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Abstract

The velocity distribution for a homogeneous shear 
ow of smooth nearly elastic disks is de-
termined using a perturbation solution of the linearised Boltzmann equation. An expansion in the
parameter �I =(1−e)1=2 is used, where e is the coe�cient of restitution. In the leading order ap-
proximation, inelastic e�ects are neglected and the distribution function is a Maxwell–Boltzmann
distribution. The corrections to the distribution function due to inelasticity are determined using
an expansion in the eigenfunctions of the linearised Boltzmann operator, which form a complete
and orthogonal basis set. A normal form reduction is e�ected to obtain �rst-order di�erential
equations for the coe�cients of the eigenfunctions, and these are solved analytically subject to
a set of simple model boundary conditions. The O(�I ) and O(�2I ) corrections to the distribution
function are calculated for both in�nite and bounded shear 
ows. For a homogeneous shear 
ow,
the results for the O(�I ) and O(�2I ) corrections to the distribution function are di�erent from those
obtained earlier by the moment expansion method and the Chapman–Enskog procedure, but the
numerical value of the corrections are small for the second moments of the velocity distribution,
and the numerical results obtained by the di�erent procedures are very close to each other. The
variation in the distribution function due to the presence of a solid boundary is analysed, and it
is shown that there is an O(�2I ) correction to the density and an O(�I ) correction to the mean
velocity due to the presence of a wall. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The shear 
ow of an inelastic granular material has been a widely studied problem
in the �eld of granular 
ows. Many unusual phenomena, such as the formation of
dense clusters and inhomogeneities [1–5] occur due to the inelasticity of the collisions
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between the particles in the 
ow. There have been two distinct types of theoretical
studies on these systems, i.e. the continuum theories for slow 
ows of granular materials
[6] and the kinetic theories for rapid 
ows [7–13]. The kinetic theories make use of the
similarity between the dynamics of the grains in the granular 
ow and the molecules of
a hard sphere gas. However, there are signi�cant di�erences between the two systems.
The particles in a granular medium are macroscopic objects, and the length scales of
the 
ow are typically of the same magnitude as the mean free path. The diameters
of the particles could also be of the same magnitude as the mean free path, thereby
resulting in correlated collisions and invalidating the molecular chaos approximation. In
addition, the interactions between the particles are inelastic and do not conserve energy.
Motion can be sustained only in the presence of a continuous source of energy, for
example, due to shearing at the boundaries. Consequently, the ‘granular temperature’,
which is proportional to the mean square of the velocity 
uctuations in the system, is
related to the driving and dissipation of energy, in contrast to molecular gases where
the temperature is a thermodynamic variable. There are gradients in the density and
temperature of a granular material even under steady conditions, because the resultant
energy 
ux is necessary to sustain the motion of the particles.
The velocity distribution function for hard sphere gases is derived from the

Boltzmann equation, which is a non-linear integro-di�erential equation [14]. At steady
state, it can be shown that the solution for this equation is the Maxwell–Boltzmann
distribution. Transport equations are derived assuming that the deviation from the
Maxwell–Boltzmann distribution is small, and using a perturbation solution of the
Boltzmann equation. For gases close to equilibrium, there is an additional assump-
tion that the variation in the distribution function is only due to the variation in the
density, mean velocity and temperature. This assumption is valid only when the gas is
close to an underlying equilibrium state, and the length scale of variation of macro-
scopic properties is large compared to the mean free path of the gas. In kinetic theories
for granular materials, it is usually assumed that the distribution function is close to
a Maxwell–Boltzmann distribution. This is valid when the coe�cient of restitution is
close to 1, and the length scale of variation of the properties is large compared to the
mean free path of the particles. In addition, the assumption of molecular chaos, that
there is no correlation in the pre-collisional velocities of a pair of particles, is also
usually made; this assumption is valid only in dilute regimes. Despite these di�cul-
ties, kinetic theories have been fairly successful in predicting the behaviour of granular
materials. There have been two variants of the classical kinetic theory that have been
used, and both of these employ a perturbation expansion about the limit of elastic
collisions. The �rst is a modi�cation of the Chapman–Enskog approximation where
the variation in the properties of the material are considered to be due to the spatial
variation of the density, mean velocity and temperature [8], while the second is a mo-
ment expansion method, where a form of the expansion for the distribution function is
assumed, and the unknown coe�cients in the expansion are determined from a set of
equations for the moments of the distribution function. A modi�cation of the Chapman–
Enskog procedure was used by Sela et al. [12], where a form of the perturbation to the
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distribution function is assumed based on the symmetries of the inhomogeneous terms
in the equations for the correction to the distribution function. All these methods give
results for the granular temperature and the anisotropy in a homogeneous shear 
ow
that are in close agreement.
As mentioned earlier, the rapid 
ow of a granular material requires continuous driv-

ing. In a shear 
ow, this is achieved by the presence of solid boundaries which
drive the material. Due to the boundary e�ects, one would expect signi�cant varia-
tions in the distribution function. In the analysis of Jenkins and Richman [11], the
e�ect of the wall has been included using 
ux conditions for the momentum and
energy, which are derived using a microscopic averaging over the interaction of the
particles with the boundary. In this averaging, the distribution function of the parti-
cles is assumed to be a Maxwell–Boltzmann distribution. Spatial variations have also
been incorporated into hydrodynamic equations derived for granular materials, which
provide e�ective equations for the transport of mass, momentum and energy in the
medium.
An asymptotic analysis is used here to determine the perturbation to the distribution

function in the shear 
ow of a granular material in the limit (1−e). 1, where e is the
coe�cient of restitution. In addition, it is assumed that there is no correlation in the
precollisional velocities of a pair of particles, and that the material is su�ciently dilute
in that the radius of a particle is small compared to the mean free path. The latter
approximation can be improved using the Enskog procedure for dense gases. However,
this di�ers from previous studies that the mean free path is not considered to be small
compared to the macroscopic length scale of the variation of properties. In addition,
it is not assumed that the properties of the system can be described by conservation
equations for the mass, momentum and energy, but other forms of corrections to the
distribution function are also incorporated.
In order to place the present analysis in perspective, it is useful to compare the

