approach presented here can be easily generalized to a
number of similar systems such as forced suspensions of dipolar particles in shear flows and can be
applied to other flow problems governed by appropriate Fokker—Planck equation200®
American Institute of Physics[DOI: 10.1063/1.1426391

I. INTRODUCTION magnetic particles suspended in a ferro fluid this study
we neglect the effect of the particle interactions and attempt

There are a number of instances, both in engineeringo model the dynamics and the orientation moments of a
applications and in natural phenomena, where the dynamiagilute suspension of Brownian spheroids subjected to a
and bulk viscometric properties of fluid suspensions of smalkimple shear flow using a generalized Langevin equation ap-
orientable particles have to be consider@dy., magneto- proach.
fluidization! magnetostriction of ferromagnetic particle In the absence of particle—particle interactions and ex-
suspension$, characterization of magnetorheological ternal forces the particle orientations are determined by a
suspension3 bio-convection setup by swimming of certain competition between the torques due to the shearing motion
micro-organism$®). The bulk properties of suspensions gen-of the imposed flow and the rotational Brownian motion. The
erally depend on the nature of the fluid, the properties andelative importance of these fluxes is expressed in terms of
distribution of the particles in the fluid, and the degree ofthe rotary Pelet number Pe y/D, wherey is the shear rate
isotropy of the solution. The most important factor affectingandD, is the rotary diffusivity of a spheroid of aspect ratio
the bulk properties is the orientation of the particles in theAccording to a classic result due to Jef‘férim the absence of
suspension, and an important step in any investigation orownian diffusion or any other particle body forces, an el-
these properties is the determination of the orientation diStrinsoidal particle subjected to a simple shear flow executes a
bution function(ODF), the density function for the orienta- periodic motion along a certain orbit depending on its initial
tions of the particles. The spatial orientations and positiongrientation. Hence in this case, the steady state orientation
of particles in such suspensions are affected by a number efistribution of the particles is determined by the initial con-
factors such as the type and strength of the flow figlthe  ditions. Subsequently Leal and Hirlcbhowed that the pres-
suspending fluid is in motignthe particle—particle interac- ence of even very weak rotary Brownian motion can make
tions which are a result of the disturbance that the presenage steady state orientatiomslependenof the initial condi-
of each particle produces on the behavior of nearby particlegons. The presence of rotary Brownian motion makes the
(if the suspension is concentrajgthe rotary Brownian dif-  orientations of the particles a stochastic process and as such
fusion resulting from the bombardment of the suspensionhe system can be modeled either through a Fokker—Planck
particles by the randomly moving fluid molecul@the par-  (diffusion) equation approach or through a Langevin equa-
ticle size is sufficiently smalj and the presence of an exter- tion approach. The traditional approach to modeling such
nal field which may impart an orientational torque to the systems(the diffusion equation approaclis based on ex-
particles(if the suspension particles are dipolar, e.g., ferro-pressing the bulk suspension properties in terms of suitable
moments of the ODF obtained by solving an appropriate
aAuthor to whom all correspondence should be addressed. Electronic maifliffusion equation for the system at steady state. Since solv-
ram@csrrltrd.ren.nic.in ing the diffusion equation in its full generality is difficult
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various authors have attempted different numerical schemeahen obtain theexact equation of motion for any desired
to approximate the solution for various ranges of shear andrientation averageusing a novel idea of Coffegt al. A
Brownian parameter&.*? If diffusion is weak compared to brief account of this procedure is given in Sec. Ill. These
shear, the particles tend to spend most of the time along th@oment equations being ordinary differential equations are
flow direction and diffusion can be neglected except in aeasier to handle than the original Langevin equations which
small region of the orientation space near the flow direction.are stochastic differential equatiorfor each pair of aver-
Hinch and Ledl used a regular perturbation method aroundages we get a couple of ordinary differential equations which
1/Pe to approximate the ODF in this regime {Ber). On  together govern their time evolutiohese equations can be
the other hand, if the Brownian diffusion is strongBe<1), solved analytically in simple cases giving earlier results in
the weak flow disturbs the uniform orientation distribution the literature. For the general case, we develop a brute-force
caused by the randomizing effect of diffusion only slightly; computational technique to generate the desired averages in
hence a regular perturbation about Pe may be used to apairs by simulating a set of related equations with given
proximate the ODR.When the flow strength is in between initial conditions until steady state is reached.
these extremes, the perturbation methods fail. Chen and The basic idea behind the Coffey al. treatment of non-
