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Stability of wall modes in fluid flow past a flexible surface
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The stability of wall modes in fluid flow past a flexible surface is analyzed using asymptotic and
numerical methods. The fluid is Newtonian, while two different models are used to represent the
flexible wall. In the first model, the flexible wall is modeled as a spring-backed,
plate-membrane-type wall, while in the second model the flexible wall is considered to be an
incompressible viscoelastic solid of finite thickness. In the limit of high Reynolds number~Re!, the
vorticity of the wall modes is confined to a region of thicknessO(Re21/3) in the fluid near the wall
of the channel. An asymptotic analysis is carried out in the limit of high Reynolds number for
Couette flow past a flexible surface, and the results show that wall modes are always stable in this
limit if the plate-membrane wall executes motion purely normal to the surface. However, the flow
is shown to be unstable in the limit of high Reynolds number when the wall can deform in the
tangential direction. The asymptotic results for this case are in good agreement with the numerical
solution of the complete governing stability equations. It is further shown using a scaling analysis
that the high Reynolds number wall mode instability is independent of the details of the base flow
velocity profile within the channel, and is dependent only on the velocity gradient of the base flow
at the wall. A similar asymptotic analysis for flow past a viscoelastic medium of finite thickness
indicates that the wall modes are unstable in the limit of high Reynolds number, thus showing that
the wall mode instability is independent of the wall model used to represent the flexible wall. The
asymptotic results for this case are in excellent agreement with a previous numerical study of
Srivatsan and Kumaran. ©2002 American Institute of Physics.@DOI: 10.1063/1.1481055#
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I. INTRODUCTION

The dynamics of fluid flow past flexible solid surfaces
qualitatively different from that of rigid surfaces because
the coupling between the fluid and wall dynamics, and
elasticity of the surface could affect the fluid flow. In partic
lar, this coupling could influence the transition from lamin
to turbulent flow in such systems. Experiments conducted
Krindel and Silberberg2 in a gel-walled tube indicate tha
there is an anomalous drag force at Reynolds numbers~Re!
as low as about 600, and the authors concluded that th
due to a transition to a turbulent flow at a Reynolds num
which is far lower than the critical Reynolds number for t
flow through a rigid tube~around 2100!. The transition Re
was found to depend on the elasticity of the wall in additi
to the fluid properties indicating that the wall dynamics pla
a significant role in the transition events. Motivated by the
experimental results, there has been a renewed interest i
recent years in the understanding of the stability of fluid fl
through flexible tubes and channels.1–8 These studies hav
modeled the flexible wall as a viscoelastic continuum of
nite thickness, and have used the governing equations fo
elastic solid modified to include viscous effects. A summ
rizing discussion on the results obtained in these theore
studies is provided in Shankar and Kumaran.7 Recent experi-
mental studies9 further confirm the presence of qualitative
new instabilities at low Re in flow past flexible surfaces.

a!Electronic mail: kumaran@chemeng.iisc.ernet.in
2321070-6631/2002/14(7)/2324/15/$19.00
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There have been a large number of other studies, m
vated by drag reduction in marine and aerospa
applications,10–17 which have studied the stability problem
by modeling the flexible wall to be a thin spring-backed pla
membrane which executes purely normal motion. Most
these studies were performed in the high Reynolds num
limit, where fluid inertial forces are dominant. At high Re
nolds number, the Tollmien–Schlichting instability~TSI! is
modified owing to the flexibility of the wall. Benjamin10 ex-
tended the classical stability theory of Tollmien an
Schlichting,18 and showed that a flexible nondissipative w
tends to stabilize the TSI, which is the destabilizing mec
nism in flow past rigid surfaces. In addition, Benjamin10 and
Landahl11 pointed out that there is an additional mode
instability that could exist in an inviscid flow, which wa
termed the flow-induced surface instability~FISI!. Carpenter
and Garrad12,13 analyzed the stability of Blasius flow over
compliant plate, in which they considered both TSI and FI
The TSI was analyzed numerically, while FISI was analyz
using both analytical and numerical methods. These stu
concluded that the wall flexibility usually stabilizes the flo
in the boundary layer and increases the Reynolds numbe
which transition to turbulence occurs. Carpenter and Gajj16

used a triple-deck asymptotic analysis to study the FISI w
the critical layer and the wall layer are well separated. C
penter and Morris19 analyzed the effect of anisotropic wa
compliance on the stability of Blasius boundary layer flo
past flexible surface modeled as a spring-backed wall. Un
the earlier studies of Carpenter and co-workers, this st
4 © 2002 American Institute of Physics
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2325Phys. Fluids, Vol. 14, No. 7, July 2002 Stability of wall modes in fluid flow
included both normal and tangential motion in the pla
membrane wall. However, the normal and tangential d
placements were simply related by a constant factor, co
sponding to the inclination of the springs. Larose a
Grotberg15 studied the stability of developing flow in a com
pliant channel using both long-wave asymptotic analysis
numerical methods. They found a long-wave instabil
which was not observed in previous channel studies, and
instability was stabilized by increasing the elastance of
wall. Their wall model included both normal and tangent
wall displacements. Davies and Carpenter14 studied the sta-
bility of the plane-Poiseuille flow in a compliant channe
This study modeled the compliant walls as spring-bac
plates with only normal wall motion. This study analyzed t
interconnected behavior of FISI and TSI using bo
asymptotic and numerical methods, and found that if
compliant wall properties are selected to give a signific
stabilizing effect on TSI, the onset of FISI could be sever
affected.

The present study addresses the stability of wall mo
in a flexible channel using a combination of asymptotic a
numerical methods. Wall modes are a class of solution
the high Reynolds number limit where the vorticity in th
fluid is confined to a layer near the wall of the channel~re-
ferred henceforth as the wall layer! of thicknessO(Re21/3)
smaller than the radius of the channel. The damping rat
these modes isO(Re21/3) smaller than the strain rate in th
fluid. These modes were first studied by Corcos and Selle20

and Gill21 for the case of Hagen–Poiseuille flow in a rig
tube, and these asymptotic studies showed that wall mo
are always stable in a rigid tube. Since the vorticity in t
fluid is confined near the wall of the channel, the elasticity
the wall can affect the stability of the wall modes in the ca
of fluid flow through flexible tubes and channels. The stab
ity of wall modes in a flexible tube was analyzed using
asymptotic analysis in the high Reynolds number limit
Kumaran.8 This analysis mainly focused on the regime R
@1, andL[Re1/3(G/rV2);1. Here, Re[RVr/h is the Rey-
nolds number,r, h are, respectively, the density and visco
ity of the Newtonian fluid,V is the maximum velocity of the
Hagen–Poiseuille flow,G is the shear modulus of the wa
material, andR is the radius of the flexible tube. An
asymptotic analysis in the small parameter Re21/3 was used
to determine the growth rate, which showed that there
multiple solutions. In the limitL→`, which corresponds to
elastic stresses in the wall very large compared to visc
stresses in the fluid~i.e., the rigid tube limit!, the solutions to
the growth rate converged to the solutions of Gill21 for the
case of wall modes in a rigid tube. In the opposite limit
L→0, which corresponds to a wall with very small elast
ity, the growth rates were again found to be stable. The tr
sition from L@1 to L!1 was found to be smooth. How
ever, there is one mode in the limitL!1 in a flexible tube
whose growth rate does not converge to any of the rigid t
modes, but the frequency of this mode diverges asL in the
limit of a rigid tube (L→`), and the decay rate was foun
to decrease asL21/2 in the limit L→`. It was then con-
cluded that this represents the least stable wall mode
flexible tube.8
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
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This least stable wall mode in a flexible tube, which
absent in the case of flow in a rigid tube, was continu
numerically to theL!1 regime in Ref. 6. That study
showed that this particular mode becomesunstablewhenL
was decreased below a transition value at a given Re, w
Re ranging between 1000 and 10 000. The neutral stab
curves for this unstable mode was obtained using a num
cal continuation scheme, and the Reynolds number for n
tral modes was determined as a function of the parameteS.
The parameterS[rGR2/h2, is a flow-independent quantity
which is proportional to the shear modulusG of the flexible
tube. The numerical results revealed that the Re for neu
modes decreases proportional toS1/2 in the limit S!1, and
shows rather complex behavior in the intermediate regim
In the limit S@1, the transition Reynolds number increas
proportional toSa, wherea was found to be between 0.
and 0.75. More recently, the present authors have show17

that the numerical results of Refs. 6 and 8 can be obtaine
an asymptotic analysis of wall modes in the parameter
gime Re;S3/4.

The instabilities analyzed in previous studies12–16 on
flow past compliant walls are qualitatively different from th
above wall mode instability for the following reasons.

