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The instability in plane Couette flow of a viscoelastic fluid past a deformable surface is examined
using the temporal linear stability theory in the zero Reynolds number limit. The polymeric fluid is
described using the Oldroyd-B model and the flexible wall is modeled as a linear viscoelastic solid
surface. The analysis shows that the wall flexibility tends to reduce the decay rate of the stable
discrete modes for the polymeric flow past a rigid wall, and one of the discrete modes becomes
unstable when the wall deformability parameter �=V� / �GR� exceeds a certain critical value �c.
Here, V is the top-plate velocity, � is the zero shear viscosity of the polymeric fluid, G is the shear
modulus of the wall, and R is the width of the fluid layer. The analysis reveals the presence of two
classes of modes, the first of which becomes unstable for perturbations with wavelength comparable
to the channel width �finite wavelength modes�, and the second becomes unstable for perturbations
with wavelength small compared to the channel width �short wave modes�. The latter class of modes
are found to be absent for the highly concentrated polymer solutions with ��0.23, where � is the

ratio of solvent-to-solution viscosity. We have mapped out the regions in the parameter space �W̄-H�
where the finite wavelength and short wave modes are unstable, where W̄= ��G /��, and � is the
relaxation time of the viscoelastic fluid. Fluid elasticity is found to have a stabilizing influence on
the unstable mode, such that when the shortwave instability is absent for ��0.23, the flow becomes

stable for any Weissenberg number W̄�W̄max. Here, W̄max increases proportional to H for H�1.

However, when the shortwave instability is present, the instability persists for W̄�1. The behavior

of both classes of modes with respect to the parameters, like W̄, H, �, and the ratio of solid-to-fluid
viscosity �r, is examined. © 2007 American Institute of Physics. �DOI: 10.1063/1.2711149�

I. INTRODUCTION

The dynamics of fluid flow past a compliant surface is
qualitatively different from that past a rigid surface because
of the coupling between the fluid and wall dynamics, and the
elasticity of the surface could affect the fluid flow. In particu-
lar, this coupling could influence the transition from laminar
to turbulent flow in such systems. Experiments conducted by
Krindel and Silberberg1 indicated that the onset of laminar-
to-turbulence transition in Newtonian fluid flow through gel-
walled tube can occur at Reynolds number much smaller
than 2100, the critical Reynolds number for the flow through
a rigid tube. Motivated by this observation, extensive studies
pertaining to the linear stability analysis of fluid flow in
tubes and channels bounded by gel walls have been carried
out. The results of these studies indicated that there are at
least three modes of instability in flexible-walled tubes and
channels that are qualitatively different from those in rigid
tubes and channels, namely the viscous modes, the wall
modes, and the inviscid modes, depending upon the regime
of flow operation. A detailed review and classification of
these instabilities have been covered by Kumaran2 and
Shankar.3 In the present study, the attention is restricted only
to the unstable viscous modes, which drive the flow past a
deformable wall unstable even in the absence of inertial
forces.

The linear stability analysis of Newtonian fluid flow past
a flexible surface in a plane Couette setup performed by Ku-

maran et al.4 suggested that the coupling between the fluid
flow and the wall dynamics renders the flow unstable even in
the limit of zero Reynolds number. The fluid-solid interface
was found to become unstable when the dimensionless top
plate velocity �=V� /GR exceeds a critical value. Here, V is
the uniform velocity of the top plate, � is the viscosity of the
fluid, R is the channel width, and G is the shear modulus of
the gel wall. The instability is driven by a discontinuity in the
strain rate across the fluid-gel interface, and the destabilizing
mechanism is the transfer of energy from the mean flow to
the fluctuations due to the shear work done by the mean flow
at the interface. The experiments conducted by Kumaran and
Muralikrishnan have verified the presence of an unstable
mode using the parallel plate geometry of a rheometer.5,6 The
experimental value of critical velocity required for the onset
of instability was found to be in good agreement with the
theoretical predictions of Ref. 4 with no adjustable param-
eters, for a wide range of gel thicknesses and elastic moduli.
This class of modes in inertialess motion are referred to as
“viscous modes” of flow past a flexible surface and will be
referred to as the KFP modes in the present paper. The analy-
sis was extended to the viscous flow through a flexible tube
by Kumaran.7

Fluids encountered in biological systems are likely to be
viscoelastic, and it is essential to analyze the stability behav-
ior of viscoelastic fluid past a compliant surface. For the flow
of viscoelastic fluid past a rigid wall, significant work has
been carried out to study the stability behavior and investi-

PHYSICS OF FLUIDS 19, 034102 �2007�

1070-6631/2007/19�3�/034102/15/$23.00 © 2007 American Institute of Physics19, 034102-1