Koch'! developed a spherical harmonic method to determindinear systems with noise is that by interpreting a Langevin
the orientation distribution function of fibers of large aspectequation for a stochastic variable as an integral equation in
ratio in this intermediate regime where diffusion and advecthe Stratanovich sense with a sharp initial condition, it is
tion are comparable. This involves expanding the steadpossible to express suitable time averages of the stochastic
state orientation distribution function into a double series ofvariable in terms of a deterministic equation of motion for
spherical harmonics and substituting a suitably truncatethe sharp values. Any desired ensemble average can then be
form of this series into the diffusion equation for the system,generated directly from an ensemble of time-averaged
leaving a set of linear equations in the expansion coeffiLangevin equations without having to solve the diffusion
cients. The number of terms in the truncated series and heneguation. For the system we consider the bulk suspension
the number of linear equations to be solved generally inproperties are related to orientation averages over the par-
creases with increasing Pe to achieve a given accuracticles aligned along a set of common directions. The most
Hence the procedure becomes computationally formidablesalistic model for such a suspension may be a set of Lange-
for larger values of Pe, but the technique can be successfullyin equations starting off from sharp initial conditions in a
applied for Pe up to 100@hen and JiangChen and Jiarl§  time-averaged sense over an appropriate white noise term.
present another approach, in which the diffusion equation oThus this system is an ideal one for applying the Coffey
the system is numerically solved for the steady state ODIFet al. approach. The technique presented here can be easily
using a finite difference scheme with a pair of boundary congeneralized and applied to other similar systems with noise.
ditions. This method is applicable when the flow is moderate  The exact form of the noise term in the Langevin equa-
(Pe up to 1000 but even for small Pe, the numerical schemetion is obtained by comparing the moments of spherical har-
requires a large number of mesh points to achieve a givemonics as obtained from the diffusion equation and an en-
accuracy and so the computation time is longer even in theemble of Langevin equations. We note that the spherical
weak flow regime. For very large Pe they suggest anotheharmonics form a complete set for the eigenfunction expan-
method in which the diffusion equation is numerically solvedsion of any orientation average. We derive in Sec. Il a dif-
for the time evolution of the ODF with a given initial state ferential recurrence formula for the moments of surface
until steady state is reached. This is particularly useful forspherical harmonics starting from the diffusion equation and
Pe>1000 where spherical harmonics method becomes conreproduce it in Sec. Il from the Langevin equation method
putationally difficult. with a presumed noise term for the Langevin equations as
It is clear from the above discussion that the numericakuggested by some heuristic arguments. The exact agreement
schemes currently used for solving the diffusion equatiorbetween the two formulas then justifies the form of noise we
vary as the flow and Brownian parameters are changed. Istarted with. Details of the relevant ideas of the Cofé¢l.
this work, we present an alternate approach to computing theethod are also given in Sec. lll. Section IV is devoted to
orientation moments without having to solve the diffusionthe computation of certain orientation moments from the
equation. This method is based on a generalized Langevigoverning evolution equations obtained by the new method.
equation approach presented recently by Coffewl!® for  These equations are easily solved in the zero shear limit giv-
nonlinear systems with noise, and provides a unified strategiyng the familiar result that the orientations tend to a uniform
for modeling such systems placing little restriction on thedistribution at equilibrium due to the randomization effect
Peclet number of the flow. We shall consider a dilute suspencaused by the Brownian diffusion. In other cases, we trans-
sion of Brownian spheroids subjected to a simple shear flolorm each pair of moment equations into a pair of coupled
and derive suitable Langevin equations for their time evolu-ODEs and a set of such equations is simulated over a finite
tion. Each Langevin equation is an equation of motion fornumber of initial conditions until steady state is reached. The
the orientation of a single particle depicting the irregular partdesired moments can be easily obtained from these solutions
of the motion due to Brownian effects in terms of a suitableand the results are in good agreement with previously known
random noise term whose properties are determined only oones. Concluding remarks are given in Sec. V. The new
average. An ensemble of these equations must be identical toethod has the advantage that it provides a unified strategy
the governing diffusion equation of the entire system. Wethat can be applied over a wider range of Pe than is possible
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by other methods. It can be easily generalized to more com- —-C
plex systems like suspensions of charged particles or suspen- up=yCup(1- Ul) + 7 2 Uz,
sions of dipolar particles with external forcing.
Up=—yClyu3— ( ) 4

