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Abstract

The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granu-
lar material are determined by solving the Boltzmann equation. The steady velocity distribution
is considered to be the product of the Maxwell–Boltzmann distribution and a Hermite polyno-
mial expansion in the velocity components; this form is inserted into the Boltzmann equation
and solved to obtain the coe�cients of the terms in the expansion. The solution is obtained
using an expansion in the parameter � = (1 − e)1=2, and terms correct to �4 are retained to
obtain an approximate solution; the error due to the neglect of higher terms is estimated at
about 5% for e = 0:7. A small perturbation is placed on the distribution function in the form
of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the
spatial coordinates; this is inserted into the Boltzmann equation and the growth rate of the
Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of
the hydrodynamic modes in the ow direction have unusual characteristics. The growth rate
of the momentum di�usion mode is positive, indicating that density variations are unstable in
the limit k → 0, and the growth rate increases proportional to |k|2=3 in the limit k → 0 (in
contrast to the k 2 increase in elastic systems), where k is the wave vector in the ow di-
rection. The real and imaginary parts of the growth rates corresponding to the propagating
also increase proportional to |k|2=3 (in contrast to the k 2 and k increase in elastic systems).
The energy mode is damped due to inelastic collisions between particles. The scaling of the
growth rates of the hydrodynamic modes with the wave vector l in the gradient direction
is similar to that in elastic systems. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The homogeneous shear ow of a granular material is a widely studied example
of rapid granular ows. In this system, a non-equilibrium steady state is maintained
due to a balance of the source of energy provided by the macroscopic shear, and the
energy dissipation due to inelastic collisions between particles. Kinetic theory tech-
niques [1–4] have been used to obtain macroscopic equations for the sheared state of
the system in a manner similar to the derivation of the Navier–Stokes equation for
a hard sphere gas from the Boltzmann equation. These descriptions usually assume a
form of the correction to the distribution function in a manner similar to the Sonine
polynomial expansion in the Chapman–Enskog theory. This expansion is then inserted
into the Boltzmann equation and averaged over velocity space to obtain equations for
the macroscopic mass, momentum and energy. The resultant equations are similar to
that for a gas at equilibrium, with an additional energy dissipation term due to inelastic
collisions. Kinetic theory techniques have also been used to determine the boundary
conditions for the shear ow [5].
Simulations [6] have suggested that the homogeneous sheared state of the mate-

rial is unstable, and an initially random con�guration evolves into an inhomogeneous
state due to the formation of clusters. The stability of the homogeneous sheared state
was analysed by Savage [7] and Babic [8]. Using a continuum description based on
the mass, momentum and energy conservation equations, a linear stability analysis
was used to determine the growth rate of perturbations. Both these studies indicated
that the sheared state is unstable for a wide range of parameter values. Subsequent
studies [9,10] used a more sophisticated stability analysis where the wave vector
of the disturbances were considered to be a function of time, and the wave vec-
tor was considered to be turning with the ow. In these studies, the evolution of
a suitably de�ned norm of the disturbance �eld was analysed to determine the sta-
bility of the system. These studies indicated that though the homogeneous sheared
state is linearly unstable, the norm of the disturbance �eld could still be bounded
at long times after transients decay, and the homogeneous state could still be sta-
ble at long times. All of these studies used a continuum description of the granular
ow.
In the present study, the Boltzmann equation is used to determine the dispersion

relation of the hydrodynamic modes about the steady sheared state. Though this de-
scription is more fundamental than the continuum description, it already contains the
assumption of molecular chaos inherent in the Boltzmann equation. In addition, it is
assumed that the particle size is small compared to the mean-free path, so that the only
relevant length and time scales are the mean-free path and the strain rate. After the
Boltzmann equation is scaled by these characteristic length and time scales, the resul-
tant equation depends only on the coe�cient of restitution e of the particle collisions.
The velocity distribution of the steady sheared state is determined using an expansion
in a basis set consisting of Hermite polynomials [11,12]. In addition, a perturbation
expansion about � = (1 − e)1=2 is used for simplicity, and terms correct to O(�4) are
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retained in the solution of the steady state. The results indicate that the errors due to
the neglect of higher order terms are small for e¿0:7.
The dispersion relation for the homogeneous sheared state is determined by linearis-

