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V. Shankar and V. Kumaran®
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

(Received 17 October 2001; accepted 4 April 2002; published 3 Jung 2002

The stability of wall modes in fluid flow past a flexible surface is analyzed using asymptotic and
numerical methods. The fluid is Newtonian, while two different models are used to represent the
flexible wall. In the first model, the flexible wall is modeled as a spring-backed,
plate-membrane-type wall, while in the second model the flexible wall is considered to be an
incompressible viscoelastic solid of finite thickness. In the limit of high Reynolds nu(Regrthe
vorticity of the wall modes is confined to a region of thickn€@Re ) in the fluid near the wall

of the channel. An asymptotic analysis is carried out in the limit of high Reynolds number for
Couette flow past a flexible surface, and the results show that wall modes are always stable in this
limit if the plate-membrane wall executes motion purely normal to the surface. However, the flow
is shown to be unstable in the limit of high Reynolds number when the wall can deform in the
tangential direction. The asymptotic results for this case are in good agreement with the numerical
solution of the complete governing stability equations. It is further shown using a scaling analysis
that the high Reynolds number wall mode instability is independent of the details of the base flow
velocity profile within the channel, and is dependent only on the velocity gradient of the base flow
at the wall. A similar asymptotic analysis for flow past a viscoelastic medium of finite thickness
indicates that the wall modes are unstable in the limit of high Reynolds number, thus showing that
the wall mode instability is independent of the wall model used to represent the flexible wall. The
asymptotic results for this case are in excellent agreement with a previous numerical study of
Srivatsan and Kumaran. @002 American Institute of Physic§DOI: 10.1063/1.1481055

I. INTRODUCTION There have been a large number of other studies, moti-
vated by drag reduction in marine and aerospace
The dynamics of fluid flow past flexible solid surfaces is applications-°=” which have studied the stability problem
qualitatively different from that of rigid surfaces because ofby modeling the flexible wall to be a thin spring-backed plate
the coupling between the fluid and wall dynamics, and thenembrane which executes purely normal motion. Most of
elasticity of the surface could affect the fluid flow. In particu- these studies were performed in the high Reynolds number
lar, this coupling could influence the transition from laminar|imit, where fluid inertial forces are dominant. At high Rey-
to turbulent flow in such systems. Experiments conducted byiolds number, the Tollmien—Schlichting instabilitySI) is
Krindel and Silberbergin a gel-walled tube indicate that modified owing to the flexibility of the wall. Benjamifiex-
there is an anomalous drag force at Reynolds numiiges  tended the classical stability theory of Tollmien and
as low as about 600, and the authors concluded that this ischlichting’® and showed that a flexible nondissipative wall
due to a transition to a turbulent flow at a Reynolds numbetfends to stabilize the TSI, which is the destabilizing mecha-
which is far lower than the critical Reynolds number for the nism in flow past rigid surfaces. In addition, Benjatfiand
flow through a rigid tubgaround 210Q The transition Re | andaht* pointed out that there is an additional mode of
was found to depend on the elasticity of the wall in additionjnstability that could exist in an inviscid flow, which was
to the fluid properties indicating that the wall dynamics playstermed the flow-induced surface instabili§iSI). Carpenter
a significant role in the transition events. Motivated by theseyng Garrat1® analyzed the stability of Blasius flow over a
experimental results, there has been a renewed interest in tE@mpliant plate, in which they considered both TSI and FISI.
recent years in the understanding of the stability of fluid flowThe TS| was analyzed numerically, while FISI was analyzed
through flexible tubes and channels. These studies have ysing both analytical and numerical methods. These studies
modeled the flexible wall as a viscoelastic continuum of fi-concluded that the wall flexibility usually stabilizes the flow
nite thickness, and have used the governing equations for g the boundary layer and increases the Reynolds number at
elastic solid modified to include viscous effects. A summa-ynhich transition to turbulence occurs. Carpenter and G4jjar
rizing di_:scussipn on the results obtained in these theorgticqjsed a triple-deck asymptotic analysis to study the FISI when
studies is provided in Shankar and Kumafaecent experi-  the critical layer and the wall layer are well separated. Car-
mental studie_"Sfurther confirm the presence of qualitatively penter and Morr® analyzed the effect of anisotropic wall
new instabilities at low Re in flow past flexible surfaces. compliance on the stability of Blasius boundary layer flow
past flexible surface modeled as a spring-backed wall. Unlike
dElectronic mail: kumaran@chemeng.iisc.ernet.in the earlier studies of Carpenter and co-workers, this study
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included both normal and tangential motion in the plate-  This least stable wall mode in a flexible tube, which is
membrane wall. However, the normal and tangential disabsent in the case of flow in a rigid tube, was continued
placements were simply related by a constant factor, correaumerically to the A<1 regime in Ref. 6. That study
sponding to the inclination of the springs. Larose andshowed that this particular mode becommstablewhen A
Grotberd?® studied the stability of developing flow in a com- was decreased below a transition value at a given Re, with
pliant channel using both long-wave asymptotic analysis andke ranging between 1000 and 10000. The neutral stability
numerical methods. They found a long-wave instabilitycurves for this unstable mode was obtained using a numeri-
which was not observed in previous channel studies, and thigal continuation scheme, and the Reynolds number for neu-
instability was stabilized by increasing the elastance of theral modes was determined as a function of the paranater
wall. Their wall model included both normal and tangential The parametek = pGR?/ ?, is a flow-independent quantity
wall displacements. Davies and Carpehtetudied the sta- which is proportional to the shear modulGsof the flexible
bility of the plane-Poiseuille flow in a compliant channel. tube. The numerical results revealed that the Re for neutral
This study modeled the compliant walls as spring-backednodes decreases proportional%d? in the limit <1, and
plates with only normal wall motion. This study analyzed theshows rather complex behavior in the intermediate regime.
interconnected behavior of FISI and TSI using bothin the limit 3> 1, the transition Reynolds number increases
asymptotic and numerical methods, and found that if thgyroportional to3 ¢, wherea was found to be between 0.7
compliant wall properties are selected to give a significanand 0.75. More recently, the present authors have shown
stabilizing effect on TSI, the onset of FISI could be severelythat the numerical results of Refs. 6 and 8 can be obtained by
affected. an asymptotic analysis of wall modes in the parameter re-
The present study addresses the stability of wall modegime Re-334
in a flexible channel using a combination of asymptotic and  The instabilities analyzed in previous studfed® on

numerical methods. Wall modes are a class of solutions ifjow past compliant walls are qualitatively different from the

the high Reynolds number limit where the vorticity in the g5ve wall mode instability for the following reasons.
fluid is confined to a layer near the wall of the chan(ret

ferred henceforth as the wall layesf thicknessO(Re %)
smaller than the radius of the channel. The damping rate of
these modes i®(Re 3 smaller than the strain rate in the growth rate for inviscid FISI modes is of the same order
fluid. These modes were first studied by Corcos and Séllers  as the strain rate of the base flow.

and GilP! for the case of Hagen—Poiseuille flow in a rigid (2) The flow structure of the unstable modes is different in
tube, and these asymptotic studies showed that wall modes the limit of high Reynolds number for the two instabili-
are always stable in a rigid tube. Since the vorticity in the  ties: for wall modes the thickness of the boundary layer
fluid is confined near the wall of the channel, the elasticity of 6~ Re %3 while for inviscid FISI modess~Re 2.

the wall can affect the stability of the wall modes in the case(3) The critical Reynolds number for the instability to occur
of fluid flow through flexible tubes and channels. The stabil-  scales differently with the nondimensional wall elastic-
ity of wall modes in a flexible tube was analyzed using an  ity: Re~2%*for wall modes, while Re 32 for inviscid
asymptotic analysis in the high Reynolds number limit by  FISI modes.

