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The decay of the velocity autocorrelation function in a sheared granular flow is analyzed in the limit
where the wavelength of fluctuations is larger than the ‘‘conduction length,’’ so that energy is a
nonconserved variable. The decay of the velocity autocorrelation function is much faster than that in a
fluid at equilibrium for which energy is a conserved variable. Specifically, the autocorrelation function in a
sheared granular flow decays proportional to t�3 in 2D and t�9=2 in 3D, in contrast with the decay
proportional to t�1 in 2D and t�3=2 in 3D for a fluid at equilibrium. The renormalization of the viscosity
due to mode coupling is evaluated using this form of the decay of the autocorrelation function. It is found
that the logarithmic divergence in the viscosity in 2D, and the divergence of the Burnett coefficients in 3D,
which is characteristic of a fluid of elastic particles at equilibrium, is absent in a sheared granular flow.
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Constitutive models have been developed for granular
flows using methods similar to those used in the kinetic
theory of gases [1–6]. An important assumption made in
these kinetic theory calculations is the molecular chaos
approximation, which neglects the effect of correlated
collisions between particles. Because of this, these theories
are generally assumed to be valid only in the dilute limit. It
is well known that correlated collisions cause a significant
change in the form of the constitutive relations for fluids at
equilibrium. The seminal studies of Kawasaki and Gunton
[7] and Yamada and Kawasaki [8] using mode cou-
pling theory, Ernst and Dorfman [9] and Ernst et al. [10]
using the ring kinetic theory, and Lutsko and Dufty [11]
using a generalized Langevin formulation, showed that
the shear viscosity in a fluid of elastic particles is a non-
analytic function of the strain rate. In two dimensions, the
shear viscosity has the form � � �0 � �

0 log� _��, while in
three dimensions the shear viscosity has the form � �
�0 � �

0j _�j1=2, where �0 is the bare shear viscosity for
a Newtonian fluid and _� is the strain rate. This implies
that the coefficient of viscosity diverges in a two-
dimensional fluid, while the Burnett coefficients diverge
in a three-dimensional fluid. It is well known that the
viscosity renormalization is caused by the long time tails
in the velocity autocorrelation functions [10,12], where the
autocorrelation functions decay as a power law t�d=2 in the
long time limit, where d is the dimension of the system.

In the modeling of granular flows, it is important to
know whether similar difficulties exist when the effects
of correlated collisions are incorporated. A fundamental
difference between a fluid at equilibrium and granular
material is that energy is not conserved in the rapid flow
of inelastic particles due to the dissipation of energy in
collisions. In a granular shear flow, the energy dissipated in
collisions is compensated by the production of energy due
to the mean shear. Therefore, a hydrodynamic description
of a granular material would include only the mass and
momentum as conserved variables, while the ‘‘granular

temperature‘‘ is determined by a balance between the
rate of production due to the mean shear and the rate of
dissipation due to inelastic collisions. The purpose of this
analysis is to examine whether the long time tail in the
velocity autocorrelation function and the nonanalyticity of
the transport coefficients are encountered in this case as
well. It should be noted that the results of this analysis are
applicable to driven systems where energy is dissipated,
but where momentum is conserved. In granular materials,
for example, there is no force acting on particles between
successive collisions thereby conserving momentum, and
momentum is conserved in a collision. There are other
driven dissipative systems where momentum is not con-
served. An example is a thermostatted system, where a
force is exerted on every particle in the direction opposite
to the velocity direction. In this case, the momentum of the
particle is not conserved, and the scaling or the growth
rates of the hydrodynamic modes with wave number is
different [13].

It should be noted that the calculations of Ernst and
Dorfman [9] and Ernst et al. [10] are carried out with the
linear shear flow as the base state, and this shearing results
in heating due to viscous dissipation. However, as argued
by Ernst et al. [10], the rate of viscous heating is propor-
tional to _�2, whereas the viscous stresses are proportional
to _�, where _�, the strain rate, is the small parameter in the
analysis. Therefore, the viscous heating is neglected in a
linear hydrodynamic analysis. In addition, the time scale
required for the relaxation of the stresses is O� _��1�, and
the correction to the temperature over the relaxation time
for the stresses is O� _��1 � _�2� �O� _��, which is small in
the limit of small strain rate. On the basis of these argu-
ments, Ernst et al. [10] concluded that viscous heating is
not significant over the time scales required for stress
relaxation, and the temperature can be assumed to be a
constant over these time scales. The problem of viscous
heating does not arise for the shear flow of inelastic parti-
cles at steady state, because the viscous production of
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fluctuating energy is balanced by the dissipation due to
inelastic collisions.