Il. THE DIFFUSION EQUATION APPROACH Ug=— :yCU1U2U3.

We begin by considering a single particle from a suspenEquation(3) gives the regular part of the evolution of the
sion of identical rigid, neutrally buoyant spheroids in an in-orientation vector in the complete absence of Brownian dif-
finite incompressible Newtonian fluid subject to a uniform fusion, while the effect of Brownian diffusion is taken care
shearing motion defined by a flow field= yyi wherey is  of by the diffusive term on the right of El). In the Lange-
the shear ratgy is they-coordinate, andis the unit vector in  vin equation, on the other hand, the random behavior due to
the X-direction. The suspension is assumed to be sufficientlBrownian effects is incorporated by an additional noise term
dilute so that particle particle hydrodynamic interactions mayto Eq. (3) whose properties are determined only by an en-
be neglected. Since for a dilute suspension the bulk propesemble of such equations. In the next section we shall be
ties are generally determined by the orientations of the pamainly concerned with the exact form of the noise term in
ticles alone, we neglect any translatory motion of the particlahe Langevin equation that makes an ensemble of such equa-
by choosing a coordinate system that moves along with itiions identical to the diffusion equatiofl). We do this by
The particles may experience rotational torques due to theequiring that the diffusion equatiofi) and the system of
hydrodynamic force caused by the imposed flow and the angevin equations with noise generate the same set of ori-
Brownian force caused by the bombardment of the particlegntation averages. Equivalently, since any orientation aver-
by surrounding fluid molecules. The diffusiofFokker—  age can be expanded in terms of suitable spherical harmon-
Planck equation that governs the time evolution of the par-ics, we may require that both the methods give rise to the

ticle distributions of the system is then given'By same evolution equations for spherical harmonics and use
7 this as a matching condition for obtaining the noise term.

’9_‘# 7 ( #)=D 4 1) Towards this end, we derive a set of differential recurrence

at Fou?” relations for surface spherical harmonics for the system gov-

erned by Eq(1) and compare them in Sec. Il with a similar
Hereu is the vector describing the orientation of the partlcleset of equations to be obtained from a set of Langevin equa-
and is assumed to be a unit vector fixed along the major axigons for the same system.
of the spheroids/(u,t) is the orientation distribution func- The transformationsi; = sin #cos¢, u,=sin#sine, us

tion which is such tha(u,t)du gives the probability that a = cosg convert Eq.(4) into their spherical coordinates coun-
particle is oriented in the solid angleicaboutu at timet.  terparts,

The term on the right side of Edql) reflects the effect of .

rotary Brownian diffusion, the factob, being the rotary 6= yCsinf cosd sin¢ cose,
diffusivity defined byD,=kgT/{, , where{, represents the 1-C
rotational resistance in the direction perpendicular to the par- ¢_ — yC sir? ¢— 7(

ticle symmetry axiskg is the Boltzmann constant, afdis 2

the abSO|ute temperature The t|me deriVatiVe Of the Orientad\/e can use the above expressions in eqo write it in
tion vector appearing in the above equation may be eXspherical coordinates thus:

pressed asi=wXu, wherew is the angular velocity of the

®

article, an expression for which may be obtained through an W= Y iy =
gngular momepntum balance equaﬁ%yn ’ at ey =5 (1-C) e DrA(). ©)
w=0+C[ux(E-u)]. (2 The Q and A. appearing in the above equation are linear
operators defined by
In the above expressiorG=(r>—1)/(r>+1)) is a shape sin cose
factor for a spheroid of aspect ratoand E and Q are, Q)= ———— — (¢ sirf 9 cosh) — —(1//SII’12 b),
respectively, the rate of deformation tensor and vorticity vec- sing 96 I
tor for the flow defined thus: I 1 &y
A= mﬁ(s N059) TSP ap?

E=3Vv+VVv), Q=4Vxv).
We may now expangy into a double series of eigenfunctions

The resulting expression for the evolution of the orientationassummg thaty( 0, ¢,t) satisfies the boundary conditions
vector becomes | 0= T #=27 =y 0=0.4=0

u=QXu+ C[uX(E-u)]Xu. 3

= ngo E—n an,m(t)Yn,m-

Writing u=u4i+ u,j +usk the last equation may be written
in Cartesian coordinates as follows: Yn.m are the normalized spherical harmorifcdefined by
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Yo m=NpmPT(cosg)e™,  —n<m=n. IIl. THE LANGEVIN APPROACH
The normalization constanty, ., are given by Before deriving the Langevin equation for the orienta-
| tion of the particle in the system we consider, we give a brief
N, = (—1)™ [(2n+1)(n—m)! _ mathematical description of the Coffey al. approach Let
e 4mw(n+m)! E=(&,,&,,...€,) be ann-dimensional stochastic variable

whose components satisfy a set of Langevin equations with

P.' are associated Legendre functions defined for non o .
multiplicative noise terms,

negativem by

gm &(D=h(&1),0)+g (&1, OT;(1), 1<i=n, 1sj=m,
PROO=(1-X)M2 5 (Pa(x),  —1=x=1, 9

wherel’; are Gaussian random variables with zero mean and

whereP,(x) is the Legendre polynomial, and for negative iocorrelation functions proportional to tédunction:

by

where §;; is the Kronecker deltag(t) is the Dirac delta
. . o function, andD is the spectral density. The overbars denote
Yn,m therefore satisfy the relatiori, n=(—1)"Y}, _, where  giatistical time averages over a large number of random vari-
* denotes the complex conjugate. Singés to be real the  gpjes. e start with interpreting E¢(®) as an integral equa-

expansion coefficients., , also satisfy a similar relation {jon (in the Stratonovich senséor the values of at a later
viz., a, _m=(—1)"ay . The spherical harmonic¥, time t+ ot

form an orthonormal set satisfying the orthogonality relation

Cm (n—m?t
Pn (X)I(—l)mm—m)!Pn(X)-

t+ ot
™ 27 (t+ot)=x;(t +j hi(&(t"),t'
JG_OL_OquY:,mSin9d9d¢’:5qn5pm- o E(t+a0)=x(0+ | [hi(&t).t)
Since ¢ is a probability density function it must satisfy the 0, (&)L ) at 1
normalization condition, wherex;(t) is the sharp starting values féi(t) at the instant
 ron t. Letx; (without the time argumehtienote the time average
f P(6,4,t)sin@dodp=1. of a large number of random variablggt) all starting from
0=0J¢=0 the sharp value;(t), calculated by the Stratonovich rule.

Then the time averages can be expressed @esterministic

This constrains the first term in the expansion satis : . .
P dao fy equation of motion for the set of sharp starting valnes

apoYoo=1/(47) due to orthogonality. We shall denote by
(B) the ensemble average of any quanBtand evaluate it _ [&(t+ o) —x(D)]
thus: Xj= lim 5
™ 27 oo
<B>=f f B sin6dade. P
0=07¢=0 =hi(x)+ngj(Xrt)a_xk(gij(xvt))y

Using the expansion faf and Eq.(6) we can now obtain the

following differential recurrence relation for}, : Isi=n, 1sjksm. (12
d m+2  n+2 . In the above we have used Einstein’s summation convention
g (Yam=7C > 2 bMYE) so that the second term on the right represents a sumjover
' j=m—-2 k=n-2 " '

andk. Similarly it can also be proved that for any well be-
3 haved functionf;(x),*
+5 yC(sir? 0sin(2¢) Y} )

. Jd
B fi ()%= f;(X)h;(X) + Dgy;(x,t) a_xk(fi(x)gij(xvt)):

+:)’ _)im<Y:,m>_Drn(n+1)<Y:,m>1 (13)

2

where again the summation ovjeandk is understood.

(8) To obtain the appropriate Langevin equation for the ori-
Wherebm'g are suitable multiples of the Bird—Warner coeffi- entation of the spheroids in a simple shear flow, we heuris-
cients(see Appendix A The details of the calculations lead- tically suppose that the rotary Brownian motion causes the
ing to Eq. (8) are left to Appendix A. We note that in the angular velocity of the particle to change and we incorporate
absence of sheary&0) or when the particles are spheresthis effect by superposing on E@) for » a white noise
(C=0), the above recurrence relation is easy to solve, givvector term:
ing a, m(t)=(Y* y—0 ast—c exceptay o which by nor- _
malization is<1(72in7?r. This is the familiar result that in these ©= Q-+ CLUX(E- W]+ (D),
cases the randomization effect due to Brownian motion lead&here the Cartesian componemigt) of I' satisfy Eq.(10)
to a uniform distribution of the suspension at equilibrium. with D=D, . The expression fou then changes into
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U=QXu+ C[uX(E-u)]Xu+I'Xu. (149  moments(Y ) as determined by the Fokker—Planck equa-
. . . . tion. Further, the equivalence between the two formulas jus-
When converted into spherical coordinates the equation beu'fies the form of the noise term we started with and makes

com.es[cf. Eq.(5)] the system of Langevin equatiofis4) identical to the diffu-

6= yC sin 6 cosh sin ¢ cos¢ sion equation1). It also demonstrates that in the Brownian
_ regime we can use the time averaged Langevin equations to
—singl'y(t) +cosgl's(1), generate averages using the new method.

(15

: . .[1-C

¢=—yCsir? ¢— y(T) —cotf cosel'y(t)
) IV. THE COMPUTATION OF MOMENTS

—sing cotfl' (1) +T'5(t).

