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Abstract. – The striking lack of observable variation of the volume fraction with height in the
center of a granular flow down an inclined plane is analysed using constitutive relations obtained
from kinetic theory. It is shown that the rate of conduction in the granular energy balance
equation is O(δ2) smaller than the rate of production of energy due to mean shear and the rate
of dissipation due to inelastic collisions, where the small parameter δ = (d/(1− en)

1/2H), d is
the particle diameter, en is the normal coefficient of restitution and H is the thickness of the
flowing layer. This implies that the volume fraction is a constant in the leading approximation
in an asymptotic analysis in small δ. Numerical estimates of both the parameter δ and its
pre-factor are obtained to show that the lack of observable variation of the volume fraction
with height can be explained by constitutive relations obtained from kinetic theory.

The flow of a granular material down an inclined plane has been studied extensively using
computer simulations [1–3]. One of the most remarkable features of these simulation results
is that the volume fraction of the particles is a constant in the bulk of the flow, the granular
temperature and all stress components are linear functions of height, and the mean velocity
increases as the square root of the height from the bottom of the layer. The volume fraction
is found to be, within numerical accuracy, independent of position in the flow (apart from two
thin layers at the top and bottom of thickness about 3-5 particle diameters where the volume
fraction varies with position), independent of the total height of the material, and dependent
only on the angle of inclination of the inclined plane. There have been several studies of this
flow, both phenomenological and kinetic theory based [4–7], but a clear explanation for the
lack of observable variation in the volume fraction is still not available.

Kinetic theories for granular materials exploit the analogy between the motion of discrete
particles in the granular material and the motion of molecules in a molecular gas. These
include approximate approaches that modified the Navier-Stokes equations by adding a dis-
sipation term due to inelastic collisions in the energy equation [8–11], as well as asymptotic
approaches that used expansions in the inelasticity and the Knudsen number [12–15]. From
dimensional analysis it can be inferred that the stress is equal to the square of the strain rate
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times the particle diameter times a function of the volume fraction, since there are no other
time scales in the problem, and this type of relationship is called the “Bagnold law”.

It is usually assumed that these theories are applicable only in the dilute limit, but simula-
tions [1] have shown that the Bagnold law for the stress tensor applies even for dense granular
flows with volume fraction ranging from 0.55 to about 0.6. The validity of the Bagnold law in-
dicates that the inverse of the strain rate is the only time scale in the problem, and that there
is no interference between the flow time (inverse of strain rate) and the time between collisions.
Additional support for this conclusion is provided by the simulations of Mitarai and Nakan-
ishi [3], who found that the constitutive relations based on kinetic theory could provide a fairly
accurate prediction of the stress tensor in this flow, though the rate of dissipation of energy
is not accurately predicted. In addition, it is known [14, 15] that if the rate of conduction of
energy is neglected in the energy balance equation, kinetic theory predicts that the density is
independent of height in the bulk of the flow. In the present analysis, we determine the effect of
conduction on the density profile in the bulk of a steady granular flow down an inclined plane.

The granular material is composed of hard-sphere particles of diameter d flowing down a
plane inclined at an angle θ to the horizontal. A Cartesian coordinate system is used, where
the velocity and velocity gradient are in the x and y directions, respectively. The mass of a
particle is set equal to 1 for simplicity. The shear and normal stress balances, and the constant
ratio of the shear and normal stresses, are

(dσxy/dy) = −ρg sin (θ),
(dσyy/dy) = ρg cos (θ),
(σxy/σyy) = − tan (θ). (1)

The energy equation at steady state is

d
dy

K
dT

dy
+ µγ̇2 − D = 0, (2)

where K is the thermal conductivity, D is the rate of dissipation of energy, T is the “granular
temperature”, µ is the viscosity and γ̇ is the strain rate.

The expressions for the shear and normal stresses depend on the approximation used for
the stress tensor. In the Burnett approximation, the shear and normal stresses are given by

σxy = µγ̇,

σyy = −p + Bγ̇2. (3)

In the Navier-Stokes approximation, the Burnett coefficient B is set equal to zero. The results
of the present analysis indicate that the variation of density with height in the Navier-Stokes
and Burnett approximations are qualitatively the same, though an earlier study [15] has shown
that there is a significant variation in the dependence of density on the angle of inclination.
Consequently, for the present purposes, we use the Navier-Stokes approximation for the shear
stress with B set equal to zero.