There are two components in the calculation. The first
component is the calculation of the hydrodynamic modes
in a sheared granular flow. These turn out to be very
different from those for an elastic fluid at equilibrium in
situations where energy is a nonconserved variable. The
scalings of the hydrodynamic modes with wave number
have already been obtained previously [14], and so they are
only briefly summarized here. The second part of the
calculation is to examine the effect of the modification of
the hydrodynamic spectrum on the renormalization of the
shear viscosity and the long time tails in the velocity
autocorrelation function.

In a fluid of elastic particles, in the absence of shear,
there are five conserved (slow) variables, the mass, three
components of the momentum, and the energy, since these
are conserved in interparticle collisions. Perturbations to
these conserved variables decay as

 

@�i

@t
� �si�k��i; (1)

where �i is the conserved variable, and si�k� is the decay
rate which tends to zero in the limit k! 0. Of the five
conserved variables, the two transverse momenta and the
total energy are diffusive, with decay rate ��k2 and
�Dtk

2, respectively, where k is the magnitude of the
wave vector, � is the kinematic viscosity which is the ratio
of the shear viscosity and density, and Dt is the thermal
diffusivity. The density and longitudinal momentum (along
the wave vector) are propagating modes, with growth rate
proportional to �{csk� �k2, where cs is the speed of
sound, and � is the rate of attenuation of the sound waves.

In the presence of mean shear, Eq. (1) is modified,

 �@t � _�kx
@
@ky
��i � s�k��i; (2)

where _� is the strain rate, the mean velocity is in the x
direction, the velocity gradient is in the y direction, and kx
and ky are the components of the wave vector in the x and y
directions, respectively. The above equation can be solved
analytically to obtain

 �i�t� � �i�0� exp	��0t�k
2 � _�tkxky �

1
3 _�2t2k2

x�
: (3)

The decay of the hydrodynamic modes in a granular
material is qualitatively different, because energy is not a
conserved variable in a fluid of inelastic particles. It can be
shown that a granular material contains an additional
length scale, the ‘‘conduction length,’’ (�=�), intermediate
between the mean free path � and the macroscopic scale,
where � � �1� e�1=2, and the coefficient of restitution e of
the particles is close to 1. This length scale can be derived
as follows. The energy dissipated in a collision between
two particles isO��1� e�T�, where the ‘‘granular tempera-
ture’’ T is the mean square velocity of the particles (the

particle mass is considered to be 1 without loss of general-
ity). The rate of diffusion of energy in the energy balance
equation scales as O�DTT=L2�, where the thermal diffu-
sivity DT � �T

1=2 in kinetic theory of gases, while the rate
of dissipation of energy is O��1� e�T3=2=�� . Equating
these two terms, it is clear that the rate of diffusion and rate
of dissipation are of equal magnitude for Lc � ��=��. For
L� ��=�� [or wave number k� ��=��], energy is con-
sidered to be a conserved variable, and the spectrum of
hydrodynamic modes is identical to that for a gas of elastic
particles.

For L� ��=�� [or wave number k� ��=��], energy is
not conserved, and the temperature is determined by a local
balance between the rate of production of energy due to
mean shear and the rate of dissipation due to inelastic
collisions. The nature of the hydrodynamic modes is very
different in this case, because energy is a nonconserved
variable, and the only conserved variables are the mass and
momenta. The linear growth rates of the hydrodynamic
modes were calculated by the author [14], and we use these
results to examine the long time tails in the velocity
autocorrelation function. A distinction is made, once again,
between the short time exponential growth or decay pro-
portional to exp�s�k�t� for _�t� 1, equivalent to Eq. (1),
and the long time behavior for _�t� 1, when the turning of
the wave vector due to the mean shear is incorporated, as in
Eq. (3). In the short time limit, there are three solutions for
the growth rate corresponding to the three conserved var-
iables, which are the mass and two components of the
momenta. The leading order solutions for the growth rate
in the small wave-number limit are

 s3 �

�
_�3�2

�2 	B1���kxky � B2����k
2
x


�
; (4)

where � is the mean free path and B1 and B2 are dimen-
sionless functions of the volume fraction, which have been
explicitly calculated [14], and which approach finite values
on the dilute limit. There are three solutions for the growth
rate in Eq. (4), and the growth rates are proportional to k2=3

in the short time limit. In addition, depending on the signs
of B1 and B2 and the magnitudes of kx and ky, either one or
two of the solutions are linearly unstable in the short time
limit. However, this short time instability is dampened in
the long time limit _�t� 1, by the turning of the wave
vector due to mean shear, which results in a decay propor-
tional to exp���2

0 _�3k2
xt3=3� from Eq. (3).