In this section we obtain the equations governing the
time evolution of the orientation moments based on the
methods of the previous section and develop methods for
computing the moments from these equations. We shall
g11= —Sing, g1,=C0S¢, g13=0, generate  the  moments (u3)=(cog6),  (u,u,)
=(sir? #sin¢cose), and (uiu3)=(sin’* gsir? ¢cog ¢) for
a wide range of parameters using the new method and com-
To obtain the differential recurrence relations for the spheri{are our results with those of Chen and Jidremd Chen and

These equations are now in the form of K@), with h; and
h, corresponding to the deterministic partséond ¢ in Eq.
(15), repectively, and with

g,1= —Cothcos¢p, g,=—cotfsing, gr=1.

cal harmonicsy}, , for m=0 note first that Koch™
q Each term in Eq(14) has dimensior{1/time) and may
—(Y* )= i(yz m);9+ i(Y’; m)¢- (16) b_e scaled_ witr_] respect lib, . The _scaled _form of the Lange-
dae” ™ a0 " - " vin equation, in Cartesian coordinates is as follows:
Writing f1=0Y} /96, f,=dY} /dp, 6,=6, and 6,=¢ _ 1-C
and applying the results of Eq12) in Eqg. (15 and of Eq. u,=PeC u2(1—u§)+Pe(T)u2
(13) in Eqg. (16) we get the equation of motion for the sharp
valuesYy  as +T5(t)uz—T3(t)uy,
v )=yt Fohy+ DG (f 10y 1 1 : 2_pd1=C
dt( nm) = fihi+f2h, rgkj(wk( 1915+ f292)), (17) u,=—PeC uu5—P —— u;+I5(tHu;—T'y(t)us,
where the last term represents a sum gvandk. Simplify- (20
ing the deterministic and noise parts of E¢7) separately Us= —PeCu,UoUs+ ' (t)u,—y(t)uy,
(the details are left to Appendix)Bwe get

where Pe=y/D, is the Pelet number introduced earlier.

2 2
o _ic mi: E: My Note that in the scaled form tHg, satisfy Eq.(10) with D
gt nmT Y e S, Ok Tk =1. When converted into spherical coordinates these equa-
3 tions become
+57C Si? 6sin(2¢) Yy 9= PeC sin 0 cosd sin ¢ cosg—sin Ty (t)
(1-C +cospl',(t),
+y — imY; ,—Dn(n+1)Y7 . (18 _ ¢ (22)
. . . =—PeC sir? ¢—Pg —— | —cotf cospl(t
Taking now a second average over the probability density of ¢ In” ¢ e( 2 ) ¢V
the sharp value$d,¢) we finally get — sing ot AT o(1) + (1)
d m+2 n+2
—(Y* y=)C > > bg]’li<Y:j> The above equations may now be time-averaged using Eq.
j=m-2 k=n-2 " '

(13) to express it as an equation of motion for the sharp

3 starting values. We retain the same notation of the random
+ = yC(sir? 6sin(2¢)Y* ) variablesé, ¢ for their sharp values at Following a proce-
2 ' dure similar to that leading to Eq17) we obtain for any
orientation momen{B(6,¢)), the following expression for

T) im(Yy ) —Dn(n+1)(Y5 0, the sharp valueB(46, ¢):

+y

19

which is in the same form as E¢8) which was obtained
through the diffusion equation. The extension to negative where f;=9B/d6, f,=dBl/dp, 6,=0, and 6,=¢ and h;

is obvious as before. This demonstrates that an ensemble ahdh, are the deterministic parts in E(1). A set of these
Egs. (18) for the sharpY}; , has the same dynamics as the equations averaged over the density of the sharp values has

d d
gt B0 ) =Tihy+1Tohy+ gkja_al((flglj+f292j)v (22
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the same evolution dynamics &8(6,¢)). We thus get the general the evolution of the moments is governed by two
governing equations for the time evolution of the momentsvariablesd and ¢ and not by the moment itself. This neces-

(u3), (uiuy), and(ufu3): sitates considering two moment equations simultaneously for
q d P generating the averages. Our computational procedure is
—(u)=— —(cog §)= (_6> C(sir? 26'sin 2¢) based on the fact that the_ dyne_lmics of any moment
dt dt 4 (B(6, %)) can be captured by simulating an ensemble of Egs.

—2(3(co€ §)—1), (22) for the sharp valueB(6,¢). Equivalently, we may set

up the equations of motion for the tracer variabteand ¢
d d _ and compute the averages by iterating a set of such equa-
&<U1U2> = a<5'”2 0'sin¢ cose) tions. For the sharp valud (6, ¢) andB,( 6, ¢) of any two
desired orientation averages, we may write from &)

