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A novel approach to computing the orientation moments of spheroids
in simple shear flow at arbitrary Pe ´clet number
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A Langevin approach to computing the orientation moments of a dilute suspension of spheroids in
a simple shear flow at arbitrary Pe´clet number is presented. In this method we obtain the equations
governing the time evolution of the orientation averages using a generalized Langevin equation
approach and develop a computational technique for computing the evolution of the moments from
these equations. These results are compared with those available in the literature obtained from other
methods and show good agreement. The approach presented here can be easily generalized to a
number of similar systems such as forced suspensions of dipolar particles in shear flows and can be
applied to other flow problems governed by appropriate Fokker–Planck equations. ©2002
American Institute of Physics.@DOI: 10.1063/1.1426391#
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I. INTRODUCTION

There are a number of instances, both in enginee
applications and in natural phenomena, where the dynam
and bulk viscometric properties of fluid suspensions of sm
orientable particles have to be considered~e.g., magneto-
fluidization,1 magnetostriction of ferromagnetic partic
suspensions,2 characterization of magnetorheologic
suspensions,3 bio-convection setup by swimming of certa
micro-organisms4,5!. The bulk properties of suspensions ge
erally depend on the nature of the fluid, the properties
distribution of the particles in the fluid, and the degree
isotropy of the solution. The most important factor affecti
the bulk properties is the orientation of the particles in
suspension, and an important step in any investigation
these properties is the determination of the orientation dis
bution function~ODF!, the density function for the orienta
tions of the particles. The spatial orientations and positi
of particles in such suspensions are affected by a numbe
factors such as the type and strength of the flow field~if the
suspending fluid is in motion!, the particle–particle interac
tions which are a result of the disturbance that the prese
of each particle produces on the behavior of nearby parti
~if the suspension is concentrated!, the rotary Brownian dif-
fusion resulting from the bombardment of the suspens
particles by the randomly moving fluid molecules~if the par-
ticle size is sufficiently small!, and the presence of an exte
nal field which may impart an orientational torque to t
particles~if the suspension particles are dipolar, e.g., fer

a!Author to whom all correspondence should be addressed. Electronic
ram@csrrltrd.ren.nic.in
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magnetic particles suspended in a ferro fluid!. In this study
we neglect the effect of the particle interactions and attem
to model the dynamics and the orientation moments o
dilute suspension of Brownian spheroids subjected to
simple shear flow using a generalized Langevin equation
proach.

In the absence of particle–particle interactions and
ternal forces the particle orientations are determined b
competition between the torques due to the shearing mo
of the imposed flow and the rotational Brownian motion. T
relative importance of these fluxes is expressed in term
the rotary Pe´clet number Pe5ġ/Dr whereġ is the shear rate
andDr is the rotary diffusivity of a spheroid of aspect ratior.
According to a classic result due to Jeffery,6 in the absence of
Brownian diffusion or any other particle body forces, an
lipsoidal particle subjected to a simple shear flow execute
periodic motion along a certain orbit depending on its init
orientation. Hence in this case, the steady state orienta
distribution of the particles is determined by the initial co
ditions. Subsequently Leal and Hinch7 showed that the pres
ence of even very weak rotary Brownian motion can ma
the steady state orientationsindependentof the initial condi-
tions. The presence of rotary Brownian motion makes
orientations of the particles a stochastic process and as
the system can be modeled either through a Fokker–Pla
~diffusion! equation approach or through a Langevin equ
tion approach. The traditional approach to modeling su
systems~the diffusion equation approach! is based on ex-
pressing the bulk suspension properties in terms of suita
moments of the ODF obtained by solving an appropri
diffusion equation for the system at steady state. Since s
ing the diffusion equation in its full generality is difficul
il:
© 2002 American Institute of Physics
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various authors have attempted different numerical sche
to approximate the solution for various ranges of shear
Brownian parameters.8–12 If diffusion is weak compared to
shear, the particles tend to spend most of the time along
flow direction and diffusion can be neglected except in
small region of the orientation space near the flow directio8

Hinch and Leal8 used a regular perturbation method arou
1/Pe to approximate the ODF in this regime (Pe1/3@r ). On
the other hand, if the Brownian diffusion is stronger~Pe!1!,
the weak flow disturbs the uniform orientation distributio
caused by the randomizing effect of diffusion only slight
hence a regular perturbation about Pe may be used to
proximate the ODF.9 When the flow strength is in betwee
these extremes, the perturbation methods fail. Chen
Koch11 developed a spherical harmonic method to determ
the orientation distribution function of fibers of large aspe
ratio in this intermediate regime where diffusion and adv
tion are comparable. This involves expanding the ste
state orientation distribution function into a double series
spherical harmonics and substituting a suitably trunca
form of this series into the diffusion equation for the syste
leaving a set of linear equations in the expansion coe
cients. The number of terms in the truncated series and h
the number of linear equations to be solved generally
creases with increasing Pe to achieve a given accur
Hence the procedure becomes computationally formida
for larger values of Pe, but the technique can be success
applied for Pe up to 1000~Chen and Jiang!. Chen and Jiang12

present another approach, in which the diffusion equation
the system is numerically solved for the steady state O
using a finite difference scheme with a pair of boundary c
ditions. This method is applicable when the flow is moder
~Pe up to 1000!, but even for small Pe, the numerical schem
requires a large number of mesh points to achieve a g
accuracy and so the computation time is longer even in
weak flow regime. For very large Pe they suggest ano
method in which the diffusion equation is numerically solv
for the time evolution of the ODF with a given initial sta
until steady state is reached. This is particularly useful
Pe.1000 where spherical harmonics method becomes c
putationally difficult.