spatial variation of a granular material and the evolution of a rare�ed gas to its �nal
equilibrium state. In a gas at very low densities, there is the ‘transition’ regime, where
the di�erence in the scale length between the macroscopic and microscopic scales is not
large, and the Navier–Stokes equations are not su�cient to describe the state of the
gas. In this case, a larger number of variables are required to completely specify
the state. Very close to equilibrium in denser gases, there is the kinetic regime where
the state is completely speci�ed by the equations for the density, momentum and
energy. In a granular material, there is continuous driving of the material at solid
boundaries, and one would expect that there are domains near the boundaries of length
scale comparable to the mean free path of the particles where the continuum equa-
tions are not su�cient to describe the variation of properties. When the distance from
the boundaries is su�ciently large, it is expected that the continuum equations would be
applicable if the coe�cient of restitution is close to 1. In addition, there could be sit-
uations where the density is su�ciently low that the distance between boundaries is
of the same magnitude as the mean free path. The purpose of the present analysis
is to develop techniques that could be used in situations where the continuum mass,
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momentum and energy equations are not su�cient to describe the dynamics of the
system, but additional variables are required.
The method of solution involves an expansion of the perturbation to the distribution

function in the eigenfunctions of the linearised Boltzmann operator. It can be shown
[15] that these form a complete and orthogonal function space, and are an appropriate
basis set for the expansion. The eigenfunctions for the linearised Boltzmann operator for
the hard sphere or hard disk model cannot be determined analytically, and is necessary
to determine them numerically using an expansion in an appropriate function space.
Here, an expansion in a function space consisting of Hermite polynomials is used. There
are four eigenfunctions (in two dimensions), the mass, momenta and energy, whose
corresponding eigenvalues are zero, while all the other eigenvalues are negative. This
implies that the mass, momentum and energy remain unchanged, while any transient
perturbations to the other eigenfunctions decay exponentially in time in a spatially
homogeneous system. There are 
uxes of mass, momentum and energy in a spatially
non-uniform system, but the perturbations to the other eigenfunctions can be neglected
if the length scale of variation of the properties is large compared to the mean free
path of the gas.
A sheared granular material is not an equilibrium system, and so there are pertur-

bations to the distribution function due to the inelastic nature of the collisions. An
important di�erence between a non-equilibrium gas and a granular material is that the
presence of inelastic collisions results in an additional inhomogeneous correction to the
linearised Boltzmann equation, in addition to the corrections due to the gradients in
the density, mean velocity and temperature. Consequently, the Chapman–Enskog ap-
proximation is not strictly valid, and a more general form has to be assumed for the
perturbation to the distribution function even in a homogeneous 
ow. This analysis is
carried out in the next section, where a hierarchy of equations is derived systemati-
cally for the correction to the distribution function in the limit �I =(1− e)1=2. 1. The
results are compared with earlier studies using the Chapman–Enskog procedure and
the moment expansion procedure for homogeneous shear 
ows in Section 3, and good
agreement is observed. The analysis is extended to the spatial variations in properties
near a solid wall in Section 4. The equations for the correction to the distribution func-
tion are reduced to a normal form, and solutions for these are obtained analytically.
The results indicate that there is a variation of O(�I ) in the mean velocity and O(�2I )
in the density and the anisotropy in the distribution function due to the presence of a
wall.

2. General formulation

A two-dimensional sheared suspension of inelastic particles is considered, where the
X and Y are the 
ow and gradient directions, respectively. The mean velocity Um(y)
in the X direction is a function of the Y coordinate. The dynamics of the system
is described using a distribution function f(X;U; t∗), where f(X;U; t∗) dX dU is the
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number of particles in the di�erential volume dX about X in real space and in the
di�erential volume dU about U in velocity space, and t∗ is the dimensional time
variable. Here, the ‘
uctuating velocity’ U is the di�erence between the actual particle
velocity and the mean velocity at the particle position. The steady-state Boltzmann
equation, which is the conservation equation for the distribution function, for a system
homogeneous in all directions except the Y direction, is

@Uyf
@Y

− �
@Uyf
@Ux

=
@cf
@t∗

; (1)

where � is the strain rate (dUm=dY ). The �rst term on the left represents the rate of
change of the distribution function due to the motion in real space, while the second
term is the rate of change of the distribution function due to the variation of the
mean velocity with position [14]. The term on the right is the rate of change of the
distribution function due to particle interactions.
It is useful to de�ne scaled distance and velocity coordinates at the outset, and to

identify the dimensionless small parameter used for the perturbation expansion. As
stated earlier, it is assumed that the inelasticity of the particles is small, so the dis-
tribution function is close to the Maxwell–Boltzmann distribution. In this case, the
velocities are scaled by T 1=2, where T is the ‘temperature’ (the mass of the particles
is set equal to 1). The temperature in this case is not a thermodynamically prescribed
quantity, however, but is determined by a balance between the source of energy due to
shear and the dissipation due to inelastic collisions. The characteristic time scale is the
inverse of the collision frequency, (ndT 1=2)−1, where n is the number of particles per
unit area and d is the particle diameter. The rate of dissipation of energy per unit area
due to inelastic collisions scales as (�2I n

2dT 3=2), where �I=(1−e)1=2 is a small parame-
ter. The rate of production of energy per unit area due to shear is O((T 1=2=d)�2), since
the viscosity of a two-dimensional gas (divided by the mass of a particle) is O(T 1=2=d).
Consequently, the shear rate � is O(�I ndT 1=2) to achieve a balance between the source
and dissipation of energy. The scaled velocity, distance, time and strain rate are de-
�ned as u= (U=T 1=2), x= (Xnd), t = (t∗ndT 1=2) and �I 
= (�=ndT 1=2), and the scaled
Boltzmann equation is

@uyf
@y

− �I 

@uyf
@ux

=
@cf
@t

: (2)