The origin of the nonanalytic behavior of the shear
viscosity in elastic fluids can be inferred using the ring
kinetic equation for the pair distribution function in the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, or the
mode-coupling theory for the nonlinear coupling between
the shear and longitudinal modes, or the Navier-Stokes-
Langevin equations for mass, momentum, and energy con-
servation. All of these
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approaches provide identical results for the renormalization of the shear viscosity due to nonlinear interactions,

 �� �0 �
�2

TV

Z
k0

Z
k00

Z 1
0
dthux�k0; t�uy��k0; t�ux�k00; 0�uy��k00; 0�i; (5)

where T is the temperature in energy units, V is the volume,
� is the density, ux�k; t� and uy�k; t� are the Fourier trans-
forms of the components of the velocity, and

R
k 


�2���d
R
dk, where d is the dimension of the system.

Throughout the analysis, we set the particle mass equal
to 1 without loss of generality, so that all mass dimensions
are scaled by the particle mass. In Eq. (5), the averaging is
carried out over the velocity fluctuations in a linear shear
flow. An identical equation is also obtained starting from
the Green-Kubo formula for the shear viscosity in terms of
the stress-stress correlation, though the ensemble average
is carried out over equilibrium fluctuations in that case.

The average in Eq. (5) has contributions from both the
longitudinal and the transverse shear modes. The contri-
bution from the transverse modes can be obtained, to
within a multiplicative constant, as follows. Equation (1)
can be used for the decay rate of perturbations to the
conserved variables in the linear approximation, and the
evolution of the velocity autocorrelation is of the form

 hui�k; t�uj��k; 0�i � exp�s�k�t�hui�k; 0�uj��k; 0�i: (6)

When this is inserted into the equation for the viscosity (5),
we obtain
 

���0�
�2

TV

�
Z 1

0
dt
Z

k
hux�k;0�ux��k;0�uy�k;0�uy��k;0�i

�exp�2s�k�t�: (7)

Since the equal time average hui�k; 0�uj��k0; 0�i is equal
to �T=���2��d	�k� k0�	ij at equilibrium, the expression
for the viscosity is

 � � T�2��d
Z 1

0
dt
Z

k
exp�2s�k�t� (8)

 � T
Z 1

0
dt

1

2�0t
in 2D; (9)

 � T
Z 1

0
dt

1

�2�0t�3=2
in 3D; (10)

where we have used the substitution s�k� � ��0k2.
Equations (9) and (10) indicate the presence of ‘‘long
time tails‘‘ in the velocity autocorrelation function, where
the autocorrelation function decays as t�d=2 instead of the
exponential decay expected in single relaxation time pro-
cesses. In two dimensions, the above time integral is
divergent, resulting in a divergence in the viscosity. In
three dimensions, the integral is convergent, but decays

slowly as t�1=2 in the long time limit. In order to obtain the
nonanalytic form of the viscosity as a function of strain
rate, it is necessary to incorporate an additional effect in the
evolution equation for the viscosity, which is the effect of
mean shear on the evolution equation for the velocity
fluctuations in (1). Note that the long time tail in the
velocity autocorrelation function is an equilibrium prop-
erty of the system, and is not caused by shear.

It is easy to see that the fast decay of the velocity
perturbation proportional to exp���0 _�2t3k2

x=3� due to
shear in Eq. (3) cuts off the time integrals in Eqs. (9) and
(10) at an upper limit proportional to _��1, thus giving an
expression for the viscosity.