~1! The growth rate for unstable wall modes isO(Re21/3)
smaller than the strain rate of the base flow, while t
growth rate for inviscid FISI modes is of the same ord
as the strain rate of the base flow.

~2! The flow structure of the unstable modes is different
the limit of high Reynolds number for the two instabil
ties: for wall modes the thickness of the boundary lay
d;Re21/3 while for inviscid FISI modesd;Re21/2.

~3! The critical Reynolds number for the instability to occ
scales differently with the nondimensional wall elast
ity: Re;S3/4 for wall modes, while Re;S1/2 for inviscid
FISI modes.

~4! In most of the previous studies,12–16the shear stress con
dition at the interface is subdominant, and the instabi
is primarily determined by normal velocity and stre
conditions at the interface. Whereas, as will be sho
below, in the present analysis of wall modes the sh
stress condition at the interface proves to be crucia
causing the instability.

~5! As demonstrated in this paper, the wall mode instabi
can exist only in the presence of a tangential deformat
in the wall, while the instabilities analyzed in Ref
12–16 can occur even in the absence of tangential w
deformation.

Consequently, it is of interest to determine the stabil
of wall modes in fluid flow past a compliant wall, and this
the main objective of the present study. Two different mod
are used in the present study to represent the flexible wa
order to demonstrate that the unstable wall modes are in
pendent of the wall model used to represent the wall m
dium. An asymptotic analysis is carried out in Sec. II for t
case of stability of Couette flow past a spring-backed w
used in previous studies on stability of flow past flexib
surfaces~see, for example, Refs. 14 and 15!. In this analysis,
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2326 Phys. Fluids, Vol. 14, No. 7, July 2002 V. Shankar and V. Kumaran
it is shown that the high Reynolds number wall modes
stablein the absence of tangential wall motion in the sprin
backed wall. However, when tangential motion is introduc
in the spring-backed wall model, the wall modes are sho
to be unstable in the limit of high Reynolds number. This
contrary to the conventional expectation that the tangen
wall motion will be subdominant in the limit of Re@1, be-
cause it is reasonable to approximate the fluid dynamics
the inviscid governing equations, and the tangential velo
and stress boundary conditions cannot be satisfied by
inviscid velocity field.

The results of the present asymptotic analysis are
good agreement with the results from a full numerical so
tion of the governing stability equations. In Sec. III, a simil
asymptotic analysis is carried out for the case of Cou
flow past a viscoelastic solid in the limit of high Re, and it
shown that the earlier numerical results of Srivatsan
Kumaran1 are the unstable wall modes predicted by t
present study. More importantly, the asymptotic analysis
wall modes in fluid flow past spring-backed walls indicat
that the unstable wall modes predicted by the present s
should exist in any high Re flow past flexible solid surfac
irrespective of the details of the base flow velocity profi
The only essential feature that the base flow profile sho
satisfy is that base flow velocity is zero at the wall a
should posses a finite velocity gradient at the wall. Sin
most of the commonly encountered laminar shear flows s
as the Couette flow, plane-Poiseuille flow and the Blas
boundary layer flow satisfy this criterion, the high Reynol
number unstable wall modes predicted in this paper
likely to be a generic feature of fluid flow past flexible sol
surfaces. As revealed by the asymptotic analysis, an esse
ingredient for the present instability is that the flexible s
face should be capable of undergoing deformations in
tangential direction—a criterion normally satisfied by real
tic flexible ~isotropic! solid surfaces such as polymer ge
Consequently, flexible wall models such as spring—bac
walls with purely normal wall motion14 will not capture this
instability. Thus the present study shows that inclusion
tangential wall motion in the flexible medium can give ri
to a qualitatively new instability in the limit of high Rey
nolds number where the viscous stresses in the fluid are
fined within a thin layer of thicknessO(Re21/3) near the
flexible wall, and these instabilities are absent for flexib
wall models which exhibit only purely normal wall motion

The rest of this paper is organized as follows. Sec
presents the asymptotic analysis and corresponding num
cal results for the stability of Couette flow past a spri
backed surface in the limit of high Re. Details of th
asymptotic analysis are given in Appendix A. Section
demonstrates that a similar instability exists in fluid flow p
a viscoelastic material of finite thickness. Numerical resu
are presented alongside, and it is shown that the asymp
and numerical results are in good agreement. The sa
conclusions of the present study are provided in Sec. IV.
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
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II. WALL MODES IN COUETTE FLOW PAST A
SPRING-BACKED WALL

In this section, an asymptotic analysis is carried out
the stability of Couette flow past a spring-backed plate me
brane wall. The system consists of a fluid of thicknessR
which is bounded atz* 5R by a rigid surface moving at a
constant velocityV, as shown in Fig. 1. In what follows
quantities with a superscript* are dimensional, while dy-
namical quantities without a superscript are dimensionle
At the lower boundaryz* 50, there is a plate-membran
wall,15,14 which is a spring-backed plate deformable both
the horizontal and vertical directions. The displacement
the horizontal and vertical directions, denoted, respectiv
by ux* anduz* , represent the deviation of the material poin
in the wall material from their equilibrium positions. In th
previous studies, a constitutive equation of the followi
type,

~M* ] t*
21Dn* ] t* 1B* ]x*

42T* ]x*
21K* !uz* 5nit i j* nj ,

~1!

has been used for the normal displacement of the memb
(uz* ). Heret i j* is the total stress tensor in the fluid andni is
the unit normal to the flexible surface. In the present stu
the above condition is augmented by another relation
tween the tangential stress and the tangential displaceme15

~M* ] t*
21Dt* ] t* 2E* ]x*

2!ux* 5t it i j* nj . ~2!

In the above equations~1! and ~2!, nit i j* nj and t it i j* nj are,
respectively, the normal and tangential fluid stress at the
terface, andt j is the unit vector tangential to the flexibl
surface.Dn* is the normal wall damping coefficient,Dt* is
the tangential wall damping coefficient,B* is the flexural
rigidity of the plate,T* is the longitudinal tension per uni
width, K* is the spring stiffness of the membrane,E* is the
bending stiffness of the membrane,M* is the mass per uni
area of the membrane,x* is the Cartesian coordinate alon
the wall, z* is the direction normal to the wall,]x*
[]/]x* , t* is the dimensional time variable and] t*
[]/]t* . The equations describing the wall dynamics a
nondimensionalized in the following manner. Lengths a
scaled byR the thickness of the fluid layer flowing above th
membrane, velocities by (E* /(rR))1/2, wherer is the den-
sity of the Newtonian fluid flowing above the membra
wall, t* is scaled byR(rR/E* )1/2 and the fluid stresses ar

FIG. 1. Schematic diagram showing the configuration and coordinate
tem considered in Sec. II.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2327Phys. Fluids, Vol. 14, No. 7, July 2002 Stability of wall modes in fluid flow
scaled byE* /R. The nondimensional governing equatio
describing the wall dynamics take the following form:

nit i j nj5@M] t
22T]x

21DnrG Re21 ] t1B]x
41K#uz , ~3!

t it i j nj5@M] t
22]x

21DtrG Re21 ] t#ux , ~4!

where the various nondimensional parameters areM
5M* /(rR), Dnr5Dn* R/h, Dtr5Dt* R/h, B
5B* /(E* R2), T5T* /E* , K5K* R2/E* , and G
5(rV2R/E* )1/2 is the nondimensional velocity of the to
plate. Heret i j is the total stress tensor in the fluid scaled
E* /R. In the following analysis, we setDtr5Dnr5Dr for
simplicity and in order to reduce the parameter space to
probed. The boundary conditions at the interface between
fluid and the wall are the continuity of velocities and stres
in the normal and tangential directions. At the upper rig
plate (z51), no-slip boundary conditions are appropriate
both the components of the fluid velocity. The velocity co
tinuity conditions at the membrane surface are

vx5] tux , vz5] tuz , ~5!

wherevx andvz are the horizontal and vertical componen
of the fluid velocity field at the interface. These bounda
conditions are supplemented by the stress balance condi
at the interface~3! and ~4!. The perturbation to the norma
and tangential displacementsuz and ux in the membrane
model are expressed in the form of Fourier modes:

uz5ũz exp@ ik~x2ct!#, ux5ũx exp@ ik~x2ct!#. ~6!

Here,k is the wave number,c is the complex wave speed o
the perturbations,ũz and ũx are, respectively, the Fourie
components of the displacementsuz andux . The wave speed
c is in general a complex quantity, and the flow is tempora
unstable if the imaginary part ofc is positive. The perturba
tions to the fluid velocity components are expressed in F
rier modes. The boundary conditions Eqs.~3!, ~4!, and~5! at
the interface between the fluid and the wall must be app
at the perturbed position of the interface. However, in
linear stability analysis, the velocity and stress fields due
the mean flow and perturbations at the perturbed interf
are expanded in a Taylor series about their values at
unperturbed interface atz50. Only the linear terms in the
series expansion are retained and higher-order terms ar
glected to obtain the following boundary conditions in whi
all quantities are evaluated at the unperturbed interface:

ṽz52 ikcũz , ṽx1Gũz52 ikcũx . ~7!