The dimensionless collision integral (@cf=@t) assumes the following form for the case
where simultaneous interactions between three or more particles are neglected (binary
collision approximation) and correlations in the pre collisional velocities of the particles
are neglected (molecular chaos assumption)

@cf
@t

=
∫
dk

∫
du∗

[
1
e2

f(x; u′)f(x∗; u∗′)− f(x; u)f(x∗; u∗)
]
(w.k)

=C[f(x; u)] ; (3)

where k is the line joining the centres of the particles at collision, and the integrals
are carried out over w:k¿0 [12]. The particle diameter is considered to be small
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compared to the mean free path, so that the di�erence in the positions of particles
at collision is neglected (x= x∗). This approximation can be systematically improved
using the Enskog procedure. The �rst term on the right-hand side of (3) is the rate of
accumulation of particles at (x; u) in phase space due to a collision between particles at
(x; u′) and (x∗; u∗′) such that the particle at x has a �nal velocity u. The factor (1=e2)
in the �rst term on the right-hand side accounts for the decrease in normal relative
velocity by a factor e during a collision, and the contraction of a di�erential volume
in phase space due to the decrease in the normal relative velocity. The second term
is the rate of depletion of particles at (x; u) due to collisions involving a particle with
velocity u.
The velocities of the particles can be expressed in terms of a centre of mass velocity

v and a relative velocity w

v =
u + u∗

2
; w= u − u∗ : (4)

The centre of mass velocity v remains unchanged in a collision, while the velocity
di�erence after the collision wf is related to that before the collision wi by

wf = (I − (1 + e)kk):wi ; (5)

where I is the second-order identity tensor, and e is the coe�cient of restitution for
particle–particle collisions. The velocities before (ui ; u∗i ) and after (uf; u

∗
f) a collision

of a pair of particles are related by

uf = ui − (1 + e)kk:(ui − u∗i ) ; (6)

u∗f = u
∗
i + (1 + e)kk:(ui − u∗i ) : (7)

In this analysis, the limit �I=(1−e)1=2.1 is considered, where the average dissipation
of energy during a collision is small compared to the energy of the particle. In this
case, it is useful to separate the collision integral into two parts

C[f(x; u)] = Ce[f(x; u)] + Ci[f(x; u)] ; (8)

where Ce is the collision operator for elastic particles

Ce =
∫
dk

∫
du∗ [f(u′′; x)f(u∗′′; x)− f(u; x)f(u∗; x)](w:k) (9)

and Ci is the correction to the collision operator due to the inelasticity of the particles

Ci =
∫
dk

∫
du∗

[
1
e2

f(u′; x)f(u∗′; x)− f(u′′; x)f(u∗′′; x)
]
(w:k) : (10)

In Eqs. (9) and (10), the velocities u′′ and u∗′′ are the velocities of the particles before
an elastic collision such that one of the particles has a �nal velocity u. It can easily
be veri�ed that Ci is O(�I ) smaller than Ce for the present case.
In the absence of dissipation due to inelastic collisions, the solution for the dis-

tribution function is the Maxwell–Boltzmann distribution F(u) for a two-dimensional
system

F(u) =
1
(2�) exp

(
−u2

2

)
: (11)
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This distribution function identically satis�es the leading order Boltzmann equation in
the absence of non-equilibrium e�ects

Ce[F(u)] = 0 : (12)

The correction to the distribution function due to inelastic e�ects is incorporated using
an expansion of the form

f(x; u) = F(u)[1 + �I�(1)(x; u) + �2I �
(2)(x; u) + · · · ] : (13)

The above expansion is inserted into the elastic part of the collision operator to obtain

Ce[f(x; u)] = �IF(u)L[�(1)] + �2I F(u)(L[�
(2)] +N(2)[�(1)]) : (14)

The operator L is a linear collision operator in which the collision is considered to
be elastic

L[�] =
∫
dk

∫
du∗ F(u∗)[�(x; u′′) + �(x; u∗′′)− �(x; u)− �(x; u∗)]w:k

(15)

and N(2)[�(1)] is

N(2)[�(1)] =
∫
dk

∫
du∗ F(u)F(u∗)(�(1)(x; u′′)�(1)(x; u∗′′)

−�(1)(x; u)�(1)(x; u∗))w:k : (16)

The inhomogeneous term (10) on the right-hand side of (8) due to the inelastic part
of the collision operator is determined using an expansion in the parameter �I .

Ci = �IC
(1)
i + �2IC

(2)
i : (17)

It is convenient to de�ne the distribution functions F(v) and F(w) functions for the
velocity of the centre of mass and the velocity di�erence

Fv(v) =
1
� exp(−v2) ;

Fw(w) =
1
4� exp

(
−w2

4

)
: (18)

The O(�I ) contribution to Ci is determined using a Taylor series expansion and retaining
terms correct to O(�2I )

Fw(w′) = Fw(w′′) + (w′ − w′′):∇w′′Fw(w′′)

=
[
−�2I

(w:k)2

2

]
Fw(w) : (19)

Using the above relations, it can easily be veri�ed that the O(1) contribution to Ci is
zero, while the O(�I ) and O(�2I ) contributions are

C
(1)
i = 0 ; (20)

C
(2)
i =

∫
dk

∫
du∗ F(v)F(w)

(
2− (w:k)2

2

)
: (21)
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Inserting the above into the Boltzmann equation, an equation of the following form is
obtained for the correction �(n):

@uyF�(n)

@y
− F(u)L[�(n)] =C

(n)
i [�

(n−1); : : : ; �(1)] +N(n)[�(n−1); : : : ; �(1)]

+ 

@(uyF�(n−1))

@ux
: (22)

The approach used for solving an equation of the form (22) for �(n) is as follows. It
can be shown that the operator L[�] is self-adjoint when the inner product in velocity
space is de�ned with the weighting function F(u) [15,14], i.e. for any real functions
g(u) and h(u)∫

duF(u)h(u)L[g(u)] =
∫
duF(u)g(u)L[h(u)] : (23)