ing the Boltzmann equation about the steady solution. A Hermite polynomial expansion
in velocity space and a Fourier expansion in the real space are used for the pertur-
bation to the distribution function. The number of solutions for the growth rate for
a given wave vector in real space is equal to the number of basis functions used in
velocity space. Calculations have been carried out with 15, 21 and 28 basis functions.
Though the set of solutions for the growth rate depends on the number of basis func-
tions used, it is veri�ed that the growth rates of the hydrodynamic modes converge
to values that are independent of the number of basis functions for e¿ 0:9. Though
there is a variation of about 10% in the growth rates in the range 0:76e60:9, when
the number of basis functions is varied from 15 to 28, the scaling laws reported here
remain unchanged.

2. Steady velocity distribution

It is convenient to de�ne non-dimensional spatial and velocity variables at the outset.
The scaled velocity is de�ned as u = U=T 1=2, where U is the dimensional peculiar
velocity, and the ‘granular temperature’ T is the mean square velocity scaled by the
particle mass. The scaled spatial coordinates are de�ned as x=X=(nd)−1, where (nd)−1

is the magnitude of the mean free path of a particle, and n and d are the number
density (per unit area) and the particle diameter, respectively. The scaled strain rate
then becomes  = �=(n dT 1=2), where � is the dimensional strain rate. The velocity
distribution function, f(x; u; t), is de�ned such that f(x; u; t) dx du is the number of
particles in the di�erential volume dx about x in real space and du about u in velocity
space. For a steady homogeneous ow, f(x; u; t) = F(u) is only a function of particle
velocity. The conservation equation for this distribution function, in the absence of
spatial gradients in position and velocity, is

− @uxF(u)
@uy

=
@cF(u)
@t

; (1)

where the collision integral is given by

@cF(u)
@t

=
∫
u∗

∫
k
(e−2F(ub)F(u∗b )− F(u)F(u∗))w · k (2)

where
∫
u∗ ≡ ∫

du∗ and
∫
k ≡

∫
dk. In the above equation, ub and u∗b are the velocities

of a pair of particles before collision so that the post collisional velocities are u and
u∗; k is the unit vector in the direction of the line joining the centers of particles at
collision, w = u − u∗ is the velocity di�erence between the particles, and the above
integral is carried out for w · k¿0 so that the particles approach each other prior to
collisions. The factor e−2 in the �rst term of the above equation accounts for the
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contraction of phase space in a collision due to the inelastic nature of the collision
between particles.
The distribution function is determined using an expansion of the form

F(u) = F0(u)

[
1 +

K∑
k=1

Ak�k(u)

]
; (3)

where F0(u) is the Maxwell–Boltzmann distribution

F0(u) =
1
2� exp

(
−u

2

2

)
: (4)

The basis functions �k are chosen as follows. If an index N is chosen such that poly-
nomials of order unx u

N−n
y (for n6N ) and of lower order are retained in the expansion,

the total number of terms in the expansion is K . Only even values of N are used
in the expansion for the base state, to ensure that the resultant basis functions satisfy
the underlying symmetry of the distribution function f(−ux;−uy) = f(ux; uy) for the
present case. Of these, it is necessary to consider the equations for mass, momentum
and energy separately for reasons explained a little later. The basis functions �K−5 to
�K are de�ned as

�K−5 =
1√
2
(u2x − u2y) ;

�K−4 = uxuy ;

�K−3 =
1√
2
(u2x + u

2
y) ;

�K−2 = ux ;

�K−1 = uy ;

�K = 1 : (5)

The other basis functions, �1 to �K−6, are de�ned as

�k = Hem(ux)Hen−m(uy) (6)

for n=4; 6; : : : ; N and m=0 to n, where k=(
∑(n−2)=2

l=2 (2l+1)+m+1, and the Hermite
polynomials Hei(x) of order i are normalised so that∫ ∞

−∞
dx

√
1
2� exp

(
−x

2

2

)
Hei(x)Hej(x) = 1 for i = j

= 0 for i 6= j : (7)