It is convenient to express the viscometric coefficients and the dissipation coefficient as a
product of two functions, one of which is a dimensionless function of volume fraction, and the
other is a product of suitably chosen powers of the granular temperature and particle diameter,
the latter having the same dimensions as the viscometric function under consideration. (Note
that the granular temperature has dimensions of the square of the velocity, since the mass
is set equal to 1.) From dimensional analysis, it can be inferred that p = pφ(T/d3) K =
Kφ(T 1/2/d2), µ = µφ(T 1/2/d2), and D = Dφε2(T 3/2/d4), where the variables with subscript
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φ are dimensionless functions of the volume fraction, and ε = (1−en)1/2 is the small parameter
used in the expansion [14, 15] to determine the constitutive relations, where en is the normal
coefficient of restitution. The parameter ε2 is written separately in the expression for the
rate of dissipation of energy in order to ensure that the rate of dissipation goes to zero in the
limit of elastic collisions. The strain rate can be expressed in terms of the temperature using
eqs. (3) for the stresses, and eqs. (1) for the ratio of the stresses,

γ̇ =
tan (θ)pφT 1/2

µφd
= G(φ, tan (θ))(T 1/2/d). (4)

It is convenient to scale the y coordinate by the height of the flowing layer, y∗ = (y/H),
since this is the length scale for the variation of the potential energy of the particles in the
momentum balance equation in the y-direction,

1
H

d(pφT/d3)
dy∗

= ρg cos (θ) = (6/πd3)φg cos (θ). (5)

Equation (5) indicates that for the pressure to balance the weight per unit area of O(gH), the
temperature has to scale as gH in the flowing layer. A scaled temperature can be defined as
T∗ = (T/gH). This scaled temperature is inserted into the energy balance equation, eq. (2),
and the resulting equation is divided by the coefficient of Dφ in the last term on the right
side, to obtain

δ2 d
dy∗

(
KφT

1/2
∗

dT∗
dy∗

)
= −(µφG∗(φ, tan (θ))2 − Dφ)T 3/2

∗ , (6)

where δ = (d/εH) is the ratio of the “conduction length” [14, 15] and the height H,
G∗(φ, tan (θ)) = (G(φ, tan (θ))/ε), and G(φ, tan (θ)) is defined in eq. (4).

In eq. (6), it is apparent that the parameter multiplying the conduction term on the left
side is small if the height is large compared to (d/ε), or H � (d/ε). This condition is satisfied
for the chute flows of Silbert et al. [1]. For example, for H = 40d, the parameter δ varies from
about 0.08 for en = 0.9 to about 0.0353 for en = 0.5. In this case, an asymptotic expansion
can be employed and the density and temperature can be expanded in the small parameter
δ, φ = φ(0) + δφ(1) + δ2φ(2), and similar expansions for T and γ̇. When these expansions are
inserted in the energy equation (6), the leading-order equation is

µ
(0)
φ (G(0)

∗ )2 − D
(0)
φ = 0, (7)

where we use the notation �(0) = �(φ)|φ=φ(0) for the viscosity, thermal conductivity, pressure
and the rate of dissipation of energy. In the above expression, the left side is a function of the
density φ(0) which is, in general, a function of y, whereas the right side is independent of height.
Therefore, the equality in eq. (7) can be valid at all values of y only if the leading solution
for the volume fraction φ(0) is independent of y. This density can be explicitly determined
as a function of angle θ from a knowledge of the functional forms of D

(0)
φ , µ

(0)
φ and p

(0)
φ , as

was carried out in an earlier study [15]. Once the value of φ(0) is known, the leading-order
temperature field can be determined from the momentum balance equation,

T
(0)
∗ =

6φ(0)(1 − y∗) cos (θ)

πp
(0)
φ

. (8)



V. Kumaran: Kinetic theory for the density plateau etc. 235

Here, we have used the condition that T
(0)
∗ = 0 at the free surface y∗ = (y/H) = 1 in order

to fix the constant in the above equation. Note that it is not possible to apply boundary
conditions for the temperature field, since we have neglected the conduction of energy in the
leading approximation in eq. (6), and converted the equation from a second-order differential
equation to a zeroth order differential equation. The conduction term has to be included in
thin layers at the top and bottom using a theory similar the boundary layer theory for viscous
flows, and work is currently in progress to analyse these layers.