Kumaran® This analysis mainly focused on the regime Re(4) In most of the previous studié$;'®the shear stress con-
>1, andA=Re"3(G/pV?)~1. Here, Re=R\p/ 7 is the Rey- dition at the interface is subdominant, and the instability
nolds numberp, 7 are, respectively, the density and viscos-  is primarily determined by normal velocity and stress
ity of the Newtonian fluidV is the maximum velocity of the conditions at the interface. Whereas, as will be shown

(1) The growth rate for unstable wall modes @{Re *3)
smaller than the strain rate of the base flow, while the

Hagen—Poiseuille flows is the shear modulus of the wall
material, andR is the radius of the flexible tube. An
asymptotic analysis in the small parameter Bewas used

to determine the growth rate, which showed that there ar¢5)

multiple solutions. In the limitA — o, which corresponds to

elastic stresses in the wall very large compared to viscous

stresses in the fluid.e., the rigid tube limif, the solutions to
the growth rate converged to the solutions of Bifor the

below, in the present analysis of wall modes the shear
stress condition at the interface proves to be crucial in
causing the instability.

As demonstrated in this paper, the wall mode instability
can exist only in the presence of a tangential deformation
in the wall, while the instabilities analyzed in Refs.
12-16 can occur even in the absence of tangential wall
deformation.

case of wall modes in a rigid tube. In the opposite limit of

A—0, which corresponds to a wall with very small elastic- Consequently, it is of interest to determine the stability
ity, the growth rates were again found to be stable. The tranef wall modes in fluid flow past a compliant wall, and this is
sition from A>1 to A<1 was found to be smooth. How- the main objective of the present study. Two different models
ever, there is one mode in the limit<1 in a flexible tube are used in the present study to represent the flexible wall in
whose growth rate does not converge to any of the rigid tuberder to demonstrate that the unstable wall modes are inde-
modes, but the frequency of this mode diverges\aa the  pendent of the wall model used to represent the wall me-
limit of a rigid tube (A —«), and the decay rate was found dium. An asymptotic analysis is carried out in Sec. Il for the
to decrease ad ~ 2 in the limit A—oe. It was then con- case of stability of Couette flow past a spring-backed wall
cluded that this represents the least stable wall mode in ased in previous studies on stability of flow past flexible
flexible tube® surfacedqsee, for example, Refs. 14 and)1B this analysis,
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it is shown that the high Reynolds number wall modes are
stablein the absence of tangential wall motion in the spring-
backed wall. However, when tangential motion is introduced
in the spring-backed wall model, the wall modes are shown z=0
to be unstable in the limit of high Reynolds number. This is
contrary to the conventional expectation that the tangential
wall motion will be subdominant in the limit of Rel, be-
cause it is reasonable to approximate the fluid dynamics by
the inviscid governing equations, and the tangential velocity
and stress boundary conditions cannot be satisfied by th&c. 1. schematic diagram showing the configuration and coordinate sys-
inviscid velocity field. tem considered in Sec. Il.

The results of the present asymptotic analysis are in
good agreement with the results from a full numerical solu-
tion of the governing stability equations. In Sec. lll, a similar ||, WALL MODES IN COUETTE FLOW PAST A
asymptotic analysis is carried out for the case of Couett6SPRING-BACKED WALL
flow past a viscoelastic solid in the limit of high Re, and it is

shown that the earlier numerical results of Srivatsan and In th_|_s section, an asymptotic anquss is carried out for
. the stability of Couette flow past a spring-backed plate mem-

Kumarart are the unstable wall modes predicted by the . . .
rane wall. The system consists of a fluid of thickn&ss

present stud.y. Mgre importantly,.the asymptotic apalysis Olyhich is bounded at* =R by a rigid surface moving at a
wall modes in fluid flow past spring-backed walls indicates.nstant velocityV, as shown in Fig. 1. In what follows,
that the unstable wall modes predicted by the present StUeruantities with a superscript are dimensional, while dy-
should exist in any high Re flow past flexible solid surfacesnamical quantities without a superscript are dimensionless.
irrespective of the details of the base flow velocity profile. At the lower boundaryz* =0, there is a plate-membrane
The only essential feature that the base flow profile shouldvall,*>*which is a spring-backed plate deformable both in
satisfy is that base flow velocity is zero at the wall andthe horizontal and vertical directions. The displacement in
should posses a finite velocity gradient at the wall. Sincghe horizontal and vertical directions, denoted, respectively,
most of the commonly encountered laminar shear flows suchY Uy anduj , represent the deviation of the material points
as the Couette flow, plane-Poiseuille flow and the Blasiudn the wall material from their equilibrium positions. In the
boundary layer flow satisfy this criterion, the high ReynoldspreViOUS studies, a constitutive equation of the following
number unstable wall modes predicted in this paper ar&yPe;

likely to be a generic feature of fluid flow past flexible solid (M* g2+ D gF + B* 9X 4= T* X 2+ K*)u¥ =n; 7" n;,

. . . i4ij
surfaces. As revealed by the asymptotic analysis, an essential D

ingredient for the present instability is that the flexible SUT-pas been used for the normal displacement of the membrane
face should be capable of undergoing deformations in th%u;). Hererﬁ is the total stress tensor in the fluid angis

tangential direction—a criterion normally satisfied by realis-ihe unit normal to the flexible surface. In the present study,
tic flexible (isotropig solid surfaces such as polymer gels. the above condition is augmented by another relation be-

Consequently, flexible wall models such as spring—backeg@ween the tangential stress and the tangential displacefent:
walls with purely normal wall motiolf will not capture this

instability. Thus the present study shows that inclusion of
tangential wall motion in the flexible medium can give rise In the above equationgl) and (2), n;7;n; andt;7;n; are,
to a qualitatively new instability in the limit of high Rey- respectively, the normal and tangential fluid stress at the in-
nolds number where the viscous stresses in the fluid are coterface, and; is the unit vector tangential to the flexible
fined within a thin layer of thicknes®(Re %) near the surface.D} is the normal wall damping coefficienD{ is
flexible wall, and these instabilities are absent for flexiblethe tangential wall damping coefficier* is the flexural
wall models which exhibit only purely normal wall motion. "igidity of the plate, T* is the longitudinal tension per unit
The rest of this paper is organized as follows. Sec. IIidth, K* is the spring stiffness of the membraie, is the

. ; . .
presents the asymptotic analysis and corresponding numerti’-erldlng stiffness of the; membra”“' IS the mass per unit

. . area of the membrane;* is the Cartesian coordinate along
cal results for the stability of Couette flow past a spring

. L . . “the wall, z* is the direction normal to the wallgy
backed surface in the limit of high Re. Details of this —glax*, t* is the dimensional time variable and

asymptotic analysis are given in Appendix A. Section llI —/at*. The equations describing the wall dynamics are
demonstrates that a similar instability exists in fluid flow past,ondimensionalized in the following manner. Lengths are
a viscoelastic material of finite thickness. Numerical resultsscaled byR the thickness of the fluid layer flowing above the
are presented alongside, and it is shown that the asymptotigembrane, velocities byE(*/(pR))*?, wherep is the den-
and numerical results are in good agreement. The saliesfity of the Newtonian fluid flowing above the membrane
conclusions of the present study are provided in Sec. IV. wall, t* is scaled byR(pR/E*)*? and the fluid stresses are

Moving top plate

Spring-backed flexible wall

(M* 32+ D} of —E* 35 *)ux =ti7in; . (%)
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scaled byE*/R. The nondimensional governing equations n=e,—du,e,, t=e+d,u,e,. (8)

describing the wall dynamics take the following form:
g y g Here e, and e, are unit vectors in the horizontdk) and

n7inj=[Md?—Td;+D, I Re *g,+Bdy+Klu,, (3) vertical (2) directions, respectivelysee Fig. 1L The mean
shear stress tensor due to the base flow at the interface is

— 2 2 1
e (4) I' Re lee,, where Re=RVp/7 is the Reynolds number of
where the various nondimensional parameters e the flow. Therefore, the normal stress at the perturbed inter-
=M*/(pR), D.=D}R/7, D,=D?R/7, B facen;mn;, correct to linear order in perturbation quanti-
=B*/(E*R?), T=T*/E*, K=K*R¥YE*, and I  fies,is
=(pV?R/E*)¥2 is the nondimensional velocity of the top n-7n=—2I Re L d,u,— p;+20.0,. ©

plate. Herer;; is the total stress tensor in the fluid scaled by

E*/R. In the following analysis, we sdd, =D, =D, for The term —2I' Re 1 g, represents the mean stress at the
simplicity and in order to reduce the parameter space to bg]terfage due to the variation in the unit normal of the per-
probed. The boundary conditions at the interface between thilrbed interface. Therefore, the normal stress boundary con-
fluid and the wall are the continuity of velocities and stressedlition at the unperturbed interface=0) is given, to linear

in the normal and tangential directions. At the upper rigidorder, by

plate z=1), no-slip boundary cpnditioqs are appropriate for_or re ! ikU,+(—P;+2T Re 10,3,

both the components of the fluid velocity. The velocity con- _ 5

tinuity conditions at the membrane surface are =(—k*c®*M —ikcD,I' Re '+ Tk*+BKk*+K)T,. (10