It is clear from the above discussion that the numeri
schemes currently used for solving the diffusion equat
vary as the flow and Brownian parameters are changed
this work, we present an alternate approach to computing
orientation moments without having to solve the diffusi
equation. This method is based on a generalized Lang
equation approach presented recently by Coffeyet al.13 for
nonlinear systems with noise, and provides a unified strat
for modeling such systems placing little restriction on t
Péclet number of the flow. We shall consider a dilute susp
sion of Brownian spheroids subjected to a simple shear fl
and derive suitable Langevin equations for their time evo
tion. Each Langevin equation is an equation of motion
the orientation of a single particle depicting the irregular p
of the motion due to Brownian effects in terms of a suita
random noise term whose properties are determined onl
average. An ensemble of these equations must be identic
the governing diffusion equation of the entire system.
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then obtain theexact equation of motion for any desire
orientation averageusing a novel idea of Coffeyet al. A
brief account of this procedure is given in Sec. III. The
moment equations being ordinary differential equations
easier to handle than the original Langevin equations wh
are stochastic differential equations.For each pair of aver-
ages we get a couple of ordinary differential equations wh
together govern their time evolution. These equations can b
solved analytically in simple cases giving earlier results
the literature. For the general case, we develop a brute-f
computational technique to generate the desired averag
pairs by simulating a set of related equations with giv
initial conditions until steady state is reached.

The basic idea behind the Coffeyet al. treatment of non-
linear systems with noise is that by interpreting a Lange
equation for a stochastic variable as an integral equatio
the Stratanovich sense with a sharp initial condition, it
possible to express suitable time averages of the stoch
variable in terms of a deterministic equation of motion f
the sharp values. Any desired ensemble average can the
generated directly from an ensemble of time-averag
Langevin equations without having to solve the diffusi
equation. For the system we consider the bulk suspen
properties are related to orientation averages over the
ticles aligned along a set of common directions. The m
realistic model for such a suspension may be a set of Lan
vin equations starting off from sharp initial conditions in
time-averaged sense over an appropriate white noise t
Thus this system is an ideal one for applying the Coff
et al. approach. The technique presented here can be e
generalized and applied to other similar systems with no

The exact form of the noise term in the Langevin equ
tion is obtained by comparing the moments of spherical h
monics as obtained from the diffusion equation and an
semble of Langevin equations. We note that the spher
harmonics form a complete set for the eigenfunction exp
sion of any orientation average. We derive in Sec. II a d
ferential recurrence formula for the moments of surfa
spherical harmonics starting from the diffusion equation a
reproduce it in Sec. III from the Langevin equation meth
with a presumed noise term for the Langevin equations
suggested by some heuristic arguments. The exact agree
between the two formulas then justifies the form of noise
started with. Details of the relevant ideas of the Coffeyet al.
method are also given in Sec. III. Section IV is devoted
the computation of certain orientation moments from t
governing evolution equations obtained by the new meth
These equations are easily solved in the zero shear limit
ing the familiar result that the orientations tend to a unifo
distribution at equilibrium due to the randomization effe
caused by the Brownian diffusion. In other cases, we tra
form each pair of moment equations into a pair of coup
ODEs and a set of such equations is simulated over a fi
number of initial conditions until steady state is reached. T
desired moments can be easily obtained from these solut
and the results are in good agreement with previously kno
ones. Concluding remarks are given in Sec. V. The n
method has the advantage that it provides a unified stra
that can be applied over a wider range of Pe than is poss
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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by other methods. It can be easily generalized to more c
plex systems like suspensions of charged particles or sus
sions of dipolar particles with external forcing.

II. THE DIFFUSION EQUATION APPROACH

We begin by considering a single particle from a susp
sion of identical rigid, neutrally buoyant spheroids in an
finite incompressible Newtonian fluid subject to a unifor
shearing motion defined by a flow field,v5ġyi whereġ is
the shear rate,y is they-coordinate, andi is the unit vector in
theX-direction. The suspension is assumed to be sufficie
dilute so that particle particle hydrodynamic interactions m
be neglected. Since for a dilute suspension the bulk pro
ties are generally determined by the orientations of the p
ticles alone, we neglect any translatory motion of the part
by choosing a coordinate system that moves along with
The particles may experience rotational torques due to
hydrodynamic force caused by the imposed flow and
Brownian force caused by the bombardment of the partic
by surrounding fluid molecules. The diffusion~Fokker–
Planck! equation that governs the time evolution of the p
ticle distributions of the system is then given by10

]c

]t
1

]

]u
•~ u̇c!5Dr

]2c

]u2 . ~1!

