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The Voronoi cell volume distributions for hard-disk and hard-sphere fluids have been studied. The
distribution of the Voronoi free volume � f, which is the difference between the actual cell volume
and the minimal cell volume at close packing, is well described by a two-parameter �2�� or a
three-parameter �3�� gamma distribution. The free parameter m in both the 2� and 3� models is
identified as the “regularity factor.” The regularity factor is the ratio of the square of the mean and
the variance of the free volume distribution, and it increases as the cell volume distribution becomes
narrower. For the thermodynamic structures, the regularity factor increases with increasing density
and it increases sharply across the freezing transition, in response to the onset of order. The
regularity factor also distinguishes between the dense thermodynamic structures and the dense
random or quenched structures. The maximum information entropy �max-ent� formalism, when
applied to the gamma distributions, shows that structures of maximum information entropy have an
exponential distribution of � f. Simulations carried out using a swelling algorithm indicate that the
dense random-packed states approach the distribution predicted by the max-ent formalism, though
the limiting case could not be realized in simulations due to the structural inhomogeneities
introduced by the dense random-packing algorithm. Using the gamma representations of the cell
volume distribution, we check the numerical validity of the Cohen-Grest expression �M. H. Cohen
and G. S. Grest, Phys. Rev. B 20, 1077 �1979�� for the cellular �free volume� entropy, which is a part
of the configurational entropy. The expression is exact for the hard-rod system, and a correction
factor equal to the dimension of the system, D, is found necessary for the hard-disk and hard-sphere
systems. Thus, for the hard-disk and hard-sphere systems, the present analysis establishes a
relationship between the precisely defined Voronoi free volume �information� entropy and the
thermodynamic entropy. This analysis also shows that the max-ent formalism, when applied to the
free volume entropy, predicts an exponential distribution which is approached by disordered states
generated by a swelling algorithm in the dense random-packing limit. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2011390�
I. INTRODUCTION

The Voronoi polyhedron of a point nucleus in space is
the smallest polyhedron formed by the perpendicularly bi-
secting planes between a given nucleus and all the other
nuclei.1 The Voronoi tessellation divides a region into space-
filling, nonoverlapping convex polyhedra. The salient prop-
erties of Voronoi tessellation are the following:

• Any point inside a Voronoi cell is closer to its nucleus
than to any other nuclei �Fig. 1�. These cells are space
filling and hence give a precise definition of local
volume.2

• It gives a definition of geometric neighbors. The nuclei
sharing a common Voronoi surface are geometric neigh-
bors. Points on the shared surface are equidistant to the
corresponding pair of nuclei. Hence geometric neigh-
bors are competing centers in a growth scenario.

• The Voronoi cells of hard-spheres are irregular at lower
packing fractions but become regular as the regular
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close packing is approached. Thus, they are useful in
characterizing all structures, from random to regular.

These properties qualify Voronoi tessellation as an im-
portant tool in the structural analysis of random media such

FIG. 1. The Voronoi tessellation of a hard-disk configuration, with periodic

boundary conditions. The central box shown in dashed lines.
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as glass, packings, foams, cellular solids, proteins, etc.3–5

Voronoi tessellation occurs naturally in growth processes
such as crystallization and plant cell growth.6 It is used �and
even rediscovered under different names� in various fields
like meteorology, geology, ecology, metallography, archeol-
ogy, etc. The statistical distributions of many Voronoi cell
properties are reported �see Zhu et al.,7 Oger et al.,8 and
references therein�. In this work, we focus on the cell volume
distributions and their utility in computing the configura-
tional entropy of hard-sphere systems.

In this work we define the Voronoi free volume of any
hard particle as the difference between its Voronoi volume
and the minimal cell volume occurring at a regular close
packing. Since there are varied notions of free volume, we
list below the Bondi9 classification of free volumes.

�1� Empty volume=V−Vw, where V is the observed molar
volume of the fluid and Vw is the van der Waal’s vol-
ume of the fluid. Vw is the volume occupied by a mol-
ecule, which is impenetrable for the other molecules, at
a given temperature. It is the soft potential generaliza-
tion of the exclusion sphere concept used in the hard-
sphere systems. It is widely used as the molecular steric
descriptor to correlate physiochemical properties10 and
biological activity.11 The free volume used in the fluc-
tuating cell theory12,13 is an empty volume.

�2� �Thermal� Expansion volume=V−V0, where V0 is the
molar volume of the substance in its crystalline state at
absolute zero temperature. The Voronoi free volume
used in this work is the microscopic version of expan-
sion volume. The free volume used in the Doolittle flu-
idity equation14 is an expansion volume, but with V0 in
a hypothetical state without a phase change. This is the
most widely used free volume in the glassy polymer
literature.15 However, the other two free volumes are
also used.16,17 There are a few experimental measures
of free volume which do not clearly fit into this
classification.18

�3� Fluctuation volume=NA ��, where �� is the volume
swept by the center of gravity of the molecule due to
thermal motion and NA is Avogadro’s constant. This is
the notion of free volume used in the lattice or regular
cell theories.19

Section II analyzes the two-parameter �2�� and the
three-parameter �3�� gamma distributions used to represent
the free volume distributions of hard-disk and hard-sphere
systems. After imposing the specific-volume constraint, the
2� and 3� distributions have, respectively, one and two free
parameters. The free parameter m in both the 2� and 3�
models is identified as a structural order parameter called the
regularity factor. In Sec. III using a maximum information
entropy �max-ent� formalism, based on the notion that for an
ordered state all the cell volumes are identical, we predict
that the free volume distribution is exponential for an ideal
dense random-packed state. In Sec. IV we present the simu-
lation results for the thermodynamic and random structures
of hard-disk and hard-sphere systems. For the thermody-
namic structures, the regularity factor increases with increas-

ing density and it increases sharply across the freezing tran-
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sition, in response to the onset of order. The regularity factor
also distinguishes between the dense thermodynamic struc-
tures and the dense random structures. The max-ent predic-
tion for the dense random packing seems to be approached
but not exactly reached due to the structural inhomogeneities
introduced by the dense random-packing algorithm used. In
Sec. V, using the 2� model, we check the Cohen-Grest an-
satz for configurational entropy and find that ansatz is exact
for the hard-rod system, and a factor equal to the dimension
of the system is found missing in the original ansatz for the
hard-disk and hard-sphere systems. This first-order homoge-
neity of the entropy in the dimension of the system, D, is
anticipated if the number of states of an independent particle
increases with D as 2D.