U=y, U,=dU,, (5)  The tangential stress boundary condition at the unperturbed

) ) interfacez=0 is given by
wherev, anduv, are the horizontal and vertical components

of the fluid velocity field at the interface. These boundary I R€ (90, +ikD,)=(—k*c®M —ikeD,+k*)Ty. (1)
conditions are supplemented by the stress balance conditioR$,e tangential stress boundary condition does not have any
at the interfacg3) and (4). The perturbation to the normal ¢qntriputions from the variation of unit normal in the inter-
and tangential displacements and u, in the membrane  tace since these contributions are nonlinear in the perturba-

model are expressed in the form of Fourier modes: tion quantities. The governing equations for the fluid motion
u,=T,exdik(x—ct)], u.=T.exdik(x—ct)]. (6)  are the Navier—Stokes equations
Here,k is the wave numbeg is the complex wave speed of dv;=0, (d+vjd)vi=—dpi+Re ' T'dfv;, (12)

the perturbationsii, and U, are, respectively, the Fourier \ hare the subscripisandj represent components of a vec-
components of the displacementsandu, . The wave speed o, repeated subscripts represent dot produgtsg/dt and

cisin geqeral a'lcorr?plex quantity, and _the flow is temporallyﬁiza/axi_ In Eq. (12), v; and p; are the nondimensional
qnstable if the.|mag|na.1ry part afis positive. The perturba- velocity and pressure fields in the fluid, respectively. In the
tions to the fluid velocity components are expressed in Fouzjy e equation, ReRVp/7 is the Reynolds number of the
rier modes. The boundary conditions E@®, (4), and(S) at 6,y pased on the top plate velocity and the width of the
the interface between the fluid and the wall must be appliedpannel. In the linear stability analysis, small-amplitude nor-

at the perturbed position of the interface. However, in ey, mode perturbations are imposed on the fluid velocity
linear stability analysis, the velocity and stress fields due tg;g g

the mean flow and perturbations at the perturbed interface o B _
are expanded in a Taylor series about their values at the vi=vx(2)di+v;(z)exdik(x—ct)], 13

unperturbed interface @&=0. Only the linear terms in the \herer-(7)=TI7 is the laminar Couette flow velocity profile
series expansion are retained and higher-order terms are NRhose stability is of interest here.

glected tp'obtain the following boundary conditiqns in which The above form of perturbations are substituted in the
all quantities are evaluated at the unperturbed interface: governing equations in the fluid medium, and only the quan-
7,=—ikcl,, Ty +IT,=—ikcT,. (7) tities that are linear in the perturbation variables are retained

to obtain the governing linear stability equations. The result-

In Fhis equati(')n;”){ andﬁx' are the Fourier ppmponents.Of the ing nondimensional equations governing the linear stability
fluid x andz directional disturbance velocities. The fluid nor- 4t the Couette flow are

mal and tangential stresses at the perturbed interface are,

respectively, given byy7;n; andt;7;n;. Here,n; andt d,v,+ikv,=0, (14
are, respectively, the unit vectors in the normal and tangen- c B

tial directions to the perturbed interfacs; is the fluid stress ikl z— =|7,+7,=—ik L Refl(dg_ k?)Ty, (15)
tensor at the interface which is given by the sum of the mean I I

and perturbation stresses, i.g;= r{}‘+ Ti']- . The stress tensor c d,p;

in the Newtonian fluid, nondimensionalized W*/R, is k2= 5 0,= — +Re Y(d2—k?)7,. (16)

given by 7;=—p&;+I Re *(dv;+dp;). The expressions
for the unit vectors normal and tangential to the deformedHere, and in what followsd,=d/dz. Equations(14)—(16)
surface, to linear order in the perturbation quantities, are along with the boundary condition3), (10), and(11) com-
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plete the specification of the stability problem. It is useful towall layer atz=0 (the fluid-flexible wall interface; see Fig.

combine Eqgs(14)—(16) into a single Orr—Sommerfeld-type 1), since it is shown in Appendix A that the viscous solution

fourth order differential equation near the top rigid plate is not relevant to the determination of
~ the growth rate in the present problem.

LoLolz=0, 17 The wave speed of wall modes a@(Re 3 small
where £, is an inviscid operator given byd?—k?] which ~ compared to the characteristic velocity of the base 6%
does not contain viscous effects, afiglis a viscous operator and within the present scheme of nondimensionalization, this
[(z—c/T)—(ik Re) 1 £,] which contains viscous effects. condition reduces ta/I'~Re 3 sincel is the nondimen-
The above fourth order Orr—Sommerfeld equation has fousional maximum velocity of the base velocity profile. In this
linearly independent solutions, and we write the solution topaper, we further consider the scaling regiine ReYS for
the governing Eq(17) as two parts the following reason. At the interface between the fluid and

- . flexible wall, the viscous shear stresses and the elastic

Di=Toi Tty (1=X.2), (18 stresses are of the same order as dictated by the tangential
which are defined by,5,,=0 and£,L.0,,=0. The solu- stress continuity condition E¢4). The dimensional viscous
tion to £,0,,=0 contains two of the linearly independent shear stresses can be estimated to be of the order of
solutions to(17): nV/(S6R), whereV is the dimensional velocity of the top

_ plate, SR is the length scale of variation near the wéhe

Uoz= A1 eXHkz]+A; exd —kz]. (19 scaling for small parametei~ Re 3 is derived in Appendix
We refer to these two linearly independent solutions as thé\), and» is the viscosity of the fluid. The dimensional elas-
inviscid solutions since these solutions are independent of REC stresses in the elastic wall can be estimated to Be*éR

and consequently are devoid of viscous effects. It is alsdfrom Eq.(2)]. At the interface, the fluid tangential viscous
useful to note that differential equatiof),,=0 is equiva- Stresses and the wall elastic stresses balance each other, and

lent to formally setting Re* to zero in Eqs(14)—(16): henceE*/R~ nV/(Re **R), which immediately yields"
o ~Re"® Since '~Re"® and ¢/T'~Re 3 we considerc
dz00,+1KT0x=0, (20) ~0(1). Thereforec is expanded in an asymptotic series
c P =c(0 Dy...
ik(u—F 'ﬁox+501=—ik%, 21 c=cH o (24
It is convenient to writd"=TI", Re"®, wherel', is anO(1)
_ c\_ d,Pos quantity. The relation between the thickness of the wall layer
K| U=F]00=—— (22 5 and Re is determined by a scaling analysis of the

' . ' x-momentum equation of the fluid5). In the wall layer, it is
The above equations can be combined to Yi€l#,,=0.  appropriate to rescale thecoordinate byz=£6. The base
However, as is well known, the viscous terms in the governflow velocity profile U(z)=z is then expressed ad(z)
ing equations contain the highest derivatives, and the neglect £5 near the fluid-wall interface. The derivatives trans-
of these terms converts the momentum equations from segorm in the wall layer asl,= 5’1d§ (whered =d/d¢). The
ond order to first order differential equations. Consequentlycontinuity equation (14) then indicates thatTyu,,
it is not possible to satisfy all the boundary conditions re-= ()T oty iN the wall layer, and the fluid velocities are
quired for the original viscous second order differential equaexpanded in the following asymptotic series:
tions usingv,, andv,y, and only the normal velocity and