Hereu is the vector describing the orientation of the partic
and is assumed to be a unit vector fixed along the major
of the spheroid.c(u,t) is the orientation distribution func-
tion which is such thatc(u,t)du gives the probability that a
particle is oriented in the solid angle du aboutu at time t.
The term on the right side of Eq.~1! reflects the effect of
rotary Brownian diffusion, the factorDr being the rotary
diffusivity defined byDr5kBT/z' , wherez' represents the
rotational resistance in the direction perpendicular to the p
ticle symmetry axis,kB is the Boltzmann constant, andT is
the absolute temperature. The time derivative of the orie
tion vector appearing in the above equation may be
pressed asu̇5v3u, wherev is the angular velocity of the
particle, an expression for which may be obtained through
angular momentum balance equation10

v5V1C@u3~E•u!#. ~2!

In the above expression,C5(r 221)/(r 211)) is a shape
factor for a spheroid of aspect ratior and E and V are,
respectively, the rate of deformation tensor and vorticity v
tor for the flow defined thus:

E5 1
2~¹v1¹vT!, V5 1

2~¹3v!.

The resulting expression for the evolution of the orientat
vector becomes

u̇5VÃu1C@uÃ~E•u!#Ãu. ~3!

Writing u5u1i1u2j1u3k the last equation may be writte
in Cartesian coordinates as follows:
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u̇15ġCu2~12u1
2!1ġS 12C

2 Du2 ,

u̇252ġCu1u2
22ġS 12C

2 Du1 , ~4!

u̇352ġCu1u2u3 .

Equation~3! gives the regular part of the evolution of th
orientation vector in the complete absence of Brownian d
fusion, while the effect of Brownian diffusion is taken ca
of by the diffusive term on the right of Eq.~1!. In the Lange-
vin equation, on the other hand, the random behavior du
Brownian effects is incorporated by an additional noise te
to Eq. ~3! whose properties are determined only by an e
semble of such equations. In the next section we shall
mainly concerned with the exact form of the noise term
the Langevin equation that makes an ensemble of such e
tions identical to the diffusion equation~1!. We do this by
requiring that the diffusion equation~1! and the system of
Langevin equations with noise generate the same set of
entation averages. Equivalently, since any orientation a
age can be expanded in terms of suitable spherical harm
ics, we may require that both the methods give rise to
same evolution equations for spherical harmonics and
this as a matching condition for obtaining the noise ter
Towards this end, we derive a set of differential recurren
relations for surface spherical harmonics for the system g
erned by Eq.~1! and compare them in Sec. III with a simila
set of equations to be obtained from a set of Langevin eq
tions for the same system.

The transformationsu15sinu cosf, u25sinu sinf, u3

5cosu convert Eq.~4! into their spherical coordinates coun
terparts,

u̇5ġC sinu cosu sinf cosf,
~5!

ḟ52ġC sin2 f2ġS 12C

2 D .

We can use the above expressions in Eq.~1! to write it in
spherical coordinates thus:

]c

]t
1ġCV̄~c!2

ġ

2
~12C!

]c

]f
5DrL̄~c!. ~6!

The V̄ and L̄ appearing in the above equation are line
operators defined by

V̄~c!5
sinf cosf

sinu

]

]u
~c sin2 u cosu!2

]

]f
~c sin2 f!,

L̄~c!5
1

sinu

]

]u S sinu
]c

]u D1
1

sin2 u

]2c

]f2 .

We may now expandc into a double series of eigenfunction
assuming thatc(u,f,t) satisfies the boundary condition
cuu5p,f52p5cuu50,f50

c5 (
n50

`

(
m52n

n

an,m~ t !Yn,m .

Yn,m are the normalized spherical harmonics14 defined by
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Yn,m5Nn,mPn
m~cosu!eimf, 2n<m<n.

The normalization constantsNn,m are given by

Nn,m5~21!mA~2n11!~n2m!!

4p~n1m!!
.

Pn
m are associated Legendre functions defined for n

negativem by

Pn
m~x!5~12x2!m/2

dm

dxm ~Pn~x!!, 21<x<1,

wherePn(x) is the Legendre polynomial, and for negativem
by

Pn
2m~x!5~21!m

~n2m!!

~n1m!!
Pn

m~x!.

Yn,m therefore satisfy the relationYn,m5(21)mYn,2m* where
* denotes the complex conjugate. Sincec is to be real the
expansion coefficientsan,m also satisfy a similar relation
viz., an,2m5(21)man,m* . The spherical harmonicsYn,m

form an orthonormal set satisfying the orthogonality relat

E
u50

p E
f50

2p

Yq•pYn,m* sinu du df5dqndpm . ~7!

Sincec is a probability density function it must satisfy th
normalization condition,

E
u50

p E
f50

2p

c~u,f,t !sinu du df51.

This constrains the first term in the expansion forc to satisfy
a0,0Y0,051/(4p) due to orthogonality. We shall denote b
^B& the ensemble average of any quantityB and evaluate it
thus:

^B&5E
u50

p E
f50

2p

Bc sinu du df.