Downloaded 01 Jan 2011 to 203.200.35.31. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2711149
http://dx.doi.org/10.1063/1.2711149


gate the nature of the eigenspectrum for the growth rate. In
most prior studies, the viscoelastic fluid is described either
by the upper convected Maxwell �UCM� model or the
Oldroyd-B model, wherein the polymer chains are treated as
the elastic dumbbells. In one of the oldest studies, Gorodtsov
and Leonov8 performed a linear stability analysis of UCM
fluid for zero Reynolds number flow. Providing the closed
form solution of the problem, they showed that there exist
precisely two discrete modes accompanied by a stable con-
tinuous spectrum. Both the discrete modes have the same
rate of decay but different values of frequency. These viscous
modes �abbreviated as GL modes in the current paper� have
been reported to be stable to infinitesimal perturbations with
any value of axial wave number and for a fluid with a wide
range of elasticity, in the absence of inertia. Renardy9 further
provided a rigorous proof of stability at zero Reynolds num-
ber for any arbitrary value of fluid elasticity, represented by
the Weissenberg number, W=�V /R, where � is the relax-
ation time of the UCM fluid. Another simple but widely ac-
cepted model for the polymeric solutions, the Oldroyd-B
model, has also been investigated for linear stability in plane
Couette as well as with an additional Poiseuille component
for zero Reynolds number flow.10 The authors present a com-
prehensive picture of the eigenspectrum for the problem us-
ing the spectral method. For an Oldroyd-B fluid, which is a
generalization of the UCM model for polymer solutions, the
GL modes of the UCM model persist with slight modifica-
tion. The original GL modes for the UCM fluid become more
stable �i.e., the decay rate increases� due to the presence of
solvent viscosity. These two GL modes modified by the sol-
vent contribution in the Oldroyd-B model will still be re-
ferred to as GL modes in what follows. Apart from these two
GL modes in Oldroyd-B fluid, there also exist two stable
continuous spectra along which the coefficient of the highest
derivative in the governing equation for the growth rate is
zero. The first one is the same as that for the UCM fluid,
whereas the second one is qualitatively different. While the
solutions for the governing equations for growth rate are ana-
lytic for the continuous spectrum for the UCM fluid, it ceases
to be analytic and has a branch cut along the second continu-
ous spectrum. As a consequence, the eigenvalues emerge
from or disappear through the continuous spectrum as pa-
rameters change. As a result, there exist, apart from GL
modes, a string of discrete eigenvalues on both sides of this
second continuous spectrum.

While the problem of viscoelastic fluid past a hard sur-
face has received significant attention, the flow of such fluid
past a deformable surface is largely uncovered. Recently,
Shankar and Kumar11 carried out a linear stability analysis of
the UCM fluid in plane Couette flow past gel in the creeping
flow limit. The analysis predicts unstable viscous modes
even in the limit of zero Reynolds number when parameter
�=V� / �GR� exceeds a certain critical value. Their analysis
recovers the stable modes for UCM fluid flow past a rigid
surface reported in Ref. 8 �the GL modes� as well as the
unstable viscous mode for Newtonian fluid flow past gel of
Ref. 4 �the KFP mode�. Their analysis shows that the wall
elasticity has a destabilizing effect on one of the two discrete
GL modes, whereas finite fluid elasticity has a stabilizing

effect on the unstable KFP mode for the Newtonian fluid.
Since the UCM model ignores the viscous contribution due
to the solvent, it is suitable for the polymer melt. In the
present study, we consider more general Oldroyd-B fluid,
which takes into account the solvent contribution, and hence
represents the polymer solution. As indicated earlier, there
are solutions for the growth rate for an Oldroyd-B model that
do not exist for the UCM model, and it is of interest to
examine the effect of a flexible wall on these modes, in order
to have a comprehensive understanding of the stability of a
viscous flow past a flexible surface. The scope of the present
work, in relation to the previous analyses,4,10,11 is illustrated
schematically in Fig. 1. It was also verified that the previous
results are recovered in their respective limits.

The organization of the rest of the paper is as follows.
The set of governing equations, their steady-state solution,
and the formulation of the temporal linear stability problem
are presented in Sec. II. In Sec. III, the viscous mode insta-
bility for an Oldroyd-B fluid flow past gel is analyzed and
the stability diagrams are constructed for a wide range of
parameters. The conclusions of the analysis are discussed in
Sec. IV.

II. PROBLEM FORMULATION

A. Governing equations

The coordinate system and base flow configuration are
shown in Fig. 2. The system consists of an incompressible
viscoelastic fluid of density � occupying the domain 0�y*

FIG. 1. Schematic illustration of the present work put into perspective with
regard to the previous analyses. �→0 indicates the rigid wall limit and
nonzero � the flexible wall case. The solvent-to-solution viscosity ratio � is
unity for the Newtonian fluid and zero for the UCM fluid.

FIG. 2. Schematic diagram of plane Couette flow over a flexible surface
showing the dimensional coordinate system.
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�R. The polymeric solution is characterized by the zero-
shear viscosity � and the relaxation time �. The fluid is sup-
ported on an incompressible linear viscoelastic gel medium
of density the same as that for the fluid � and thickness HR.
The rigid wall at y*=R is set moving in the x direction with
velocity v̄x

*=V whereas the bottom rigid wall at y*=−HR,
which supports the gel, is held stationary. Here and in what
follows, the quantities with a superscript * are dimensional
and the ones without the superscript are dimensionless unless
stated otherwise. The fluid mass and momentum balance
equations in the zero Reynolds number limit are

� · v = 0, �1�

− �pf + � · � = 0, �2�

where v denotes the fluid velocity field and pf is the fluid
pressure. For the Oldroyd-B model, the stress tensor � con-
sists of the viscous stress due to the solvent ��s� and the
polymeric stress ��p�,

� = �s + �p. �3�

The viscous stress arising due to the solvent viscosity ��s� is
given by Newton’s law of viscosity,

�s = ���v + ��v�T� , �4�

where the superscript T indicates the transpose, and the pa-
rameter �=�s /�, known as the retardation parameter, is in-
troduced to represent the solvent contribution to the solution
viscosity �, where �=�s+�p. The polymer contribution is
given by �1−��=�p /�.