L . e . ~ _~(0 1
stress conditions can be satisfied at the interface. vbot,ux_vE)o)t,vx+ 55E)o)t,ux+ T
It is not possible to obtain analytical expressions for the — _ 0) 2~ (1)
other two linearly independent solutions of H47), and a Ubotwz= OUbotyzt O Ubotez T - (29

high Reynolds number asymptotic analysis is carried out  The scaled governing equations in the wall layer and the
here to determine asymptotic approximations to the otheputer layer obtained using the above asymptotic expansions,
two viscous solutiond,;. In the limit of high Reynolds and the solutions to the fluid velocity field in both the layers

number, viscous effects a@(Re™*) smaller than the fluid are provided in Appendix A. It suffices here to write down
inertial stresses in the bulk of the channel, and therefore thghe fluid velocity fields and the pressure field, obtained by

other two linearly independent viscous solutions, in Whichadding the inviscid and viscous eigenfunctions
viscous stresses become the same order of magnitude as the

inertial stresses, are dominant only near the walls. Conse- 2= 0hoty, T 005y (26)
quently, to satisfy the tangential velocity and stress condi- _  _ -
Ux= UE)%)t,ux_'— 5205)?2 ) (27)

tions, it is necessary to postulate two viscous wall layers near

z=0 andz=1 of thicknesss small compared to the channel = -
width P Br=0Bor+ 0 Photyt » (28)
i 51(0) ~(0) . .
Tyi=Ttopoi tObotei  (1=%,2), (23) where the expressions faiyy,, and Ty, are given in

(A12) and (A13) of Appendix A, the expression fd¥,, is
wherevgp,i and Ty, are, respectively, the two linearly provided in(A20). There are two unknown constar@s and
independent viscous solutions important near the tep (A; in Egs.(A13) and(A20) (see Appendix A and there are
=1) and bottom £=0) walls. We restrict attention to the four boundary conditions at the interface<0), viz., nor-

Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 7, July 2002 Stability of wall modes in fluid flow 2329

mal and tangential velocity continuity and normal and tan-The inviscid normal velocityt,, does not enter into the
gential stress continuity conditions, which involve two un- above equation since it i9(5%) smaller than the tangential
known displacementsu, and u,. Thus, there are four velocity Ty, in the wall layer. To leading order i@, the
boundary conditions and four undetermined constants, andbove equation yields
the problem is well-specified. 5 (0127

In this section, boundary conditions at the fluid-wall in- kT1-M(c™)7]=0, (36)
terface are considered for surfaces with and without tangenyhich can be solved to give the leading order wave speed
tial motion. For the case of membrane walls without tangenz(0)— \/T/M. SinceM is a positive real quantity, this result
tial motion, Ty is set to zero az=0 and the tangential stress impjies that the perturbations are neutrally stable in the lead-
condition (11) is omitted. ing approximation. The first correction to the above equation

] ) . (35) can be readily obtained as
A. Plate model with tangential wall motion
— Dlrike0=0) 17 50 71760 4 50
The unscaled boundary conditionszt0 for the case 2McKE ™ D pot,x~ ootz = 1€ dlporyx »
where there is tangential wall motion in the plate membrane

are given by which yields an expression fa®),
7,=—ikcT,, (29 W~ I'oc® d T4y -
oM | ke —Tw | (38
Ex"' FTJZ: _ ikCTJX, (30) bot,vx 0Ybotpz
e In the above expression, all the dynamical quantities in the
I' Re (9,04 +ikD,) bottom wall layer must be evaluated &t £=0, i.e., at the
—[—MKk2c2—ikcD, Re™ 1 T+ k2Tt (31) fluid-wall interface, and expressio&12) are derived in the
' X' preceding section for the wall layer quantitié’é,%)tvvx,
—2I' Re LikT,+ (- Pp;+2r Re 10,35, B\ . This calculation shows that™) is a complex quan-

5 5 , 71 ) 4 ~ tity, and the imaginary part aft!) is set to zero to obtain the
=(—k%c"M—ikeD,Re "I+ Tk*™+BK'+K)U;. (32 gcaled velocityl, required for neutrally stable modes. Thus,

Here, Eqs.(29) and (30) are, respectively, the normal and the present asymptotic analysis shows that the high Reynolds

tangential velocity boundary conditions, and E¢@1) and number wall modes in Couette flow past a spring-backed
(32) are, respectively, the tangential and normal StresQlate membrane are unstable if the membrane has tangential

boundary conditions at the interface. Equatié2@ and (30) deformations. Interestingly, the asymptotic expression for
- ~ ~ c™® (38) indicates that the high Reynolds number wall mode

can be used to represémf andt, in terms ofv, andv, at . O 9 y

the interface as follows: instability is independent of the parametdisK, andB that

occur in the normal stress balance, in the limit of high Rey-
TU,=i7,/(kc), TU,=iD,/(kc)—TI'T,/(k?c?). (33  nolds number. The instability depends only on the dimen-
_ _ _ ~ sionless parametel,=I" Re 1® [I'=(pV?R/E*)Y2 is the
The above expressions are substituted in the ta_ngentlal anfbndimensional velocity of the top plgtand the dimension-
normal stress cond.mor(é;.l) and (32). The expansion§25) less mass per unit area of the membrahe
and(A18) are substituted in the normal stress boundary con-  The above asymptotic results are verified by numerically
dition (31), and to leading order i@, we obtain solving the complete equations governing the stabilig)—
~(0 (0 (16) along with the boundary condition9)—(32). The nu-
B pgf):{_kzczM +TK+BK+ K}['v(vz)/(kc(m)]' (34) merical method used to solve the fluid equations is identical
to the one used in Ref. 1 for Couette flow past a viscoelastic
Here, the nondimensional model parameters in the curlynedium, and a Newton—Raphson method is used to solve the
braces are assumed to ©¢1), in thesense that the nondi- characteristic equation that arises from the boundary condi-
mensional quantities do not scale with the small paramgter tions. The results from the numerical solution are compared
Thus, the scaling assumption made in E417) for the in-  with the asymptotic results for high Reynolds number wall
viscid contribution to the fluid pressure is consistent with themodes in Figs. 2 and 3. Figure 2 shows the comparison be-
above boundary condition. It can further be verified from thetween asymptotic and numerical results for different values
inviscid x-momentum equatiof21) that the inviscid contri- of M (the nondimensional mass per area of the plate mem-

butions to the fluid velocities ar®(6%), sinceP,s~O(5).  brang. In this figure, the neutral stability results are plotted

This is in agreement with the scaling assumptions made iin the Re=X plane, wher&, = pRE*/ = (Rel')? is a flow-

Eq. (A17) for the inviscid velocity components,, andv,,. independent nondimensional quantity characterizing the elas-

The expansion§25) and(A18) are substituted in the tangen- ticity of the membrane wall. This figure shows that the nu-

tial stress boundary conditiaf31), and we obtain t@®(J): merical results are accurately captured by the asymptotic
=0 P analysis. Figure 3 §hows the neutral sta_bility curves obtai_ned

K2(1=M(c)2— 25Mc(O¢(L) 10yx  Lolyz } from the asymptotic and the full numerical solution for dif-
ke @ Kk2(c9)2? ferent values off andK. This figure shows that all the neu-

~(0) tral curves approach each other at high Reynolds number and
=0l0deD,y - (39 they all converge to the asymptotic result. This numerical
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Though the present instability is specifically demon-
strated above for the case of Couette flow past a spring-
backed wall, it is argued below that the instability is ex-
pected to be independent of the actual nature of the base flow
velocity profile. The instability just depends on the fact that
the base velocity should be zero at the wall, and has finite
velocity gradient at the wall. Since most of the commonly
encountered viscous shear flows such as Couette flow, plane-
Poiseuille flow and the boundary layer flow exhibit this char-
acteristic, the high Re wall modes predicted in this paper are
likely to be a generic feature in fluid flow past flexible solid
surfaces. This can be demonstrated by a simple scaling
analysis of the Orr—Sommerfel@S) equation for a general
base flow profileJ(z). The OS equation for stability of the
laminar flowU(z) is given by

Transition Reynolds number, Re;

c 1
U-— F) (92— k)T ,— u"'azzm(aﬁ—k%%z. (39)

Here7, is the normal velocity of the perturbatiorsjs the

FIG. 2. Comparison of the asymptotic resu#islid lineg obtained fromthe  normal direction,U(z) is the base flow in thex direction,

high Re analysis with the numerical resulgotted lines with symbo)s andU”(Z) is the second derivative (bj(z) with respect ta.

obtained from the solution of the complete governing equations: For spring _ " . .