II. CELL VOLUME DISTRIBUTION

The Voronoi cells of hard-rods, hard-disks, and hard-
spheres are segments, polygons, and polyhedra respectively,
and volume correspondingly means, length, area, and solid
volume. Let � be any individual Voronoi cell volume and
f��� its distribution. Let �p be the volume of the hard particle
and �̄ the average Voronoi cell volume �identical to a specific
volume, since the Voronoi cells are space filling�. Then, the
packing fraction � is given by �=�p / �̄. At low � the Voronoi
cells are irregular, and as � increases the cells become more
regular. At the regular close packing, all the cells are identi-
cal, and the distribution is reduced to a Dirac delta distribu-
tion. Let �c be the Voronoi cell volume at the regular close
packing. For hard-rods �c is the length of the hard-rod, for
hard-disks it is the regular hexagon circumscribing the hard-
disk, and for hard-spheres it is the rhombic dodecahedron
circumscribing the hard-sphere �corresponding to face-
centered-cubic �fcc� structure�. The packing fraction at the
regular close packing is �c=�p /�c, and the normalized pack-
ing fraction is y=� /�c.

Other packing fractions of physical relevance are

• the freezing ��F� and melting ��M� packing fractions,

• the loose random packing ��LRP� defined20 as the
lowest-density isotropic packing that can support an in-
finitesimal external load at the limit of acceleration due
to gravity tending to zero, and

• the dense random packing ��DRP� which is the highest-
density homogeneous isotropic packing.

All these salient packing fractions and the entropy change
per particle due to the freezing transition are listed in Table I.
There is no freezing transition for a hard-rod system. Also
there are no random structures for hard-rods since the regular
close packing is the only load-bearing structure.

It is customary to fit the cell volume distribution data for
random points �Poisson-Voronoi tessellation� to a 2� or a 3�
distribution given in Table II �read with � f =��. The subscript
“0” is used to indicate the low density or the Poisson limit.

Using the specific-volume criteria we get,
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�0 = �
m0

�̄
, 2� model;

����m0 + �0�/�0
2�

��m0/�0
2��̄ ��0

, 3� model.� �1�

The reported best-fit values of the free parameters m0 for 2�
and m0, �0 for 3� models� are given in Table III. Note that
only the one-dimensional �1D� results are exact. Heuristic
arguments in Weaire et al.21 show that the cell area distribu-
tions for a two-dimensional �2D� Poisson tessellation can be
approximated by a 2� distribution.

For a hard-core tessellation, some studies like Hermann
et al.22 and Gotoh23 fit the 2� model for the cell volume, i.e.,
� f =� in Table II. The volume of any Voronoi cell will be
greater or equal to �c; hence the above fit gives an unphysical
nonzero value for 	0

�cf���d�. Alternatively, for a hard-core
tessellation, the 2� or 3� models can be fitted with
� f =�−�c in Table II, where � f is the Voronoi free volume. In

TABLE I. Salient properties of hard-rods, hard-disks

�

Volume of the particle, �p

Cell volume at regular close packing �c

Freezing packing fraction, �F

Entropy change per particle on freezing �sF /kB

Melting packing fraction, �M

Loose random packing, �LRP

Dense random packing, �DRP

Regular close packing, �c

aFrom Alder and Wainwright �Ref. 48�.
bFrom Hoover and Ree �Ref. 49�.
cFrom Hinrichsen et al. �Ref. 24�.
dFrom Onoda and Liniger �Ref. 20�.
eFrom Berryman �Ref. 50�.

TABLE II. Properties of two-parameter �2�� and thr

Property 2� distributi

Distribution, f�� f� �m

��m�
� f

�m−1�e−

0�� f �
 m ,��0

Mean=� f m

�

Variance=�2�� f�=� f
2− �� f�2 m�m+1�

�2 − �m

�

Standard deviation

Mean
=

��� f�

� f

1

m

aWith �=1 and using ��m+1�=m��m�, the 3� resul
bGenerally the 3� model is written as f�� f�= ����m̃/

51��. Using m̃=m /� we get the above form. This form

the 2� and 3� models.
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Sec. V, we show that this definition of free volume gets the
thermodynamic singularity correctly at the regular close
packing. In Hinrichsen et al.24 the Voronoi free volume fit is
used in the study of loose random packing. Note that this fit
accommodates the gamma representation at the Poisson
limit, where �=0 and hence �c=0 and � f =�. Now, we show
that the Voronoi free volume arises spontaneously in the
hard-rod system. For the hard-rod system the nearest-
neighbor distance distribution function f�x� is exactly known
�see Fisher25�,

f�x� = �0 if x � �;

1

��̄ − ��
exp�−

�x − ��
��̄ − ��� if x 	 � . � �2�

In Fig. 2, let xi be the distance between the centers of the
hard-rods Pi−1 and Pi and let xif be the free distance between
their tips, then xif =xi−�. Then, the Voronoi segment for P1

hard-spheres.
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��m /�2��2/� − ����m+�� /�2�
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����m+�� /�2��2 −1�1/2

reduced to the 2� results.
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�see, for example, Tanemura �Ref.

the advantage that m is the regularity factor in both
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is given by �= �x1+x2� /2= �x1f +x2f� /2+�. Noting that in 1D
�c=�, we have � f =�−�c= �x1f +x2f� /2. Say l=2� f =x1f +x2f.
Here, x1f and x2f are independent, since the free distances xif

do not percolate. Then the cumulative distribution function
of l is

F�l� = �
0

l

dx2f�
0

l−x2f

dx1f f�x1f�f�x2f� . �3�

Using f�xf�=a exp�−axf� with a=1/ ��̄−�� gives

F�l� = �
0

1

ae−ax2fdx2f�
0

l−x2f

ae−ax1fdx1f

= 1 − exp�− al� − al exp�− al� .