In this equation,ṽz andṽx are the Fourier components of th
fluid x andz directional disturbance velocities. The fluid no
mal and tangential stresses at the perturbed interface
respectively, given bynit i j nj and t it i j nj . Here, nj and t j

are, respectively, the unit vectors in the normal and tang
tial directions to the perturbed interface,t i j is the fluid stress
tensor at the interface which is given by the sum of the m
and perturbation stresses, i.e.,t i j 5t i j

m1t i j8 . The stress tenso
in the Newtonian fluid, nondimensionalized byE* /R, is
given by t i j 52pd i j 1G Re21 (]ivj1]jvi). The expressions
for the unit vectors normal and tangential to the deform
surface, to linear order in the perturbation quantities, are
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
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Here ex and ez are unit vectors in the horizontal~x! and
vertical ~z! directions, respectively~see Fig. 1!. The mean
shear stress tensor due to the base flow at the interfac
G Re21 exez , where Re5RVr/h is the Reynolds number o
the flow. Therefore, the normal stress at the perturbed in
face nit i j nj , correct to linear order in perturbation quan
ties, is

n•t•n522G Re21 ]xuz2pf12]zvz . ~9!

The term22G Re21 ]xuz represents the mean stress at t
interface due to the variation in the unit normal of the p
turbed interface. Therefore, the normal stress boundary c
dition at the unperturbed interface (z50) is given, to linear
order, by

22G Re21 ikũz1~2 p̃f12G Re21 ]zṽz!

5~2k2c2M2 ikcDrG Re211Tk21Bk41K !ũz . ~10!

The tangential stress boundary condition at the unpertur
interfacez50 is given by

G Re21~]zṽx1 ik ṽz!5~2k2c2M2 ikcDr1k2!ũx . ~11!

The tangential stress boundary condition does not have
contributions from the variation of unit normal in the inte
face, since these contributions are nonlinear in the pertu
tion quantities. The governing equations for the fluid moti
are the Navier–Stokes equations

] iv i50, ~] t1v j] j !v i52] i pf1Re21 G] j
2v i , ~12!

where the subscriptsi and j represent components of a ve
tor, repeated subscripts represent dot products,] t[]/]t and
] i[]/]xi . In Eq. ~12!, v i and pf are the nondimensiona
velocity and pressure fields in the fluid, respectively. In t
above equation, Re5RVr/h is the Reynolds number of th
flow based on the top plate velocity and the width of t
channel. In the linear stability analysis, small-amplitude n
mal mode perturbations are imposed on the fluid veloc
field

v i5 v̄x~z!d ix1 ṽ i~z!exp@ ik~x2ct!#, ~13!

wherev̄x(z)[Gz is the laminar Couette flow velocity profile
whose stability is of interest here.

The above form of perturbations are substituted in
governing equations in the fluid medium, and only the qu
tities that are linear in the perturbation variables are retai
to obtain the governing linear stability equations. The res
ing nondimensional equations governing the linear stabi
of the Couette flow are

dzṽz1 ik ṽx50, ~14!

ikFz2
c

GG ṽx1 ṽz52 ik
p̃f

G
1Re21~dz

22k2!ṽx , ~15!

ikFz2
c

GG ṽz52
dzp̃f

G
1Re21~dz

22k2!ṽz . ~16!

Here, and in what follows,dz5d/dz. Equations~14!–~16!
along with the boundary conditions~7!, ~10!, and~11! com-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2328 Phys. Fluids, Vol. 14, No. 7, July 2002 V. Shankar and V. Kumaran
plete the specification of the stability problem. It is useful
combine Eqs.~14!–~16! into a single Orr–Sommerfeld-typ
fourth order differential equation

LvLoṽz50, ~17!

whereLo is an inviscid operator given by@dz
22k2# which

does not contain viscous effects, andLv is a viscous operato
@(z2c/G)2( ik Re)21 Lo# which contains viscous effects
The above fourth order Orr–Sommerfeld equation has f
linearly independent solutions, and we write the solution
the governing Eq.~17! as two parts

ṽ i5 ṽoi1 ṽv i ~ i 5x,z!, ~18!

which are defined byLoṽoz50 andLvLoṽvz50. The solu-
tion to Loṽoz50 contains two of the linearly independe
solutions to~17!:

ṽoz5A1 exp@kz#1A2 exp@2kz#. ~19!

We refer to these two linearly independent solutions as
inviscid solutions since these solutions are independent o
and consequently are devoid of viscous effects. It is a
useful to note that differential equationLoṽoz50 is equiva-
lent to formally setting Re21 to zero in Eqs.~14!–~16!:

dzṽoz1 ik ṽox50, ~20!

ikS U2
c

G D ṽox1 ṽoz52 ik
p̃o f

G
, ~21!

ikS U2
c

G D ṽoz52
dzp̃o f

G
. ~22!

The above equations can be combined to yieldLoṽoz50.
However, as is well known, the viscous terms in the gove
ing equations contain the highest derivatives, and the neg
of these terms converts the momentum equations from
ond order to first order differential equations. Consequen
it is not possible to satisfy all the boundary conditions
quired for the original viscous second order differential eq
tions usingṽoz and ṽox , and only the normal velocity and
stress conditions can be satisfied at the interface.

It is not possible to obtain analytical expressions for
other two linearly independent solutions of Eq.~17!, and a
high Reynolds number asymptotic analysis is carried
here to determine asymptotic approximations to the ot
two viscous solutionsṽv i . In the limit of high Reynolds
number, viscous effects areO(Re21) smaller than the fluid
inertial stresses in the bulk of the channel, and therefore
other two linearly independent viscous solutions, in wh
viscous stresses become the same order of magnitude a
inertial stresses, are dominant only near the walls. Con
quently, to satisfy the tangential velocity and stress con
tions, it is necessary to postulate two viscous wall layers n
z50 andz51 of thicknessd small compared to the chann
width

ṽv i5 ṽ top,v i1 ṽbot,v i ~ i 5x,z!, ~23!

where ṽ top,v i and ṽbot,v i are, respectively, the two linearl
independent viscous solutions important near the topz
51) and bottom (z50) walls. We restrict attention to th
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
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wall layer atz50 ~the fluid-flexible wall interface; see Fig
1!, since it is shown in Appendix A that the viscous solutio
near the top rigid plate is not relevant to the determination
the growth rate in the present problem.

The wave speed of wall modes areO(Re21/3) small
compared to the characteristic velocity of the base flow,6,20,21

and within the present scheme of nondimensionalization,
condition reduces toc/G;Re21/3, sinceG is the nondimen-
sional maximum velocity of the base velocity profile. In th
paper, we further consider the scaling regimeG;Re1/3 for
the following reason. At the interface between the fluid a
flexible wall, the viscous shear stresses and the ela
stresses are of the same order as dictated by the tange
stress continuity condition Eq.~4!. The dimensional viscous
shear stresses can be estimated to be of the orde
hV/(dR), whereV is the dimensional velocity of the top
plate,dR is the length scale of variation near the wall~the
scaling for small parameterd;Re21/3 is derived in Appendix
A!, andh is the viscosity of the fluid. The dimensional ela
tic stresses in the elastic wall can be estimated to be ofE* /R
@from Eq. ~2!#. At the interface, the fluid tangential viscou
stresses and the wall elastic stresses balance each othe
henceE* /R;hV/(Re21/3R), which immediately yieldsG
;Re1/3. Since G;Re1/3 and c/G;Re21/3 we considerc
;O(1). Therefore,c is expanded in an asymptotic series

c5c~0!1dc~1!1¯ . ~24!

It is convenient to writeG5G0 Re1/3, whereG0 is anO(1)
quantity. The relation between the thickness of the wall la
d and Re is determined by a scaling analysis of
x-momentum equation of the fluid~15!. In the wall layer, it is
appropriate to rescale thez coordinate byz5jd. The base
flow velocity profile U(z)5z is then expressed asU(z)
5jd near the fluid-wall interface. The derivativesdz trans-
form in the wall layer asdz5d21dj ~wheredj5d/dj!. The
continuity equation ~14! then indicates that ṽbot,vz

5O(d) ṽbot,vx in the wall layer, and the fluid velocities ar
expanded in the following asymptotic series:

ṽbot,vx5 ṽbot,vx
~0! 1d ṽbot,vx

~1! 1¯ ,

ṽbot,vz5d ṽbot,vz
~0! 1d2ṽbot,vz

~1! 1¯ . ~25!