=2C P¢sir? 8 cog 0 sin’ ¢ cos ¢)
1-C f10+f,¢="F,h,+f,h ay f
— C Pe(sir? 0sir? ¢ cos 2¢>—Pe( 5 ) 10+f0=1h+1, 2+gkj0-,_0k( 191+ 202)),
(24)
X(sir? 6 cos 2p)— 3(sir? §sin 2¢), (23 e , i ,
f10+fp=1f1h +foh+ gkjﬁ(flglj +120)),
d 2,2 d H) H k
a(uluz)z gt (sin sir? ¢ cog ¢)
wheref; are the partial derivatives &; andf; those ofB,.
=4C Pdsin’ § cog 0sin’ ¢ cos ¢) We can solve the above system férand ¢ assuming that
the coefficient determinant=f,f,—f;f, is not zero,
—2C Pdsin’* §sin® ¢ cos¢ cos 2p)
1-c b=hyt | 1y (fygy +
—PE(T)(sin“ 6 Sir? ¢ cos 2p) =MmT R zgki(wk( 1915+ 202))
. . . Jd
+2(sir? 6) —2(sin* 4 sir? ¢ cos ¢). — fzgkjﬁ_ak(figlj + fégzj)},
For Pe£0 the above system of equations is not closed, but (25)
for Pe=0 (i.e., in the absence of sheathey have a simple 1 P
form, namely. ¢=hy— K[figkja_‘gl((flglj_FfZgZJ)

d
2 2
—(ud)=—2(3(ud)- 1), i
at (19 (3(u3) = 1) _flgkj_&ek(flglj+f292j)}-

d 3

a<U1U2>= - §<U1U2>, This gives a system of two coupled ODEs and an ensemble
of such systems for the sharp valuésand ¢ collectively

d determine the pair of averagBs andB,. Thus for each pair

a(uiu%}zZ—Z(u%)— 20(u?u3). of averages for which is nonzero, we consider an ensemble
of systems of coupled ODEs of the type of Eg5) over a

Solving them we get the following results in the zero sheaS€t Of sharp initial conditions. _ o
To carry out the computations, we start with a finite but

fmit large number of sharp initial conditions for the random vari-
(u3)=3+k.e o, ables(6,¢) with each initial condition representing a large
number of random variables starting from there. Tihg
(uyuy) =kye~ G2t space is first divided intm? bins by the points €;,¢;)

where 6,=cos Y[(2i/n)—1], and ¢;=2mx/n i=0,1,.n. We
N o o considem? initial conditions (6, , ¢;) directed along the cen-
(uiug)= gz +kee ke, ters of these bins and let each of them evolve according to
Egs. (25). This choice of# and ¢ corresponds to a set of
where thek; are constants depending on the initial condi-nearly uniform initial conditions for the sharp values over the
tions. In the limitt— o, the solutions approach, as expected,f¢ space. The trajectory of the vecttd,¢) is obtained by
the values of the moments when the orientation distributiorintegration using the integratadeint of Presset alX® with
is uniform (¢=1/47). An advantage of Eqs(23) for mo-  adaptive step-size control. The sharp val(&g) may them-
ments is that they are ordinary differential equations unlikeselves be considered a random variable with density
the original Langevin equations for the orientations. (6, ¢,t) with sharp peaks at the sites of the vectidtgh) at
We now discuss a computational technique for solvingany instant. This gives the following estimate for any mo-
the moment equations in the general case. We note that iment(B(#6,¢)) at that instant:
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TABLE I. The steady state values of the moments for various initial conditions at different values of Pe.

- Pe=0.0 Pe=1.0 Pe=100.0 Pe=500.0
No. of initial
conditions (u3) (usuy) (u3) (ugup) (u3) (ugup) (u3) (uguz)
64 0.3333  0.0000 0.3293 0.0532 02376 0.1325  0.1763  0.0950
81 0.3333  0.0000 0.3280  0.0473  0.2082  0.1199  0.1537  0.0778
100 0.3333  0.0000 0.3288  0.0322  0.1730  0.0910  0.1285  0.0576
121 0.3333  0.0000 0.3283 0.0321  0.1721  0.0907  0.1294  0.0598
144 0.3333  0.0000 0.3285  0.0317 01728 0.0911  0.1277  0.0568
JIB(6,$)8(0— 6,)8(¢— ¢p;)d(cose)dep any of the subsequent iterations approach a singularity of Eq.
B(6,¢))= 2 r com ions did not | n h prob-
( ) [T5(6— 6,)5(¢— ;)d(cost)deb (25), but our computations did not lead to any such prob

lems. The computations were repeated changing the number
non of initial conditions from 64 to 2500, but the results practi-
E E B(6i,¢)). (26)  cally stabilized forn?=100 onward and sa? was fixed at
B 100 in subsequent computations. Table | shows the variation

of the moments with the number of initial conditions for
The values of the momen(&?:l(.e, ). <BZ(0’.¢)> at any typical values of the parameters. With-P@, the computa-
instant are computed from the iterates of tifeinstances of .
. . . tions reproduced the theoretical values 1/3, 0, and 1/15 for
the corresponding pair of Eq&5) using the above formula. 2, (u Up), and(uud), res ectively. Also we had scaled
These computations are repeated for successive time ste A 2 P Y-

s, o e sep e vl 1) cained fom rumer- (0 105Dt 0 B e rakes e T e o =3
cal integration, and continued until the values of the mo- 9 9 o .
ments stabilize. round of errors we changed the scaling toy Tor Pe>10