Next, we turn to the calculation of the higher-order corrections to the volume fraction due
to the gradient term in the left side of eq. (6). Since the inhomogeneous term is O(δ2), the
first correction to the density φ(1) is identically equal to zero. The second correction to the
density is obtained by substituting the density and temperature expansion into eq. (6), and
retaining all terms of O(δ2),

d
dy∗

(
K(0)

φT (0)1/2

∗
dT (0)∗

dy∗

)
= − (µφG2

∗ − Dφ)T 3/2
∗

∣∣∣
2
, (9)

where K
(0)
φ = Kφ(φ(0)), and the superscript 2 refers to the O(δ2) contribution to the terms

on the right. Since the density-dependent term in brackets on the right side of eq. (9) is zero
in the leading approximation, and the first corrections to φ and T∗ are zero, and the O(δ2)
contribution on the right side is given by

(µφG2
∗ − Dφ)T 3/2

∗
∣∣∣
2

=
d
dφ

(µφG2
∗ − Dφ)

∣∣∣∣
φ=φ(0)

φ(2)T (0)3/2

∗ . (10)

Using the above expression for the right side of eq. (9), and inserting the leading-order solution
for T

(0)
∗ , we obtain

φ(2) = − K
(0)
φ

2(1 − y∗)2

(
d
dφ

(µφG2
∗ − Dφ)

∣∣∣∣
φ=φ(0)

)−1

. (11)

The numerical estimate or φ(2) is obtained using the constitutive relations for smooth
nearly elastic model [14] (where the post-collisional relative velocity along the line joining
centers is −en times the pre-collisional value), and the rough nearly elastic model [15] (where
the post-collisional relative velocity parallel and perpendicular to the line joining particle
centers are −en and −et times their pre-collisional values, respectively). Here, en is the normal
coefficient of restitution which varies between 0 and 1, and en = 1 corresponds to perfectly
elastic collisions where energy is conserved. For rough particles, et = −1 corresponds to
smooth particles where there is no change in the relative velocity perpendicular to the line
joining centers in a collision, while et = 1 corresponds to perfectly rough particles where the
relative velocity perpendicular to the line joining centers is reversed in the collision. The
constitutive relations for the stress were obtained using an expansion in the parameter in
the expansion is defined as ε = (1 − en)1/2. In the case of rough particles, the parameter
at = (1 − e2

t )/(1 − e2
n) is a numerical O(1) factor. The results for the viscometric coefficients

in the two limits are shown in table I. Numerical results are obtained for two different forms of
the pair distribution function for hard-sphere fluids, the Carnahan-Starling pair distribution
function

χ(φ) = (2 − φ)/(2(1 − φ)3), (12)

and the high-density pair distribution function,

χ(φ) = (1 − (φ/φc)1/3)−1, (13)
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Table I – Viscometric coefficients obtained from kinetic theory for smooth nearly elastic particles [14]
and rough nearly elastic particles [15].

Smooth Rough

pφ (6φ/π)(1 + 2(2− ε2)φχ) (6φ/π)(1 + 2(2− ε2)φχ)

µφ (0.176/χ) + 0.564φ + 2.175φ2χ (0.195/χ) + 0.892φ + 3.112φ2χ

Dφ (144/π3/2)φ2χ (144/π3/2)φ2χ(1 + at)

Kφ (0.662/χ) + 3.174φ + 8.12φ2χ (1.014/χ) + 5.015φ + 19.27φ2χ

B (0.0410/χ) + (0.0116/φχ2) (0.04094/χ) + (0.00433/φχ2)

−0.00381φ − 0.136χφ2 −0.191φ − 1.05φ2χ

where we assume that the density at close packing, φc, is 0.65. The Carnahan-Starling pair
distribution function is accurate at low and moderate volume fractions, but does not show the
expected divergence of the pair distribution function as the volume fraction for close packing
is approached. The high-density pair distribution does diverge as the volume fraction for
close packing is approached, but is not accurate in the low volume fraction limit. It is shown
below in fig. 1 that results for the correction to the density are qualitatively the same for both
forms of the pair distribution function, and their numerical values are also close to each other.
Therefore, it is expected that a similar behaviour will also be observed for other forms of the
pair distribution function, so long as the numerical value of the pair distribution function at
contact becomes large compared to 1 in the close-packed limit.