The scaled governing equations in the wall layer and
outer layer obtained using the above asymptotic expansi
and the solutions to the fluid velocity field in both the laye
are provided in Appendix A. It suffices here to write dow
the fluid velocity fields and the pressure field, obtained
adding the inviscid and viscous eigenfunctions

ṽz5d ṽbot,vz
~0! 1d2ṽoz

~0! , ~26!

ṽx5 ṽbot,vx
~0! 1d2ṽox

~0! , ~27!

p̃f5d p̃o f1d2p̃bot,v f
~0! , ~28!

where the expressions forṽbot,vz
(0) and ṽbot,vx

(0) are given in
~A12! and ~A13! of Appendix A, the expression forṽoz is
provided in~A20!. There are two unknown constantsC2 and
A1 in Eqs.~A13! and~A20! ~see Appendix A!, and there are
four boundary conditions at the interface (z50), viz., nor-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2329Phys. Fluids, Vol. 14, No. 7, July 2002 Stability of wall modes in fluid flow
mal and tangential velocity continuity and normal and ta
gential stress continuity conditions, which involve two u
known displacementsuz and ux . Thus, there are fou
boundary conditions and four undetermined constants,
the problem is well-specified.

In this section, boundary conditions at the fluid-wall i
terface are considered for surfaces with and without tang
tial motion. For the case of membrane walls without tang
tial motion, ũx is set to zero atz50 and the tangential stres
condition ~11! is omitted.

A. Plate model with tangential wall motion

The unscaled boundary conditions atz50 for the case
where there is tangential wall motion in the plate membra
are given by

ṽz52 ikcũz , ~29!

ṽx1Gũz52 ikcũx , ~30!

G Re21~]zṽx1 ik ṽz!

5@2Mk2c22 ikcDr Re21 G1k2#ũx , ~31!

22G Re21 ikũz1~2 p̃f12G Re21 ]zṽz!

5~2k2c2M2 ikcDr Re21 G1Tk21Bk41K !ũz . ~32!

Here, Eqs.~29! and ~30! are, respectively, the normal an
tangential velocity boundary conditions, and Eqs.~31! and
~32! are, respectively, the tangential and normal str
boundary conditions at the interface. Equations~29! and~30!
can be used to representũz and ũx in terms ofṽz and ṽx at
the interface as follows:

ũz5 i ṽz /~kc!, ũx5 i ṽx /~kc!2G ṽz /~k2c2!. ~33!

The above expressions are substituted in the tangential
normal stress conditions~31! and ~32!. The expansions~25!
and~A18! are substituted in the normal stress boundary c
dition ~31!, and to leading order ind, we obtain

2 p̃o f
~0!5$2k2c2M1Tk21Bk41K%@ i ṽvz

~0!/~kc~0!!#.
~34!

Here, the nondimensional model parameters in the c
braces are assumed to beO(1), in thesense that the nondi
mensional quantities do not scale with the small parameted.
Thus, the scaling assumption made in Eq.~A17! for the in-
viscid contribution to the fluid pressure is consistent with
above boundary condition. It can further be verified from t
inviscid x-momentum equation~21! that the inviscid contri-
butions to the fluid velocities areO(d2), since p̃o f;O(d).
This is in agreement with the scaling assumptions mad
Eq. ~A17! for the inviscid velocity componentsṽoz andṽox .
The expansions~25! and~A18! are substituted in the tangen
tial stress boundary condition~31!, and we obtain toO(d):

k2~12M ~c~0!!222dMc~0!c~1!!F i ṽvx
~0!

kc~0!2
G0ṽvz

~0!

k2~c~0!!2G
5dG0 djṽvx

~0! . ~35!
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The inviscid normal velocityṽoz does not enter into the
above equation since it isO(d2) smaller than the tangentia
velocity ṽbot,vx in the wall layer. To leading order ind, the
above equation yields

k2@12M ~c~0!!2#50, ~36!

which can be solved to give the leading order wave sp
c(0)5A1/M . SinceM is a positive real quantity, this resu
implies that the perturbations are neutrally stable in the le
ing approximation. The first correction to the above equat
~35! can be readily obtained as

22Mc~1!@ ikc~0!ṽbot,vx
~0! 2G0ṽbot,vz

~0! #5Gc~0! djṽbot,vx
~0! ,

~37!

which yields an expression forc(1),

c~1!5
2G0c~0!

2M F djṽbot,vx
~0!

ikc~0!ṽbot,vx
~0! 2G0ṽbot,vz

~0! G . ~38!

In the above expression, all the dynamical quantities in
bottom wall layer must be evaluated atz5j50, i.e., at the
fluid-wall interface, and expressions~A12! are derived in the
preceding section for the wall layer quantitiesṽbot,vx

(0) ,
ṽbot,vz

(0) . This calculation shows thatc(1) is a complex quan-
tity, and the imaginary part ofc(1) is set to zero to obtain the
scaled velocityG0 required for neutrally stable modes. Thu
the present asymptotic analysis shows that the high Reyn
number wall modes in Couette flow past a spring-back
plate membrane are unstable if the membrane has tange
deformations. Interestingly, the asymptotic expression
c(1) ~38! indicates that the high Reynolds number wall mo
instability is independent of the parametersT, K, andB that
occur in the normal stress balance, in the limit of high Re
nolds number. The instability depends only on the dime
sionless parameterG05G Re21/3 @G5(rV2R/E* )1/2 is the
nondimensional velocity of the top plate# and the dimension-
less mass per unit area of the membraneM.

The above asymptotic results are verified by numerica
solving the complete equations governing the stability~14!–
~16! along with the boundary conditions~29!–~32!. The nu-
merical method used to solve the fluid equations is ident
to the one used in Ref. 1 for Couette flow past a viscoela
medium, and a Newton–Raphson method is used to solve
characteristic equation that arises from the boundary co
tions. The results from the numerical solution are compa
with the asymptotic results for high Reynolds number w
modes in Figs. 2 and 3. Figure 2 shows the comparison
tween asymptotic and numerical results for different valu
of M ~the nondimensional mass per area of the plate m
brane!. In this figure, the neutral stability results are plott
in the Re–S plane, whereS5rRE* /h2[(Re/G)2 is a flow-
independent nondimensional quantity characterizing the e
ticity of the membrane wall. This figure shows that the n
merical results are accurately captured by the asympt
analysis. Figure 3 shows the neutral stability curves obtai
from the asymptotic and the full numerical solution for d
ferent values ofT andK. This figure shows that all the neu
tral curves approach each other at high Reynolds number
they all converge to the asymptotic result. This numeri
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2330 Phys. Fluids, Vol. 14, No. 7, July 2002 V. Shankar and V. Kumaran
result is in agreement with the prediction of the asympto
analysis that at high Re the instability is independent of
parametersK andT occurring in the normal stress balance
the interface. Thus, the results from the numerical solution
the complete governing equations and boundary condit
are in good agreement with the asymptotic results.

FIG. 2. Comparison of the asymptotic results~solid lines! obtained from the
high Re analysis with the numerical results~dotted lines with symbols!
obtained from the solution of the complete governing equations: For spr
backed walls with tangential motion.T51, K51, Dr50, B51023 for all
the cases plotted.

FIG. 3. Comparison of the asymptotic results~solid line! obtained from the
high Re analysis with the numerical results~dotted lines with symbols!
obtained from the solution of the complete governing equations for spr
backed walls with tangential motion: figure illustrates that the neutral cu
is independent ofK and T at high Reynolds number.M51, k50.1, Dr

50, B51023 for all the cases plotted.
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Though the present instability is specifically demo
strated above for the case of Couette flow past a spr
backed wall, it is argued below that the instability is e
pected to be independent of the actual nature of the base
velocity profile. The instability just depends on the fact th
the base velocity should be zero at the wall, and has fi
velocity gradient at the wall. Since most of the common
encountered viscous shear flows such as Couette flow, pl
Poiseuille flow and the boundary layer flow exhibit this cha
acteristic, the high Re wall modes predicted in this paper
likely to be a generic feature in fluid flow past flexible sol
surfaces. This can be demonstrated by a simple sca
analysis of the Orr–Sommerfeld~OS! equation for a genera
base flow profileU(z). The OS equation for stability of the
laminar flowU(z) is given by

S U2
c

G D ~]z
22k2!ṽz2U9ṽz5

1

ik Re
~]z

22k2!2ṽz . ~39!