We aenerated the moments in aws{uﬁ) and(u W2 while for Pe<10 the earlier scaling was retained. The results
g P 172 obtained for Pe between 0 and 1000 are plotted in Fig. 1.
(u,u,) and(u3), and(u3) and(u,u,) for various values of . . ;
. . - These results are in good agreement with those obtained
Pe, keeping the number of initial conditionsrgt= 100. Note . .

o : ; . from other methods, spherical harmonics method of Chen
that the coefficient determinamt does not vanish for this e Lo a2
choice of moments. The simulations may run into trouble ifand Koc qnd finite difference method of Chen and Ji 9

’ (compare Fig. 3 of Chen and JidAg An advantage of this
method is the internal check it provides on the computations
by way of making one average common to each pair of av-

1
n2

0.4 ' erages. Thus in our simulations we pair@ef) with both
(uyu,) and(u3u3) and found that the results were consistent.
0.35 - - With a given number of initial conditions, the time taken
' by the simulations to settle down to steady values depends
03 both on the Pelet number and the pair of averages chosen.
Table Il summarizes the time data for our computations on a
Pentium IIl, 500 MHz, 128 MB RAM PC, with 100 initial
Z 025 i conditions for typical values of Pe. It seems that the current
g method offers significant improvement in terms of the com-
§ 02 7 putation time of various moments compared to the other
methods:?
0.15 (i)
0.1
TABLE Il. Time taken to compute the moments on a 500 MHz, 128 RAM,
1 Pentium Il PC for two different pairs at various Pe.
0.05
Pe (u3) and(u,u,) (u3) and(u3u3)
0 0.0 1s 1s
RO TN BT O SR 1.0 2s 2s
0.1 1 10 100 1000 10.0 4s 10s
Pe 50.0 7s 823s
100.0 10s 1920's
FIG. 1. Plot of the orientation moments vsdRe number. The symbols are 250.0 28s 2030s
the results from the finite difference method and the spherical harmonics 500.0 86s 2800s
method.
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V. CONCLUSIONS The first term on the left side of EqAL) is evidently
. . (d/dt)(Y? ). To evaluate the second term on the left we first
We have developed the Langevin equations for the Or'%ote)t<ha?m>
entation dynamics of the spheroids in a dilute suspension
under simple shear flow. A method for calculating the evolu- (7 (27 — 5
tion of the moments of the orientation distribution function | ,_, ¢:OQ( ¥)Ynmsind dode
from a set of appropriately time averaged Langevin equa- _
tions is also developed. This presents a unified approach to 7™ (27 singcos¢ .

_ . : ; = —————— —(ysirf 6 cosb)
computing the orientation moments over a wide range of 0=0

C é=0 sing a0
Peclet number. An advantage of the present approach is that

it provides an internal check on the computations by keeping X YR msingdode

one average common in any couple of pairs of averages that s (2r 9

is generated. It also does not require solving the diffusion _f J' — (sir? ¢)sin oY} . dode
equation with all its attendant complications. Another advan- 6=0J g=00¢ '

tage is that it can be easily generalized to study more com- v 2 P (A2)
plex systems such as suspensions of dipolar particles with = —f f sing cos¢p— (Y} )

external forcing or suspensions of charged particles. This in- =07¢=0 96" "

volves only modifying the governing Eq$3) with terms X i Sir? 6 cosd dde

corresponding to the additional effects.

Kumar and Ramamoh&hhave recently demonstrated ™ (e d 2
that in aperiodically forcedsuspension of dipolar particles, + L=0L>=o S'neﬁ(anm)ws' ¢ dode.
the moments of the ODF may evolve chaotically in the weak _ _ )
Brownian motion regime. This observation has some imporln the foregoing expressions the last step follows by integrat-
tant implications for certain concepts in chaos theory such al'd the first term of the previous step by parts with respect to
the nontrivial collective behavior of spatially extended ¢ @and the second term with respect ¢o Now using the
systems” The method developed in this paper is ideal for'elations
studying the possibility of moments evolving chaotically un- J J
der periodic forcing in the strong Brownian motion regime. ﬁ(Y;‘,m)Sin2 0 cosf= ﬁ(Y:{mSin2 6 cos6)
In this case, the moment equations for each pair of averages

would be a couple of nonlinear coupled nonautonomous J . .