In expansion 3, the coe�cients AK−3 to AK can be set equal to zero without loss of
generality, since the basis functions corresponding to these coe�cients are the mass,
momenta and energy.
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The expansion is inserted into the Boltzmann equation, multiplied by F0(u)�j(u)
and integrated over the velocity coordinates to obtain a non-linear vector equation of
the form

− (Hi + GijAj) =Mi + LijAj + NijkAjAk ; (8)

where the summation is carried out over the repeated indices, the K × 1 matrices Hi
and Mi are

Hi =
∫
u
�i(u)

@(uyF0(u))
@ux

; (9)

Mi =
∫
u

∫
u∗

∫
k
F0(u)F0(u∗)(�i(u′)− �i(u))w · k ; (10)

the K × K matrices Gij and Lij are

Gij =
∫
u
�i(u)

@(F0(u)uy�j(u))
@ux

; (11)

Lij =
∫
u

∫
u∗

∫
k
F0(u)F0(u∗)(�j(u) + �j(u∗))(�i(u′)− �i(u))w · k (12)

and the third order tensor Nijk is

Nijk =
∫
u

∫
u∗

∫
k
F0(u)F0(u∗)�j(u)�k(u∗)(�i(u′)− �i(u)) ; (13)

where u′ is the velocity after an inelastic collision of a particle which has a prec-
ollisional velocity u and collides with a particle with velocity u∗ with the unit vec-
tor along the line of centers given by k. It can easily be veri�ed that all the terms
L(K−2) j=L(K−1) j=LKj=N(K−2) jk=N(K−1) jk=NKjk=0 for all j; k due to the mass and
momentum conservation in a collision. In addition,

∑K
j=1 G(K−2) jAj=

∑K
j=1 G(K−1) jAj=∑K

j=1 GKjAj = 0 if AK−3 = AK−2 = AK−1 = AK = 0. Therefore, Eq. (8) for i = K − 2
to K are identically satis�ed. However, Eq. (8) for i = K − 3 is not identically satis-
�ed, because energy is not a collisional invariant. The (K − 3) equations are solved
simultaneously to obtain the coe�cients A1 to AK−4 and the shear rate .
The solution of the simultaneous equations are obtained by de�ning an auxiliary

vector A′ of dimension K − 3 where A′i = Ai for k = 1 to K − 4, and A′K−3 = . The
iterative procedure proceeds with an initial guess for this vector, A′(0)i , and the new
vector A′(n+1)i is related to the old vector A′(n)i by

A′(n+1)i = A′(n)i − S(n)ij R(n)j ; (14)

where the (K − 3)-dimensional vector R(n)i is the ‘remainder’ in Eq. (14)

R(n)i = (n)GijA
(n)
j + LijA

(n)
j + NijkA

(n)
j A

(n)
k (15)
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and S(n)ij is the inverse of the Jacobian at A′i = A
′(n)
i

(S(n))−1ij =
@R(n)j
@A(n)i

= (n)Gij + Lij + (Nijk + Nikj)A
(n)
k (16)

for i = 1 to (K − 3) and j = 1 to K − 4,

(S(n))−1(K−3) j =
@R(n)j
@(n)

=GijAj : (17)

An asymptotic solution for the distribution function in the small parameter � =
(1 − e)1=2 can be obtained in the limit (1 − e).1. The leading order shear rate is
O(�) when scaled by (n dT ), and the shear rate can be expanded in an asymptotic
series

= �(1) + �2(2) + · · · : (18)

Similarly, the coe�cients Ai are expressed as a series in the parameter �

Ai = �A
(1)
i + �2A(2)i + · · · ; (19)

matrices Mi, Lij and Nijk are also expanded in a series in the parameter �

Mi =M
(0)
i + �2M (2)

i + �4M (4)
i + · · · ;

Lij = L
(0)
ij + �

2L(2)ij + �
4L(4)ij + · · · ;

Nijk = N
(0)
ijk + �

2N (2)ijk + �
4N (4)ijk + · · · : (20)