Using the expansion forc and Eq.~6! we can now obtain the
following differential recurrence relation forYn,m* :

d

dt
^Yn,m* &5ġC (

j 5m22

m12

(
k5n22

n12

bn,k
m, j^Yk, j* &

1
3

2
ġC^sin2 u sin~2f!Yn,m* &

1ġS 12C

2 D im^Yn,m* &2Drn~n11!^Yn,m* &,

~8!

wherebn,k
m, j are suitable multiples of the Bird–Warner coef

cients~see Appendix A!. The details of the calculations lead
ing to Eq. ~8! are left to Appendix A. We note that in th
absence of shear (ġ50) or when the particles are spher
(C50), the above recurrence relation is easy to solve, g
ing an,m(t)5^Yn,m* &→0 as t→` excepta0,0 which by nor-
malization is 1/A4p. This is the familiar result that in thes
cases the randomization effect due to Brownian motion le
to a uniform distribution of the suspension at equilibrium
Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP
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III. THE LANGEVIN APPROACH

Before deriving the Langevin equation for the orient
tion of the particle in the system we consider, we give a br
mathematical description of the Coffeyet al. approach.13 Let
j5(j1 ,j2 ,...jn) be an n-dimensional stochastic variabl
whose components satisfy a set of Langevin equations w
multiplicative noise terms,

j̇ i~ t !5hi~j~ t !,t !1gi j ~j~ t !,t !G j~ t !, 1< i<n, 1< j <m,
~9!

whereG j are Gaussian random variables with zero mean
autocorrelation functions proportional to thed function:

G j~ t !50, G i~ t !G j~ t8!52Dd i j d~ t2t8!, ~10!

where d i j is the Kronecker delta,d(t) is the Dirac delta
function, andD is the spectral density. The overbars deno
statistical time averages over a large number of random v
ables. We start with interpreting Eq.~9! as an integral equa
tion ~in the Stratonovich sense! for the values ofj at a later
time t1dt,

j i~ t1dt !5xi~ t !1E
t

t1dt

@hi~j~ t8!,t8!

1gi j ~j~ t8!,t8!G j~ t8!#dt8, ~11!

wherexi(t) is the sharp starting values forj i(t) at the instant
t. Let xi ~without the time argument! denote the time averag
of a large number of random variablesj i(t) all starting from
the sharp valuexi(t), calculated by the Stratonovich rule
Then the time averages can be expressed as adeterministic
equation of motion for the set of sharp starting valuesx,

ẋi5 lim
dt→0

@j i~ t1dt !2xi~ t !#

dt

5hi~x!1Dgk j~x,t !
]

]xk
~gi j ~x,t !!,

1< i<n, 1< j ,k<m. ~12!

In the above we have used Einstein’s summation conven
so that the second term on the right represents a sum oj
andk. Similarly it can also be proved that for any well be
haved functionf i(x),13

f i~x!ẋi5 f i~x!hi~x!1Dgk j~x,t !
]

]xk
~ f i~x!gi j ~x,t !!,

~13!

where again the summation overj andk is understood.
To obtain the appropriate Langevin equation for the o

entation of the spheroids in a simple shear flow, we heu
tically suppose that the rotary Brownian motion causes
angular velocity of the particle to change and we incorpor
this effect by superposing on Eq.~2! for v a white noise
vector term:

v5V1C@uÃ~E•u!#1G~ t !,

where the Cartesian componentsG i(t) of G satisfy Eq.~10!
with D5Dr . The expression foru̇ then changes into
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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u̇5VÃu1C@uÃ~E"u!#Ãu1GÃu. ~14!

When converted into spherical coordinates the equation
comes@cf. Eq. ~5!#

u̇5ġC sinu cosu sinf cosf

2sinfG1~ t !1cosfG2~ t !,
~15!

ḟ52ġC sin2 f2ġS 12C

2 D2cotu cosfG1~ t !

2sinf cotuG2~ t !1G3~ t !.

These equations are now in the form of Eq.~9!, with h1 and
h2 corresponding to the deterministic parts ofu̇ andḟ in Eq.
~15!, repectively, and with

g1152sinf, g125cosf, g1350,

g2152cotu cosf, g2252cotu sinf, g2351.

To obtain the differential recurrence relations for the sph
cal harmonicsYn,m* for m>0 note first that

d

dt
~Yn,m* !5

]

]u
~Yn,m* !u̇1

]

]f
~Yn,m* !ḟ. ~16!

Writing f 15]Yn,m* /]u, f 25]Yn,m* /]f, u15u, and u25f
and applying the results of Eq.~12! in Eq. ~15! and of Eq.
~13! in Eq. ~16! we get the equation of motion for the sha
valuesYn,m* as

d

dt
~Yn,m* !5 f 1h11 f 2h21Drgk j

]

]uk
~ f 1g1 j1 f 2g2 j !, ~17!

where the last term represents a sum overj andk. Simplify-
ing the deterministic and noise parts of Eq.~17! separately
~the details are left to Appendix B!, we get

d

dt
Yn,m* 5ġC (

j 5m22

m12

(
k5n22

n12

bn,k
m, jYk, j*

1
3

2
ġC sin2 u sin~2f!Yn,m*

1ġS 12C

2 D imYn,m* 2Drn~n11!Yn,m* . ~18!

Taking now a second average over the probability densit
the sharp values~u,f! we finally get

d

dt
^Yn,m* &5ġC (

j 5m22

m12

(
k5n22

n12

bn,k
m, j^Yk, j* &

1
3

2
ġC^sin2 u sin~2f!Yn,m* &

1ġS 12C

2 D im^Yn,m* &2Drn~n11!^Yn,m* &,

~19!

which is in the same form as Eq.~8! which was obtained
through the diffusion equation. The extension to negativem
is obvious as before. This demonstrates that an ensemb
Eqs. ~18! for the sharpYn,m* has the same dynamics as t
Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP
e-
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f

of

momentŝ Yn,m* & as determined by the Fokker–Planck equ
tion. Further, the equivalence between the two formulas
tifies the form of the noise term we started with and mak
the system of Langevin equations~14! identical to the diffu-
sion equation~1!. It also demonstrates that in the Brownia
regime we can use the time averaged Langevin equation
generate averages using the new method.