Then, the probability distribution function for l is given by

f�l� =
dF�l�

dl
= a2l exp�− al� .

Using l=2� f in f�� f�d� f = f�l�dl we get

f�� f� = �2a�2� f exp�− 2a� f� .

With �=2a and m=2, it can be written as

TABLE III. Parameters of 2� and 3� models for the cell volume distribu-
tion of a D-dimensional Poisson tessellation.

D m0 �0
a Reference

1 2 1 Exact result, Kiang �Ref. 52�

2 3.5 1 Kiang’s revised value, as in Ref. 21
2 3.61 1 Weaire et al. �Ref. 21�
2 3.57 1 DiCenzo and Wertheim �Ref. 53�
2 3.57782 1 Current work, Fig. 3

2 3.5700 1.0787 Hinde and Miles �Ref. 54�
2 3.57371 1.07805 Tanemura �Ref. 51�
2 3.63454 1.09577 Current work, Fig. 3

3 6 1 Kiang �Ref. 52�
3 5.56 1 Andrade and Fortes �Ref. 55�
3 5.56219 1 Current work, Fig. 13

3 5.59434 1.16391 Tanemura �Ref. 51�
3 5.68147 1.19361 Current work, Fig. 13

4 8.41715 1.29553 Tanemura �Ref. 51�
a�0=1 implies a 2� model and �0�1 a 3� model.
FIG. 2. Hard-rods along a line. Hard-rod length is �.
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f�� f� =
�m

��m�
� f

�m−1� exp�− �� f� .

Thus for the hard-rod system at any �, the Voronoi free vol-
ume follows a 2� distribution with m=2. This suggests fit-
ting a 2� or its generalization the 3� distribution �Table II�
for f�� f� in hard-disk and hard-sphere systems. The free pa-
rameter in the 2� model is m, and the free parameters in the
3� model are m and �. � is computed using the specific
volume criteria as

� = �
m

�̄�1 − y�
, 2� model;

� ���m + ��/�2�
��m/�2��̄�1 − y���

, 3� model.� �4�

Here, we have used �̄ f = �̄−�c= �̄�1−y�. Note that at y=1, �
diverges and the variance becomes zero, so that the gamma
distribution is reduced to the Dirac delta distribution. The
simulation results in Sec. IV show that m does not diverge at
the regular close-packed limit.

In the 2� model, the ratio of the standard deviation and
mean is 1 /
m �Table II�. This shows that as m increases, the
spread of the distribution about the mean decreases; i.e., the
cells become more regular. Hence m is called regularity fac-
tor in Gotoh23 �This work, however, used the 2� model for
f��� rather than f�� f�, as mentioned earlier�. As y increases,
the thermodynamic structures become more regular, and
hence m increases. At the freezing transition, due to the onset
of order, there is a sharp increase in m. Thus m is a useful
scalar parameter characterizing the hard-disk and hard-
sphere structures. In the hard-rod system, since m=2 for any
�, the ratio of the standard deviation to the mean is constant,
a hallmark of the absence of the fluid-solid transition in this
system.

A physical interpretation for the parameter m in the 3�
model can be obtained by using the n→
 asymptotic expan-
sion from Spanier and Oldham,26

��n + c�
��n�

� nc�1 +
c�c − 1�

2n
+

c�c − 1��c − 2��3c − 1�
24n2

+ ¯ � , �5�

with n=m /�2 and c=1/�, 2 /� successively in Table II gives


Standard deviation

Mean
�2

=
1

m
+

�1 − �2�
2m2 + ¯ .

When � is close to unity or m is large, the series can be
truncated from the second term. Hence,

Standard deviation

Mean
�

1

m

.

Thus, in the 3� model m is the regularity factor when � is
close to unity or m is large. If both models are fitted to the
same set of data, the m of the 3� model will be nearly equal
to the m of the 2� model. This correspondence can be ob-
served for the Poisson tessellation case in Table III. This

correspondence is shown for hard-disk and hard-sphere sys-
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tems in Sec. IV. From the regularity factors in Table III, it
can be noted that the Poisson tessellation becomes more
regular as the dimension increases.

III. MAXIMUM INFORMATION ENTROPY „MAX-ENT…
FORMALISM

The uncertainty or the information entropy27,28 of a dis-
crete distribution is sI=−kB�Pi log Pi, where Pi is the prob-
ability of the ith outcome and the summation is over all the
outcomes. The analogous definition for a continuous distri-
bution f�x� is sI=−kB	 f�x�log�f�x��dx, where the integration
is over the full domain of x. As an illustration, consider the
uncertainty of a coin toss, sI=−kB�p log p+q log q�, where p
is the probability of a head and q=1− p is the probability of
a tail. It can be easily seen that the uncertainty of the out-
come is maximum when p=q=1/2. This physically means
that when p=q=1/2 one would need maximum information
�the complete knowledge of the dynamics of a toss and the
initial conditions� to predict the outcome. One could as well
arrive at this value of p by the principle of equal a priori
probability �PEAP�, which assigns an equal probability for
all the outcomes when no other information is available.
However, in a complex situation where PEAP does not apply
or the complete understanding of the system is lacking, the
max-ent formalism is a powerful method to estimate the
most probable distribution29 For example, Englman et al.30

have derived the size distribution of fragments in a disinte-
gration process �say, blasting� showing good agreement with
experimental observations, using the max-ent formalism with
the energy and volume constraints on the fragments.