ODEs!® These points are being currently investigated and - %(sz 6 CoSO)Yq m,

will be discussed in future work. (A3)
J . J ) .
¢ (YAm)SI? &= (Y] SIP ¢) = Y7, 1y Sin(2¢)
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APPENDIX A -5 LOJ(MY;,msirP 9sin2¢)ydode.  (A4)

We give here the details of the calculations leading to — " o
Eq. (8) from the diffusion equation. Fixingy=0 and multi-  The effects of() on P(cos6) and P,(sin6) have been
plying Eq. (6) through byY? . and integrating over the unit evaluated previousl [here and in what follows we have

sphere we get abbreviatedP[(cos6) by Py, etcl:
m+2 n+2
™ 27 ¢ — -
f J Myx singdode QPTsinmg)= > S aliPlcosje),
0=0J =0 Ot j=m—2 k=n—2
T 27 m=0,
+ A mSi
ycf _OL_OQ(‘/’)anmS'”Hdedd’ AP

O(PTcosme) == 3 3 aniPlsine),

'(1_C)JW JZW MW inov* dod
— —_— —SIin
Y 2 0=0 ¢=0&¢ n,m d)

m>0.

— DrJW JZW X(ljx)Y’,ﬁ _singdode. (A1) The constantamﬁ are the Bird—Warner coefficientd Hence
=0J¢=0 ' it follows that
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o m+2 n+2
QYim= 2 2 bRYE, (A5)
where we have writtemmﬁz —i(Nn,m/Nk'j)anml',j. This can

now be used in EqA4) to complete the evaluation for the
second term on the left of EGAL):

)
m+2 n+2

-~C E Z by <Y:,j>

j=m-2

2 —

QY] sind dode

3.
-3 yC(sir? 0sin(2¢) Y5 ). (AB)

The integral in the third term on the left of EGAL1) can be

integrated by parts with respect #and the boundary con-
ditions for ¢ applied to show that

SN

im0

To evaluate the right side of EGA1) we use the known
effects of A on real spherical harmonic&:

2m &
—sm oYy,

76 - dode

==y (A7)

A(P™ cogm))=—n(n+1)PTsin(me),
X(ansin(qu)): —n(n+1)P] cogme).

Hence using the linearity o\ we haveX(Y;"m)z—n(n
+1)Yhm
[/

=N 3 et

o q
=2 X (—a)(a+Dag,Ygp-
q=0 p=—q

This result together with the orthogonality relation for the
spherical harmonics, Eq7), and term by term integration
yields

[

ks 2m ” a
- JG_OL_O((]ZO DNELICE 1)aq,pvq,p)

*
XY m

27 —

A(4)singY},  dode

singdodg¢

® q
= > (—q(q+1)
4=0 p=-q

J‘ﬂ' JZW
Xa, YooY
q,p 9=0J =0 qa.p

:(—

hmSing dadqs)

n(n+l)aym.
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In a similar fashion, using the orthogonality relation Eg).
and the expansion fog, we can prove that the expansion
coefficientsa,, , are related toY}, ., by a, m=(Y} ). The
final expression for the right side of EgAl), therefore,
becomes

DJW fzw A()sin6Y?, ,dod=D,n(n+1)(Y3 .
0=0J ¢=0
(A8)

Putting together Eq9A6), (A7), and (A8) in Eq. (Al) we
get Eq.(8). The recurrence relation E) has been derived
on the assumption thah is non-negative. lim is negative
—m is positive and the Bird—Warner coefficierag "' are
defined. We will then get a similar recurrence relation by
complex conjugation usin¥, n=(—1)"Y}, _, with appro-
priate modifications.

APPENDIX B

The calculations leading to Eq19) from Eg. (17) are
detailed here. We first write out the deterministic part of Eq.
(17) using Eq.(15):

fihy+15 hz—yc{ (Y} m)sin@ cosé sin ¢ cose

(Y m)Sin ¢

iz

. [1-C\ ¢
_7< 2 >ﬁ¢(Y my

Now multiply the first of the relations in Eq(A3) by

(B1)

and then invoking the eigenfunction expansion of (yC sin¢cos¢)/sin 6 and the second byC and subtract to

get
d e . N 2
vC %(Yn’m)smacose sin¢ cos¢— %(Yn'm)a ¢
sing cosg o )
= W—(Y o SI? 6 cos6)
¢(Y mSI? @) [+ yC| Yi | sin(2¢)
Y mSingcosg g
_T (sir? 6 cosé)

— 3
= yCQ(Y} )+ 57C sin? 9sin(2¢) Y7 (B2)

Substituting Eq(B2) in Eq. (B1) and using Eq(A5), we get
the following form for the deterministic part of EL7):

m+2 n+2
fihy+ 1, hz—yC 2 > bM
—2 k=n-2

3. _ .
+57C Sir? 6sin(2¢)Yx

1-C

5 (B3)

-
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