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Instabilities due to Charge-Density-Curvature Coupling in Charged Membranes
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Instabilities are caused by the reduction in the electrostatic energy when the membrane is curved
with the higher charge density on the bilayer which is stretched by the curvature. In a bilayer where
the charges can flip from one lipid layer to the other, there is a thermodynamic instability to a sponta-
neously curved state with different charge densities on the two sides. If the charges are not permitted
to flip, there is a dynamical instability due to the correlated modulation of the charge density and cur-
vature fields. Numerical estimates show that these effects are present in parameter regimes relevant to
biological systems.

PACS numbers: 87.16.–b, 05.40.–a, 82.65.Dp
It is known that biological membranes undergo shape
changes due to forces exerted during ion transport in pro-
teins, due to the asymmetry of inclusions in the mem-
brane and their phase separation on the surface, and other
nonequilibrium processes [1]. Most of the studies on bio-
logical membranes have focused on the structural mechan-
ics of membranes at thermal equilibrium [2,3]. However,
it has recently been realized that the forces generated on
membranes by inclusions could play a crucial role in the
structure and dynamics of membranes. These could be in
the form of proteins with head-tail asymmetry, which in-
duce a spontaneous curvature in the membrane [4,5], or in
the form of phase segregation of inclusions on the surface
[6]. Biological membranes also have charged inclusions
on the surface, and it is well known that shape changes are
accompanied by variations in the transmembrane potential
on the surface and surface charge distributions [7].

Surface charges on vesicles and membranes are respon-
sive to external potentials, and a redistribution of charges
occurs under externally applied fields [8]. This surface re-
distribution has a significant effect on the mobility of the
vesicles, and could even cause it to change sign. In ad-
dition, a spatial variation of charges on a surface could
result in a net force in the presence of an electric field
[9]. An important experimental result to emerge recently
is the spontaneous formation of vesicles in mixed ionic
surfactant systems [10]. This is unusual because the bend-
ing energy for these systems is large compared to thermal
energy at ordinary temperatures, and unilamellar vesicles
are usually formed under nonequilibrium conditions. One
suggested mechanism is the “spontaneous curvature” of a
mixed surfactant system [11], where a difference in com-
position of the two lipid layers could result in a nonzero
equilibrium curvature of the bilayer.

It has been shown [12] that a difference in the charge
densities in the two lipid layers forming a bilayer could
stabilize a vesicle, because there is a reduction in elec-
trostatic energy when the higher charge density is on the
outside of the vesicle. This could compensate for the in-
crease in the curvature energy. In the present analysis, we
consider the coupling between the charge density and cur-
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vature of a membrane in the absence of an applied electric
field. This is motivated by the observations [7] which in-
dicate that variations in charge distribution coincide with
shape changes, and the experimental results [10] which
have demonstrated the spontaneous formation of vesicles
in mixed surfactant systems. The objective is to examine
whether the coupling between the surface charge distribu-
tion and the curvature in a bilayer could induce thermo-
dynamic or dynamical instabilities on the flat state of the
membrane. When the surface charge density on one side
of the bilayer is different from that on the other side, it is
shown that there is a reduction in the electrostatic energy
if there is a higher charge density on the lipid layer that
is stretched by the curvature. Two of the consequences of
this are analyzed here.

(1) First, we consider the case where the charges are
permitted to flip from one surface of the bilayer to an-
other. In the absence of the curvature–charge asymmetry
coupling, it is expected that the charge densities on the
two sides are equal in order to maximize entropy, and the
membrane is flat to minimize curvature energy. However,
in the presence of the curvature–charge density coupling,
there is a reduction in the electrostatic energy when the
membrane is curved and the charge density is asymmet-
ric. This reduction could compensate for the increase in
the bending energy and the reduction in the entropy, lead-
ing to a state where the membrane develops a spontaneous
curvature with different charge densities on the two sides.

(2) Second, we consider the case where the charges are
not permitted to flip from one side to another, but are
permitted to diffuse along the surface. In this case, it is
shown that there is the possibility of a dynamical instability
due to a correlated variation in the charge density and the
curvature. The mechanism is explained a little later.