In general, the information entropy need not be related to
the thermodynamic entropy, since the system under consid-
eration itself need not be in equilibrium, as in the above-
mentioned disintegration process. However, if the system is
in thermodynamic equilibrium and if the distribution under
consideration contains all the relevant information �to the
desired level of description�, then the information entropy
will be identical to the thermodynamic entropy. For example,
in a monatomic fluid of N particles in a container of constant
volume and temperature, the information entropy defined on
the N-particle position and velocity distribution function,
fN�r1 , . . . , rN ,v1 , . . . ,vN�, where ri and vi are the position
and velocity of the ith particle, respectively, is identical to
the thermodynamic entropy.31 Now, if we employ PEAP for
the energy states �i.e., states with identical energies having
identical probabilities�, then fN�r1 , . . . ,vN�= f�E�r1 , . . . ,vN��
and f�E� contains all the information about the system, up to
the level of macroscopic averaging. Hence, the information
entropy defined on f�E� is also identical to the thermody-
namic entropy, even though the microscopic information
content of f�E� is much less than that of fN�r1 , . . . ,vN�.28

Now, the uncertainty or the information entropy defined
on the cell volume distribution is

sI = − kB�
�c




f���log�f����d� .

Transforming the independent variable to the free volume

� f =�−�c gives
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sI = − kB�
0




f�� f�log�f�� f��d� f . �6�

This definition of information entropy employs the equality
of all the cell volumes as the measure of order. At the regular
close packing, all the cell volumes are identical and the free
volume distribution is a Dirac delta distribution and hence sI

is negative infinity; i.e., we need minimum information �the
crystal’s unit cell� to construct these configurations. Using
the method of the Lagrange multipliers, with the mean free
volume condition �� f = �̄−�c�, it can be easily shown that an
exponential free volume distribution has a maximum infor-
mation entropy. From Sec. II, we know that the Poisson tes-
sellation �ideal gas�cell volume distribution is not exponen-
tial. The Poisson configuration does not maximize sI because
these configurations could be easily constructed using a uni-
form random number generator. We might speculate that the
DRP �or the jammed packings in general� might have an
exponential free volume distribution, since we need maxi-
mum information �all the particle positions� to construct the
configuration. The algorithm we have used produces dense
random structures with nearly but not exactly exponential
free volume distribution; further details are in Sec. IV.

The gamma distributions contain the exponential distri-
bution as a limiting case �m=1 for 2� model and �, m=1 for
3� model�. Hence, it is obvious that even within these two
families of distributions, the exponential distribution maxi-
mizes the information entropy. However, we show the ex-
plicit analysis for the 2� model, since we require an inter-
mediate result for Sec. V. The 2� model, on integration,
gives

sI

kB
= log��̄�1 − y�� − �m − 1���m� + log���m��

− log�m� + m , �7�

where ��·� is the digamma function. Here, we have used a
standard integral from Gradshteyn and Ryzhik,32

�
0




xm−1e−�x log�x�dx =
��m�
�m ���m� − log���� , �8�

and then eliminated � using Eq. �4�. In the 2� model, the
free parameter m is a function of y and the type of structures
�thermodynamic or otherwise�, hence sI is a functional of m.
To maximize sI, we set

�

�m

 sI

kB
� = �m − 1�
 1

m
− ��1��m�� = 0, �9�

Here, ��n��·� are the polygamma functions. It can be easily
checked that the solution m=1 is a maximum, using
��1��1�=
2 /6. We will pursue the connection of sI with the
thermodynamic entropy in Sec. V; for use therein we rewrite
Eq. �7� as sI /kB=log��̄�1−y��+��m�, where ��m�=−�m
−1���m�+log���m��−log�m�+m. Setting y=0 gives the in-
formation entropy for the ideal gas at the same specific vol-
ume as sI

0 /kB=log��̄�+��m0�. Then, the excess information

entropy is

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114501-6 V. Senthil Kumar and V. Kumaran J. Chem. Phys. 123, 114501 �2005�
sI
E

kB
= log�1 − y� + ��m� − ��m0� . �10�

IV. SIMULATION RESULTS

The cell volume distribution for the 2D Poisson tessel-
lation is given in Fig. 3. The 2� model has a positive error at
the peak �shown in inset� and a compensating negative error
near the origin. The 3� model gives a better fit, however, at
the cost of an additional parameter. This statistical superior-
ity of the 3� model over the 2� model holds for the entire
density range for both hard-disk and hard-sphere structures,
as shown in the auxiliary material,33 by a mean-square error
analysis.

We have studied three types of hard-disk structures:
NVE-MC, NPT-MC, and swelled random structures. The
NVE-MC configurations are made with 50% success rate;
i.e. the amplitude of the random trial displacement is ad-
justed such that 50% of the trials lead to nonoverlapping
configurations. The NPT-MC algorithm is from Wood.34 The
results from NPT configurations are ascribed to their average
�. The swelled random structures are generated using a
Monte Carlo �MC� adaptation of Woodcock’s35 algorithm:
swell the nearest neighbors till they touch each other, give
random trial steps �with say 50% success rate as in NVE-
MC�for all the particles and continue the swelling process
until the desired � is attained. If the success rate is low, the
large trial displacements tend to equilibrate the local struc-
tures. However, if the success rate is high, the trial displace-
ments are small and the swelling process locks the particles
into random structures. The effect of the success rate on the
resultant structures is studied below.