Here ṽz is the normal velocity of the perturbations,z is the
normal direction,U(z) is the base flow in thex direction,
andU9(z) is the second derivative ofU(z) with respect toz.
Note thatU(z)5z andU9 was identically zero for the cas
of Couette flow considered in the above asymptotic analy
Let z50 be the location of the unperturbed flexible wall. A
discussed before, for wall modes, it is necessary to introd
a new variable such thatdj5z, whered5Re21/3. Since we
are interested in a region very near the wall, the base fl
velocity U(z) can be Taylor expanded as@after noting that
U(z50)50#: U(z)5Uwall8 z5Uwall8 jd, where Uwall8 is the
gradient of the mean velocity profile at the wall. Thus t
base flow velocity in the wall layer isO(d). As mentioned
before, the ratioc/G is O(d) for wall modes. In the wall
layer ]z

2;d22]j
2. Therefore, the first term on the left-han

side of ~39! is O(d21ṽz). The order of magnitude of the
termU9ṽz in ~39! is estimated by Taylor expandingU9 about
z50, and to leading order this yieldsUwall9 , which is an
O(1) quantity. Thus the order of magnitude of the seco
term isO( ṽz). Consequently, the termU9ṽz in the OS equa-
tion is smaller byO(d) compared to the first term (U
2c/G)(]z

22k2) ṽz in the wall layer. Therefore, the term
U9(z), which is nonzero for a general viscous shear flow
subdominant in the wall layer. The first correction to t
wave speedc(1) is also independent of the inviscid flui
velocity ṽoz , since the inviscid normal velocityṽoz is O(d)
smaller than the viscous normal velocity of the fluidṽbot,vz in
the wall layer. Consequently, the first correction to t
growth ratec(1) is independent of the functional form of th
base flow velocity profile. As a result, the wall mode ins
bility predicted in the present study for the case of a Coue
flow past a flexible surface is expected to be present in
viscous shear flow which has zero velocity at the wall an
finite velocity gradient near the wall.

B. Plate model without tangential wall motion

In this section, we carry out an asymptotic analys
similar to one in the preceding section, for the case wh
there is no tangential wall motion. The equation govern
the normal wall motion given in~1! is supplemented by the

g-

-
e

P license or copyright, see http://pof.aip.org/pof/copyright.jsp



ile
v

tie
io
en

is
f

in
n

c

r

ts
ic
e

e-
n-
e
he

e
on
r

tia
n

e
th

stic
a-
-
-
otic
t a
lds
ate

in
of

ro
le.

ey-
igh
uid

f

4.

less
ary

s

ities

by

he
stic
by

of
the
and

he

sys-

2331Phys. Fluids, Vol. 14, No. 7, July 2002 Stability of wall modes in fluid flow
normal and tangential velocity continuity conditions, wh
the tangential stress condition is omitted. The tangential
locity condition is employed here withux50. In Sec. II A,
the constitutive equation for the tangential wall motion~2!
was used to nondimensionalize various dynamical quanti
In the absence of the tangential stress condition, the var
dynamical quantities are nondimensionalized with differ
scales in this section. The fluid stresses are scaled byK* R,
velocities are scaled by (K* R/r)1/2, time is scaled by
(K* /(rR))21/2 and the nondimensional top plate velocity
given byG[(rV2/(K* R))1/2. The nondimensional form o
~1! is given by

nit i j nj5@M] t
22T]x

21DnrG Re21 ] t1B]x
411#uz ,

~40!

where the various nondimensional parameters areM
5M* /(rR), Dnr5Dn* R/h, B5B* /(K* R4), T
5T* /(K* R2). The nondimensional boundary conditions
terms of Fourier modes for a plate wall model without ta
gential wall motion are

ṽz52 ikcũz , ṽx1Gũz50, ~41!

22G Re21 ikũz1~2 p̃f12G Re21 ]zṽz!

5~2k2c2M2 ikcDrG Re211Tk21Bk411!ũz . ~42!

As discussed in the preceding section, the characteristic s
ing for the wave speed for wall modes is given byc/G
;Re21/3. In this section, we again considerG;Re1/3 andc
;O(1) so thatc/G;Re21/3. It can be verified that the othe
alternative scalingc;Re21/3 and G;O(1) does not allow
for nontrivial solutions in the limit of high Re. After letting
c;O(1) and G;Re1/3, the rest of the scaling argumen
presented in the preceding section for the various dynam
quantities in the fluid carry over for the present case as w
In particular, the inviscid fluid velocity componentsṽoz and
ṽox areO(d2) small compared to the viscous wall layer v
locity field ṽbot,vx , in order to satisfy the normal stress co
dition ~42!, for reasons similar to that mentioned in the pr
ceding section for plate model with tangential motion. T
normal velocity continuity~41! can be used to eliminateũz

in terms ofṽz as ũz5 i ṽz /(kc) and this is substituted in th
normal stress condition and the tangential velocity conditi
The tangential velocity condition~41! then becomes, afte
noting G05G Re21/3:

ṽbot,vx
~0! 1 iG0ṽbot,vz

~0! /~kc~0!!50. ~43!

It should be noted that the inviscid normal and tangen
velocities ṽoz and ṽox do not appear in the above equatio
since they are, respectively,O(d) and O(d2) smaller than
the viscous normal and tangential velocitiesṽbot,vz and
ṽbot,vx @see ~26! and ~27!#. The generalized Airy function
solutions determined~A12! and ~A13! for the viscous wall
layer quantitiesṽbot,vx

(0) andṽbot,vz
(0) are substituted in the abov

characteristic equation. It can be readily verified that
above equation reduces to

Ai ~ywall ,21!50, ~44!

whereywall5( ik)1/3(2c(0)/G0) is the value of the variabley
~A6! evaluated at the fluid-wall interfacej50. It can be
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verified that there are multiple solutions to the characteri
equation Ai(ywall ,21)50, and all these solutions are neg
tive real quantities forywall . This implies that all these solu
tions correspond toc(0) with negative imaginary parts, indi
cating that the flow is stable. Thus the present asympt
analysis shows that wall modes in Couette flow pas
spring-backed plate are stable in the limit of high Reyno
number in the absence of tangential wall motion in the pl
membrane.

III. WALL MODES IN COUETTE FLOW PAST A
VISCOELASTIC SOLID

In this section, an asymptotic analysis is carried out
the limit of high Reynolds number for the case of stability
Couette flow past a viscoelastic continuum. Kumaranet al.22

carried out a stability analysis for this system in the ze
Reynolds number limit, and found the flow to be unstab
Srivatsan and Kumaran1 numerically continued this zero
Reynolds number instability and showed that the zero R
nolds number instability continues to intermediate and h
Reynolds number. The system consists of a Newtonian fl
of density r, viscosity h, and thicknessR ~occupying the
region 0,z* ,R!, flowing past a viscoelastic material o
finite thicknessHR ~occupying the region2HR,z* ,0 in
the unperturbed state! with shear modulusG and viscosity
hg . A schematic of the configuration is shown in Fig.
Here, quantities with a superscript* are dimensional, and
quantities without the superscript are dimensionless un
stated otherwise. The fluid is sheared at the top bound
z* 5R with a velocityV, and the base flow velocity profile i
the Couette flow profile which is linear inz* . The wall me-
dium is at rest in the unperturbed base state. The veloc
are scaled by (G/r)1/2, time is scaled by (rR2/G)1/2, lengths
by R, and the pressure in the fluid and the wall is scaled
G. The ratio of wall-to-fluid viscosities is denoted byh r

5hg /h. As in the previous studies of Refs. 1 and 22, t
wall material is assumed to be an incompressible viscoela
continuum, and the dynamics of the medium is described
a displacement fieldui which represents the displacement
material points from their steady state positions due to
stresses at the surface. The incompressibility condition
the nondimensional momentum balance are given by

] iui50, ] t
2ui52] i pg1] j

2ui1h r] j
2] tui , ~45!

whereh r5hg /h is the ratio of wall-to-fluid viscosities, and
pg is the pressure in the gel. For simplicity, the density of t

FIG. 4. Schematic diagram showing the configuration and coordinate
tem considered in Sec. III.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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wall material is set to be the same as that of the fluid in
present study. The nondimensional stress tensor in the
medium consists of an elastic part as well as a viscous p
s i j 52pgd i j 1(] iuj1] jui)1h r] t(] iuj1] jui).