backed walls with tangential motiom.=1, K=1, D,=0, B=10"2 for all Note thatU(z) z a”q U W?‘S Idemlca”y zero for Fhe Case,

the cases plotted. of Couette flow conS|.dered in the above asymptotic analysis.
Let z=0 be the location of the unperturbed flexible wall. As
discussed before, for wall modes, it is necessary to introduce

a new variable such that¢=z, wheres=Re 3. Since we

result is in agreement with the prediction of the asymptotic_ "~ . .
g P ymp are interested in a region very near the wall, the base flow

analysis that at high Re Fhe .mstablllty is independent of thevelocity U(z) can be Taylor expanded fafter noting that
parameter& andT occurring in the normal stress balance at —0)=0]: U(z)=U' z=U’ s, whereU’ . is th
the interface. Thus, the results from the numerical solution oP(Z_ )=0]: U(2)=Uyqz=Uyqé, where Uy, is the

the complete governing equations and boundary condition ::jeli[gv\?]:/;rrc?cirtnei?]ntr:/eeI\(/)v(;flylgrg?l?@?;)th,iswrilgnggz: dthe
are in good agreement with the asymptotic results. y Y :

before, the ratioc/T" is O(6) for wall modes. In the wall
layer g2~ 8~ 2Z. Therefore, the first term on the left-hand
side of (39) is O(6 v,). The order of magnitude of the
107 f - - T ' - - termU"7, in (39) is estimated by Taylor expandind’ about
z=0, and to leading order this yieldd,,, which is an
O(1) quantity. Thus the order of magnitude of the second
term isO(7,). Consequently, the tertd”7, in the OS equa-
tion is smaller byO(S) compared to the first term
—c/F)(af—kz)”z}Z in the wall layer. Therefore, the term
U”(z), which is nonzero for a general viscous shear flow, is
subdominant in the wall layer. The first correction to the
. wave speedcc!”) is also independent of the inviscid fluid
velocity 7,,, since the inviscid normal velocifly,, is O(5)
smaller than the viscous normal velocity of the fldig,, in

3 the wall layer. Consequently, the first correction to the
growth ratec'V) is independent of the functional form of the
base flow velocity profile. As a result, the wall mode insta-
bility predicted in the present study for the case of a Couette
] flow past a flexible surface is expected to be present in any
; L viscous shear flow which has zero velocity at the wall and a
102 100 10t 100 10° 107 100 10° finite velocity gradient near the wall.

Transition Reynolds number, Re,

FIG. 3. Comparison of the asymptotic resukslid line) obtained from the B. Plate model without tangential wall motion

high Re analysis with the numerical resultotted lines with symbojs In this section, we carry out an asymptotic analysis,

obtained from the solution of the complete governing equations for spring-.. . . - :
backed walls with tangential motion: figure illustrates that the neutral curveSImllar to one in th? precedmg_ section, for th_e case Wh_ere
is independent oK and T at high Reynolds numbeM =1, k=0.1, D,  there is no tangential wall motion. The equation governing

=0, B=10"3 for all the cases plotted. the normal wall motion given iiil) is supplemented by the
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normal and tangential velocity continuity conditions, while Moving topplate
the tangential stress condition is omitted. The tangential ve-
locity condition is employed here with,=0. In Sec. Il A, Fluid
the constitutive equation for the tangential wall moti@) —

was used to nondimensionalize various dynamical quantities. z=0
In the absence of the tangential stress condition, the various
dynamical quantities are nondimensionalized with different
scales in this section. The fluid stresses are scaleld*#y,
velocities are scaled byK®R/p)*? time is scaled by
(K*/(pR)) Y2 and the nondimensional top plate velocity iS FIG. 4. Schematic diagram showing the configuration and coordinate sys-
given byI'=(pV?/(K*R))*2 The nondimensional form of tem considered in Sec. III.

(1) is given by

z=1

Flexible wall

z=-H

Bottom rigid plate

ni7ijn;=[M (?tZ—T(?>2<+ D,I'Re 1o+ B&Q+ 1]u,, verified that there are multiple solutions to the characteristic
(400 equation Aif/,.,—1)=0, and all these solutions are nega-
where the various nondimensional parameters Me Ve real quantities f%ywa!l- This implies that all these solu-
=M*/(pR), D,,=D*R/7, B=B*/(K*R?), T fions correspond ta! _) with negative imaginary parts, indi- _
cating that the flow is stable. Thus the present asymptotic
analysis shows that wall modes in Couette flow past a
spring-backed plate are stable in the limit of high Reynolds

N s 5 5 number in the absence of tangential wall motion in the plate
U,= —ikcl,, Ty+I'U,=0, (4)  membrane.

=T*/(K*R?). The nondimensional boundary conditions in
terms of Fourier modes for a plate wall model without tan-
gential wall motion are

—2I' Re Likl,+ (—Ps;+2I Re 1 4,7,)
lIl. WALL MODES IN COUETTE FLOW PAST A
=(—k?c®M —ikecD,I' Re '+ TK?+BKk*+1)li,. (420  VISCOELASTIC SOLID

As discussed in the preceding section, the characteristic scal- In this section, an asymptotic analysis is carried out in
ing for the wave speed for wall modes is given bl the limit of high Reynolds number for the case of stability of
~Re 2 In this section, we again considE~Re’®andc  Couette flow past a viscoelastic continuum. Kumagtal 2
~0(1) so thatc/T'~Re . It can be verified that the other carried out a stability analysis for this system in the zero
alternative scaling~Re 3 andT"'~0(1) does not allow Reynolds number limit, and found the flow to be unstable.
for nontrivial solutions in the limit of high Re. After letting Srivatsan and Kumarannumerically continued this zero
c~0(1) andT'~Re"3, the rest of the scaling arguments Reynolds number instability and showed that the zero Rey-
presented in the preceding section for the various dynamicalolds number instability continues to intermediate and high
quantities in the fluid carry over for the present case as wellReynolds number. The system consists of a Newtonian fluid
In particular, the inviscid fluid velocity componeriig, and  of density p, viscosity », and thicknessR (occupying the
Tox are O(8%) small compared to the viscous wall layer ve- region 0<z* <R), flowing past a viscoelastic material of
locity field Tor,x, in Order to satisfy the normal stress con- finite thicknessHR (occupying the region- HR<z* <0 in
dition (42), for reasons similar to that mentioned in the pre-the unperturbed statevith shear moduluss and viscosity
ceding section for plate model with tangential motion. The,. A schematic of the configuration is shown in Fig. 4.
normal velocity continuity41) can be used to eliminai®,  Here, quantities with a superscriptare dimensional, and
in terms ofv, ast,=iv,/(kc) and this is substituted in the quantities without the superscript are dimensionless unless
normal stress condition and the tangential velocity conditionstated otherwise. The fluid is sheared at the top boundary
The tangential velocity conditiofdl) then becomes, after z* =R with a velocityV, and the base flow velocity profile is
noting'o=T" Re 3 the Couette flow profile which is linear ir¥. The wall me-

~(0 .~ (0 on dium is at rest in the unperturbed base state. The velocities

B hotox 1T oBhot,/ (kC' ) =0, 3 re scaled by®/p)'? time is scaled by£R?/ G)?, lengths
It should be noted that the inviscid normal and tangentiaby R, and the pressure in the fluid and the wall is scaled by
velocitiesv,, andv,, do not appear in the above equation, G. The ratio of wall-to-fluid viscosities is denoted by,
since they are, respectivel@(5) and O(5%) smaller than = ng/m. As in the previous studies of Refs. 1 and 22, the
the viscous normal and tangential velocitiggy,, and  wall material is assumed to be an incompressible viscoelastic
Tpotox [S€€(26) and (27)]. The generalized Airy function continuum, and the dynamics of the medium is described by
solutions determine@A12) and (A13) for the viscous wall a displacement field; which represents the displacement of

layer quantitie® (%), and (), are substituted in the above material points from their steady state positions due to the

characteristic equation. It can be readily verified that thestresses at the surface. The incompressibility condition and
above equation reduces to the nondimensional momentum balance are given by
Ai(Yyar,—1)=0, (44 Giu=0, Ju=—dipg+dfui+ mddu;, (45)

wherey = (ik)¥3(—cO/T ) is the value of the variablg ~ where 7, = ng/ 7 is the ratio of wall-to-fluid viscosities, and
(A6) evaluated at the fluid-wall interfacé=0. It can be pq is the pressure in the gel. For simplicity, the density of the
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wall material is set to be the same as that of the fluid in theThe scaling of the boundary conditions at the interfgegs.
present study. The nondimensional stress tensor in the walt7)—(50)] is discussed in Appendix B of this paper. This
medium consists of an elastic part as well as a viscous parfippendix also contains the solutions to the displacement
gij = = Pgdij + (iu;+ 9;u;) + 1,9, (du; + d;u;) . field in the wall medium.