The reduction in the electrostatic energy due to the cur-
vature of the surface with charges on one side is discussed
first, and then the above results are derived.

The starting point of our analysis is the Poisson-
Boltzmann equation, for the potential c , linearized
using the Debye-Huckel approximation in the limit
�zec�T � ø 1 [13],
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=2c � k2c , (1)

where k, the inverse of the Debye screening length, is
�2N`z2e2�eT�1�2, e is the charge of an electron, z is the
number of charges per molecule (assumed to be equal for
positively and negatively charged molecules), N` is the
concentration of counterions at a large distance from the
surface, and T is the product of the Boltzmann constant
and the temperature.

The relationship between the surface potential and the
charge density for a curved surface is derived in the limit
where the curvature C is small compared to the inverse of
the Debye screening length k21. If the direction is normal
to the surface w, then the Laplacian operator, correct to
O�C�k�, is

=2 �
≠

≠w2 1 C
≠

w
. (2)

The equation for the potential (1) reduces to

≠2c

≠w2 1 C
≠c

≠w
� k2c . (3)

Here the sign convention used is that C is considered
positive if the charges are on the lipid layer which is
stretched by the curvature. The above equation can be
solved by expanding c � C�w� 1 �C�k�C0, and using
an asymptotic expansion in the small parameter �C�k�.
Here C�w� is the potential at a flat interface given by

C�w� � C0 exp�2kw� , (4)

where C0 is the potential at the surface. The first cor-
rection is obtained using an asymptotic expansion in the
parameter �C�k�

≠2
wC0 1 ≠wC � k2C0 , (5)

which is solved to obtain

C0�w� �
C0kw

2
exp�2kw� . (6)

Therefore, the potential distribution in the Debye layer at
a curved surface is given by

c�w� � C0 exp�2kw�
µ
1 1

wC
2

∂
, (7)

and the charge density in the Debye layer is

q�w� � 2
ek2

ze
C0 exp�2kw�

µ
1 2

C
k

1
Cw
2

∂
. (8)

The relationship between the surface potential C0 and the
surface density per unit area of the charged species s is
determined from the charge balance condition

sze � 2
Z `

0
dw q�w� �1 1 Cw� , (9)

where q�w� is the total charge q�w� � n1�w� 2 n2�w�,
z is the number of charges per charged molecule on the
surface, e is the charge on an electron, s is the number
density (per unit area) of the charged species on the sur-
face, and the term �1 1 Cw� accounts for the curvature of
the differential volume at a distance w from the surface
caused by the curvature of the surface. The above integral
is easily carried out to provide

s �
C0ek

z2e2

µ
1 1

C
2k

∂
. (10)

The free energy due to the charge distribution at a curved
surface is calculated next. There are two contributions
to the free energy, one required to assemble the charged
species at the surface, and the second for establishing the
counterion density. In the latter case, it is easy to see that
the net change in the free energy is zero, because the re-
duction in the electrostatic energy is exactly compensated
by the reduction in the entropy due to the confinement of
the counterions in the diffuse layer [13]. Consequently, it
is necessary to consider only the free energy required for
assembling the charges at the surface. This free energy per
unit area of the surface is determined by considering the
energy required to assemble the charged species from zero
density to the charge density s in a potential field which
is related to the surface charge density by (10)

Fel �
Z

dS
Z s

0
ds0 C0 , (11)

where dS is the differential surface area. The total free
energy due to the surface charges and the counterions
is determined by integrating the above free energy over
the surface

Fel �
Z

dS
s2z2e2

2ek

µ
1 2

C
2k

∂
. (12)

Note that in the above expression, the charges are assumed
to be on one side of the bilayer, and the curvature is as-
sumed to be positive if the charges are on the surface
stretched by the curvature. For bilayer charge densities
sa and sb on the two lipid layers, the electrostatic energy
due to curvature is