IV. THE COMPUTATION OF MOMENTS

In this section we obtain the equations governing
time evolution of the orientation moments based on
methods of the previous section and develop methods
computing the moments from these equations. We s
generate the moments ^u3

2&5^cos2 u&, ^u1u2&
5^sin2 u sinf cosf&, and ^u1

2u2
2&5^sin4 u sin2 f cos2 f& for

a wide range of parameters using the new method and c
pare our results with those of Chen and Jiang12 and Chen and
Koch.11

Each term in Eq.~14! has dimension~1/time! and may
be scaled with respect toDr . The scaled form of the Lange
vin equation, in Cartesian coordinates is as follows:

u̇15PeC u2~12u1
2!1PeS 12C

2 Du2

1G2~ t !u32G3~ t !u2 ,

u̇252PeC u1u2
22PeS 12C

2 Du11G3~ t !u12G1~ t !u3 ,

~20!

u̇352PeCu1u2u31G1~ t !u22G2~ t !u1 ,

where Pe5ġ/Dr is the Pe´clet number introduced earlier
Note that in the scaled form theG i satisfy Eq.~10! with D
51. When converted into spherical coordinates these eq
tions become

u̇5PeC sinu cosu sinf cosf2sinfG1~ t !

1cosfG2~ t !,
~21!

ḟ52PeC sin2 f2PeS 12C

2 D2cotu cosfG1~ t !

2sinf cotuG2~ t !1G3~ t !.

The above equations may now be time-averaged using
~13! to express it as an equation of motion for the sha
starting values. We retain the same notation of the rand
variablesu, f for their sharp values att. Following a proce-
dure similar to that leading to Eq.~17! we obtain for any
orientation moment̂B(u,f)&, the following expression for
the sharp valuesB(u,f):

d

dt
B~u,f!5 f 1h11 f 2h21gk j

]

]uk
~ f 1g1 j1 f 2g2 j !, ~22!

where f 15]B/]u, f 25]B/]f, u15u, and u25f and h1

andh2 are the deterministic parts in Eq.~21!. A set of these
equations averaged over the density of the sharp values
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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the same evolution dynamics as^B(u,f)&. We thus get the
governing equations for the time evolution of the mome
^u3

2&, ^u1u2&, and^u1
2u2

2&:

d

dt
^u3

2&52
d

dt
^cos2 u&5S Pe

4 DC^sin2 2u sin 2f&

22~3^cos2 u&21!,

d

dt
^u1u2&5

d

dt
^sin2 u sinf cosf&

52C Pê sin2 u cos2 u sin2 f cos2 f&

2C Pê sin2 u sin2 f cos 2f&2PeS 12C

2 D
3^sin2 u cos 2f&23^sin2 u sin 2f&, ~23!

d

dt
^u1

2u2
2&5

d

dt
^sin4 u sin2 f cos2 f&

54C Pê sin4 u cos2 u sin3 f cos3 f&

22C Pê sin4 u sin3 f cosf cos 2f&

2PeS 12C

2 D ^sin4 u sin2 f cos 2f&

12^sin2 u&220̂ sin4 u sin2 f cos2 f&.

For PeÞ0 the above system of equations is not closed,
for Pe50 ~i.e., in the absence of shear!, they have a simple
form, namely.

d

dt
^u3

2&522~3^u3
2&21!,

d

dt
^u1u2&52

3

2
^u1u2&,

d

dt
^u1

2u2
2&5222^u3

2&220̂ u1
2u2

2&.

Solving them we get the following results in the zero sh
limit:

^u3
2&5 1

31k1e26t,

^u1u2&5k2e2~3/2!t,

^u1
2u2

2&5
1

15
1k3e22t1k4e220t,

where theki are constants depending on the initial con
tions. In the limitt→`, the solutions approach, as expecte
the values of the moments when the orientation distribut
is uniform ~c51/4p!. An advantage of Eqs.~23! for mo-
ments is that they are ordinary differential equations unl
the original Langevin equations for the orientations.

We now discuss a computational technique for solv
the moment equations in the general case. We note tha
Downloaded 27 Sep 2004 to 141.58.128.52. Redistribution subject to AIP
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general the evolution of the moments is governed by t
variablesu andf and not by the moment itself. This nece
sitates considering two moment equations simultaneously
generating the averages. Our computational procedur
based on the fact that the dynamics of any mom
^B(u,f)& can be captured by simulating an ensemble of E
~22! for the sharp valuesB(u,f). Equivalently, we may se
up the equations of motion for the tracer variablesu andf
and compute the averages by iterating a set of such e
tions. For the sharp valuesB1(u,f) andB2(u,f) of any two
desired orientation averages, we may write from Eq.~22!

f 1u̇1 f 2ḟ5 f 1h11 f 2h21gk j

]

]uk
~ f 1g1 j1 f 2g2 j !,

~24!

f 18u̇1 f 28ḟ5 f 18h11 f 28h21gk j

]

]uk
~ f 18g1 j1 f 28g2 j !,

wheref i are the partial derivatives ofB1 and f i8 those ofB2 .
We can solve the above system foru̇ and ḟ assuming that
the coefficient determinantD5 f 1f 282 f 18 f 2 is not zero,

u̇5h11
1

D F f 28gk j

]

]uk
~ f 1g1 j1 f 2g2 j !