Compare the degree of fit for the NVE and the swelled
random structures, both at �=0.82 in Figs. 4 and 5 �after
ignoring the greater scatter in the random structure data due
to lesser averaging�. A bimodal f��� �as in Fig. 5� indicates

FIG. 3. 2D Poisson tessellation cell area distribution. Simulation data ���,
2� model �---�, and 3� model �—�. Averaged over 105 configurations of
1000 points with periodic boundary conditions �PBC�. The best-fit param-
eter values are given in Table III. The cell volume is scaled by the specific
volume.
the existence of dense and lean regions due to the formation

Downloaded 29 Jun 2006 to 203.200.43.195. Redistribution subject to
of crystallites. The most appropriate method to quantify the
crystallite concentration in a random hard-disk configuration
is to classify the hard-disks as solidlike or fluidlike based on
the bond orientational order parameter36 and compute the
fraction of solidlike disks. This analysis for the swelled ran-
dom structures is in progress and will be reported separately.
Alternatively, one could monitor the population of hexagons
as a measure of crystallite concentration, as shown in our
recent work.37 Local crystallization, however, is typical of
random packing algorithms, especially in the hard-disk sys-
tem due to the lack of geometric frustration.24 For example,
the cell volume distribution in Fig. 62 of Glaser and Clark,36

in addition to the two distinct modes, has a large-volume tail
due to the grain boundaries around the crystallites. Due to
such structural inhomogeneities caused by the DRP algo-
rithm, the gamma distributions give a poor fit near �DRP �see
auxiliary material33� and hence the max-ent predictions are
approached but not exactly realized in the following results.
The good performance of the 3� model for the homogeneous
thermodynamic structures across the entire � range �see aux-
iliary material33� and the approach to the max-ent predictions
make us speculate that an ideal DRP algorithm producing
homogeneous structures might satisfy the max-ent predic-
tions.

FIG. 4. Cell volume distribution for hard-disk NVE structure at �=0.82.
Simulation data ���, 2� model �---�, and 3� model �—�. Averaged over
10 000 configurations of 256 hard-disks with PBC.

FIG. 5. Cell volume distribution for hard-disk swelled random structure at
�=0.82. Simulation data ���, 2� model �---�, and 3� model �—�. Averaged
over 1000 configurations of 256 hard-disks with PBC. Note the bimodal

nature of the distribution.
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The 2� model m values for the various hard-disk con-
figurations considered are given in Fig. 6, from which we
observe the following.

• For thermodynamic structures �NVE and NPT� as � in-
creases, cells become more regular and hence m in-
creases. Due to the onset of order at the freezing tran-
sition, the thermodynamic structures have a sharp
increase in m. The thermodynamic structures terminate
at the regular close packing.

• The NPT and NVE structures are identical; it can be
explained as follows: Since the radial distribution func-
tion of an NPT ensemble at its average � is identical to
that of an NVE ensemble at the same �, the local neigh-
borhoods being identical, the cell volume distributions
are identical. The differences between NVE and NPT
structures seen on the solid branch may be ascribed to
the limited sampling.

• For ���F the swelled random structures become more
regular �i.e., m increases� as � increases, and this behav-
ior is identical to that of the thermodynamic fluid struc-
tures. However, for ���F the swelled random struc-
tures become more irregular �i.e., m decreases� with

FIG. 6. The 2� model m values for hard-disk structures. NVE-MC ���,
NPT-MC ���, swelled random at 50% success rate ���, Poisson limit ���,
and max-ent prediction at dense random-packing limit ���. Averaged over
10 000 configurations for NVE/NPT and 1000 configurations for swelled
random structures of 256 hard-disks with PBC.

FIG. 7. Hard-disk swelled random structures for different success rates.
Success rates of 10% ���, 30% ��� 50% ���, 70% ���, and 90% ���;
Poisson limit ���; and max-ent prediction at dense random packing limit

���. Averaged over 1000 configurations of 256 hard-disks with PBC.
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increase in � and terminate at the dense random-
packing limit. This behavior is drastically different from
that of the thermodynamic solid structures and can be
clearly seen by comparing Figs. 8 and 9.

The swelled random structures can be made with differ-
ent success rates. As mentioned earlier, at low success rates
the large trial displacements tend to equilibrate the local non-
equilibrium structures, and hence the m value approaches
that of the thermodynamic structures at the same �. This can
be observed in Fig. 7, for ���F swelled random structures
are with 10% success rate. Figure 7 shows that with increas-
ing success rates, all the structures lie on a unique branch of
dense random structures. At any success rate, attaining a de-
sired � through a relay of lower � configurations with small
�� and reinitializing the random number generator at each
halt avoid the build up of structural signatures due to the
random number generator algorithm. Structures made in a
small �� relay �for Fig. 7 ��=0.01� are independent of the
success rates. Structures made in a large �� relay �say
���0.1� depend on the success rates, and these structures
have an m value lesser than that of the thermodynamic struc-
tures at the same �. This method can be used to generate

FIG. 8. Hard-disk thermodynamic configurations. For ���F as � increases
the cell volume distribution becomes narrow, and at �c it degenerates to a
Dirac delta distribution located at �c. All lengths are scaled by the diameter
of a disk.

FIG. 9. Hard-disk swelled random configurations. For ���F as � increases,
the ratio of standard deviation to mean �1/
m� of the cell volume distribu-
tion increases. All lengths are scaled by the diameter of a disk. The max-ent

prediction is shown by the broken line �---�.
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structures having an m value lower than that of the thermo-
dynamic structures. Structures having an m value greater
than that of the thermodynamic structures can be made by
shrinking the disk diameter of denser thermodynamic struc-
tures.