Fel �
Z

dS
�s2

a 1 s
2
b�z2e2

2ek
2

�s2
a 2 s

2
b�z2e2

2ek

µ
C
2k

∂
,

(13)

where C is considered positive if the lipid layer with den-
sity sa is stretched and the lipid layer with density sb

is compressed due to the curvature. Note that the term
proportional to C in (12) is proportional to the curvature,
and favors placing a higher charge density on the stretched
surface. The next term of O�C�k�2 is proportional to
�s2

a 1 s
2
b� [12], and this term augments the curvature en-

ergy of the bilayer. Note that in the following analysis we
assume that the charges are confined to the surface, so that
the total number of charges is conserved, as is applicable to
biological membranes, and the electrostatic energy is the
only contribution to the free energy. In case the charges
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are absorbed from the bulk solution, the number of charges
on the surface is not fixed, and it is necessary to consider
the energy of adsorption as well.

The effect of the coupling between the charge density
and the curvature derived above is first applied to a bilayer
in which the charge densities are different on the two sides,
and the charges are permitted to flip from one side to
the other. In the absence of the charge density–curvature
coupling, it is expected that the equilibrium state has equal
charges on the two sides, since this maximizes the entropy
S of the charge distribution,

S �
Z

dS �sa log�saA� 1 sb log�sbA�� , (14)
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where sa and sb are the charge densities on the two sides
of the membrane, and A is the microscopic area occupied
by a charge. For small deviations from the state where
the charge densities on the two sides are equal, we set
sa � sm�1 1 d� and sb � sm�1 2 d�, and the entropy
decrease for having different charge densities on the two
sides is

DS � 2
Z

dS sm

µ
d2 1

d4

6

∂
. (15)

The change in the free energy contains contributions due
to the change in entropy, the change in the bending en-
ergy, and the coupling between the charge density and
the curvature,
F �
Z

dS

∑
Tsm

µ
d2 1

d4

6

∂
1

KC2

2
1

�s2
a 1 s

2
b�z2e2

2ek
2

�s2
a 2 s

2
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2ek
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C
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dS

∑
Tsm

µ
d2 1

d4

6

∂
1

KC2

2
1

�s2
a 1 s

2
b�z2e2

2ek
2 HdC

∏
. (16)
The above free energy implies a continuous transition from
a stable state with zero curvature for Tsm . �H2�2K� to a
stable state with a nonzero curvature for Tsm , �H2�2K�,
where H � �s2

mz2e2�ek2�. The stable state with nonzero
curvature has a curvature and charge density difference
given by

d � 6

∑
3

µ
H2

2KTsm
2 1

∂∏1�2

,

C � 6
H2

K

∑
3

µ
H2

2KTsm
2 1

∂∏1�2

.

(17)

It is of interest to determine the parameter regime where
the transition from a zero curvature state to a nonzero
curvature state occurs. The condition for the transition can
be written as

H2

2K
. Tsm ,

s3
mz4e4

2e2k4KT
. 1 .

(18)

The above relation indicates that the transition is induced
if the temperature is decreased, the Debye length is in-
creased, or the total charge density on the surface is in-
creased. The dependence on the total charge density and
the Debye length are sensitive, since the term on the
left is proportional to the third and fourth powers, re-
spectively. It is of interest to determine numerically the
values where the transition may be expected. Using esti-
mates e � 1.6022 3 10219C, k � 108 m21, e � 1.6 3

10210 F m21 for water, and K � 10219 J for typical bi-
layers, the transition is expected at sm � 1016 m22, to
within a constant of order unity. This works out to about
a charge for every 100 nm2, which is the order of mag-
nitude certainly encountered in biological systems, but it
should be noted that there is a sensitive dependence of
the density on the Debye length. It is also of interest
to examine the order of magnitude of the curvature ex-
pected in such systems. From Eq. (17), the curvature
scale is C � �s2

mz2e2�ek2K�, which is O�107 m21� for
the parameter values quoted above. Therefore, the charge
density–curvature coupling could lead to the stabilization
of structures of the micron scale.