2 f 2gk j

]

]uk
~ f 18g1 j1 f 28g2 j !G ,

~25!

ḟ5h22
1

D F f 18gk j

]

]uk
~ f 1g1 j1 f 2g2 j !

2 f 1gk j

]

]uk
~ f 18g1 j1 f 28g2 j !G .

This gives a system of two coupled ODEs and an ensem
of such systems for the sharp valuesu and f collectively
determine the pair of averagesB1 andB2 . Thus for each pair
of averages for whichD is nonzero, we consider an ensemb
of systems of coupled ODEs of the type of Eq.~25! over a
set of sharp initial conditions.

To carry out the computations, we start with a finite b
large number of sharp initial conditions for the random va
ables~u,f! with each initial condition representing a larg
number of random variables starting from there. Theuf
space is first divided inton2 bins by the points (u i ,f i)
where u i5cos21@(2i/n)21#, and f i52p/n i50,1,...n. We
considern2 initial conditions (u i ,f i) directed along the cen
ters of these bins and let each of them evolve according
Eqs. ~25!. This choice ofu and f corresponds to a set o
nearly uniform initial conditions for the sharp values over t
uf space. The trajectory of the vector~u,f! is obtained by
integration using the integratorodeint of Presset al.15 with
adaptive step-size control. The sharp values~u,f! may them-
selves be considered a random variable with den
c(u,f,t) with sharp peaks at the sites of the vectors~u,f! at
any instant. This gives the following estimate for any m
ment ^B(u,f)& at that instantt:
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 27 Se
TABLE I. The steady state values of the moments for various initial conditions at different values of Pe

No. of initial
conditions

Pe50.0 Pe51.0 Pe5100.0 Pe5500.0

^u3
2& ^u1u2& ^u3

2& ^u1u2& ^u3
2& ^u1u2& ^u3

2& ^u1u2&

64 0.3333 0.0000 0.3293 0.0532 0.2376 0.1325 0.1763 0.09
81 0.3333 0.0000 0.3280 0.0473 0.2082 0.1199 0.1537 0.07

100 0.3333 0.0000 0.3288 0.0322 0.1730 0.0910 0.1285 0.05
121 0.3333 0.0000 0.3283 0.0321 0.1721 0.0907 0.1294 0.05
144 0.3333 0.0000 0.3285 0.0317 0.1728 0.0911 0.1277 0.05
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M,
^B~u,f!&5
**B~u,f!d~u2u i !d~f2f j !d~cosu!df

**d~u2u i !d~f2f j !d~cosu!df

5
1

n2 (
i 51

n

(
j 51

n

B~u i ,f j !. ~26!

The values of the momentŝB1(u,f)&, ^B2(u,f)& at any
instant are computed from the iterates of then2 instances of
the corresponding pair of Eqs.~25! using the above formula
These computations are repeated for successive time
using, at each step, the values (u i ,f j ) obtained from numeri-
cal integration, and continued until the values of the m
ments stabilize.

We generated the moments in pairs of^u3
2& and^u1

2u2
2&,

^u1u2& and^u2
2&, and^u3

2& and^u1u2& for various values of
Pe, keeping the number of initial conditions atn25100. Note
that the coefficient determinantD does not vanish for this
choice of moments. The simulations may run into trouble

FIG. 1. Plot of the orientation moments vs Pe´clet number. The symbols ar
the results from the finite difference method and the spherical harmo
method.
p 2004 to 141.58.128.52. Redistribution subject to AIP
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-

f

any of the subsequent iterations approach a singularity of
~25!, but our computations did not lead to any such pro
lems. The computations were repeated changing the num
of initial conditions from 64 to 2500, but the results prac
cally stabilized forn25100 onward and son2 was fixed at
100 in subsequent computations. Table I shows the varia
of the moments with the number of initial conditions fo
typical values of the parameters. With Pe50, the computa-
tions reproduced the theoretical values 1/3, 0, and 1/15
^u3

2&, ^u1u2&, and^u1
2u2

2&, respectively. Also we had scale
time with respect to 1/Dr , which makes the right side of Eq
~25! large for larger values of Pe. Hence to minimize t
round of errors we changed the scaling to 1/ġ for Pe.10
while for Pe,10 the earlier scaling was retained. The resu
obtained for Pe between 0 and 1000 are plotted in Fig
These results are in good agreement with those obta
from other methods, spherical harmonics method of Ch
and Koch11 and finite difference method of Chen and Jiang12

~compare Fig. 3 of Chen and Jiang12!. An advantage of this
method is the internal check it provides on the computati
by way of making one average common to each pair of
erages. Thus in our simulations we paired^u3

2& with both
^u1u2& and^u2

2u3
2& and found that the results were consiste

With a given number of initial conditions, the time take
by the simulations to settle down to steady values depe
both on the Pe´clet number and the pair of averages chos
Table II summarizes the time data for our computations o
Pentium III, 500 MHz, 128 MB RAM PC, with 100 initial
conditions for typical values of Pe. It seems that the curr
method offers significant improvement in terms of the co
putation time of various moments compared to the ot
methods.12

cs

TABLE II. Time taken to compute the moments on a 500 MHz, 128 RA
Pentium III PC for two different pairs at various Pe.