The governing equations in the fluid and the scalings for ~ The asymptotic expansions for the various fluid and wall
various quantities in the viscous wall layer are the same adynamical quantities are substituted in the six boundary con-
that used in the preceding secti@ec. |) for Couette flow ditions (47)—(51), and the resulting set of equations is writ-
past a spring-backed wibee Eqs(14)—(16)], except for the ten in a matrix form asViC =0, whereC is the vector of
difference that the nondimensional top plate velotity the  constant§A,;,B;,B,,B3,B4,C,]. Here the constant®; oc-
present section is defined &= (pV%G)Y2 The ensuing cur in the solution of the wall displacement figlbe Appen-
analysis is qualitatively similar to that presented in Ref. 17,dix B). In order for this system of equations to have non-
and hence only the important steps are presented here; detailivial solutions, we require DEM]=0. This gives the
can be found in Ref. 17. The solutions for the wall layercharacteristic equation, and this equation is expanded in the
velocities provided in the preceding sectighl2), for Cou-  small parametep. The leading order expression of Dkl]
ette flow past a spring-backed plate carry over in this sectiogields an expression foc®), and the first correction to
except for the change in the definition Bf In this section, De{M] yields an expression far'*). The results from the
we consider the limil" ~Re® since this scaling is required leading order characteristic equation reveals that there are
for the viscous shear stresses in the wall Idgstimated as  multiple solutions toc(®), all of which are real and positive,
Vy/(Re ¥3R)] to be balanced by the elastic stresses in thendicating that the flow is neutrally stable at this level of
flexible wall [estimated to b&(G)]. However, one modifi- approximation. The next correction to the wave speétis
cation is needed for the inviscid contributions in the presenthen calculated to determine the stability of the system. It
case. Unlike the flow past a spring-backed walls, in theshould be noted that the tangential velocity continuity con-
present case, the inviscid fluid velocitidg, andv,, are  dition at the interface and the fluid tangential stresses in the
O(8) small compared to the viscous tangential velocity inviscous wall layer appear only at ti@(5) correction to the
the bottom wall laye . It is shown in Appendix B that characteristic equation. The ratio of wall to fluid viscosities
this scaling is required for a balance to be achieved in they, is considered to be a@(1) quantity, and hence does not
normal stress continuity condition at the interfdBa7). The  appear at the first correction to the characteristic equation.
inviscid contribution to fluid pressure can then be estimatedhis calculation indicates that®) is a complex quantity, and
from the inviscidx-momentum equatiori20) to be O(1),  the imaginary part o™ is set to zero to determine the
sinceI'=T"yRe"®. For future reference, the magnitudes of scaled velocityl', required for unstable modes. OnEg is
the inviscid contributions to the velocity and stress fields arebtained, the neutral curve in the Re-plane can be calcu-
given asi o~ 8, Doz~ 8, Tozz~ Dot~ 1, Twxz~ 6°- According  lated from the definitior = (Re/l')2=(Re /[ Re"3))2. It
to the above estimates, the inviscid contribution to the fluidshould be noted here thatis a nondimensional parameter
velocities and pressure are expanded in an asymptotic serieRaracterizing the elasticity of the wall, and it is independent

o () (1) o () D of the flow parameters. This implies that RE3 S 4. For

Uoi= (Vg +00gi +++),  Pot=(Por T Pgt +°), each of the multiple solutions'®), there exists an associated

46) 'y, and when'>T'y Re'®, the flow is unstable. In a previ-
where the subscrifit=x,z. Once this is recognized, the so- 0US numerical study, Srivatsan and Kumareontinued the
lutions (A20), (A21) for »553%) and’ﬁf)?() carry over to the low Reyno_lds number wscou_s |nstab|!|ty of Cou_ette flow
present case. The governing equations are supplemented BgSt & flexible surfa&é to the intermediate and high Rey-
boundary conditions at the interface nolds nur_nber regime. Comparlsqn of the present h|gh—Re

asymptotic results with the numerical results of Ref. 1 indi-

7,=—ikcl,, (47)  cates that the lowest harmonic, i.e., #{& with the lowest
magnitude and the associatEg of the asymptotic analysis
vyt 1'T0,= —ikcly, (48 corresponds to the results of Ref. 1. Figure 5 shows the com-

parison of the present asymptotic results with the numerical
Re ' I'(d,0,+ikv,)=(1—ikcy ' Re ) (d T, +ikl,),  results of Ref. 1, and this figure shows that the numerical
(49) results are captured accurately by the present asymptotic
~ 1y~ ~ . 1y~ analysis. Thus the present asymptotic analysis showgithat
—Pi+2lRe dp,=— Pgt2(1-iken D Re l)dz(%zd) wall modes are unstable in Couette flow past a viscoelastic
medium, and(ii) the numerical continuation of viscous
Here,(47) and(48) are, respectively, the normal and tangen-mode§2 to the intermediate Reynolds numbeegime in
tial velocity continuity conditions at the interface, wh{i49) Couette flow also leads to the high Reynolds number wall
and (50) are, respectively, the tangential and normal stressnodes.
continuity conditions. The wall material is assumed to be Itis instructive to examine the eigenfunctions of the neu-
fixed to the bottom wall, and the displacement field satisfiegral modes obtained from the full numerical solution, in order

zero displacement boundary conditionszat—H: to verify whether the scaling assumptions made in the
5 asymptotic analysis for the fluid velocities and wall displace-
U,=0, u,=0. (51 ments are consistent with the numerical solution. The eigen-
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FIG. 5. Comparison of the asymptotic resufislid lineg obtained from the FIG. 7 Vgriation of the absolute value of displacement field in_ the WaI‘I
present analysis with the numerical resulttted lines with symbo)sof material with Reynolds numper Re fgr Couette flow past a viscoelastic
Ref. 1 for continuation of viscous modes in Couette flow past a flexibleSurface: Data from full numerical solution fét=1, k=1, .=0. The dot-
surface.s, =0 for all the cases plotted. ted line is the reference straight line with slopd/3.

functions are calculated using the normalization condition
that the absolute value of tfg, eigenfunction at the fluid- merical solution for the eigenfunctions of various dynamical
wall interface satisfie$s,|,_o=v2 Re % Figure 6 shows quantities in the fluid are consistent with the scaling assump-
the variation of various dynamical quantities in the fluid tions made in the asymptotic analysis. Figure 7 shows the
evaluated az=0 with the Reynolds number. By construc- variation of the wall displacement field with Re. This figure
tion, [7,|,-o scales as Re"® (25). The figure shows thdl,|  clearly shows thalfi,|,_, scales a©(Re *3). This numeri-
is anO(1) quantity[compare with the asymptotic expansion cal result is in agreement with the scaling assumptions made
(25)], and|d,7,| indeed scales as R&as was anticipated in in the asymptotic analysisee Eq.(B6)]. Moreover, as an-
the asymptotic analysis. Thus, the results from the full nuticipated in the asymptotic analys|8i,| is O(1) atz=0 [see
Eqg. (B4)]. Importantly, as shown in the figure, even though
[U,| is O(1) atz=0, |d,l,| scales a®(Re ) at the inter-
1000 ' - face. This result is again consistent with the outcome of the
asymptotic analysis, which indicated that the tangential
stresses of the wall at the interface is zero to leading order
[see Eq.(B14)], and the next correction to the tangential
stresses at the interface@{ Re *®) [see Eq(B13)]. There-
fore, the results for eigenfunctions from the full numerical
solution are consistent with the scaling assumptions of the
asymptotic analysis. Figure 8 shows the variation of the
thickness of the wall layes with the Reynolds number. The
- » = wall layer thickness may be estimated by computing the ratio
vy/d, v, atz=0 from the full numerical solution. As Fig. 8
shows, the wall layer thicknessdecreases as R&® in the
limit of large Re as predicted by the asymptotic analysis, and
this shows that the numerically observed modes are indeed
the wall modes. Figures 9 and 10 show the variatiotvgf
and|v,| in the fluid with z, and here the eigenfunctions are
calculated subject to the normalization condition tfaf]
=v2 atz=0. These figures show that the velocities are large
Reynolds number, Re very close to the wall £=0), and there is a small region
o o ~_ near the wall where the fluid velocity varies rapidly. Both
FIG. 6. Variation of the absolute value of velocity field in the fluid with o6 ohservations indicate that the numerical eigenfunctions
Reynolds number Re in Couette flow past a viscoelastic medium: Data from o . ) o
full numerical solution forH=1, k=1, ,=0. The two dotted lines are clearly exhibit the behavior that is characteristic of wall
reference lines with slopes1/3 and 1/3. modes.
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FIG. 10. The absolute value of tfig eigenfunction obtained from the full
numerical calculation showing that the variation of the fluid velocity is
confined to a small region near the wall: R&x10°, H=1, k=1, 7,=0.