In these series, only the terms corresponding to even powers of � are non-zero because
only powers of (1−e) appear in these integrals. In addition, the leading-order elements
of these matrices M (0)

K−3; L
(0)
(K−3) j and N

(0)
(K−3) jk corresponding to the energy equation

are zero. These series are inserted into Eq. (8) to obtain solutions for the shear rate
and the coe�cients A(n)i . The leading-order equation is identically satis�ed, since the
Maxwell–Boltzmann distribution is a solution of the elastic collision operator. The O(�)
equation is

− (1)Hi = L(0)ij A(1)j : (21)

This provides the coe�cients A(1)i in terms of the leading order strain rate (1) for
i=(1; K−4). The equations for i=(K−3; K) are identically satis�ed at this order. Note
that the strain rate (1) is as yet unspeci�ed. This is provided by the O(�2) correction
to the energy equation (for i = K − 3). It can easily be veri�ed that HK−3 = 0, and
N (0)(K−3) jk = L

(0)
(K−3) j = 0 for all j; k. Consequently, the leading order energy equation

simpli�es to

1G(K−3) jA
(1)
j +M (2)

K−3 = 0 : (22)
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Table 1

K = 11 K = 18

 3:5012� + 2:0318�3 − 0:9789�4 3:4967� + 2:0590�3 − 0:8654�4

〈uxuy〉 −1:0074� + 0:8945�3 − 0:2817�4 −1:0078� + 0:6411�3 − 0:2494�4

〈u2x − u2y 2:0671�2 − 1:7088�4 2:0756�2 − 0:7058�4

〈u4x〉 5:2380�2 + 15:3428�4 5:1705�2 + 12:9422�4

〈u3xuy〉 −2:7853�− 3:2221�3 − 2:9190�4 −2:7725�− 4:3504�3 − 3:4684�4

〈u2xu2y〉 2:2228�2 − 0:7336�4 2:3318�2 − 3:6218�4

〈uxu2y〉 −2:7853� + 3:9587�3 − 2:7210�4 −2:7725� + 3:5367�3 − 3:2110�4

〈u4y〉 −5:3102�2 + 8:9958�4 −5:2394�2 − 0:0484�4

A similar procedure is used for determining the higher corrections to the distribution
function.
The corrections to the distribution function have been obtained correct to O(�4) or

(1 − e)2 in the asymptotic expansion. Two sets of basis functions, one for K = 11
corresponding to all moments upto fourth order (of the form unx u

4−n
y for 06n64) and

one for K = 18 corresponding to all moments upto sixth order (of the form unx u
6−n
y

for 06n66) have been used. The results of the calculation are shown in Table 1. It
is seen that the results for the shear rate and the moments of the velocity are in good
agreement upto for K = 11 and K = 18 upto O(�3), though there is some variation
for the O(�4) contributions. This indicates that truncation at fourth moments is not
su�cient to capture the O(�4) contribution to the distribution function, and a larger set
of moments may be necessary. The results of the present procedure correct to O(�2)
were compared with the results of previous studies [3,4] in a previous paper [12]. The
results for K = 18 are used in the stability analysis in the next section.

3. Dispersion relations

In the linear stability analysis, perturbations are imposed on the distribution function
of the form

f(x; u; t) = F(u) + f′(x; u; t) ; (23)

where the perturbation f′(x; u; t) has the form

f′(x; u; t) = f̃(u)exp(�kx + �ly + st) ; (24)

where k and l are the wave numbers in the x and y directions, respectively, and s
is the growth rate of the perturbations. The above form of the distribution function is
inserted into the Boltzmann equation, and linearised about the base state to obtain an
equation for the form

(s+ �kux + �luy)f̃ − @uyf̃
@ux

=
@clf̃
@t

; (25)
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where the linearised collision integral is given by

@clf̃
@t

=
∫
u∗

∫
k

(
1
e2
F(ub)f̃(u∗b ) + F(u

∗
b )f̃(ub)

)

−F(u)f̃(u∗)− F(u∗)f̃(u))w : k : (26)