The governing equations in the fluid and the scalings
various quantities in the viscous wall layer are the same
that used in the preceding section~Sec. II! for Couette flow
past a spring-backed wall@see Eqs.~14!–~16!#, except for the
difference that the nondimensional top plate velocityG in the
present section is defined asG5(rV2/G)1/2. The ensuing
analysis is qualitatively similar to that presented in Ref.
and hence only the important steps are presented here; d
can be found in Ref. 17. The solutions for the wall lay
velocities provided in the preceding section~A12!, for Cou-
ette flow past a spring-backed plate carry over in this sec
except for the change in the definition ofG. In this section,
we consider the limitG;Re1/3 since this scaling is require
for the viscous shear stresses in the wall layer@estimated as
Vh/(Re21/3R)# to be balanced by the elastic stresses in
flexible wall @estimated to beO(G)#. However, one modifi-
cation is needed for the inviscid contributions in the pres
case. Unlike the flow past a spring-backed walls, in
present case, the inviscid fluid velocitiesṽox and ṽoz are
O(d) small compared to the viscous tangential velocity
the bottom wall layerṽvx . It is shown in Appendix B that
this scaling is required for a balance to be achieved in
normal stress continuity condition at the interface~B17!. The
inviscid contribution to fluid pressure can then be estima
from the inviscidx-momentum equation~20! to be O(1),
sinceG5G0 Re1/3. For future reference, the magnitudes
the inviscid contributions to the velocity and stress fields
given asṽox;d, ṽoz;d, t̃ozz; p̃o f;1, t̃wxz;d3. According
to the above estimates, the inviscid contribution to the fl
velocities and pressure are expanded in an asymptotic s

ṽoi5d~ ṽoi
~0!1d ṽoi

~1!1¯ !, p̃o f5~ p̃o f
~0!1d p̃o f

~1!1¯ !,
~46!

where the subscripti 5x,z. Once this is recognized, the so
lutions ~A20!, ~A21! for ṽoz

(0) and ṽox
(0) carry over to the

present case. The governing equations are supplemente
boundary conditions at the interface

ṽz52 ikcũz , ~47!

ṽx1Gũz52 ikcũx , ~48!

Re21 G~dzṽx1 ik ṽz!5~12 ikch rG Re21!~dzũx1 ikũz!,
~49!

2 p̃f12G Re21 dzṽz52 p̃g12~12 ikch rG Re21!dzũz .
~50!

Here,~47! and~48! are, respectively, the normal and tange
tial velocity continuity conditions at the interface, while~49!
and ~50! are, respectively, the tangential and normal str
continuity conditions. The wall material is assumed to
fixed to the bottom wall, and the displacement field satis
zero displacement boundary conditions atz52H:

ũx50, ũz50. ~51!
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The scaling of the boundary conditions at the interface@Eqs.
~47!–~50!# is discussed in Appendix B of this paper. Th
Appendix also contains the solutions to the displacem
field in the wall medium.

The asymptotic expansions for the various fluid and w
dynamical quantities are substituted in the six boundary c
ditions ~47!–~51!, and the resulting set of equations is wr
ten in a matrix form asMC50, whereC is the vector of
constants@A1 ,B1 ,B2 ,B3 ,B4 ,C2#. Here the constantsBi oc-
cur in the solution of the wall displacement field~see Appen-
dix B!. In order for this system of equations to have no
trivial solutions, we require Det@M #50. This gives the
characteristic equation, and this equation is expanded in
small parameterd. The leading order expression of Det@M #
yields an expression forc(0), and the first correction to
Det@M # yields an expression forc(1). The results from the
leading order characteristic equation reveals that there
multiple solutions toc(0), all of which are real and positive
indicating that the flow is neutrally stable at this level
approximation. The next correction to the wave speedc(1) is
then calculated to determine the stability of the system
should be noted that the tangential velocity continuity co
dition at the interface and the fluid tangential stresses in
viscous wall layer appear only at theO(d) correction to the
characteristic equation. The ratio of wall to fluid viscositi
h r is considered to be anO(1) quantity, and hence does no
appear at the first correction to the characteristic equat
This calculation indicates thatc(1) is a complex quantity, and
the imaginary part ofc(1) is set to zero to determine th
scaled velocityG0 required for unstable modes. OnceG0 is
obtained, the neutral curve in the Re–S plane can be calcu
lated from the definitionS5(Re/G)25(Re /(G0 Re1/3))2. It
should be noted here thatS is a nondimensional paramete
characterizing the elasticity of the wall, and it is independ
of the flow parameters. This implies that Re5G0

3/2S3/4. For
each of the multiple solutionsc(0), there exists an associate
G0 , and whenG.G0 Re1/3, the flow is unstable. In a previ
ous numerical study, Srivatsan and Kumaran1 continued the
low Reynolds number viscous instability of Couette flo
past a flexible surface22 to the intermediate and high Rey
nolds number regime. Comparison of the present high
asymptotic results with the numerical results of Ref. 1 in
cates that the lowest harmonic, i.e., thec(0) with the lowest
magnitude and the associatedG0 of the asymptotic analysis
corresponds to the results of Ref. 1. Figure 5 shows the c
parison of the present asymptotic results with the numer
results of Ref. 1, and this figure shows that the numer
results are captured accurately by the present asymp
analysis. Thus the present asymptotic analysis shows tha~i!
wall modes are unstable in Couette flow past a viscoela
medium, and~ii ! the numerical continuation of viscou
modes22 to the intermediate Reynolds number1 regime in
Couette flow also leads to the high Reynolds number w
modes.

It is instructive to examine the eigenfunctions of the ne
tral modes obtained from the full numerical solution, in ord
to verify whether the scaling assumptions made in
asymptotic analysis for the fluid velocities and wall displac
ments are consistent with the numerical solution. The eig
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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functions are calculated using the normalization condit
that the absolute value of theṽz eigenfunction at the fluid-
wall interface satisfiesuṽzuz505& Re21/3. Figure 6 shows
the variation of various dynamical quantities in the flu
evaluated atz50 with the Reynolds number. By constru
tion, uṽzuz50 scales as Re21/3 ~25!. The figure shows thatuṽxu
is anO(1) quantity@compare with the asymptotic expansio
~25!#, andudzṽxu indeed scales as Re1/3 as was anticipated in
the asymptotic analysis. Thus, the results from the full

FIG. 5. Comparison of the asymptotic results~solid lines! obtained from the
present analysis with the numerical results~dotted lines with symbols! of
Ref. 1 for continuation of viscous modes in Couette flow past a flex
surface.h r50 for all the cases plotted.

FIG. 6. Variation of the absolute value of velocity field in the fluid wi
Reynolds number Re in Couette flow past a viscoelastic medium: Data
full numerical solution forH51, k51, h r50. The two dotted lines are
reference lines with slopes21/3 and 1/3.
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
n

-

merical solution for the eigenfunctions of various dynamic
quantities in the fluid are consistent with the scaling assum
tions made in the asymptotic analysis. Figure 7 shows
variation of the wall displacement field with Re. This figu
clearly shows thatuũzuz50 scales asO(Re21/3). This numeri-
cal result is in agreement with the scaling assumptions m
in the asymptotic analysis@see Eq.~B6!#. Moreover, as an-
ticipated in the asymptotic analysis,uũxu is O(1) atz50 @see
Eq. ~B4!#. Importantly, as shown in the figure, even thou
uũxu is O(1) atz50, udzũxu scales asO(Re21/3) at the inter-
face. This result is again consistent with the outcome of
asymptotic analysis, which indicated that the tangen
stresses of the wall at the interface is zero to leading or
@see Eq.~B14!#, and the next correction to the tangenti
stresses at the interface isO(Re21/3) @see Eq.~B13!#. There-
fore, the results for eigenfunctions from the full numeric
solution are consistent with the scaling assumptions of
asymptotic analysis. Figure 8 shows the variation of
thickness of the wall layerd with the Reynolds number. The
wall layer thickness may be estimated by computing the ra
ṽx /dzṽx at z50 from the full numerical solution. As Fig. 8
shows, the wall layer thicknessd decreases as Re21/3 in the
limit of large Re as predicted by the asymptotic analysis, a
this shows that the numerically observed modes are ind
the wall modes. Figures 9 and 10 show the variation ofuṽzu
and uṽxu in the fluid with z, and here the eigenfunctions a
calculated subject to the normalization condition thatuṽzu
5& at z50. These figures show that the velocities are la
very close to the wall (z50), and there is a small regio
near the wall where the fluid velocity varies rapidly. Bo
these observations indicate that the numerical eigenfunct
clearly exhibit the behavior that is characteristic of w
modes.

e

m

FIG. 7. Variation of the absolute value of displacement field in the w
material with Reynolds number Re for Couette flow past a viscoela
surface: Data from full numerical solution forH51, k51, h r50. The dot-
ted line is the reference straight line with slope21/3.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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IV. CONCLUDING REMARKS

The stability of wall modes in fluid flow past a flexibl
surface is analyzed using a combination of asymptotic
numerical methods. In order to demonstrate that the pre
instability is not specific to the wall model used, two diffe
ent wall models are used to determine the stability of Cou
flow past a flexible surface. In the first model, the flexib
wall is modelled as a spring-backed, plate-membrane-t
wall, while in the second model the flexible wall is consi
ered to be an incompressible viscoelastic solid of finite thi
ness. It is shown that if the spring-backed plate membr
executes only normal wall motion, the high Reynolds nu
ber wall modes are stable. However, if tangential wall m
tion is introduced in the spring-backed membrane wall,
wall modes are shown to become unstable in the high R
nolds number limit. This instability predicted by th
asymptotic analysis was subsequently captured by a num
cal solution of the full equations governing the stabili

FIG. 8. Variation of the thickness of the wall layerd with Reynolds number
Re for the Couette flow past a viscoelastic medium: Data~symbols! from
full numerical solution forH51, k51, h r50.