In addition, it can also be shown that the eigenvalues �J of the equation

L[�J (u)] = �J�J (u) (24)

are real, discrete and satisfy the condition

�J60 (25)

while the eigenfunctions form an orthogonal basis set. There are four eigenvalues (in
two dimensions) which are identically zero, and the eigenfunctions corresponding to
these are the mass, two components of the momenta and the energy of the particles
which are conserved in collisions. All other eigenvalues are less than zero.
A solution for the linear equation (22) can be obtained as follows. The correction

to the distribution function �(n) is expressed as an expansion in the eigenfunctions �J

of Eq. (24)

�(n) =
∑
J

A(n)J (x)�J (u) : (26)

Similarly, the inhomogeneous term on the right-hand side of (22) is also expressed as
an expansion in the eigenfunctions �J

C
(n)
i +N(n) =

∑
J

B(n)J (x)�J (u) : (27)

These Boltzmann equation (22) now reduces to an equation for the coe�cients A(n)J

MIJ
@A(n)J

@y
− �IJA

(n)
J = B(n)I + 
NIJA

(n−1)
J ; (28)

where the matrices MIJ and TIJ are

MIJ =
∫
duF(x; u)uy�I (u)�J (u) ;

NIJ =
∫
du�I (u)

@(Fuy�J (u))
@ux

(29)
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and �IJ is a diagonal matrix whose diagonal elements are the eigenvalues of L. The
above equation can be solved systematically for the corrections to the distribution
function �(n).

3. Homogeneous shear 
ow

Before proceeding to examine inhomogeneous 
ows, it is useful to �rst examine the
results obtained by the present procedure for a homogeneous shear 
ow. In this case,
the coe�cients A(n)J are independent of the coordinate y, and the equations for the
coe�cients A(n)J reduce to

− �IJA
(n)
J = B(n)I + 
NIJA

(n−1)
J : (30)

As noted earlier, the matrix �IJ is a diagonal matrix, whose diagonal elements are
the eigenvalues �J . There are four eigenvalues �N−3 to �N which are identically zero,
corresponding to the collisionally invariant eigenfunctions proportional to the mass,
momentum and energy

�N−3(u) = 1 ;

�N−2(u) = ux ;

�N−1(u) = uy ;

�N (u) = u2x + u2y − 2 : (31)

Therefore, Eq. (30) has solutions only if the right-hand side is zero for I=(N−3) to N ,
and this provides the solvability condition for Eq. (30). These solvability conditions are
used, at each order in perturbation theory, to determine the leading order and higher
corrections to the strain rate 
. It can be shown from symmetry arguments [14] that
the inhomogeneous terms in (30) corresponding to the eigenfunctions 1, ux and uy are
identically zero due to the requirements of mass, momentum and energy conservation.
However, since particle energies are not conserved in a collision, the inhomogeneous
term corresponding to the energy eigenfunction (u2x + u2y − 2) is zero only for certain
values of the macroscopic shear rate 
, and this condition provides a solution for the
shear rate 
.
The eigenfunctions for the linearised collision operator are di�cult to obtain for

a hard sphere interaction; the only case where the eigenfunctions are easily obtained
is for a Maxwell molecule where the intermolecular potential decays as the inverse
�fth power of the distance of separation [15]. In the present analysis, the eigenvalues
and eigenfunctions are determined as expansions in a Hermite polynomial series for a
two-dimensional system

�I (u) =
N∑

J=1

PIJ  J (u) ; (32)
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where  J are the products of Hermite polynomials of the particle velocities in the
horizontal and vertical directions. The choice of Hermite polynomials is appropriate
because they form a basis set of orthogonal polynomials when the inner product is
de�ned on the domain −∞ to ∞ with F(u) as the weighting factor. The eigenfunctions
for the collision operator can be determined from the matrix GIJ

GIJ =
∫
duF(u) I (u)L[ J (u)] : (33)

It can be easily shown that the matrix PIJ in (32) contains as its rows the eigenvectors
of the matrix GIJ , and the eigenvalues �J in (24) are identical to the eigenvalues of
the matrix GIJ . Using (32), relation (24) reduces to

N∑
K=1

PIKL[ K (u)] =
N∑

J=1

N∑
L=1

PJL L�JI ; (34)

where �JI is a diagonal matrix whose diagonal terms are the eigenvalues �J . Mul-
tiplying both sides of the above equation by  M (u)F(u) and integrating over u, the
following relation is obtained:

N∑
K=1

GMKPTKI =
N∑

J=1

PTMJ�JI : (35)

Here, it is assumed that the basis functions are normalised, so that∫
duF(u) I (u) J (u) = IIJ ; (36)

where IIJ is the identity matrix. The matrix MIJ , required for determining the properties
of inhomogeneous 
ows in the next section, is

MIJ =
∫
duF(u)uy�I (u)�J (u)

=
N∑

K=1

N∑
L=1

PIKPJL

∫
duF(u)uy K (u) L(u)

=
N∑

K=1

N∑
L=1

PIKPJLRKL : (37)

The other transformations then follow as detailed above. Results were obtained for N=
16 and 36 (corresponding to the �rst four and six Hermite polynomials in the horizontal
and vertical directions). Eq. (35) then gives 16 or 36 eigenvalues and eigenvectors for
the linear collision operator. As discussed earlier, four of the eigenvalues are zero,
while all the others are negative. The eigenvalues �J for N = 16 and 36 are shown in
Table 1. The eigenfunctions �J for N = 16 are shown in Table 2.
The corrections to the distribution functions, �(1) and �(2), obtained using the present

solution procedure, are provided in Appendix A. The moments of the distribution func-
tion obtained using the present procedure are compared with the previous results in
Table 1. It is seen that the second moments 〈uxuy〉, 〈u2x〉 and 〈u2y〉 do not show signi-
�cant variation when the value of N is changed from 16 to 36, indicating that a basis
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Table 1
The non-zero eigenvalues 
I for N =16 and 36. In
addition to these, there are a total of six eigenval-
ues that are zero