A series of the following form is assumed for the perturbation to the distribution
function f̃:

f̃(u) = F0(u)
K∑
i=1

Ãi�i ; (27)

where the basis functions �i were de�ned in Eqs. (5) and (6). This series is inserted
into Eq. (25), multiplied by the basis function �i(u) and integrated over the particle
velocities to get the following matrix equation:

(sIij + �k Xij + �lYij − Gij − Cij)Ãj =MijÃj = 0 ; (28)

where Iij is the identity matrix, and the other matrices are de�ned as

Xij =
∫
u
F0(u)ux�i(u)�j(u) ; (29)

Yij =
∫
u
F0(u)uy�i(u)�j(u) ; (30)

Gij =
∫
u
F0(u)�i(u)

(
@uy�j(u)
@ux

− uyux�j
)
; (31)

Cij =
K∑
k=1

Ak

∫
u

∫
u∗

∫
k
F0(u)F0(u∗)(�k(u)�j(u∗) + �k(u∗)�j(u))

× (�i(u′)− �i(u))w :k : (32)

The dispersion relation is obtained by setting the determinant of the matrix Mij equal
to zero, so that there are non-trivial solutions for the amplitudes Ãj.
The calculations are carried out with di�erent values for K , the number of basis

functions. For the present study, results have been obtained for K=15; K=21 and K=
28, which correspond to retaining all moments upto (unx u

4−n
y ); (unx u

5−n
y ) and (unx u

6−n
y ),

respectively. As shown below, it turns out that increasing the number of basis functions
has an insigni�cant e�ect on the results for the growth rate of the hydrodynamic modes
for e¿0:9, though there could be a variation of 5–10% for 0:76e60:9. However, the
scaling behaviour of the hydrodynamic modes is robust, and similar scaling laws are
observed for the growth rates even at e = 0:7. Calculations have not been done for
e60:7, because there could be errors in the expressions for the corrections to the
distribution function obtained in the previous section.
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4. Results

It is �rst useful to analyse the results for the case of elastic particles, where there is
no energy loss during collisions. For a basis set consisting of N functions, there are N
solutions for the growth rate. For a system of elastic particles, four of these correspond
to the conserved mass, momenta and energy basis functions. In a homogeneous system
(k = 0), the growth rate corresponding to these four basis functions is equal to zero,
while all others are negative. For k 6= 0, the growth rates for the transverse momentum
and energy modes are di�usive, i.e., they are real and negative and proportional to k2

for k.1, while those for the mass and longitudinal momentum are propagating, i.e.,
the real part is negative and proportional to k2 for k.1, while the imaginary parts
are equal in magnitude and opposite in sign and are proportional to k for k.1. These
characteristics are captured by the present procedure for obtaining the growth rates, as
shown in Fig. 1. Note that the real parts of the growth rates for the hydrodynamic
modes are negative, and their magnitudes are shown in Fig. 1. It is also seen that
an increase in the number of basis functions from N = 15 to 28 results in a small
di�erence in the values of the growth rates in the range 0:016k61:0. In addition, the
expected di�usive behaviour is observed for the density and energy modes and the real
part of the velocity modes, while the imaginary parts of the velocity modes increase
proportional to k in the limit k.1.
The behaviour of the hydrodynamic modes for the granular material in the presence

of a shear ow are considered next. The sheared state of the material is anisotropic,
and it is necessary to obtain the growth rate separately for the wave numbers k and
l. It is �rst useful to examine the dependence of the results on the number of basis
functions K . Fig. 2 shows the results for the growth rate of the di�usive mode, sd

Fig. 1. Variation in the magnitudes of the growth rates of the hydrodynamic modes for a two dimensional
gas of elastic particles. (©) sd; (♦) se; (4) smr ; (5) smi . The solid lines correspond to the results obtained
using 28 basis functions, while the broken lines correspond to result using 15 basis functions.
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Fig. 2. Variation in the growth rates of the hydrodynamic modes for a two dimensional gas of elastic particles.
(©) e = 0:9; (♦) e = 0:7. The solid lines correspond to the results obtained using 28 basis functions, while
the broken lines correspond to results using 15 basis functions.