The polymeric stress �p is expressed in terms of the
polymer chain conformation tensor c, which is given by the
single relaxation time constitutive model,

Dtc
* = −

�c* − c*eq
�

�
. �5�

The material time derivative Dtc
* is the upper convected

time derivative of c defined as

Dtc
* = �tc

* + v* · �c* − c* · ��v*� − ��v*�T · c*. �6�

Under no-flow conditions, the equilibrium chain conforma-
tion is c*eq

= �kBT /H�	ij, where H is the spring constant and
kBT is the thermal energy. The polymeric stress, which is
proportional to the departure of the conformation tensor from
its equilibrium value, is given by the expression

�*p
=

�pH

�kBT
�c* − c*eq

� . �7�

Upon nondimensionalizing c with �kBT /H�, �p with �V /R
and time with R /V, the constitutive model equations become

Dtc = −
�c − I�

W
, �8�

�p = �1 − ��
�c − I�

W
, �9�

where Weissenberg number W= ��V /R� is the dimensionless
relaxation time of the Oldroyd-B fluid, and I is an identity
tensor.

Substituting the expressions of �s and �p in the momen-
tum conservation equation �2�, we obtain

0 = − �pf + ��2v + � · �p. �10�

The momentum conservation equation for the Newtonian
fluid is recovered in the limit W→0 as well as for �=1, and
the governing equation for the upper convected Maxwell
�UCM� fluid is obtained for �=0.

The flexible wall is modeled as an incompressible linear
viscoelastic solid. A similar model has been previously used
to analyze the stability of the flow past a deformable
wall.4,7,11,12 The dynamics of solid wall is described by a
displacement field u given by

� · u = 0, �11�

0 = − �pg + � · � . �12�

Here, the pressure pg and the stress tensor � for the gel are
scaled with �V /R, the viscous stress in the fluid. The stresses
in the solid are comprised of the elastic and the viscous
contributions,

�* = G��u* + ��u*�T� + �g�t*��u* + ��u*�T� , �13�

where G is the shear modulus and �g is the viscosity of the
gel medium. The solid stress tensor in dimensionless form is
given by

� = � 1

�
+ �r�t���u + ��u�T� , �14�

where �=V� / �GR�, and �r=�g /� is the ratio of gel-to-fluid
viscosity. Physically, � is the ratio of the viscous stresses in
fluid to the elastic stresses in the gel wall. The rigid wall is
recovered in the limit G→
, that is, �→0.

The fluid-solid problem is supplemented with no-slip for
the fluid velocity and zero solid displacement conditions at
the top and bottom plates, respectively,

v = �1,0,0� at y = 1, �15�

u = �0,0,0� at y = − H . �16�

The continuity of velocities and stresses is imposed at the
fluid-solid interface,

v = �tu , �17�

− pfn + � · n = − pgn + � · n + Tn��s · n� , �18�

where n is the unit normal to the interface. T is the dimen-
sionless interfacial tension defined as T=� / ��V�, where � is
the dimensional interfacial tension between the fluid and the
solid.

Finally, we would like to make a comment on the scal-
ings used to nondimensionalize the quantities. While � /G
seems to be an appropriate time scale for a viscous flow, we
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scaled time with R /V, as done previously by Shankar and
Kumar.11 In the stability analysis for the present problem, we
arrive at the unstable modes by continuing the already re-
ported modes for the rigid wall to the wall with nonzero
deformability, as will be seen in Sec. III C. The present scal-
ing allows us to perform this exercise for a finite Weissen-
berg number. In case the time had been scaled with � /G, the
Weissenberg number ��G /�� would diverge in the rigid wall
limit G→
. For the rigid wall problem, the time has been
scaled with R /V for the creeping flow.8,10

B. Base state

For the steady-state base flow shown in Fig. 2, the fluid
velocity, the gel displacement, and the stresses are given as

v̄ = �y,0,0� ,

ūx = ��y + H�, ūy = 0, ūz = 0,

c̄ = �1 + 2W2 W 0

W 1 0

0 0 1
�, �̄p = �1 − ���2W 1 0

1 0 0

0 0 0
� ,

�19�

�̄xy = 1, �̄xx − �̄yy = 2�1 − ��W , �20�


̄xy = 1, 
̄xx = 0, 
̄yy = 0, �21�

p̄f = p̄g = const.

The above base state solution satisfies the normal and tan-
gential velocity and stress continuity conditions at the inter-
face, which, for the base state, is flat at y=0. As the poly-
meric fluid exerts the normal stresses, the first normal stress
difference for the viscoelastic fluid is nonzero, �̄xx− �̄yy

=2�1−��W. This additional stress, which is absent for the
Newtonian fluid ��=1 or W=0�, can play a significant role in
the stability of the base flow, especially in the limit W�1.