0.01 s
10° 10* 10° 10
Reynolds number, Re Thus, the present study shows that the presence of tangential
wall motion in the flexible medium can give rise to a quali-
FIG. 8. Variation of the thickness of the wall lay&with Reynolds number tatively new instability in the limit of high Reynolds number
Re for the Couette flow past a viscoelastic medium: Daganbols from where the viscous stresses in the fluid are confined within a
full numerical solution foH=1, k=1, 7,=0. ) . oy X
thin layer of thicknes©(Re ) near the flexible wall, and
these instabilities are absent in the case flexible wall models
IV. CONCLUDING REMARKS which assume only purely normal wall motion. A similar
N ] ) ] asymptotic analysis for the Couette flow past a viscoelastic
The stability of wall modes in fluid flow past a flexible 4| of finite thickness shows that the flow is unstable in the
surfacg is analyzed using a combination of asymptotic ang|it of high Reynolds number, and the present asymptotic
numerical methods. In order to demonstrate that the preseplg s show that the earlier numerical results of Ref. 1 are
instability is not specific to the wall model used, two differ- ;, jeed the wall modes analyzed in the present study. The
ent wall models are used to determine the stability of Couettedsymptotic analysis of wall modes in fluid flow past spring-
flow paSt a flexible surface. In the first mOdel, the ﬂeXiblebaCked walls further shows that the hlgh-Re wall mode in-
wall is modelled as a spring-backed, plate-membrane-typgapility analyzed in this paper is really independent of the
wall, while in the second model the flexible wall is consid- 5.4 details of the flow profile, and the instability just de-

ered to be an incompressible viscoelastic solid of finite thiCk'pends on the fact that the base flow should be zero at the

ness. It is shown that if the spring-backed plate membrang,,; ang should have a finite velocity gradient at the wall.
executes only normal wall motion, the high Reynolds num-gjnce most of the commonly encountered shear flows such as
ber wall modes are stable. However, if tangential wall Mo-he couette flow, plane-Poiseuille flow and the Blasius
tion is introduced in the spring-backed membrane wall, thg,,nqary layer flow satisfy this criterion, the high-Re wall
wall modes are shown to become unstable in the high Reys o qe instability is expected to exist for all these flows past
nolds number limit. This instability predicted by the fayible surfaces.

asymptotic analysis was subsequently captured by a numeri-
cal solution of the full equations governing the stability.

APPENDIX A
1.4 In this appendix, the details of the asymptotic analysis
1.2 of the fluid governing equations are provided, and the solu-
1 tion for the fluid velocity field in the outer and wall layers
~ 0.8 are derived.
i 0.6 The asymptotic expansion&gs. (24) and (25)] for the
various quantities and derivatives are substituted in the gov-
0.4 . . ) . o .
erning equations in the fluid. The scaled continuity equation
0'3 (14) in the wall layer is given by
0 02 04 06 08 1
z dSE E)%)t,vz—'— ikv E)%)t,vx =0. (A1)

FIG. 9. The absolute value of tlig, eigenfunction obtained from the full . .
numerical calculation showing that the variation of the fluid velocity is 1 N€X-momentum equatio(il5), then transforms in the wall

confined to a small region near the wall: R&x10°, H=1, k=1, 5,=0. layer as follows:
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. 1/3(;(0) 0 0 fied by expanding the solutiof19) to the inviscid operator
ik 66— Re" "~ D hotux T 0otz L0,,=0. Substitutingz= 8¢ in (19), and expanding to
0 0( ) yields
~ ) 5_2 ~
= ik | S a2 | (A2) Tor= (Ag+Ag)+ (Ar—Ay) KE, (A11)
0

Therefore, we se€y=C;=0 in (A7).
In the above equation, in order to achieve a balance between The Ajry functions Aify,p) are convergent in the limit
the inertial term(the term in the square brackets on the left- £ .o only for (- 7/3)<Arg(£)<(/3), and so it is neces-
hand side and the viscous ternfthe term in the square gary to choose Argl®) = /6 in (A6). In this domain, the
brackets on the right-hand sidethe small parameted  ajry function Bi(y,p) diverges, and so we require th@g

—1/3 H H . L. .
should scale ag~Re . Without loss of generality, the —q.As a result, the solution for the velocities and pressure in
small parametes can be defined as=Re™*". In the above  the hottom wall layer is given by

equation, in order for the pressure in the wall layer to be of ~0) L _ _
the same magnitude as the other terms, we rediigg, ; Tpotyz= — Ca(ik) ¥y Ai(y,1) — Ai(y,— 1)], (A12)
~O(1) and hencePpo,r is expanded afuor,r=Phelos

~(0) _ i =0 _
+---. The scaleck-momentum equation in the wall layer, to Dbotox= C2A(Y, 1), Photyr =0, (A13)
leading order in the small parametéris given by where the constar@®, has to be determined from the bound-
0) ~(0) ary conditions at the interface=0.
. Cle ~ .. Pootyt ~ imil li d b ied for th
ikl 6= — vg)mt +U(bO)t =ik v Jrdzvgmt _ A similar rescaling procedure can be carried out for the
[ |7 Pox s hotez &7 botux viscous layer near=1 (the top plate, see Fig.)land this

(A3) yields solutions similar to the above equations for the top
The unscaled-momentum equatiofil6) can be scaled simi- Wall layer
larly to obtain the following equation: Tropwz=— 0D (iK) %A y1 Ai(y1,1) — Ai(yy,— 1)],
c© (A14)
_ 2 |50 __ 514 =(0) 2425 (0) _
Ubotox= — 0 ~d¢Ppotytt 6 elpotyz- Tropox=D2 Ai(y,1), (A15)

Lo
(A4) wherey; is a new variable similar to the variabjedefined
The above equation yields, to leading orderdnd,p%,;  for the bottom wall layer in(A6), with £ in (A6) being re-
=0. The equationgAl) and (A3) can be combined along placed by/=(1-2) 5~ 1. The constanD, appearing in the
with the conditiondébg%{’vfzo, to yield a single differential above equation has to be determined using the no-slip

8%k

equation for'ag’){ux, boundary condition at the rigid surface z¢ 1. It can be
' readily verified that the viscous solution in the top wall layer
c(® . . . )
d2—ik| E— — d21~)<bo> —o. (A5) merely serves to satisfy théo-slip tangential velocity
¢ [y /| ¢ botez boundary condition at the top rigid wall, and since this vis-

cous solution decays away from the top wall, it does not
appear in the boundary conditions at the fluid wall interface
y=(ik) —cO/Ty+ £], (A6)  atz=0.
) ) ) The relative magnitudes af,, andvyq,, are obtained
and the general solution of EGAS) in terms of this new  f4m the boundary conditions at=0. We have already set
variable is given by Tpotox~O(1), andhenced po,,~O(8). The leading order