as a function of k for e = 0:9 and e = 0:7. Similar results are obtained for the other
modes as well. It is observed that there is excellent agreement between the results for
K = 15 and K = 28 when the coe�cient of restitution is 0.9. The agreement is not
as good when the coe�cient of restitution is 0.7, but the variation of the growth rate
with the wave number shows a similar trend. Thus, though the results of the present
analysis show quantitative convergence for e¿0:9, the qualitative trends are preserved
as the number of basis functions is increased even for e=0:7. Consequently, the results
reported below are obtained using a basis set consisting of 28 functions.
The salient features of the behaviour of the hydrodynamic modes in the ow direction

as a function of the wave vector k at l= 0 are discussed below.
(1) The growth rate for the transverse momentum mode sd is real and positive,

indicating that long wave length perturbations are unstable for modes with wave vector
along the ow direction. The growth rate is plotted as a function of k in Fig. 3 for
di�erent values of the coe�cient of restitution e. It can be seen that the scaling of the
growth rate of the di�usive mode has the form

sd = sdk |k|2=3 (33)

for k.1, in contrast to the usual hydrodynamic scaling sd˙ k2 for systems of elastic
particles. The variation of the coe�cient sdk with the coe�cient of restitution is shown
in Fig. 7. This coe�cient increases as (1−e) increases, and appears to be proportional
to (1 − e)1=3 for (1 − e).1. However, there are not enough data points, for reasons
mentioned below, in the region (1− e).1 to make a de�nite assessment.
(2) The real part of the growth rate for the propagating mode smr turns out to be

negative, and −smr is plotted as a function of k for di�erent values of e in Fig. 4. It
is observed here as well that the growth rate has the form

smr =−smrk |k|2=3 ; (34)
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Fig. 3. Variation in sd as a function of k: (©) e= 0:99; (♦) e= 0:95; ( ) e= 0:9; (4) e= 0:8; (5) e= 0:7.

Fig. 4. Variation in −smr as a function of k: (©) e=0:99; (♦) e=0:95; ( ) e=0:9; (4) e=0:8; (5) e=0:7.

where smrk , which is a positive coe�cient, is shown as a function of e in Fig. 7. This
is in contrast to the k2 scaling for elastic systems. Fig. 7 shows that smrk increases
with increase in (1− e), and scales in a manner similar to sdk .
(3) The imaginary part of the growth rate for the propagating mode, smi, shown in

Fig. 5, is also of the form

smi =± smik |k|2=3 ; (35)

in contrast to the hydrodynamic scaling smi˙ k in elastic systems. The coe�cient smik ,
shown as a function of e in Fig. 7, also has a scaling similar to sdk and smrk .
(4) The growth rate for the energy modes Se is negative, and converges to a �nite

value in the limit k → 0 because energy is dissipated in particle collisions. Fig. 6
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Fig. 5. Variation in |smi| as a function of k. (©) e=0:99; (♦) e=0:95; ( ) e=0:9; (4) e=0:8; (5) e=0:7.

Fig. 6. Variation in −se as a function of k. (©) e=0:99; (♦) e=0:95; ( ) e=0:9; (4) e=0:8; (5) e=0:7.

shows the variation of −sd as a function of k, and Fig. 7 shows −sd as a function of
e in the limit k → 0.
The variations of the growth rates of the hydrodynamic modes as a function of the

wave number l in the direction of shear at k=0 is shown in Figs. 8–11. These �gures
indicate that though there is a quantitative variation in the values of the growth rate,
the scaling with l remains unchanged in the limit l.1 for the di�usion and momentum
modes. The energy mode is, of course, damped.
(1) The growth rate for the transverse momentum mode sd has the form

sd =−sdll2 ; (36)
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Fig. 7. The coe�cients sdk (©); smrk ( ); smik (♦) and sek (4) as a function of (1− e).