C. Linear stability analysis

The above base flow is superimposed with two-
dimensional infinitesimal amplitude disturbance of the form

�� = �̃�y�eik�x−ct�, �22�

where k is the streamwise wave number, c is the complex
wave speed, and � is a general perturbation quantity �
= �v , pf ,c ,u , pg�. Note that the scalar wave speed c is differ-
ent from the conformation tensor c.

Substituting �= �̄+�� in the fluid and gel governing
equations, we get, after linearizing, the following equations
for the fluid perturbation quantities:

dyṽy + ikṽx = 0, �23�

− ikp̃f + ��dy
2 − k2�ṽx +

�1 − ��
W

�dyc̃xy + ikc̃xx� = 0, �24�

− dyp̃f + ��dy
2 − k2�ṽy +

�1 − ��
W

�dyc̃yy + ikc̃xy� = 0, �25�

ik�y − c�c̃xx − 2ikc̄xxṽx − 2c̄xydyṽx − 2c̃xy = −
1

W
c̃xx, �26�

ik�y − c�c̃xy − ikc̄xxṽy − c̄yydyṽx − c̃yy = −
1

W
c̃xy , �27�

ik�y − c�c̃yy − 2ikc̄xyṽy − 2c̄yydyṽy = −
1

W
c̃yy . �28�

Substituting the expressions for the components of the con-
formation tensor in the momentum conservation equations
�24� and �25� and eliminating the pressure, we obtain a single
fourth-order differential equation of the form

�1 − ����S2D2 − 2ikWSD − 2k2W2 − k2S2��D2 + 2ikWD

− 2k2W2 − k2�ṽy� + �S3�D2 − k2�2ṽy = 0, �29�

or in alternative form

�1 − ���D2 − k2�	1

S
�D2 + 2ikWD − 2k2W2 − k2�ṽy


+ ��D2 − k2�2ṽy = 0, �30�

where S=1+ ikW�y−c� and D=d /dy. Equation �29� is the
final governing equation for the perturbations in the
Oldroyd-B fluid. The governing equation for the Newtonian
fluid can be recovered by setting either W=0 or �=1, and the
problem for the upper convected Maxwell �UCM� fluid is
recovered for �=0.

The disturbance equations for the gel displacement are

dyũy + ikũx = 0, �31�

− ikp̃g + � 1

�
− ikc�r��dy

2 − k2�ũx = 0, �32�

− dyp̃g + � 1

�
− ikc�r��dy

2 − k2�ũy = 0. �33�

Upon eliminating p̃g, we obtain the following fourth-order
differential equation for the normal displacement,

� 1

�
− ikc�r��dy

2 − k2�2ũy = 0. �34�

The boundary conditions at the top and bottom plates are

ṽy�1� = ṽx�1� = 0,

�35�
ũy�− H� = ũx�− H� = 0.

The normal and tangential velocity and stress continuity con-
ditions are applied at the perturbed interface with linearized
unit normal n= �−�uy� /�x ,1 ,0�. These conditions upon ex-
panding about the flat interface and linearizing the resulting
equations in the perturbation variables give the following
conditions to be imposed at y=0:

vy� = �tuy� → ṽy = − ikcũy , �36�
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vx� +
dv̄x

dy
uy� = �tux� → ṽx + ũy = − ikcũx, �37�

�xy� − ��̄xx − �̄yy�� �uy�

�x
� = 
xy� → �̃xy − 2ikW�1 − ��ũy

= 
̃xy , �38�

− pf� + �yy� = − pg� + 
yy� − T� �2uy�

�x2 � → − p̃f + �̃yy = − p̃g

+ 
̃yy + Tk2ũy . �39�

Here, the stresses are given by the respective constitutive
models. The second terms on the left side of the tangential
velocity �Eq. �37�� and the tangential stress continuity �Eq.
�38�� conditions express the coupling between the mean flow
and the perturbation quantities. These two terms arise due to
the discontinuity across the fluid-gel interface in the shear
rate and the first normal stress difference in the base state,
respectively. The term containing T in the condition �39�
represents the surface force due to the scaled interfacial ten-
sion T= �� /�V�, where � is the dimensional surface tension.

III. ANALYSIS

In this section, we analyze the viscous mode instability
arising purely by the interplay of the viscous and the elastic
forces in the Oldroyd-B fluid and the elastic force in the
solid. The final governing equations for the fluid �Eq. �29��
and the solid �Eq. �34�� are solved numerically, the boundary
conditions �35� and the interface conditions �36�–�39� are
imposed, and the complex wave speed c is obtained as the
eigenvalue of the stability problem. Perturbations are un-
stable for ci�0, and stable for ci�0.

A. Background

For an upper convected Maxwell �UCM� fluid flow past
a rigid wall, Gorodtsov and Leonov reported two discrete
modes, referred to as GL modes in the present paper, as well
as a continuous spectrum.8 Both discrete modes have the
same growth rate, and were found to be stable for any value
of the Weissenberg number. The continuous spectrum is a
consequence of singularity in the final governing equation
�29�, which results when the coefficient of the largest deriva-
tive vanishes. For the UCM fluid ��=0�, the condition for
singularity is S=0, which gives the continuous spectrum
with the imaginary part of wave speed ci=−1/ �kW� and real
part cr=y, that is, 0�cr�1. Since ci is negative, the con-
tinuous spectrum is always stable.