The numerical estimates for the leading-order volume fraction φ(0) as a function of the
angle of inclination were evaluated earlier [15], and so we restrict attention to the variation
of (φ(2)(1 − y∗)2) as a function of φ(0). Since the constitutive relations are evaluated correct
to O(ε2), and the terms on the right side of the conduction equation (6) is O(ε2), the value
of φ(2) can be evaluated only to leading order in the limit of small ε. The numerical results
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Fig. 1 – The parameter (φ(2)(1 − y∗)2) (eq. (11)) as a function of φ(0) for the smooth nearly elastic
model (◦); the rough nearly elastic model with at = 0 (�); at = 0.2 (�); at = 1.0 (+); at = 5.0
(×). The broken lines show the results when the pair distribution function is given by the Carnahan-
Starling equation of state (eq. (12)), and the solid lines show the results when the pair distribution
function is given by the high-density equation of state (eq. (13)).
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Fig. 2 – Volume fraction φ as a function of the ratio of the height and particle diameter (y/d) for the
smooth nearly elastic model (dashed line); the rough nearly elastic model with at = 1.0 (solid line),
for H = 40d, en = 0.5 (◦), H = 40d, en = 0.7 (�), H = 40d, en = 0.9 (�) and H = 40d, en = 0.98
(�). The pair distribution function was assumed to be the high-density equation of state (eq. (13))
in all cases.

for (φ(2)(1 − y∗)2) as a function of volume fraction are shown in fig. 1 for the smooth and
rough nearly elastic particle models. It is observed that (φ(2)(1− y∗)2) has a maximum value
of about 2 near close packing for rough nearly elastic particles with at = 0, and is always
lower than 2 for all other parameter values studied. The value of φ(2) does increase at lower
volume fractions and it diverges at a volume fraction close to 0.1 because the denominator
(last term on the right side of eq. (11)) passes through zero, but such low volume fractions are
not encountered in practical applications or in the simulations [1, 3]. This indicates that the
variation in volume fraction is, at most, about 1.2% even for thin layers of thickness equal to
40 particle diameters and en = 0.9, for which δ2 = 0.0064, when the volume fraction is greater
than about 0.3 in three dimensions, and the variation decreases as the collisions become more
inelastic. These variations may be difficult to observe in graphs of simulation results, since
they are smaller than the typical symbol size or error bar in the graph.

An example of the density profile predicted by the above analysis, for φ(0) = 0.60 and
for different coefficients of restitution, is shown for a layer with thickness equal to 40 particle
diameters in fig. 2. It is observed that the density profile is remarkably constant between
en = 0.5 and en = 0.9, though this solution is not valid within boundary layers of thickness
about 5 particle diameters at the top and bottom as noted earlier. The density profile does
show some variation for en = 0.98 because the parameter δ is 0.177, and is no longer small, but
even this variation is small in the center of the layer. The simulations of Silbert et al. [1] do
show an example of a profile at en = 0.98 which looks much flatter than fig. 2, but it should be
noted that this is in two dimensions, and Silbert et al. had a non-zero friction coefficient, which
would result in a larger energy dissipation than that for frictionless particles with en = 0.98.
Thus, the present analysis captures the remarkable lack of observable variation of the volume
fraction with height, and with angle of inclination near close packing.

Lastly, we discuss in further detail the parameter δ, which is the ratio of two length
scales (d/ε) and H. Consider a variation in temperature over a length scale Lc. The rate
of conduction of energy is (KT/L2

c) = Kφ(T 1/2/d2)(T/L2
c), while the rate of dissipation is

D = (Dφε2T 3/2/d4), where the expressions for Kφ and Dφ are provided in table I. The rate of
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conduction and dissipation are of equal magnitude for Lc = (Kφ/Dφ)1/2(d/ε). For H � Lc,
the rate of dissipation is large compared to the rate of conduction, and so the rate of conduction
of energy (left side of eq. (6)) can be neglected in the leading approximation. However, there
are regions of thickness Lc at the top and bottom of the flowing layer where the conduction
of energy is important, and these have to be analysed using a boundary layer analysis. The
ratio (d/ε) shows a very modest variation between about 1.5 and 3 particle diameters when
the normal coefficient of restitution varies between 0.9 and 0.5, and this is consistent, up
to a numerical factor of about 2, with the observation in simulations that the variation in
density at the top and bottom is restricted to regions of thickness equal to 3–6 particle
diameters. In the low-density limit, (Kφ/Dφ) ∝ φ−2, and so the conduction length scales as
(d/εφ) ∼ (1/ρd2ε) ∼ (λ/ε), where λ is the mean free path in a dilute gas. Near close packing,
both Kφ and Dφ increase proportional to the pair distribution function χ, and so Lc ∼ (d/ε).
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