FIG. 9. The absolute value of theṽz eigenfunction obtained from the ful
numerical calculation showing that the variation of the fluid velocity
confined to a small region near the wall: Re533103, H51, k51, h r50.
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
d
nt

te

e

-
e
-
-
e
y-

ri-

Thus, the present study shows that the presence of tange
wall motion in the flexible medium can give rise to a qua
tatively new instability in the limit of high Reynolds numbe
where the viscous stresses in the fluid are confined with
thin layer of thicknessO(Re21/3) near the flexible wall, and
these instabilities are absent in the case flexible wall mod
which assume only purely normal wall motion. A simila
asymptotic analysis for the Couette flow past a viscoela
wall of finite thickness shows that the flow is unstable in t
limit of high Reynolds number, and the present asympto
results show that the earlier numerical results of Ref. 1
indeed the wall modes analyzed in the present study.
asymptotic analysis of wall modes in fluid flow past sprin
backed walls further shows that the high-Re wall mode
stability analyzed in this paper is really independent of
actual details of the flow profile, and the instability just d
pends on the fact that the base flow should be zero at
wall, and should have a finite velocity gradient at the wa
Since most of the commonly encountered shear flows suc
the Couette flow, plane-Poiseuille flow and the Blas
boundary layer flow satisfy this criterion, the high-Re wa
mode instability is expected to exist for all these flows p
flexible surfaces.

APPENDIX A

In this appendix, the details of the asymptotic analy
of the fluid governing equations are provided, and the so
tion for the fluid velocity field in the outer and wall layer
are derived.

The asymptotic expansions@Eqs. ~24! and ~25!# for the
various quantities and derivatives are substituted in the g
erning equations in the fluid. The scaled continuity equat
~14! in the wall layer is given by

djṽbot,vz
~0! 1 ik ṽbot,vx

~0! 50. ~A1!

The x-momentum equation~15!, then transforms in the wal
layer as follows:

FIG. 10. The absolute value of theṽx eigenfunction obtained from the ful
numerical calculation showing that the variation of the fluid velocity
confined to a small region near the wall: Re533103, H51, k51, h r50.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ikFdj2Re21/3
c~0!

G0
G ṽbot,vx

~0! 1dũbot,vz
~0!

52 ik
p̃bot,v f

Re1/3G0
1Fd22

Re
dj

2ṽbot,vx
~0! G . ~A2!

In the above equation, in order to achieve a balance betw
the inertial term~the term in the square brackets on the le
hand side! and the viscous term~the term in the square
brackets on the right-hand side!, the small parameterd
should scale asd;Re21/3. Without loss of generality, the
small parameterd can be defined asd5Re21/3. In the above
equation, in order for the pressure in the wall layer to be
the same magnitude as the other terms, we requirep̃bot,v f

;O(1) and hencep̃bot,v f is expanded asp̃bot,v f5 p̃bot,v f
(0)

1¯ . The scaledx-momentum equation in the wall layer, t
leading order in the small parameterd, is given by

ikFj2
c~0!

G0
G ṽbot,vx

~0! 1 ṽbot,vz
~0! 52 ik

p̃bot,v f
~0!

G0
1dj

2ṽbot,vx
~0! .

~A3!

The unscaledz-momentum equation~16! can be scaled simi
larly to obtain the following equation:

d2ikFj2
c~0!

G0
G ṽbot,vx

~0! 52d21djp̃bot,v f
~0! 1d2dj

2ṽbot,vz
~0! .

~A4!

The above equation yields, to leading order ind, djp̃bot,v f
(0)

50. The equations~A1! and ~A3! can be combined along
with the conditiondjp̃bot,v f

(0) 50, to yield a single differential
equation forṽbot,vx

(0) ,

Fdj
22 ikS j2

c~0!

G0
D Gdj

2ṽbot,vz
~0! 50. ~A5!

It is convenient to define another variabley as

y5~ ik !1/3@2c~0!/G01j#, ~A6!

and the general solution of Eq.~A5! in terms of this new
variable is given by

ṽbot,vz
~0! 5C01C1j1C2~y Ai ~y,1!2Ai ~y,21!!

1C3~y Bi~y,1!2Bi~y,21!!, ~A7!

ṽbot,vx
~0! 5C11C2 Ai ~y,1!1C3 Bi~y,1!. ~A8!

Here Ai(y,1) and Bi(y,1) are the generalized Airy
functions18

Ai ~y,1!5 Èy

dy Ai ~y!, Ai~y,21!5dy Ai ~y!, ~A9!

Bi~y,1!5 Èy

dy Bi~y!, Bi~y,21!5dy Bi~y!, ~A10!

and Ai(y) and Bi(y) are the Airy functions which are th
solutions of the Airy equation (dy

21y)c(y)50. Two of the
linearly independent solutionsC0 and C1j in ~A7! are just
the inviscid solutions, since these solutions are obtained
settingdj

2ṽbot,vz
(0) 50 in ~A5!. This can alternatively be veri
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fied by expanding the solution~19! to the inviscid operator
Loṽoz50. Substitutingz5dj in ~19!, and expanding to
O(d) yields

ṽoz5~A11A2!1~A12A2!dkj. ~A11!

Therefore, we setC05C150 in ~A7!.
The Airy functions Ai(y,p) are convergent in the limit

j→` only for (2p/3),Arg(j),(p/3), and so it is neces
sary to choose Arg(i 1/3)5p/6 in ~A6!. In this domain, the
Airy function Bi(y,p) diverges, and so we require thatC3

50. As a result, the solution for the velocities and pressure
the bottom wall layer is given by

ṽbot,vz
~0! 52C2~ ik !2/3@y Ai ~y,1!2Ai ~y,21!#, ~A12!

ṽbot,vx
~0! 5C2 Ai ~y,1!, p̃bot,v f

~0! 50, ~A13!

where the constantC2 has to be determined from the boun
ary conditions at the interfacez50.

A similar rescaling procedure can be carried out for t
viscous layer nearz51 ~the top plate, see Fig. 1!, and this
yields solutions similar to the above equations for the
wall layer

ṽ top,vz52dD2~ ik !2/3@y1 Ai ~y1,1!2Ai ~y1 ,21!#,
~A14!

ṽ top,vx5D2 Ai ~y1 ,1!, ~A15!

wherey1 is a new variable similar to the variabley defined
for the bottom wall layer in~A6!, with j in ~A6! being re-
placed byz[(12z)d21. The constantD2 appearing in the
above equation has to be determined using the no-
boundary condition at the rigid surface atz51. It can be
readily verified that the viscous solution in the top wall lay
merely serves to satisfy the~no-slip! tangential velocity
boundary condition at the top rigid wall, and since this v
cous solution decays away from the top wall, it does n
appear in the boundary conditions at the fluid wall interfa
at z50.

The relative magnitudes ofṽoz and ṽbot,vz are obtained
from the boundary conditions atz50. We have already se
ṽbot,vx;O(1), andhenceṽbot,vz;O(d). The leading order
pressure in the wall layer is zero, and the next domin
contribution to the fluid pressure in the wall layer is obtain
from thez-momentum balance~16!, and this shows that the
next highest contribution isO(d2) smaller thanṽvx . For
future reference, the magnitudes of the viscous contribu
to the dynamical quantities in the bottom wall layer are

ṽbot,vx;1, ṽbot,vz;d, t̃bot,vzz;d2, t̃bot,vxz;d.
~A16!

It is shown in the main text@Eq. ~34!# that in order to
achieve a balance between normal stresses in the fluid
the wall material, it is necessary to stipulate that the invis
contribution fluid pressurep̃o f is O(d). The viscous contri-
bution to the fluid pressure~in the wall layer! is O(d2) as
shown above, and hence is subdominant compared to
inviscid pressure componentp̃o f . Sincep̃o f;d, the inviscid
velocity ṽoz should scale asṽoz;d2. This is because the
radial and tangential inviscid velocitiesṽoz andṽox are of the
same order@as can be inferred from the continuity equatio
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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~20!#, and from~21!, the inviscid tangential velocity scales a
ṽox; p̃o f /G;d2. For future reference, the magnitudes of t
inviscid velocity and stress fields are given below

ṽox;d2, ṽoz;d2, t̃ozz; p̃o f;d, t̃wxz;d3.
~A17!