It is convenient to define another varialyl@s

~(0) _ ; NIV pressure in the wall layer is zero, and the next dominant
Ubotoz= Cot Cot+ Coly Ally. D= Ay, = 1)) contribution to the fluid pressure in the wall layer is obtained
+ C4(y Bi(y,1)—Bi(y,— 1)), (A7)  from the zzmomentum balancél6), and this shows that the
~0) _ ) ) next highest contribution i€(6%) smaller thant,,. For
Upotox= C1+C2 Ai(y,1) + C3 Bi(y,1). (A8)  future reference, the magnitudes of the viscous contribution

Here Ai(y,1) and Bif,1) are the generalized Airy to the dynamical quantities in the bottom wall layer are

functions® Ebot,vxw 1, Ebot,vz"' 0, ?bot,vzzw 521 ?bot,vxz"' 0.
y (Al16)
Ai(y,1)= LdyAi(y), Ai(y,—1)=dyAi(y), (A9) It is shown in the main texfEq. (34)] that in order to

achieve a balance between normal stresses in the fluid and
] y ) ) . the wall material, it is necessary to stipulate that the inviscid
Bi(y,1)= LdyBl(y), Bi(y,—1)=d,Bi(y), (Al0)  contribution fluid pressur@y is O(3). The viscous contri-
bution to the fluid pressurén the wall layei is O(5%) as
and Ai(y) and Bi(y) are the Airy functions which are the shown above, and hence is subdominant compared to the
solutions of the Airy equationc(§+y) Yy(y)=0. Two of the inviscid pressure componept;. Sincep,:~ J, the inviscid
linearly independent solutionS, and C,¢ in (A7) are just  velocity T,, should scale a%,,~ &% This is because the
the inviscid solutions, since these solutions are obtained byadial and tangential inviscid velociti®s, andv . are of the

setting dgzg%{vzzo in (A5). This can alternatively be veri- same ordefas can be inferred from the continuity equation
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(20)], and from(21), the inviscid tangential velocity scales as z=0 is O(5). So, one possibility is to assunig~O(J)
Tox~Dot/T'~ 82. For future reference, the magnitudes of thethroughout the domain of the wall material. Then the tangen-
inviscid velocity and stress fields are given below tial displacement in the wali,~O( ), since in the bulk of

= 5 the wall mediumt,~T,, according to the continuity equa-
Twxz™ O (AL7) tion in the wall mediumB19). Whent,~O( ) in the wall

material, the tangential velocity conditigB2) becomes, to
According to the above estimates, the inviscid velocities angeading order

pressure are expanded in an asymptotic series,

Tor= 0%(Toy + 87+ ),

Vox~ 0% Vo7~ 6% Toz7~Pot™ 6,

Tiotox T Lol =0. (B3)

5 2504 5Dy However, as was shown in Sec. |[Bee Eqgs(41) and(43)],
Uox= 0" (Dox + S0 ox ), the above boundary condition yields a characteristic equation
ﬁof=5(f>é(p+ 5f>élf)+"‘)- (A18) A(lé)ywa”,—l)zc_), a_nd the resultlng_ m_ultu_)le solutions for_
i o o c'”) have negative imaginary parts, indicating that the flow is
The leading order inviscid velocity field was already solvedstaple for this choice of scalings.
in (19, Another possibility to scale the displacement field in the
55302:A1 exdkz]+ A, ex] —kz]. (A19) Wall is to assgmé“Jx~O(l) iq (B2) so that the tangential
_ . displacement in the wall medium enters the tangential veloc-
One of the constantisay A,) in the above equation can be ity poundary condition atz=0. If T,~O(1), then T,
eliminated using the condition at the top boundagy=0 at  ~0Q(1) in the bulk of the wall medium since according to
z=1. Note that the zero normal velocity boundary conditionthe continuity equation in the walli,~Ti,. So, the displace-

at the top plate i9,,+0op,,=0, but this reduces t@,,  ment field in the wall medium are expanded in an asymptotic
=0 at z=1, since Tip,,~ ,,. This is becausep,,  series as

~TDopux IN Order to satisfy the tangential no-slip condition at

the top rigid plate, and SiNCE&o~To, and Tigpys U=+ s+, 6=u+suP+---. (BY

~ OVioppxs W€ haveDoy,,~ V,,. Therefore, the inviscid ) ) .

velocity field in the fluid is given by The above expansions are substituted in the boundary
0 conditions. The normal velocity boundary condition
v =A(exd kz] —exf (2-2)k]), (A20)  (3,=—ikcl,) becomes

and the constar; has to be determined from the boundary ~(0),~(0) \_ _; 0 1), ...

condition at the flluid—wall interface. The expressions for the 8(Toz + Tboter) = ~i(c'+ 5 4-)

tangential velocityi (%, and the inviscid fluid pressufig, X (U + sUL +- ). (B5)
can be determined from Eq&0) and(21). It is easily veri-

fied that the solution for the first correction to the inviscid To leading order inj, the above boundary condition yields
velocity field is identical to the leading-order velocity field,
and therefore we can s&f,)=0 without loss of generality.
The first correction to Fhe inviscid con;ribution to .the fluid The first correction to the normal velocity boundary condi-
pressure can be obtained from the first correction to th"ﬁon yields

X-momentum equatiof21),

u2=0. (B6)

~(0)_~(0) \_ _irn(Om(1) 4 a(1(0)
3W=0, 7W0=0 pW=c@5Q. (A21) (Vo7 —Vhotez) ik(c™u, 7+ cHh, 7). (B7)
Sinceti{"”’=0 atz=0 (B6), the above equation becomes
APPENDIX B

~(0) =0 y_ _; (0)7(1)

The scaling of the boundary conditions at the interface (Voz +Vbote) =~ Tk(CTH ). (68
(47)—(50) is discussed in this appendix. The solutions for theThe tangential velocity boundary condition? (I'T,
leading order and first correction to the displacement field in= —ikcT,) becomes

the wall medium are also provided here. The normal velocity

continuity condition(47) takes the following form: Tyt oxt 6 (TP + ST+ )

ST +Dhor,,) = —iKCT, . (B1) = —ik(c@+5cW+-- )T +TUP+- ). (B9)

Sincec~0(1) and the left-hand side in the above equationTy |eading order ins, the above equation yields
is O(6), the above equation indicates that at z=0 is
O(8). The tangential velocity conditiof48) yields u2 =0, (B10)

~(0 - ~ o~

i) x+ 8 gl = —iKCT. (B2)  which is identical to what was obtainéB6) to leading order
The left-hand side of the above equation@¢1) for the from the normal velocity boundary condition. The first cor-
following reasonT o« is O(1) ands ™, is O(1) sinceli, ~ rection to(B9Y) is given by
atz=0 is O(d). There are two ways to scale the displace- (D) (1) —
ment field in the wall medium. As mentioned befotg, at Ubotox T 10Uz "= —IKC™Ty ™. (B11)
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It should be noted here that the tangential velocity in the walfh€S€ equations can be analytically )solved. The solution to
layer appears only in the first correction to the tangentiathe leading order displacement fidif” can be obtained as

velocity continuity. The unscaled tangential stress condition
at the interface is given by ﬁ§°)= B, exkz]+ B, exf yz]+ B exg] —kz]
ReilF[d25x+ik52]:(1_ikcnrr Reil)[dzux"—”((g{]z') +Bsexd —gz], (B22)

On using the scalings for various quantities in the above

equation, we obtain U =B4i exp kz]+By(i y/k)exd yz]

~ . —iByexg —kz]— (iy/k)exd — yz], B23
030 Gt ST, sexpl ke~ (iyexi—yz], (823
—(1—i 2 (40 + ikg©
(1= Tkem T oaT)L(d U+ Tku; ) wherey=ky1—(c®)2. The first correction to the displace-
+6(d,uM +ikulM)]. (813  ment field are given by

To leading order, the above equation yields

U =B,(—k%*cVcVz/g)exd yz]

(duQ+iku®)=0. (B14) _

—Bi(—k?cPcVz/g)exd — yz], (B24)
The first correction tdB13) is obtained as
=0 1—(d. 1D Likm®

Lol dg0potx] = (dzt, " +iKT; ™). (B19 T.];l)ZBzi(—kZC(O)C(l)(l'F y2)I(yK))exd yz]

The above equations show that the tangential stresses in
the wall layer appears only in the first correction. The un-

scaled normal stress condition at the interface is given by

+Byi(—k?%c@cV(—1+yz))exd — yz]. (B25)
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