The m and � values for the 3� model for the free volume
distribution of hard-disk structures are given in Figs. 10 and
11. From Figs. 6 and 10 it is observed that the 3� model m
compares well with the 2� model m, within a few percent
difference, when m is large or � is close to unity. In Fig. 11,
it is interesting to note that the swelled random structures
approach the max-ent prediction ��=1� at the dense random-
packing limit with drastic changes. These drastic trend
changes are not an artifact of curve fitting, since we got
identical results with different optimizer algorithms �Nelder-
Mead and Gauss-Newton� and different initial estimates. The
optimizer, after the initial excursion, settles into a nearly con-
stant m trajectory �that which corresponds to the regularity
factor� on the error surface �a function of m and �� and
searches for a � value which minimizes the error along this
trajectory. The error surface does not have multiple local
minima in the working range of the parameters �m ranging
from 1 to 35 and � ranging from 0.1 to 2�, as seen from
Fig. 12. Since the error magnitudes vary widely for the state

FIG. 10. 3� model m for hard-disk structures. NVE-MC ���, NPT-MC ���,
swelled random structures at 50% success rate ���, Poisson limit ���, and
max-ent prediction at dense random-packing limit ���. Averaging as in
Fig. 6.

FIG. 11. 3� model � for hard-disk structures. NVE-MC ���, NPT-MC ���,
swelled random structures at 50% success rate ���, Poisson limit ���, and
max-ent prediction at dense random-packing limit ���. Averaging as in

Fig. 6.

Downloaded 29 Jun 2006 to 203.200.43.195. Redistribution subject to
points considered, in Fig. 12 a logarithmic scale is used for
the y axis. Though some of the curves appear flat in this
scale, the minima are distinct in the linear scale.

Now we present the analogous results in three dimen-
sions �3D�. The three-dimensional �3D� Poisson tessellation
cell volume distribution is given in Fig. 13. The approach of
the swelled random hard-sphere structures towards the max-
ent predictions is less satisfactory than that of the hard-disk
system; even though the trend in m �Fig. 15� is towards unity,
the trend in � �Fig. 16� is away from unity as DRP is
approached. The parameter m in the 2� and 3� models are
nearly identical inspite of � being nearly 2, since the m val-
ues are large.

V. CONFIGURATIONAL ENTROPY

The Appendix gives the thermodynamic definition of the
configurational properties. In the context of regular cell
theory, Kirkwood38 showed that the configurational entropy
can be partitioned as sconf=scell+scom, where scell is the
cellular entropy arising due to the single occupancy of the
regular cells and scom is the communal entropy arising due to
the multiple occupancy of the regular cells. In the context of
the free volume theory of glasses and supercooled liquids,

FIG. 12. Error in 3� model as a function of � along constant m trajectories,
for hard-disk swelled random structures at 50% success rate and �=0.55
�—, m=8.4981�, �=0.65 �---, m=9.1465�, �=0.73 �-.-, m=8.1272�, and
�=0.83, �¯, m=2.2827�. The � at the minimum error ��� are the optimized
values reported in Fig. 11.

FIG. 13. 3D Poisson tessellation cell volume distribution. Simulation data
���, 2� model �---� and 3� model �—�. Averaged over 1000 configurations
of 1000 points with PBC. The best-fit parameter values are given in

Table III. The cell volume is scaled by the specific volume.
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Cohen and Grest39–41 assumed that the above partitioning
holds as well for the irregular cellular structure defined by
the Voronoi polyhedra of the particles. They introduced the
expression sf�=−kB	 f���log�f����d�, in analogy with the en-
tropy of mixing, where f��� is the Voronoi cell volume dis-
tribution. �Here, we use the notation sf� instead of scell, since
sf� corresponds to the entropy associated with Voronoi free
volume distributions�. To validate the ansatz, we indepen-
dently compute and compare the left- and right-hand sides of
the ansatz for hard-disk and hard-sphere systems. The right-
hand side is computed from the free volume distributions
discussed in Sec. IV and the left-hand side is computed in-
dependently from the thermodynamic data �details below�.
To the best of our knowledge, such an analysis is not re-
ported for any system.

For the Voronoi free volume or cellular entropy we take
the Cohen-Grest expression as

sf� = − �kB�
�c




f���log�f����d� , �11�

allowing a density-independent proportionality constant � �if
� is density dependent, the anstaz is of negligible value�; its
necessity will be clear below. Cohen and Grest39 define the
communal entropy, based on the existence of liquid clusters,

FIG. 15. 3� model m for hard-sphere structures. NVE-MC ���, swelled
random structures at 50% success rate ���, Poisson limit ���, and max-ent

FIG. 14. The 2� model m for hard-spheres. NVE-MC ���, swelled random
structures at 50% success rate ���, Poisson limit ���, and max-ent predic-
tion at dense random-packing limit ���. Averaged over 1000 configurations
of 256 hard-spheres with PBC.
prediction at dense random-packing limit ���. Averaging as in Fig. 14.
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as “the entropy associated with the accessibility of all of the
configurational volume within the finite liquid clusters and
within the infinite cluster, when present.” For densities above
the freezing density very few fluid clusters exist, and hence
the communal entropy is a negligible fraction of the configu-
rational entropy. In the regular close-packed limit, the com-
munal entropy is zero and hence the configurational entropy
is purely cellular. We identify � by comparing the cellular
entropy with the configurational entropy near the regular
close packing. For ease of comparison, we express all entro-
pies as excess entropies, with the reference ideal gas at the
same specific volume. Now, the above condition is expressed
as

lim
�→�c

sconf
E = sf�

E , �12�

and the ansatz �Eq. �11�� is rewritten as sf�
E =� sI

E, where the
sI

E is the excess information entropy. Using Eq. �10� for sI
E

we get

sf�
E

kB
= � log�1 − y� + ����m� − ��m0�� . �13�

To compute sconf
E we use the thermodynamic identity

�proof in the Appendix� sconf
E =s�

E, where s�
E is the excess en-

tropy of a fluid, with the reference ideal gas at the same
specific volume. For hard-spheres s�

E is computed from the
equation of state �EOS� as42

s�
E

kB
= − �

0

y Z − 1

y
dy , �14�

where Z= p�̄ / �kBT� is the compressibility factor. Differenti-
ating Eq. �14� with respect to y and rearranging gives