Pe ^u3
2& and ^u1u2& ^u3

2& and ^u1
2u2

2&

0.0 1 s 1 s
1.0 2 s 2 s

10.0 4 s 10 s
50.0 7 s 823 s

100.0 10 s 1920 s
250.0 28 s 2030 s
500.0 86 s 2800 s
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V. CONCLUSIONS

We have developed the Langevin equations for the
entation dynamics of the spheroids in a dilute suspens
under simple shear flow. A method for calculating the evo
tion of the moments of the orientation distribution functio
from a set of appropriately time averaged Langevin eq
tions is also developed. This presents a unified approac
computing the orientation moments over a wide range
Péclet number. An advantage of the present approach is
it provides an internal check on the computations by keep
one average common in any couple of pairs of averages
is generated. It also does not require solving the diffus
equation with all its attendant complications. Another adv
tage is that it can be easily generalized to study more c
plex systems such as suspensions of dipolar particles
external forcing or suspensions of charged particles. This
volves only modifying the governing Eqs.~3! with terms
corresponding to the additional effects.

Kumar and Ramamohan16 have recently demonstrate
that in aperiodically forcedsuspension of dipolar particles
the moments of the ODF may evolve chaotically in the we
Brownian motion regime. This observation has some imp
tant implications for certain concepts in chaos theory such
the nontrivial collective behavior of spatially extende
systems.17 The method developed in this paper is ideal
studying the possibility of moments evolving chaotically u
der periodic forcing in the strong Brownian motion regim
In this case, the moment equations for each pair of avera
would be a couple of nonlinear coupled nonautonom
ODEs.16 These points are being currently investigated a
will be discussed in future work.
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APPENDIX A

We give here the details of the calculations leading
Eq. ~8! from the diffusion equation. Fixingm>0 and multi-
plying Eq. ~6! through byYn,m* and integrating over the uni
sphere we get

E
u50

p E
f50

2p ]c

]t
Yn,m* sinu du df

1ġCE
u50

p E
f50

2p

V̄~c!Yn,m* sinu du df

2ġS 12C

2 D E
u50

p E
f50

2p ]c

]f
sinuYn,m* du df

5DrE
u50

p E
f50

2p

L̄~c!Yn,m* sinu du df. ~A1!
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The first term on the left side of Eq.~A1! is evidently
(d/dt)^Yn,m* &. To evaluate the second term on the left we fi
note that

E
u50

p E
f50

2p

V̄~c!Yn,m* sinu du df

5E
u50

p E
f50

2p sinf cosf

sinu

]

]u
~c sin2 u cosu!

3Yn,m* sinu du df

2E
u50

p E
f50

2p ]

]f
~c sin2 f!sinuYn,m* du df

~A2!

52E
u50

p E
f50

2p

sinf cosf
]

]u
~Yn,m* !

3c sin2 u cosu du df

1E
u50

p E
f50

2p

sinu
]

]f
~Yn,m* !c sin2 f du df.

In the foregoing expressions the last step follows by integ
ing the first term of the previous step by parts with respec
u and the second term with respect tof. Now using the
relations

]

]u
~Yn,m* !sin2 u cosu5

]

]u
~Yn,m* sin2 u cosu!

2
]

]u
~sin2 u cosu!Yn,m* ,

~A3!
]

]f
~Yn,m* !sin2 f5

]

]f
~Yn,m* sin2 f!2Yn,m* sin~2f!

in Eq. ~A2! and simplifying we get

E
u50

p E
f50

2p

V̄~c!Yn,m* sinu du df

52E
u50

p E
f50

2p

V̄~Yn,m* !c sinu du df

2
3

2 Eu50

p E
f50

2p

Yn,m* sin3 u sin~2f!c du df. ~A4!

The effects ofV̄ on Pn
m(cosu) and Pn

m(sinu) have been
evaluated previously18 @here and in what follows we hav
abbreviatedPn

m(cosu) by Pn
m , etc.#:

V̄~Pn
m sin~mf!!5 (

j 5m22

m12

(
k5n22

n12

an,k
m, j Pk

j cos~ j f!,

m>0,

V̄~Pn
m cos~mf!!52 (

j 5m22

m12

(
k5n22

n12

an,k
m, j Pk

j sin~ j f!,

m.0.

The constantsan,k
m, j are the Bird–Warner coefficients.18 Hence

it follows that
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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V̄~Yn,m* !5 (
j 5m22

m12

(
k5n22

n12

bn,k
m, jYk, j* , ~A5!

where we have writtenbn,k
m, j52 i (Nn,m /Nk, j )an,k

m, j . This can
now be used in Eq.~A4! to complete the evaluation for th
second term on the left of Eq.~A1!:

ġCE
u50

p E
f50

2p

V̄~c!Yn,m* sinu du df

52ġC (
j 5m22

m12

(
k5n22

n12

bn,k
m, j^Yk, j* &

2
3

2
ġC^sin2 u sin~2f!Yn,m* &. ~A6!