Fig. 8. Variation in −sd as a function of l. (©) e=0:99; (♦) e=0:95; ( ) e=0:9; (4) e=0:8; (5) e=0:7;
(Solid line) e = 1:0.

as shown in Fig. 8, in the limit l.1. This is similar to that for an elastic system.
A decrease in the coe�cient of restitution tends to decrease the magnitude of the
coe�cient sdl, which is shown as a function of l in Fig. 12. Moreover, it is apparent
from Fig. 12 that the coe�cient sdl is small compared to that for an elastic system in
the limit l.1, the limited data shown in Fig. 12 suggest that the sdl ∼ (1− e)2 in the
limit (1 − e).1. However, there are not enough data points in this limit to make a
de�nite assessment.
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Fig. 9. Variation in −smr as a function of l. (©) e=0:99; (♦) e=0:95; ( ) e=0:9; (4) e=0:8; (5) e=0:7;
(Solid line) e = 1:0.

Fig. 10. Variation in |smi| as a function of l. (©) e = 0:99; (♦) e = 0:95; ( ) e = 0:9; (4) e = 0:8;
(5) e = 0:7; (Solid line) e = 1:0.

(2) The real and imaginary parts of the growth rate for the propagating modes, smr
and smi, are of the form

smr =−smrll2 ; (37)

smi =± smill ; (38)

as shown in Figs. 9 and 10. A decrease in the coe�cient of restitution increases the
coe�cient smrl, thereby increasing the damping, and Fig. 12 indicates that smrl increases
proportional to (1− e)−1 while smil tends to a constant value in the limit (1− e).1.
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Fig. 11. Variation in −se as a function of l. (©) e=0:99; (♦) e=0:95; ( ) e=0:9; (4) e=0:8; (5) e=0:7;
(Solid line) e = 1:0. The dashed lines, from bottom to top, show slopes of ( 13 ) and 1, respectively.

Fig. 12. The coe�cients sdl (©); smrl ( ); smil (♦) and sel (4) as a function of (1− e). The dashed lines,
from bottom to top, show slopes of 2, 1 and −1, respectively.

(3) The growth rate of the mode corresponding to total energy, se, is damped because
energy is not conserved in collisions, as shown in Fig. 11. The variation of the growth
rate in the limit l.1, shown in Fig. 12, is similar to the variation of se in the limit
k.1.
It should be noted that the scaling relations obtained from Figs. 7 and 12 are ap-

proximate, since it was not possible to extend the numerical results to (1− e)¡ 0:01
for reasons mentioned below.
The above results show a qualitative variations in the growth rates when the co-

e�cient of restitution is changed from 1.0 to 0.99. In this case, it is of interest to



V. Kumaran / Physica A 284 (2000) 246–264 261

Fig. 13. The growth rate −sd as a function of k for (©) (1 − e) = 10−6; ( ) (1 − e) = 10−5;
(♦) (1− e) = 10−4; (4) (1− e) = 10−3.

Fig. 14. The growth rate −smr as a function of k for (©) (1 − e) = 10−6; ( ) (1 − e) = 10−5;
(♦) (1− e) = 10−4; (4) (1− e) = 10−3; (5) (1− e) = 10−2; (Solid line) e = 1.

determine whether the change in scaling laws is discontinuous, or whether there is a
continuous variation in the scaling behaviour as e is decreased from 1. Figs. 13–15
show the variation in sd, smr and smi for (1 − e) = 10−6; 10−5; 10−4 and 10−3. It is
observed that at (1 − e) = 10−6, the coe�cients are indistinguishable from those at
e = 1, while in the other cases the coe�cients are close to those at e = 1 for larger
values of k while they show signi�cant deviation at small values of k. This indicates
that the scaling does show a continuous variation from those for a conservative system
to those obtained above for an inelastic system in a continuous fashion. However, for
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Fig. 15. The growth rate |smi| as a function of k for (©) (1 − e) = 10−6; ( ) (1 − e) = 10−5;
(♦) (1− e) = 10−4; (4) (1− e) = 10−3; (5) (1− e) = 10−2; (Solid line) e = 1.

values of the coe�cient of restitution that are encountered in practical systems, the
scaling is very di�erent from that for elastic systems.