The second application of the coupling between the
charge density and curvature is the dynamical instability
of a membrane where the charges are not permitted to
flip from one side to the other, but are permitted to dif-
fuse along the two surfaces. There are two number density
fields, s0

a�y, t� and s
0
b�y , t�0, which describe the deviation

of the local charge density from the mean value sm due to
diffusion along the surface, where y is a two-dimensional
displacement field along the membrane surface. The mem-
brane surface is described by a height field h�y , t� which
is the normal displacement of the surface from its equilib-
rium position. The local curvature is given by C � =2

sh,
when the displacement is small compared to the wave-
length of the perturbations, where =s is the gradient op-
erator along the surface. The free energy functional is
written as

F�h, s0
a, s0

b� �
1
2

Z
dS

3

∑
K�=2

sh�2 1 G�=sh�2 1 A�s02
a 1 s02

b �

1
2smz2e2

ek2 �s0
a 2 s0

b�=2
sh

∏
, (19)

where K is the bending modulus, G is the surface
tension; the term proportional to A provides an energy
penalty for changes in the surface charge density about an
equilibrium value.
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The dynamical stability of the system is determined by
writing dynamical equations for the charge density and
height variations. For the present purpose, it is sufficient to
write an equation for the difference in the charge densities
s0 � s0

a 2 s
0
b , which is obtained by writing equations

for s0
a and s

0
b and subtracting the two,

≠s0

≠t
� D=2

s

µ
dF
ds0

∂

� D=2
s�As0 1 2G=2

sh� 1 j , (20)

where G � �smz2e2�ek2�, the Gaussian white noise j

has zero mean, the correlation is given by

�j�y, t�j�y 0, t0�	 � 2TD=2
sd�t 2 t0�d�y 2 y 0� , (21)

and D is an Onsager coefficient. The equation for the
height fluctuations is determined from the stress balance
condition, which relates the stress exerted by the mem-
brane to the fluid velocity field. The tangential velocity at
the surface is set equal to zero when the amplitude of the
height fluctuations is large compared to the thickness of
the membrane. For the normal velocity, the stress balance
condition has the following form for a Stokes flow in the
absence of fluid inertia [5]:

yn � 2
Z

dk exp�ik ? y�
1

4hk
dF
dhk

, (22)

where hk is the Fourier transform of the height fluctua-
tions. There is a contribution to the electrostatic stress due
to the curvature of the membrane, but this is bilinear to the
curvature and the difference in the charge densities on the
two sides, and does not enter into a linear analysis.

If there is no permeation of the fluid through the mem-
brane, the normal velocity is equal to the rate of change of
height, and the equation for the height fluctuation field, in
Fourier space, reduces to

≠thk � 2
1

4hk
�Gk2hk 1 Kk4hk 2 Gk2s0

k� 1 zk ,

(23)

where the noise zk is Gaussian white noise. The Fourier
transform of the equation for the charge density (20) is

≠ts
0
k � 2Dk2�As0

k 2 2Gk2hk� 1 jk . (24)

The above equations predict that a flat membrane, with
no tension, G � 0, is linearly unstable for sufficiently large
values of G2 . �KA�2� even in the long wave limit k ! 0,
and the growth rate of the perturbations is O�k3� in this
limit. When the tension is nonzero, the long wave per-
turbations are always stable, but modes with wavelength
k2 . �GA�2G2� become unstable. The physical mecha-
nism for this instability is as shown in Fig. 1. A fluc-
tuation which tends to curve the membrane as shown in
Fig. 1(a) will result in an accumulation of the charges on
the crests of the wave in the upper lipid layer, and in the
troughs of the wave in the lower lipid layer. This accu-
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FIG. 1. Physical mechanism for dynamical instability in a
charged bilayer when the charges cannot be transferred from
one lipid surface to the other.

mulation will further result in a force which tends to in-
crease the amplitude of the perturbation due to the coupling
between the charge density and curvature. This destabi-
lizing effect is opposed by the surface diffusion of the
charges, which favors a uniform concentration, and the
surface tension or bending elasticity which tends to reduce
the curvature. When the destabilizing effect of the charge
density–curvature coupling exceeds the stabilizing effect
of surface diffusion and surface tension, the membrane be-
comes unstable.
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