N = 36
−9:071454
−8:727477
−8:517621
−8:517621
−8:212974
−8:212974
−8:057390
−7:874723
−7:600401

N = 16 −7:558564
−6:602094 −7:352401
−6:425145 −7:352401
−6:042078 −6:798699
−6:042078 −6:298625
−5:261972 −6:298625
−5:182199 −6:024768
−5:182199 −5:389357
−4:125816 −5:307500
−3:544907 −5:307500
−3:099046 −4:718563
−1:764485 −4:637607
−1:764485 −4:342166

−4:342166
−4:172728
−3:732822
−3:128074
−2:916262
−2:916262
−2:837848
−1:749309
−1:658600
−1:658600

set with 16 functions is su�cient to accurately capture the behaviour of the second
moments of the distribution function. However, there is a signi�cant variation in the
behaviour of the fourth moments of about 10–12% when the number of basis functions
is increased from 16 to 36, indicating that a larger set of basis functions is required
to capture the behaviour of these moments.
The moments obtained using the present analysis is also compared with the earlier

studies of Sela et al. [12] and Jenkins and Richman [9]. The second moments of the
distribution function obtained by these studies are in good agreement, and it is useful
to examine the reasons for this agreement. The inhomogeneous term in the equation for
�(1) is proportional to uxuy, and symmetry arguments indicate that the �rst correction
should be of the form

�(1) = uxuyg(u) ; (38)
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Table 2
The eigenfunctions �I for N = 16

 1 = 1:194979uxuy − 0:441904u3xuy − 0:441904uxu3y + 0:164079u
3
xu
3
y

 2 = 0:288675u3xuy − 0:288675uxu3y
 3 =−0:739354uy + 0:537739u2xuy + 0:331975u3y − 0:264770u2xu

3
y

 4 =−0:739354ux + 0:331975u3x + 0:537739uxu2y − 0:264770u3xu
2
y

 5 = 0:5− 0:5u2x − 0:5u2y + 0:5u
2
xu
2
y

 6 =−0:313239uy + 0:897686u2xuy − 0:080498u3y − 0:114317u2xu
3
y

 7 =−0:313239ux − 0:080498u3x + 0:897686uxu
2
y − 0:114317u3xu

2
y

 8 =−0:838959uxuy + 0:285587u3xuy + 0:285587uxu3y − 0:024074u3xu
3
y

 9 = 0:5u2x − 0:5u2y
 10 =−2:029327uxuy + 0:237682u3xuy + 0:237682uxu3y − 0:016622u3xu

3
y

 11 = 1:450942uy − 0:393694u2xuy − 0:365119u3y + 0:012703u
2
xu
3
y

 12 = 1:450942ux − 0:365119u3x − 0:393694uxu2y + 0:012703u
3
xu
2
y

 13 =−1:0 + 0:5u2x + 0:5u2y
 14 = ux

 15 = uy

 16 = 1:0

where u is the magnitude of the particle velocity. In the Chapman–Enskog procedure,
the function g(u) is expanded in a complete basis set consisting of Sonine polynomials.
In the present case, the solution is obtained using a basis set consisting of the eigen-
functions of the linearised Boltzmann operator. Due to the di�erence in the expansion
procedure, the �rst correction is not exactly of the form (38). However, the terms that
do not have the form (38) have small numerical coe�cients, and this accounts for the
close agreement between this and earlier results.
For a gas of elastic particles, similar arguments are used to determine the form of

the second moment in the Chapman–Enskog procedure

�(2) = h0(u) + h1(u)u2x + h2(u)uxuy + h4(u)u4x : (39)

This form of the correction is also inferred from symmetry arguments, and the functions
h0 − h4 are determined using an expansion in a complete and orthogonal polynomial
space. The moment expansion method makes a further approximation of the above
expressions (as discussed in [12]) of assuming constant values for the functions g and
hi, which are roughly averages of the corresponding functions over the magnitude of
the velocity u. In the present method, the symmetry arguments are not exploited, and
the inhomogeneous terms are determined as an expansion in a set of basis functions
which are the eigenfunctions of the linearised Boltzmann operator. However, as is
evident from Appendix A, the resulting corrections to the distribution function satisfy
the symmetry conditions to a good numerical approximation. This accounts for the
good agreement between all three methods for predicting the second moments of the
distribution functions. There are signi�cant di�erences between the three methods for
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the fourth moments, however, because the terms that cannot be expressed in the form
(38) and (39) provide larger contributions to the fourth moments. Even though the
symmetry arguments are not exploited in the present calculations, there are signi�cant
advantages for calculating higher-order corrections as indicated below.
In the Chapman–Enskog procedure, the form of the correction to the distribution

function is determined from the symmetries of the inhomogeneous term in the equa-
tion. While it is easy to deduce the form of the inhomogeneous term from symmetry
arguments for the �rst correction, and it is manageable for the second correction, it
becomes di�cult to do so for the third and higher corrections. The present procedure
has the advantage that linear operator (on the left-hand side of Eq. (28), for example)
is unchanged for the higher corrections, while there is a change in the inhomogeneous
terms on the right-hand side. Therefore, the coe�cients A(n)J on the left-hand side for
the higher-order corrections are easily calculated once the inhomogeneous terms are de-
termined. Moreover, it is easy to use the solvability conditions to determine the strain
rate as a function of temperature. For example, for the homogeneous shear 
ow, the
solvability condition for Eq. (30) requires that the inhomogeneous term on the right
should be zero if the diagonal component of the matrix �IJ is zero. This condition
directly provides the leading order and higher-order corrections to the strain rate. In
the Chapman–Enskog method, a more elaborate procedure is required to obtain the
solvability conditions [12]. Another advantage is the ease with which the calculation
can be extended to inhomogeneous shear 
ows, as illustrated below.