Z = 1 − y
d

dy

 s�

E

kB
� . �15�

Using Eqs. �12�, �13�, and �15� and the identity sconf
E =s�

E

FIG. 16. 3� model � for hard-sphere structures. NVE-MC ���, swelled
random structures at 50% success rate ���, Poisson limit ���, and max-ent
prediction at dense random-packing limit ���. Averaging as in Fig. 14.
gives
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lim
�→�c

Z =
�y

1 − y
+ 1 − �y
 ��

�m
�
dm

dy
� . �16�

Hoover43 show that the form of the dense hard-sphere solid
EOS is

Z =
D

a
+ c0 + c1a + c2a2 + ¯ , �17�

where a= ��̄−�c� /�c= �1−y� /y is the dimensionless excess
free volume �see Table IV�. Comparing Eqs. �16� and �17�,
and noting from Figs. 6 and 14 that �dm /dy� does not di-
verge at y=1, we identify �=D. Before proceeding further,
we would like to emphasize the wide implications of this

TABLE IV. EOS and excess entropy equations plott

System Z,
s�

E

kB a

HD/HS virial expansion Z=1+B2�+B3�2+

s�
E

kB
=−�B2�+

B3

2
�2+

B2 to B8 in Table

HD MD fluid data fit
Z=

1+A�+B�2

�1−��2

s�
E

kB
=−

�1+A+B��

�1−��
A=0.05833, B=0.

HD MD solid data fit Z=2/a+1.90+0.6

where a=
�−�c

�c
= 1

HS MD fluid data fit
Z=

1+�+�2−�3

�1−��3

or the Carnahan-Starling EOS s�
E

kB
=

−��4−3��

�1−��2

HS MD solid data fit Z=3/a+2.566+0.

a as above

HD/HS composite EOS s�
E

kB
=−	0

�Zf −1

�
d� f

s�
E

kB
=−	0

�F
Zf −1

�
d�−

	�F

� Zs−1

�
d� for ��

�sF /kB=0.36 for

�sF /kB=0.92 for

HD/HS cell theory Z= �1−y1/D�−1

s�
E

kB
=D log�1−y1/D

D=dimension.
identification.
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TABLE V. Virial coefficients for hard-disk and hard-sphere fluids, from
Sanchez �Ref. 47�.

n HD Bn HS Bn

2 2 4
3 3.128 017 8 10
4 4.257 854 18.364 77
5 5.336 897 28.224 5
6 6.362 6 39.74
7 7.351 53.54
8 8.338 70.8
ed in Figs. 17 and 18.

nd notes Reference for EOS

B4�3+¯ van Rensburg �Ref. 56�

B4

3
�3+ ¯ �

V

Maeso and Solana �Ref. 57�

− �B−1�log�1−��

01267

7a+1.5a2 Young and Alder �Ref. 58�

� y −1

Carnahan and Starling �Ref. 59�

55a−1.19a2+5.95a3 Young and Alder �Ref. 58�

or ���F
Zf is fluid fit given above

�sF

kB
−

�F
Zs is solid fit given above

HD

HS

Wood �Ref. 60�

�
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• The low-density and high-temperature limit of any sys-
tem of particles with short-ranged interaction, is identi-
cal to the low-density limit of hard-spheres. Hence this
identification holds in the ideal gas limit of any system
of particles. But then � is density independent, hence
the identification holds for any system at any density.
This generality is anticipated since � depends only on
the dimension of the system.

• It should be noted that the information of the particular
form used to fit the free volume distribution �in this
work the gamma distribution� is contained in � of Eq.
�16�. And this information is irrelevant for the identifi-
cation �=D as long as it does not contribute a divergent
term to the right-hand side of Eq. �16� at y=1. Hence
this identification is exact, even though the gamma rep-
resentations are merely good approximations. However,
note that the definition of the free volume as � f =�−�c is
crucial in recovering the thermodynamic singularity
correctly at the regular close packing. Any other defini-
tion of free volume like � f =�−�p, where �p is the par-
ticle volume, or � f =�−�opt, where �opt is some opti-
mized minimum cell volume �used in Hanson44�, will
not recover the thermodynamic singularity at the regu-
lar close packing when used with the Cohen-Grest an-
satz.

• With the identification �=D, the free volume or cellular
entropy is first-order homogeneous in D. Note that the
last two terms on the right-hand side of Eq. �A3�, aris-
ing from the integration of momenta, are also first-order
homogeneous in D. This is a general behavior, as shown
by the following simple model. Consider a system of N
independent hard-spheres rattling inside some volume
and suppose that, at any instant, the direction of dis-
placement is the only relevant variable. Then, at any
instant, an independent sphere can displace in ±x, ±y, or
±z directions; hence it has 2D states, where D=3. The

D N
number of states available to the system is �= �2 �
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=2ND. Hence, the entropy, S=kB log �=NkBD log 2, is
first-order homogeneous in D. This behavior is not ob-
served in the Ising model since the number of states is
identically two �up and down� for an independent spin
in any dimension. But systems in which the number of
states of an independent particle increases with D as 2D

have an entropy first-order homogeneous in D.

• For static powders, the communal entropy is identically
zero. Hence, the ensemble-averaged entropy for simi-
larly prepared powders is purely cellular. Hence, with
the identification �=D in Eq. �11�, the entropy of static
powders is fully characterized by the free volume dis-
tributions. Even if the gamma representations are a poor
fit for the free volume distributions, a numerical inte-
gration of the right-hand side of Eq. �11� could be
effected.

Now we show the validity of the identification �=D for

FIG. 17. Hard-disk excess entropy prediction from m
data. Voronoi NVE ���, Voronoi, swelled random struc-
tures at 50% success rate ���, virial EOS �¯�, fluid
molecular-dynamics �MD� fit �---�, regular cell theory
�-·-�, and composite EOS �—�. The Voronoi prediction
is obtained by using the m data from Fig. 6 in Eq. �11�
with �=2. The equations for the other data are given in
Table IV.