For an Oldroyd-B fluid �0���1� flow past a hard wall,
the two discrete GL modes are modified by the solvent con-
tribution to the viscosity, but they remain stable.10 Apart
from these two discrete modes, there exist two continuous
spectra, which are a consequence of the singularity in Eq.
�29�. The singularity condition for the UCM fluid holds for
the Oldroyd-B fluid, hence the continuous spectrum for the
UCM fluid exists for the Oldroyd-B fluid as well. The other
continuous spectrum for the Oldroyd-B fluid results from the

singularity condition, �1−��S2+�S3=0. This gives a stable
continuous spectrum with ci=−1/ �k�W� and real part cr=y.
This continuous spectrum is due to a branch cut, and is ac-
companied by a string of discrete eigenvalues on either side
of it, whose number depends upon the value of �.10

For UCM fluid, Shankar and Kumar11 continued the two
discrete GL modes for a rigid channel to a nonzero finite
value of wall deformability using a linear viscoelastic model
for the deformable solid wall. While one of the GL modes
remains stable, the other one was found to become unstable
when the wall deformability parameter, �=V� / �GR�, ex-
ceeds a certain finite value �t for transition. This demon-
strated the destabilizing effect of wall flexibility on one of
the GL modes. This unstable GL mode was shown to be the
continuation of an unstable mode for the Newtonian fluid
flow past gel, the KFP mode,4 to the fluid with nonzero elas-
ticity. The present study is an extension of the investigations
carried out by Refs. 4, 10, and 11, as illustrated schemati-
cally in Fig. 1.

B. Numerical method

For plane Couette flow of a UCM fluid, the governing
equations for the fluid as well as the solid gel exhibit the
exact solutions. Upon imposing the boundary and the inter-
face conditions on the solution, one obtains a characteristic
equation that is sixth-order polynomial in wave speed c.11

Two of these six modes are GL modes modified by the finite
wall deformability. For an Oldroyd-B fluid, however, the
fluid governing equation results in solutions that are hyper-
geometric functions.10 The characteristic equation is, there-
fore, a transcendental equation in c, which needs to be solved
numerically. In the present analysis, instead of using the ex-
act solution in the form of hypergeometric functions, we nu-
merically integrate the governing equations using the shoot-
ing technique on the adaptive grid and solve the
characteristic equation, obtained by imposing the interface
conditions, for c using the Newton-Raphson method. The
numerical scheme is discussed in detail in Ref. 13, and has
been used previously to study the stability of the Newtonian
fluid13,14 as well as the viscoelastic fluid12 flow past a flexible
surface. Apart from the shooting method, we also use the
spectral method to construct the entire eigenspectrum of the
problem. In this method, the linear differential operator of
the generalized eigenvalue problem is discretized using the
Chebyshev-tau technique and the eigenspectrum is obtained
using the QZ algorithm �available with the IMSL package�.
We use the spectral method mainly to verify the results ob-
tained from the shooting method. Irrespective of the numeri-
cal technique employed, we obtain the dispersion relation of
the form

F�c,k,�,W,�,H,�r� = 0. �40�

The root of this equation is wave speed c. For neutral stabil-
ity, the dimensionless transition velocity �t

=G�k ,W ,� ,H ,�r� is obtained by setting ci=0.
The numerical method has been verified by recovering

the previously reported results. The viscous modes for a flow
past a rigid wall are captured in the limit G→
. Figure 3
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shows the eigenspectrum of the growth rate 
=−ikc for an
Oldroyd-B fluid flow past a rigid wall. This spectrum, ob-
tained by the spectral method using 70 Chebyshev modes, is
qualitatively similar to Fig. 3 of Ref. 10. In order to repro-
duce the spectrum, we considered the same base state as used
by them, that is, dimensionless axial velocity being v̄x=2y.
In this spectrum, the two least stable modes, with the largest
growth rate 
r, are the discrete GL modes modified by the
nonzero solvent viscosity ��=0.2�. Apart from the GL
modes, we also notice two poorly resolved continuous spec-
tra and a string of discrete modes associated with the second
continuous spectrum. The eigenspectrum in the vicinity of
the first continuous spectrum is enlarged in Fig. 3�b� for
three different refinements of the Chebyshev discretizations.
Two discrete GL modes are clearly shown to be well con-
verged for the number of Chebyshev polynomials n=70 and
80. However, the continuous spectrum, which theoretically
should be a line segment at 
r=−1, appears as a balloon with
its width narrowing upon increasing the number of Cheby-
shev modes, indicating poor convergence for the eigenvalues
corresponding to the singular solutions.10 It is important to
note that all the subsequent results, except Fig. 4, are ob-
tained using the shooting method such that the eigenvalues
and the transition parameter �t are well converged to nine
decimal places. The Chebyshev-tau method is used only to
generate Fig. 4 in order to show the influence of wall flex-
ibility on the entire eigenspectrum.