 �� �0 � �c �
A2tT
�0

log� _�� in 2D; (11)

 � �c �
A3tT

�3=2
0

_�1=2 in 3D; (12)

where A2t and A3t are dimensionless constants in two and
three dimensions, respectively, and the contribution �c in
(11) and (12) results from the lower cutoff for the time
integration, since the integrals are divergent at t � 0. In
addition to the contribution due to the coupling of the shear
modes, there is an additional contribution due to the cou-
pling of the longitudinal modes, and so the final expression
for the renormalization of the viscosity is

 �� �0 � T
�
A2t

�0
�
A2l

�0

�
log� _�� in 2D; (13)

 � T
�
A3t

�3=2
0

�
A3l

�3=2
0

�
_�1=2 in 3D; (14)

where �0 is the bare damping coefficient for the longitu-
dinal modes, and A2l and A3l are dimensionless constants.
Equations (13) and (14) are identical in form to the results
of Ernst et al. [10] and Lutsko and Dufty [11], though
substantially more work is required to evaluate the con-
stants in the solutions (13) and (14).

For a fluid of inelastic particles, the viscosity renormal-
ization due to mode coupling can be determined using
Eq. (5), in which the growth rate of the hydrodynamic
modes is given by Eq. (4). Since the growth rate is propor-
tional to �k�=��2=3 _�, the integral over the wave number in
Eq. (8) provides the following time dependence for the
renormalized viscosity,

 �� �0 � C2T
Z 1

0
dt

�2

� _�t�3�2 in 2D; (15)
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 � C3T
Z 1

0
dt

�3

� _�t�9=2�3
in 3D; (16)

where C2 and C3 are constants resulting from the numeri-
cal integration over the wave vector space, and we have not
explicitly written down the contributions �c resulting from
the upper cutoff in the wave number as in Eqs. (11) and
(12), since these could be incorporated in the definition
of the bare viscosity. Equations (15) and (16) indicate that
the long time behavior of the velocity autocorrelation
functions in a granular flow are also very different from
those in a fluid at equilibrium, due to the lack of conser-
vation of energy. In two dimensions, the velocity autocor-
relation function decays proportional to t�3, in contrast to
the t�1 decay in an elastic fluid at equilibrium. In three
dimensions, the decay is proportional to t�9=2, in contrast
to the decay proportional to t�3=2 in an elastic fluid at
equilibrium.

The time integrals in Eqs. (15) and (16) are easily
evaluated to within a multiplicative constant, using an
upper cutoff at t / _��1 as before. The final result for the
viscosity renormalisation in two dimensions is of the form

 �� �0 /
T�2

_��2 / _� (17)

since T / � _�2�2=�2�. The leading order contribution to the
viscosity in two dimensions, �0, is proportional to
T1=2=
� � _��=�
�. Therefore, the viscosity renormaliza-
tion is proportional to ��
=�� times the leading order
viscosity. This renormalization is of the same order in the
� expansion as the Burnett correction, and therefore it can
be concluded that correlated collisions do not lead to
divergent viscosities of Burnett coefficients even in two
dimensions. A similar calculation in three dimensions
provides the result,

 �� �0 /
� _�
�
: (18)

Thus, the viscosity renormalization in three dimensions is
�2�
=��2 smaller than the leading order viscosity. The
O��2� correction to the viscosity corresponds to the
super-Burnett terms in the � expansion, and therefore
both the shear viscosity and the Burnett corrections are
not divergent in three dimensions.

The transition between the elastic fluid limit (where
energy is conserved) and the present case of a granular
material (where energy is not conserved) can be under-
stood on the basis of the three lengths scales in the system,
the macroscopic scale L, the microscopic scale (mean free
path) �, and this intermediate scale Lc � �=�1� e�1=2.

Since energy is conserved for L� Lc, the dynamics of
an elastic fluid is recovered. For L� Lc, the dynamics of
an inelastic sheared fluid discussed here is obtained. As the
inelasticity is decreased (e! 1) at constant system size L,
the conduction length Lc diverges, and the elastic limit is
recovered when Lc becomes greater than the system size L.

Thus, the present analysis establishes that long time tails
in the velocity autocorrelation function, and the presence
of a divergent viscosity in 2D and divergent Burnett co-
efficients in 3D, are not encountered in sheared granular
flows where energy is a nonconserved variable. This in-
dicates that the form of the constitutive relations deter-
mined by the Chapman-Enskog procedure, which neglects
correlations, is valid for granular flows, and correlations do
not cause the divergences in the viscosity or Burnett co-
efficients encountered in elastic fluids at equilibrium.
However, there will be numerical contributions due to the
upper wave-number cutoff in Eq. (8), and the lower time
cutoff in Eqs. (15) and (16), which could alter the numeri-
cal values of the transport coefficients. Work is currently in
progress to evaluate these numerical contributions.
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