According to the above estimates, the inviscid velocities a
pressure are expanded in an asymptotic series,

ṽoz5d2~ ṽoz
~0!1d ṽoz

~1!1¯ !,

ṽox5d2~ ṽox
~0!1d ṽox

~1!1¯ !,

p̃o f5d~ p̃o f
~0!1d p̃o f

~1!1¯ !. ~A18!

The leading order inviscid velocity field was already solv
in ~19!,

ṽoz
~0!5A1 exp@kz#1A2 exp@2kz#. ~A19!

One of the constants~sayA2! in the above equation can b
eliminated using the condition at the top boundaryṽoz50 at
z51. Note that the zero normal velocity boundary conditi
at the top plate isṽoz1 ṽ top,vz50, but this reduces toṽoz

50 at z51, since ṽ top,vz;d ṽoz . This is because,ṽox

; ṽ top,vx in order to satisfy the tangential no-slip condition
the top rigid plate, and sinceṽox; ṽoz and ṽ top,vz

;d ṽ top,vx , we haveṽ top,vz;d ṽoz . Therefore, the inviscid
velocity field in the fluid is given by

ṽoz
~0!5A1~exp@kz#2exp@~22z!k# !, ~A20!

and the constantA1 has to be determined from the bounda
condition at the fluid-wall interface. The expressions for t
tangential velocityṽbot,vx

(0) and the inviscid fluid pressurep̃o f

can be determined from Eqs.~20! and~21!. It is easily veri-
fied that the solution for the first correction to the invisc
velocity field is identical to the leading-order velocity fiel
and therefore we can setṽoz

(1)50 without loss of generality.
The first correction to the inviscid contribution to the flu
pressure can be obtained from the first correction to
x-momentum equation~21!,

ṽoz
~1!50, ṽox

~1!50, p̃o f
~1!5c~0!ṽox

~0! . ~A21!

APPENDIX B

The scaling of the boundary conditions at the interfa
~47!–~50! is discussed in this appendix. The solutions for t
leading order and first correction to the displacement field
the wall medium are also provided here. The normal veloc
continuity condition~47! takes the following form:

d~ ṽoz
~0!1 ṽbot,vz

~0! !52 ikcũz . ~B1!

Sincec;O(1) and the left-hand side in the above equat
is O(d), the above equation indicates thatũz at z50 is
O(d). The tangential velocity condition~48! yields

ṽbot,vx
~0! 1d21G0ũz52 ikcũx . ~B2!

The left-hand side of the above equation isO(1) for the
following reason:ṽbot,vx is O(1) andd21ũz is O(1) sinceũz

at z50 is O(d). There are two ways to scale the displac
ment field in the wall medium. As mentioned before,ũz at
Downloaded 27 Sep 2004 to 128.165.156.80. Redistribution subject to AI
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z50 is O(d). So, one possibility is to assumeũz;O(d)
throughout the domain of the wall material. Then the tang
tial displacement in the wallũx;O(d), since in the bulk of
the wall mediumũx;ũz , according to the continuity equa
tion in the wall medium~B19!. Whenũx;O(d) in the wall
material, the tangential velocity condition~B2! becomes, to
leading order

ṽbot,vx
~0! 1G0ũz

~0!50. ~B3!

However, as was shown in Sec. II B@see Eqs.~41! and~43!#,
the above boundary condition yields a characteristic equa
Ai( ywall ,21)50, and the resulting multiple solutions fo
c(0) have negative imaginary parts, indicating that the flow
stable for this choice of scalings.

Another possibility to scale the displacement field in t
wall is to assumeũx;O(1) in ~B2! so that the tangentia
displacement in the wall medium enters the tangential ve
ity boundary condition atz50. If ũx;O(1), then ũz

;O(1) in the bulk of the wall medium since according
the continuity equation in the wall,ũx;ũz . So, the displace-
ment field in the wall medium are expanded in an asympto
series as

ũx5ũx
~0!1dũx

~1!1¯ , ũz5ũz
~0!1dũz

~1!1¯ . ~B4!

The above expansions are substituted in the bound
conditions. The normal velocity boundary conditio
( ṽz52 ikcũz) becomes

d~ ṽoz
~0!1 ṽbot,vz

~0! !52 ik~c~0!1dc~1!1¯ !

3~ ũz
~0!1dũz

~1!1¯ !. ~B5!

To leading order ind, the above boundary condition yields

ũz
~0!50. ~B6!

The first correction to the normal velocity boundary con
tion yields

~ ṽoz
~0!2 ṽbot,vz

~0! !52 ik~c~0!ũz
~1!1c~1!ũz

~0!!. ~B7!

Sinceũz
(0)50 at z50 ~B6!, the above equation becomes

~ ṽoz
~0!1 ṽbot,vz

~0! !52 ik~c~0!ũz
~1!!. ~B8!

The tangential velocity boundary condition (ṽx1Gũz

52 ikcũx) becomes

ṽbot,vx
~0! 1d21G0~ ũz

~0!1dũz
~1!1¯ !

52 ik~c~0!1dc~1!1¯ !~ ũx
~0!1ũx

~1!1¯ !. ~B9!

To leading order ind, the above equation yields

ũz
~0!50, ~B10!

which is identical to what was obtained~B6! to leading order
from the normal velocity boundary condition. The first co
rection to~B9! is given by

ṽbot,vx
~0! 1G0ũz

~1!52 ikc~0!ũx
~0! . ~B11!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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It should be noted here that the tangential velocity in the w
layer appears only in the first correction to the tangen
velocity continuity. The unscaled tangential stress condit
at the interface is given by

Re21 G@dzṽx1 ik ṽz#5~12 ikch rG Re21!@dzũx1 ikũz#.
~B12!

On using the scalings for various quantities in the abo
equation, we obtain

G0d~djṽbot,vx
~0! 1d2ik ṽbot,vz

~0! !

5~12 ikch rG0d2!@~dzũx
~0!1 ikũz

~0!!

1d~dzũx
~1!1 ikũz

~1!!#. ~B13!

To leading order, the above equation yields

~dzũx
~0!1 ikũz

~0!!50. ~B14!

The first correction to~B13! is obtained as

G0@djṽbot,vx
~0! #5~dzũx

~1!1 ikũz
~1!!. ~B15!

The above equations show that the tangential stresse
the wall layer appears only in the first correction. The u
scaled normal stress condition at the interface is given b

2 p̃f12 Re21 G dzṽz

52 p̃g12~12 ikch rG Re21!dzũz . ~B16!

As discussed earlier,p̃f;O(1) to leading order. The pres
sure in the wall medium p̃g is estimated from the
x-momentum equation in the wall~B20!, and this reveals tha
p̃g is O(1). Onusing the scalings for the various quantitie
the above boundary condition becomes

2~ p̃f
~0!1d p̃f

~1!!12G0d2~djṽvz
~0!!

52~ p̃g
~0!1d p̃g

~1!!12~12 ikch rG0d2!~dzũz
~0!1ddzũz

~1!!.

~B17!

The leading order and the first correction equations of
above boundary condition are, respectively, given by

2 p̃f
~0!52 p̃g

~0!12dzũz
~0! , 2 p̃f

~1!52 p̃g
~1!12dzũz

~1! .
~B18!

The governing stability equations for the displacem
field in the wall are obtained from~45! after expressing the
wall displacement field in terms of normal mode quantit
@as in ~6!#

dzũz1 ikũx50, ~B19!

2k2c2ũx52 ik p̃g1~12 ikch rG Re21!~dz
22k2!ũx ,

~B20!

2k2c2ũz52dzp̃g1~12 ikch rG Re21!~dz
22k2!ũz ,

~B21!

whereh r5hg /h is the ratio of wall to fluid viscosities. On
substituting the asymptotic expansions~B4! in Eqs. ~B19!–
~B21!, the equations governing the leading order and fi
correction to the wall displacement can be obtained,
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these equations can be analytically solved. The solution
the leading order displacement fieldũz

(0) can be obtained as

ũz
~0!5B1 exp@kz#1B2 exp@gz#1B3 exp@2kz#

1B4 exp@2gz#, ~B22!

ũx
~0!5B1i exp@kz#1B2~ ig/k!exp@gz#

2 iB3 exp@2kz#2~ ig/k!exp@2gz#, ~B23!

whereg5kA12(c(0))2. The first correction to the displace
ment field are given by

ũz
~1!5B2~2k2c~0!c~1!z/g!exp@gz#

2B4i ~2k2c~0!c~1!z/g!exp@2gz#, ~B24!

ũx
~1!5B2i ~2k2c~0!c~1!~11gz!/~gk!!exp@gz#

1B4i ~2k2c~0!c~1!~211gz!!exp@2gz#. ~B25!
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