C. Effect of wall flexibility

The evolution of the eigenspectrum upon increasing the
wall deformability parameter � �which is equivalent to re-
ducing the shear modulus of the solid gel from G→
 to a
finite value� is shown in Fig. 4 for the base flow v̄x=2y. We
observe that the following:

�i� The two discrete GL modes are modified significantly,
such that one of them becomes unstable when � exceeds
a certain transition value �t.

�ii� A few additional discrete modes emerge from both the
continuous spectra.

�iii� Both the continuous spectra present in the rigid wall
case remain unchanged, because the singularity of the
fluid governing equation remains unchanged by the pres-
ence of a flexible wall.

In Fig. 4, modes 1 and 2 are the two discrete GL modes for
different values of �. Of these, mode 1 becomes unstable
when � exceeds the value of 5. Modes 3, 4, and 5 denote the
additional discrete modes that emerge from the continuous
spectra upon increasing �. The variation of the growth rates
for the first five least stable discrete modes with wall deform-
ability is shown in Fig. 5. The real part of the growth rate for
mode 1 becomes positive for ��5.0, whereas that for the
second GL mode remains negative �see Fig. 5�a��. The three
additional modes also remain stable for any large value of
wall deformability �. These three modes merge with the con-
tinuous spectra as � approaches zero �rigid wall limit�. The
least stable of these three modes, mode 3, becomes neutrally
stable for ��1. The scalings of the growth rate for the first
four discrete modes with � are shown in Fig. 5�d�.

For the base flow of interest, v̄=y, Fig. 6 shows the
effect of � on the GL modes for different values of � and for
fixed k, W, H, and �r. The curve for the UCM fluid ��=0� is
in agreement with the result of Ref. 11. The imaginary part
of wave speed ci remains negative for one mode, whereas ci

becomes positive for ���t rendering the other mode un-
stable. When time is scaled with the flow-independent quan-
tity � /G, ��=V� / �GR�� becomes the dimensionless top plate
velocity and �t is the dimensionless top plate velocity for the
onset of instability.4 The variation of �twith � is shown in
Fig. 7 for different values of the Weissenberg number. For
�=0, we get the results for UCM fluid, whereas for �=1, we
recover the KFP mode of Newtonian fluid reported in Ref. 4.
Contrary to the behavior for the rigid wall case where the

FIG. 3. Eigenspectrum of the growth rate for plane Couette flow of an
Oldroyd-B fluid past a rigid wall with base flow v̄x=2y, where 0�y�1 for
k=1, W=1, �=0.2. �a� Entire spectrum for 70 Chebyshev modes; �b� en-
larged view near the first continuous spectrum for different number of
Chebyshev modes �n�; �, n=50; �, n=70; �, n=80.

FIG. 4. Eigenspectrum of growth rate for plane Couette flow of an
Oldroyd-B fluid past a flexible wall with base flow v̄x=2y, where 0�y
�1 for k=1, W=1, �=0.2, H=10, �r=0, and increasing value of wall
deformability parameter �. �, �=0.01; �, �=0.05; �, �=0.1; �, �=1.0;
�, �=5.0; �, �=10.0; �, �=100.0. �a� Entire spectrum; �b� enlarged view
near the first continuous spectrum. The arrows show the trail of mode 1 as �
is increased.
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increasing solvent contribution �increasing �� further stabi-
lizes the GL modes,10 the influence of increasing solvent
viscosity is found to be destabilizing for the flexible wall
case. This is due to the mechanism of viscous instability for
the flexible wall case wherein the increasing fluid viscosity
has a destabilizing effect in the absence of fluid inertia.

D. Effect of fluid elasticity

The stabilizing influence of fluid elasticity can be further
established by analyzing the effect of fluid Weissenberg
number on the growth rate. For this, we start with the un-
stable KFP mode for the Newtonian fluid flow past a flexible
wall for fixed � and study the effect of increasing fluid elas-
ticity on it. Figure 8 shows ci of the unstable KFP mode as a
function of the Weissenberg number for two different values
of �. For �=2.0, on introducing the elastic effect in other-
wise viscous fluid, ci decreases and becomes negative at W
�10–100, as shown in Fig. 8�a�. Thus, the unstable KFP
mode is stabilized upon introducing the fluid elasticity. In the
limit of W→
, ci approaches zero from the negative side
following the scaling law ci�−1/W, which incidentally is
the scaling law for both the continuous spectra, whereas for
�=20, ci decreases with increasing W but remains positive

FIG. 5. Variation of growth rate of the first few discrete modes with wall
flexibility parameter � for the same values of parameters as in Fig. 4. �a�
The GL modes: mode 1 and mode 2; �b� the discrete mode 3 and mode 4; �c�
the discrete mode 5; �d� variation of �
r with �. Here �
r=
r−
r
�→0.

FIG. 6. Effect of wall deformability on GL modes: Imaginary part of the
wave speed as a function of � for k=0.01, H=20, W=20, �r=0, and differ-
ent values of �.

FIG. 7. Transition parameter �t as a function of � for k=0.01, H=20, �r

=0, and different values of W.