4. Inhomogeneous shear 
ow

In this section, the solution for the variation in the 
ow properties due to the presence
of a moving boundary is examined. The 
ow geometry consists of a sheared granular
material bounded by a moving wall at Y = 0, and the granular material 
ows in the
region Y ¡ 0 where X and Y are the coordinates in the 
ow and gradient directions,
respectively. The re
ection conditions at the wall in the present analysis are considered
to be of the form

U ′
x = etU ′′

x + (1− et)UwU ′
y =−enU ′′

y ; (40)

where U ′
x and U ′

y are the dimensional velocities after the wall collision, U
′′
x and U ′′

y

are the velocities before collision, Uw is the di�erence between the wall velocity and
the mean velocity of the particles at the wall, and et and en are the tangential and
normal coe�cients of restitution.
Consistent with the asymptotic scheme used for the distribution function, an expan-

sion about the limit of elastic collisions is used to determine the boundary conditions.
The appropriate expansions for the coe�cients of restitution are et = (1 − at�2I ) and
en = (1 − an�2I ). The boundary condition for the velocity �eld at the wall, scaled by√
T , is

u′x = (1− at�2I )u
′′
x + �I uw; u′y =−(1− at�2I )u

′′
y ; (41)
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where uw = Uw=(at�I
√
T )), and (u′′x ; u

′′
y) and (u

′
x; u

′
y) are the scaled particle velocities

before and after the collision with the wall. Note that the scaled velocity uw has to be
O(1) for the scaled shear rate in the granular medium to be O(�I ).
The distribution function is separated into two components

f(y; u) = fu(u) + fn(y; u) ; (42)

where fu(u) is the spatially uniform component determined in the previous section,
and fn(y; u) is the correction to the spatially uniform distribution function due to the
presence of the solid boundary. The non-uniform component fn(y; u) is expressed as
an expansion in the parameter �I

fn(y; u) = F(u)(1 + �I�(1)n (y; u) + �2I �
(2)
n (y; u) + · · ·) : (43)

The Boltzmann equation for the functions �(1)n and �(2)n are

@y(uyF(u)�(1)n (y; u))−L[F(u)�(1)n (y; u)] =N(1)
n (y; u) ; (44)

@y(uyF(u)�(2)n (y; u))−L[F(u)�(2)n (y; u)] =N(2)
n (y; u) ; (45)

where

N(1)
n (y; u) = 0 (46)

and

N(2)
n (y; u) =

∫
dk

∫
du∗ F(u)F(u∗)(�(1)n (u

′′)�(1)(u∗′′) + �(1)(u′′)�(1)n (u
∗′′)

+�(1)n (u
′′)�(1)n (u

∗′′)− �(1)n (u)�
(1)(u∗)− �(1)(u)�(1)n (u

∗) (47)

−�(1)n (u)�
(1)
n (u

∗))w:k

+ 

@uyF(u)�

(1)
n (y; u)

@ux
: (48)

A normal form reduction for the non-equilibrium correction to the distribution
function can be e�ected as follows. The corrections to the distribution function are
expressed as

�(n)n =
∑
I

C(n)I (y)�I (u) ; (49)

where �I (u) are the eigenfunctions of the linearised Boltzmann equation. The above
expansion is inserted into the equations for the distribution function (44) and (45) to
obtain

MIJ @yC
(n)
J − �IJC

(n)
J = D(n)I (y) ; (50)
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Table 3
The O(�2I ) corrections to the moments 〈�(u2x − u2y)〉, 〈�u4x〉, 〈�u4y〉 and 〈�u2xu2y〉 for an in�nite
shear 
ow calculated using N = 16 and 36. Also, provided are the values of Sela et al. [12]
(SKN) and Jenkins and Richman [9] (JR)

N = 16 N = 36 SGN JR


0 3:50928 3:50693 3:5084 3:5449
〈uxuy〉=�I −1:0183 −1:01083 −1:0103 −1:0000
〈u3xuy〉=�I −2:78943 −2:78008 −3:0000 −3:0000
〈uxu3y〉=�I −2:78943 −2:78008 −3:0000 −3:0000
(〈u2x〉 − 1)=�2I 1:0000 1:04014 1:048 1:0000
(〈u2y〉 − 1)=�2I −1:0000 −1:04014 −1:048 −1:0000
(〈u4x〉 − 3)=�2I 6:0000 5:23346
(〈u4y〉 − 3)=�2I −6:0000 −5:23346
(〈u2xu2y〉 − 1)=�2I 2:22569 2:33637

Table 4
The non-zero eigenfunctions
�I for the spatially varying
granular medium for N =16.
In addition to these, there are
six zero eigenvalues

N = 16

±5:978372
±4:823394
±2:756686
±2:360328
±1:878464

where

D(n)I =
∫
duF(u)N(n)(y; u)�I (u) ; (51)

MIJ =
∫
duF(u)uy�I (u)�J (u) (52)

and �IJ is the diagonal matrix of the eigenvalues of the linearised collision operator.
Eq. (50) is multiplied by the inverse of the matrix MIJ to obtain

@yC
(n)
J − SIJC

(n)
J =M−1

IJ D(n)J (y) ; (53)

where

SIJ =
∑
K

M−1
IK �KJ : (54)

The matrix SIJ has six eigenvalues that are zero, while the other eigenvalues occur
in pairs of equal magnitude and opposite sign, �2 = −�1; �4 = −�3; : : : as shown in
Table 4. The eigenfunctions, shown in Table 5, occur in pairs  2(ux; uy)=  1(ux;−uy);
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 4(ux; uy)=− 3(ux;−uy); : : : : A normal form reduction is e�ected using the transfor-
mation

SIJ =
N∑

K=1

N∑
L=1

QIK�KLQ−1
LJ ; (55)

where �KL is a matrix which has been reduced to a Jordan canonical form which
consists of a (N − 6) × (N − 6) block diagonal corresponding to the non-zero eigen-
values, while the other rows and columns have non-diagonal terms, but the diagonal
elements are zero since the eigenvalues are zero. QIJ is the corresponding matrix of
eigenfunctions. Using this, Eq. (53) can be written as