FIG. 18. Hard-sphere excess entropy prediction from m data. Voronoi-NVE
���, Voronoi, swelled random structures at 50% success rate ���, virial EOS
�¯�, fluid MD fit �---�, regular cell theory �-·-�, and composite EOS �—�.
The Voronoi prediction is obtained by using the m data from Fig. 14 in Eq.

�11� with �=3. The equations for the other data are given in Table IV.
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each dimension separately. In the hard-rod system there is no
solid-fluid transition. Hence, a hard-rod configuration at any
� is a dilute solid and not a fluid. Since there are no fluid
clusters in the hard-rod system, its communal entropy �in the
Cohen-Grest sense� is identically zero and the configura-
tional entropy is purely cellular. From Sec. II, for hard-rods
we have m=m0=2 and hence dm /dy=0. Using these with
�=1 in Eqs. �16� and �13� we recover the exact results:
Tonk’s EOS45 Z= �1−y�−1 and s�

E /kB=log�1−y�. Thus, for
the hard-rod system, Eq. �11� is exact with �=1.

For the hard-disk and hard-sphere systems, we compute
the excess entropy sconf

E �=s�
E� from the different EOS reported

in literature, using Eq. �14�. These expressions are given in
Table IV. The hard-disk and hard-sphere virial coefficients,
required in Table IV, are given in Table V. After the freezing
transition, the configurational entropy should be slightly
greater than the free volume or cellular entropy, since the
communal entropy is a small non-negative contribution. The
equality holds in the limit of regular close packing, where the
communal entropy vanishes. Using the Voronoi m data for
the hard-disk and hard-sphere systems from Figs. 6 and 14,
on the right-hand side of Eq. �11� with �=2 and 3, respec-
tively, we get the Voronoi estimates of the free volume or
cellular entropy. These results are plotted in Figs. 17 and 18.
From these figures, we see that the free volume or cellular
entropy matches with the configurational entropy for the
thermodynamic solid phase, except for the small non-
negative communal entropy �see Fig. 17 inset�. Note that, in
these figures, the vertical distance between the composite
EOS curve and the NVE-MC Voronoi data is the excess
communal entropy. For the hard-sphere composite EOS
equation in Table IV, we have taken the entropy change dur-
ing freezing, �sF /kB as 0.92 �instead of the approximate
value of 1.16 given in Table I�, so that the excess communal
entropy is non-negative. This revision is justified as follows:
By comparing the entropy difference between an ideal gas
�with the configurational integral Qconf

0 =VN /N!= �̄NNN /N!�
and a regular cellular solid at the same specific volume
�Qconf= �̄N�, it can be easily seen that �sF /kB for smooth
elastic hard hyperspheres cannot be greater than unity.

VI. CONCLUSIONS

The Voronoi free volume distributions of the hard-disk
and hard-sphere systems are well represented by a two-
parameter �2�� or a three-parameter �3�� gamma distribu-
tion �Table II�. After imposing the specific volume constraint
m is the free parameter in the 2� model and m, � are the free
parameters in the 3� model. It is shown that parameter m in
the 2� and the 3� models is the regularity factor. For the
thermodynamic structures, the regularity factor increases
with increasing density and it increases sharply across the
freezing transition, in response to the onset of order. The
regularity factor also distinguishes between the dense ther-
modynamic structures and dense random structures. The
maximum information entropy formalism predicts that the
free volume distribution at the dense random-packed state is
an exponential distribution. This prediction seems to be ap-

proached, but not exactly reached, due to the structural inho-
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mogeneities induced by the dense random-packing algo-
rithm. This suggests a precise definition for dense random
packing as the packing at which the information entropy of
the Voronoi free volume distribution is maximized. The con-
nection between the free volume entropy and the thermody-
namic entropy was examined in the limit of regular close
packing where the communal part of the entropy vanishes.
We find that the Cohen-Grest expression relating the thermo-
dynamic and the free volume entropy is exact for hard-rod
system, and a correction factor equal to the dimension of the
system is necessary for hard-disk and hard-sphere systems.
This correction factor is anticipated if the number of states of
an independent particle increases with the dimension of the
system, D, as 2D.

APPENDIX: CONFIGURATIONAL PROPERTIES

The canonical partition function for N indistinguishable
classical particles of mass m in D dimensions is

Q = 
2
mkBT

h2 �DN/2

Qconf,

where Qconf is the configurational integral,

Qconf =
1

N!
�

V

¯ �
V

exp�− �U�dr1 ¯ drN,

and U�r1 , . . . ,rN� is the potential energy of the system in the
configuration �r1 , . . . ,rN�. The Helmholtz free energy is
F=−kBT log Q and the entropy is

S = − 
 �F

�T
�

N,V
= kB log Q + kBT
 � log Q

�T
�

N,V
. �A1�

The configurational analogs46 are defined as Fconf=
−kBT log Qconf and

Sconf = − 
 ��Fconf�
�T

�
N,V

= kB log�Qconf� + kBT
 � log �Qconf�
�T

�
N,V

. �A2�

From Eqs. �A1� and �A2�, we get

S = Sconf +
D

2
NkB log
2
mkBT

h2 � +
D

2
NkB. �A3�

Replacing S and Sconf, respectively, with S0 and Sconf
0 , we get

the entropy of the ideal gas. Then the excess entropy S�
E

=Sconf
E . Note that the reference ideal gas has the same specific

volume as the fluid under consideration due to the constancy
of N and V in the canonical ensemble. For the ideal gas with
Qconf

0 =VN /N! and Stirling’s approximation, log N!=N log N
−N, we have Sconf

0 =NkB+NkB log �.
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