FIG. 8. Effect of fluid elasticity on KFP mode: Imaginary part of wave
speed as a function of W for H=20, k=0.05, and �r=0. �a� �=2.0; �b� �
=20.
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for any large value of W and approaches zero from the posi-
tive side as W→
, following the scaling law ci�1/W, as
shown in Fig. 8�b�.

E. Neutral stability diagrams

All the above discussed results are condensed in Fig. 9
in the form of a neutral stability diagram in the W-�t plane
for a fixed wave number. Here, the transition parameter �t is
shown to increase with Weissenberg number. The figure sug-
gests two distinctive zones of � in which the stability behav-
ior for a large Weissenberg number is qualitatively different.
For 0���0.23, there exists a Weissenberg number beyond
which the unstable mode ceases to exist, thus rendering sta-
bility to the system. The behavior in this range of � is quali-
tatively similar to the findings for the UCM fluid ��=0�.11

On the contrary, for 0.23���1, there exists a flat region
such that �t is independent of Weissenberg number for
W�1. Hence, the unstable mode persists for any large value
of the Weissenberg number.

The critical wall deformability parameter �c is obtained
as the point of minimum �t on the k-�t curve. Figure 10�a�
shows the typical neutral stability diagrams for W=10 and
H=10 and different values of �. For �=0, the curve has a
distinctive point of minimum �t at a finite wave number kc

�O�1�, with �t diverging as 1/k for k�1 and diverging
faster than k for k�1. Though not shown, this behavior is
observed for � close to zero ���0.23� and is qualitatively
similar to that for the Newtonian fluid ��=1�. However, in
the range 0.23���1, the curve has a peculiar shape such
that �t attains a plateau for k�1, indicating the instability
for large wave-number perturbations. This shortwave insta-
bility is due to a jump in the first normal stress difference
across the fluid-solid interface. While the normal stress dif-
ferences are zero in the linear elastic solid, the viscoelastic
fluid has a nonzero value of the first normal stress difference
in the base state, �̄xx− �̄yy =2�1−��W �refer to Sec. II B�.
Such a jump is known to drive a shortwave instability at the
interface between two flowing viscoelastic fluid layers in the

absence of interfacial tension and inertia.15 Thus, the dilute
polymeric solutions with 0.23���1 admit the finite wave-
number mode as well as the shortwave mode of instability.
Interestingly, for highly elastic fluid, the shortwave mode
turns out to be the critical mode since the critical parameter
�c lies on the plateau in the high wave-number region for
W�1 as shown in Fig. 10�b�. It should be noted that even
though the first normal stress difference is largest for �=0,
the shortwave instability is not observed for the UCM fluid
��=0�. This is apparently because the polymeric stresses are
dominant over the viscous stresses in the fluid and the elastic
stresses in the solid for � close to zero, and tend to stabilize
the shortwave mode of instability.

Figure 10�b� shows that the plateau in �t for large wave
number is independent of the solid thickness H. As the sta-
bility behavior of modes with k�1 is unaffected by the
boundary conditions at the walls away from the interface,
these modes are the shortwave instability modes. This insta-
bility due to the large wave-number disturbances is believed
to be similar to the shortwave instability present at the inter-
face of two viscoelastic fluids flowing under shear, studied
by Renardy in Ref. 15. The similarity is established by com-
paring the scalings of various quantities with those men-
tioned in Ref. 15 for the shortwave asymptotic. From the
eigenfunctions corresponding to the high wave-number solu-

FIG. 9. Transition parameter �t against Weissenberg number for k=0.05,
H=20, and �r=0.

FIG. 10. Neutral stability curve �t versus k. The point of minimum �t on
this curve corresponds to the critical point �kc ,�c�. �a� The parameters are
W=10, H=10, and �r=0; �b� shown for different values of W and H. For
W�1, the critical point lies in the flat region independent of W and H.
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tions, the length scale of the disturbance can be obtained by
the ratio 
ṽy 
 / 
dyṽy
, which is found to scale as 1/k for k�1.
Using the normalization condition ṽy �O�1�, the order of
magnitude of the axial perturbation velocity ṽx is found to be
O�1�, and all the stress components in the fluid as well as the
solid are found to scale as �̃ij �k and 
̃ij �k, respectively, for
k�1. The wave speed of the shortwave mode scales as cr

�1/k for k�1, thus supporting the fact that the shortwave
mode travels with the interface velocity in the base state,
which is zero in the present problem. Also, the leading-order
growth rate, 
=−ikc, is O�1� for the large wave-number in-
stability. All these scalings are similar to the scalings men-
tioned in Ref. 15 for the shortwave asymptotic, indicating
that the large wave-number modes in the present study are
qualitatively similar to the shortwave instability of interface
due to the jump in normal stress difference.15

The remainder of this section deals with examining the
effect of various parameters on the critical parameter �c. The
variation of �c with W for different values of � and H is
shown in Fig. 11. The stabilizing influence of fluid elasticity
sets in for W�O�1�. For ��0.23, where the finite wave-
number mode is the only mode of instability, �c increases
monotonically with W following the scaling law �c�W. For
0.23���1.0, where the shortwave mode becomes the criti-
cal mode for highly elastic fluid, the value of �c attains a
plateau for W�1. For the shortwave instability of the inter-
face, �c is independent of the solid thickness H as well as the
Weissenberg number and depends only upon the value of �.
On the other hand, �c for the finite wave-number instability
is found to decrease with an increase in H. As interfacial
tension is known to eliminate the shortwave instability,15,16

the role of interfacial tension T is also examined. Figure 12
shows the variation of �c and kc with the Weissenberg num-
ber for �=0.5 and different values of H and T. The jump in
kc indicates the crossover from the finite wave number being
critical to the shortwave mode being critical. For the finite
wave-number mode, the interfacial tension tends to increase
�c and reduce kc, indicating the stabilizing influence of T.