@yC
∗(n)
I − �IJC

∗(n)
J = D∗(n)

I (y) ; (56)

where

C∗(n)
I =

N∑
K=1

Q−1
IK C(n)K ; (57)

D∗(n)
I =

N∑
K=1

N∑
L=1

Q−1
IK R−1

KLD
(n)
L : (58)

The coe�cients for the eigenfunctions corresponding to non-zero eigenvalues are de-
termined directly from (56). The requirement that the perturbations should decay into
the medium implies that only the eigenfunctions with positive eigenvalues are retained
in the expansion. The coe�cients for the eigenfunctions with zero eigenvalues are then
determined by solving the corresponding di�erential equation with known values for
the other coe�cients.
The boundary condition for the coe�cients C(n)I are determined from the condition

that the 
ux of a moment of the distribution function at the interface, 〈uy�I 〉, at the
surface, is equal to the collisional rate of change of the moment due to collisions with
the wall (per unit area of the wall)∫ ∞

−∞
dux

∫ ∞

−∞
duy uy�I (u)f(0; u) =

@w(f(u)�I (u))
@t

; (59)

where
@w(f(u)�I (u))

@t
=
∫ ∞

−∞
dux

∫ ∞

0
duy uyf(u)(�I (u′)− �I (u′′)) ; (60)

where u′ and u′′ are related by Eq. (41). The left-hand side of Eq. (43) is related to
the coe�cients C∗(n)

I is as follows:∫ ∞

−∞
dux

∫ ∞

−∞
duy uy�I (u)f(0; u) =

∫ ∞

−∞
dux

∫ ∞

−∞
duy uyF(u)�I (u)

+
N∑

J=1

MIJ (�I (A
(1)
J + C(1)J (0))

+�2I (A
(2)
J + C(2)J (0)) + · · ·) : (61)
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Fig. 1. The variation in the O(�I ) correction to the moments 〈�u3x〉=uw and 〈�uxu2y〉=uw calculated using
N = 16 as a function of the distance from the wall for a �nite shear 
ow.

The leading term on the right-hand side of Eq. (60) is O(�I ) because the di�erence
in the pre- and post-collisional velocities is O(�I ). Consequently, the O(�nI ) contribu-
tion to the right-hand side of (60) only contains perturbations of O(�n−1I ), and Eq.
(60) can be solved to provide the coe�cients C∗(n)

I . The variation in the coe�cients
is determined using the di�erential equation (56). In addition, a valid solution of the
di�erential equation (56) requires that the coe�cients corresponding to the eigenfunc-
tions with zero eigenvalues should be zero at the wall, otherwise the magnitude of
these coe�cients will increase linearly from the surface. This is ensured by choosing
the pre-collisional velocities (u′′x ; u

′′
y) and the post-collisional velocities (u

′
x; u

′
y) such

that

u′′x = ux(1 + at�2I =2)− �I uw=2 u′x = ux(1− at�2I =2) + �I uw=2 ;

u′′y = uy(1 + �2I (an=2− u2w=8)) u′y = (−1 + �2I (an=2 + u2w=8)) : (62)

It is important to note that the above expressions for the velocity are correct only to
O(�2I ) and further re�nement is necessary to obtain higher corrections. In addition, the
solvability of the equations also requires that 〈�uxuy〉 = �I uw=

√
2� at the wall. Since

the stress 〈�uxuy〉 is the 
ux of a conserved quantity, i.e. the momentum 
ux in the x
direction, this has to be a constant in the 
ow. The relation between this 
ux and the
strain rate then determines the strain rate in the 
ow.
The calculations for the correction to the velocity distribution function have been

carried out for N = 16 (see Appendix A and Table 5), and the results are as follows.
The O(�I ) correction to the distribution function, �(1), causes a change in the odd
moments of the distribution function near the wall. These corrections are proportional
to uw, and the moments �〈u3x〉=uw and �〈uxu2y〉=uw are shown as a function of y in Fig.
1. The third moments 〈u3x〉 and �〈uxu2y〉 are positive at the wall due to the acceleration
of particles by the surface. The other third moments are zero.
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Table 5
The eigenfunctions for the spatially varying granular medium for N = 16

�1 = 0:601891ux − 0:295772u3x − 1:039375uxuy + 0:483524u3xuy

− 0:036237uxu2y + 0:107220u3xu2y + 0:178630uxu3y − 0:105232u3xu
3
y

�2 = −0:601891ux + 0:295772u3x − 1:039375uxuy + 0:483524u3xuy

+0:036237uxu2y − 0:107220u3xu
2
y + 0:178630uxu

3
y − 0:105232u3xu

3
y

�3 = −0:229640 + 0:539647u2x + 0:636363uy + 0:631501u2xuy
− 0:080365u2y − 0:229640u2xu

2
y − 0:212121u3y − 0:210500u2xu

3
y

�4 = −0:229640 + 0:539647u2x − 0:636363uy − 0:631501u2xuy

− 0:080365u2y − 0:229640u2xu
2
y + 0:212121u

3
y + 0:210500u

2
xu
3
y

�5 = 0:574911ux − 0:103686u3x + 0:779310uxuy − 0:079803u3xuy

− 0:749503uxu2y + 0:161883u3xu2y − 0:420438uxu3y + 0:080157u
3
xu
3
y

�6 = 0:574911ux − 0:103686u3x − 0:779310uxuy + 0:079803u3xuy

− 0:749503uxu2y + 0:161883u3xu2y + 0:420438uxu3y − 0:080157u3xu
3
y

�7 = −0:301001 + 0:150789u2x + 1:815262uy − 0:405054u2xuy

+0:451213u2y − 0:301001u2xu
2
y − 0:605087u3y + 0:135018u

2
xu
3
y

�8 = 0:301001− 0:150789u2x + 1:815262uy − 0:405054u2xuy

− 0:451213u2y + 0:301001u2xu2y − 0:605087u3y + 0:135018u
2
xu
3
y

�9 = −0:303259ux − 0:015740u3x − 1:088140uxuy + 0:124903u3xuy

− 0:042200uxu2y + 0:130894u3xu2y + 0:130628uxu3y + 0:035727u3xu3y
�10 = −0:303259ux − 0:015740u3x + 1:088140uxuy − 0:124903u3xuy