The integral in the third term on the left of Eq.~A1! can be
integrated by parts with respect tof and the boundary con
ditions for c applied to show that

2ġS 12C

2 D E
u50

p E
f50

2p ]c

]f
sinuYn,m* du df

52ġS 12C

2 D im^Yn,m* &. ~A7!

To evaluate the right side of Eq.~A1! we use the known
effects ofL̄ on real spherical harmonics:18

L̄~Pn
m cos~mf!!52n~n11!Pn

m sin~mf!,

L̄~Pn
m sin~mf!!52n~n11!Pn

m cos~mf!.

Hence using the linearity ofL̄ we haveL̄(Yn,m* )52n(n
11)Yn,m* and then invoking the eigenfunction expansion
c:

L̄~c!5L̄S (
q50

`

(
p52q

q

aq,pYq,pD
5 (

q50

`

(
p52q

q

~2q!~q11!aq,pYq,p .

This result together with the orthogonality relation for t
spherical harmonics, Eq.~7!, and term by term integration
yields

E
u50

p E
f50

2p

L̄~c!sinuYn,m* du df

5E
u50

p E
f50

2p S (
q50

`

(
p52q

q

~2q!~q11!aq,pYq,pD
3Yn,m* sinu du df

5 (
q50

`

(
p52q

q S 2q~q11!

3aq,pE
u50

p E
f50

2p

Yq,pYn,m* sinu du df D
5~2n!~n11!an,m .
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In a similar fashion, using the orthogonality relation Eq.~7!
and the expansion forc, we can prove that the expansio
coefficientsan,m are related toYn,m* by an,m5^Yn,m* &. The
final expression for the right side of Eq.~A1!, therefore,
becomes

DrE
u50

p E
f50

2p

L̄~c!sinuYn,m* du df5Drn~n11!^Yn,m* &.

~A8!

Putting together Eqs.~A6!, ~A7!, and ~A8! in Eq. ~A1! we
get Eq.~8!. The recurrence relation Eq.~8! has been derived
on the assumption thatm is non-negative. Ifm is negative
2m is positive and the Bird–Warner coefficientsan,k

2m, j are
defined. We will then get a similar recurrence relation
complex conjugation usingYn,m5(21)mYn,2m* with appro-
priate modifications.

APPENDIX B

The calculations leading to Eq.~19! from Eq. ~17! are
detailed here. We first write out the deterministic part of E
~17! using Eq.~15!:

f 1h11 f 2h25ġCF ]

]u
~Yn,m* !sinu cosu sinf cosf

2
]

]f
~Yn,m* !sin2 fG

2ġS 12C

2 D ]

]f
~Yn,m* !. ~B1!

Now multiply the first of the relations in Eq.~A3! by
(ġC sinf cosf)/sinu and the second byġC and subtract to
get

ġCF ]

]u
~Yn,m* !sinu cosu sinf cosf2

]

]f
~Yn,m* !sin2 f G

5ġCFsinf cosf

sinu

]

]u
~Yn,m* sin2 u cosu!

2
]

]f
~Yn,m* sin2 f!G1ġCFYn,m* sin~2f!

2
Yn,m* sinf cosf

sinu

]

]u
~sin2 u cosu!G

5ġCV̄~Yn,m* !1
3

2
ġC sin2 u sin~2f!Yn,m* . ~B2!

Substituting Eq.~B2! in Eq. ~B1! and using Eq.~A5!, we get
the following form for the deterministic part of Eq.~17!:

f 1h11 f 2h25ġC (
j 5m22

m12

(
k5n22

n12

bn,k
m, jYk, j*

1
3

2
ġC sin2 u sin~2f!Yn,m*

1ġS 12C

2 D imYn,m* . ~B3!
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Now the noise part of Eq.~17! simplifies as follows:

Drgk j

]

]uk
~ f 1g1 j1 f 2g2 j !

5DrFg11

]

]u
~ f 1g111 f 2g21!1g12

]

]u
~ f 1g121 f 2g22!

1g13

]

]u
~ f 1g131 f 2g23!1g21

]

]f
~ f 1g111 f 2g21!

1g22

]

]f
~ f 1g121 f 2g22!1g23

]

]f
~ f 1g131 f 2g23!G

5DrF ]2

]u2 ~Yn,m* !1
1

2 sin2 u

3S 2
]2

]f2 ~Yn,m* !1sin~2u!
]

]u
~Yn,m* ! D G

5DrNn,me2 imfF d2

du2 ~Pn
m!1

cosu

sinu

dPn
m

du
2

m2

sin2 u
Pn

mG
5DrNn,me2 imfF 1

sinu

d

du S sinu
dPn

m

du D 2
m2

sin2 u
Pn

mG
52Drn~n11!Nn,me2 imfPn

m

52Drn~n11!Yn,m* . ~B4!

In the above we have used the fact thatPn
m satisfies

1

sinu

d

du S sinu
dPn

m

du D 1Fn~n11!2
m2

sin2 uGPn
m50.

Putting together Eq.~B3! and~B4! in Eq. ~17! and averaging
over an ensemble of random initial conditions we get E
~19! from the time-averaged Langevin equation.
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