5. Conclusions

The growth rates for the hydrodynamic modes of the two-dimensional homogeneous
shear ow of inelastic disks were determined by solving the Boltzmann equation. The
diameter of a disk was considered to be small compared to the mean-free path, and
the only length scale is the mean-free path (1=n dT 1=2), where n is the number of disks
per unit area and T is the mean square velocity of the disks. In addition, there is only
one time scale, the strain rate of the mean ow , which can be related to the mean
square velocity of the disks T . All lengths are non-dimensionalised by the mean-free
path and velocities by

√
T in the Boltzmann equation, and the only variable parameter

in the resultant equation is the coe�cient of restitution e. The velocity distribution in
the homogeneous sheared state of the system is determined using an expansion in a
set of basis functions. In addition, an expansion in the parameter �=(1− e)1=2 is used
to simplify the calculation, and terms correct to O(�4) are retained in the expansion.
The results indicate that this solution could result in errors of about 5% at e=0:7 due
to the neglect of higher-order terms.
The dispersion relation for the growth rate of the hydrodynamic modes was deter-

mined by placing a small perturbation on the steady solution of the Boltzmann equation.
An expansion in a set of basis functions was used, and it was found that the results
for the hydrodynamic modes are independent of the number of basis functions K for
K = 15; 21 and 28. The subsequent calculations were carried out using 28 basis func-
tions. The results indicate that the scaling laws for the hydrodynamic modes are very
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di�erent from those for systems of elastic particles. In the ow direction, the transverse
momentum mode is unstable, and the growth rate increases as sd˙ k2=3 in the limit
k → 0. The propagating mode is stable, but its real and imaginary parts also increase
as k2=3. The mode corresponding to energy uctuations is stable, and the decay rate
converges to a �nite value in the limit k → 0. In the direction of shear, the hydrody-
namic modes have a behaviour similar to those in a system of elastic disks, but the
decay rate of the di�usive mode is much lower than that in an elastic system, while
that for the propagating mode is higher.
While equations similar to the Navier–Stokes equation (for simple uids) have been

extensively used to model the sheared state of a granular material, relatively little
work has been done on the derivation of the macroscopic equations from a microscopic
description. The Navier–Stokes type models contain approximations for the constitutive
relations which are based on kinetic theories for systems of elastic particles, and the
implicit assumption in these models is that the dispersion relation for the hydrodynamic
modes about the sheared steady state is similar to that for a gas of elastic particles at
equilibrium. In the present analysis, the Boltzmann equation was solved to obtain the
steady-state solution for the velocity distribution, and the dispersion relation for this
steady distribution was determined. Though the Boltzmann equation already contains
assumptions such as the molecular chaos assumption (the pair distribution function is
the product of single particle distributions), the results indicate that the behaviour of
the sheared steady state of a system of inelastic disks is qualitatively di�erent from
that for an elastic system. Though the behaviour of the sheared state does converge
to that of a system of elastic disks, this is restricted to coe�cients of restitution in
the range 0.999999–0.9999, and the anomalous behaviour of the hydrodynamic modes
is clearly seen for e60:99. This seems to suggest that the form of the macroscopic
transport equations for the hydrodynamic variables in the sheared state for realistic
values of the coe�cient of restitution could be very di�erent from that for simple
uids. However, the present results are restricted to a dilute system of disks in two
dimensions, and it is necessary to do further analysis for three-dimensional systems at
higher densities.
The reason for the anomalous behaviour of the hydrodynamic modes is likely to

be di�erent from that observed in other systems. In the area of dynamical critical
phenomena, for example, anomalous behaviour of transport coe�cient is observed only
very near critical points, due to the divergence of thermodynamic susceptibility near
the critical point [13]. Collective e�ects could also result in anomalous behaviour, such
as the long time tail in viscous systems [14]. The characterisitc frequency in turbulent
ows [15] in the inertial sub range varies proportional to k2=3 due to the presence
of multiple scales across which the energy ux remains unchanged. However, since
there is no underlying equilibrium state in the present case, the Boltzman equation
considers only pair interactions between particles. The only possible reason for this
anomalous behaviour seems to be the inelasticity of interparticle collisions, and the
connection between the inelasticity of particle collisions and the anomalous behaviour
of hydrodynamic modes remains to be elucidated.
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