− 0:042200uxu2y + 0:130894u3xu2y − 0:130628uxu3y − 0:035727u3xu
3
y

�11 = 1

�12 = uy

�13 = ux

�14 = uxuy

�15 = u2x + u2y − 2

�16 = −2uy + (−1 + u2x)uy + uy(−1 + u2y)
(63)

The O(�2I ) correction to the distribution function causes a change in the density at
the surface, as well as the anisotropy on the mean square velocities. These functions
have the form

〈�(y)〉= a1(y)an + b1(y)at + c1(y)u2w ;

〈�(u2x − u2y)〉= a2(y)an + b2(y)at + c2(y)u2w : (64)

The above functions are shown as a function of distance from the surface y in Fig. 2.
It is seen that the density near the surface increases as the parameter an is increased,
which corresponds to decreasing the coe�cient of restitution normal to the surface.
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Fig. 2. The coe�cients a1 − a3 (a), b1 − b3 (b) and c1 − c3 (c) in Eq. (45) for the O(�2I ) corrections to
the moments 〈�〉, 〈�(u2x − u2y)〉, and 〈�(u2x + u2y)〉 calculated using N = 16 as a function of distance from
the wall for a �nite shear 
ow.
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5. Conclusions

The correction to the velocity distribution function for an inelastic granular material
in shear 
ow has been analysed using a perturbation expansion of the Boltzmann
equation in the small parameter �I =(1− e)1=2, where e is the coe�cient of restitution.
The solution procedure involves an expansion of the correction to the distribution
function in terms of a set of basis functions consisting of the eigenfunctions of the
linearised Boltzmann collision operator. It is not possible to obtain analytical solutions
for the eigenfunction of the linearised Boltzmann operator, and an expansion in a �nite
set of Hermite polynomials was used to obtain the eigenfunctions. It is expected that
this approximation converges to the true eigenfunctions as the number of basis functions
is increased. A systematic procedure is used to generate a hierarchy of equations for
the higher-order corrections to the distribution function. In each of these equations, the
linear operator acting on the unknown coe�cients for the correction to the distribution
function remains the same, while there is a change in the inhomogeneous term due
to the lower-order corrections to the distribution function. In addition, the existence of
a solution for the hierarchy of equations requires that the inhomogeneous term in the
equation for the coe�cient of an eigenfunction is zero if the corresponding eigenvalue
is zero. This provides an expression for the ‘granular temperature’ as a function of
shear rate.
Unlike the Chapman–Enskog procedure, the present analysis does not assume a form

for the correction to the distribution function based on the symmetries of the inhomo-
geneous terms. Despite this, the present procedure has some advantages when com-
pared to the Chapman–Enskog procedure. For homogeneous 
ows, an expansion in the
eigenvalues of the linearised Boltzmann equation results in a set of independent linear
algebraic equations for the coe�cients in the expansion. In addition, the solvability
conditions are easily determined. The results indicate that this procedure recovers the
correct symmetries to a good approximation, and the errors due to the �nite set of basis
functions is numerically small even when the basis set consists of 16 eigenfunctions.
For the spatially varying granular medium, the present solution procedure is di�erent

from the classical solution of the linearised Boltzmann equation in a gas of elastic
particles. In that case, the particle velocities are distributed according to the Maxwell–
Boltzmann distribution at equilibrium, and the variation of the distribution function with
time due to non-equilibrium e�ects is usually analysed [15]. The perturbations to the
distribution function are expressed as an expansion in the eigenvalues of the linearised
collision operator, and the decay rate of an eigenfunction is equal to the corresponding
eigenvalue of the collision operator. In the present analysis, it is more appropriate
to solve for the spatial variation of the distribution function in the gradient direction
at steady state. This has been achieved by a normal form reduction of the equations
for the perturbation to the distribution function, and analytical solutions have been
obtained for the spatial variation of the normal modes. The results indicate that there
are variations of O(�I ) in the mean velocity, and O(�2I ) in the density and the mean
square velocity near a solid surface due to wall e�ects, but these corrections decay over
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a distance of the order of the mean free path. The procedure used here di�ers from
that of Jenkins and Richman [11] for the boundary conditions for an inelastic granular
medium. In that case, the stress and energy 
ux in the 
ow were obtained assuming that
the distribution function in the material is a Maxwell–Boltzmann distribution, and these
were incorporated as boundary conditions in the mass and momentum equations for
the granular 
ow. In the present case, boundary conditions for other eigenfunctions of
the linearised Boltzmann operator are also satis�ed by averaging over the microscopic
re
ection condition at the surface. This gives rise to some non-trivial e�ects such as
the variation in the density and mean velocity near the surface.

Appendix A

The O(�I ) and O(�2I ) corrections to the distribution function for N = 16 are

�(1) = 1:27337uxuy + 0:0447569uxuy(u2x + u2y) + 0:002466u
2
xu
2
y ; (A.1)

�(2) = 0:556424(1 + u2xu
2
y)− 0:056424u2x − 1:056424u2y + 0:25uxuy : (A.2)

The O(�I ) and O(�2I ) corrections to the distribution function for N = 36 are

�(1) =−1:37998uxuy + 0:0851323uxuy(u2x + u2y) + 0:0003461u
3
xu
3
y

+0:00277314uxuy(u4x + u4y) + 0:00960932u
3
xu
3
y − 0:00001387u5xu3y ; (A.3)

�(2) = 0:843435− 0:229389u2x + 0:006884u4x + 0:250000uxuy

− 1:75955u2y + 1:188233u2xu2y − 0:059337u4xu2y
+0:090042u4y − 0:062311u2xu4y + 0:003493u4xu4y : (A.4)
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