However, the plateau in �c for W�1 remains unchanged
upon introducing the interfacial tension. Moreover, the stabi-
lizing influence of interfacial tension on �c diminishes as H
increases. Hence, T is taken to be zero for the rest of the
analysis.

The variation of �c with � for different values of the
Weissenberg number is shown in Fig. 13. For W�50, the
finite wave-number mode is the critical mode for all values
of �. For this case, �c increases upon reducing � from �
=1, indicating the stabilizing influence of polymer addition
on the Newtonian mode of instability. For a larger Weissen-
berg number, the shortwave mode becomes the critical mode
of instability for 0.23���1.0, and �c for such a mode is
shown to be independent of W. Thus, the curve for W=104

represents the variation of �c with � for the shortwave mode
and is shown to diverge as � approaches the value of 0.23.

Figure 14 shows �c as a function of solid thickness H for
W=50 and different values of � and �r. For the Newtonian
fluid ��=1�, it is known that �c and the critical wave number
kc decrease proportional to H−1 for H�1.4 They also ob-
served that the gel viscosity has a stabilizing influence on the
unstable mode such that the instability ceases to exist for a
certain range of parameters for �r�1. For �r=1, while there

FIG. 11. Variation of the critical parameter �c with Weissenberg number for
�r=0, T=0, and different values of � and H. The plateau for W�1 is
independent of H.

FIG. 12. Variation of �c and the critical wave number kc with Weissenberg
number for nonzero value of interfacial tension T. The results are plotted for
�=0.5 and �r=0.
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are unstable traveling modes for H�1, the interface was
found to be stable for H�1. �c was found to diverge pro-
portional to �H−1�−1/2 in the limit H→1. For �r�1, there
are no unstable modes for H���r, and �c diverges propor-

tional to �H−��r�−1 as H approaches ��r. For �r�1, the
instability was found to persist for all values of H�0. These
results for the Newtonian fluid are reflected in Fig. 14�a�. For
the polymeric fluid, there exists a shortwave instability mode
for a range of �. For thin solids �H�1�, the shortwave mode
is critical and �c for this mode is independent of H. The
variation of �c with H for the Oldroyd-B fluid is shown in
Fig. 14�b� for �=0.95 and in Fig. 14�c� for �=0.5. For �r

=0, the flat region for small H denotes the shortwave insta-
bility. The finite wave-number mode is critical for H�1 and
�c decreases proportional to H−1 in this limit. For �r=1,
unlike for the Newtonian fluid, the shortwave instability
mode exists for H�1. An increase in gel-to-fluid viscosity
ratio �r has a stabilizing influence on both classes of modes.
For �r�1, both unstable modes cease to exist for H���r.
Figure 14�d� shows the effect of H on �c for �=0. As the
finite wave-number mode is the only mode of instability for
�=0, the unstable mode ceases to exist for H���r for �r

�1. The influence of increasing �r on the least stable mode
is further depicted in Fig. 15 for H=10 and W=50. Here,
�cH is plotted against another scaled quantity ��r /H.
Though not shown for different values of H, this plot holds
for any value of solid thickness H�1. The unstable modes,
either the finite wave-number mode or the shortwave mode,
are present for ��r /H�1, and the instability ceases to exist
for ��r /H�1 as �c diverges in the limit ��r /H→1 for all
values of �. As mentioned before, �c diverges proportional
to �H−��r�−1 for �=1. However, for the polymeric fluid, �c

diverges as �H−��r�−2 for ��1.

F. Results for the flow-independent Weissenberg
number W̄

Since the current definition of the Weissenberg number
�W=�V /R� involves the flow parameter V, we employ an

alternate definition of the Weissenberg number, W̄=�G /�
=W /�, which is independent of flow parameters and depends

FIG. 13. Effect of � on critical parameter �c for H=10, �r=0, and different
values of W. The curves for different W approach a single curve in the limit
W�1 for 0.23���1. The limit �=1 represents the KFP mode for the
Newtonian fluid and the unstable mode for the UCM fluid is recovered at
�=0.

FIG. 14. Variation of �c with the dimensionless solid thickness H for W
=50 and different values of solid-to-fluid viscosity ratio �r. �a� �=1.0; �b�
�=0.95; �c� �=0.5; and �d� �=0.

FIG. 15. Variation of �cH with the scaled quantity ��r /H for W=50 and
H=10. The plot, even though constructed for H=10, holds for any value of
H where H�1.
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only on the material properties of the fluid and the solid wall.
For any comparison of the results from the present analysis
with the future experimental observations, it will be very
useful to have results expressed in terms of the flow-

independent Weissenberg number W̄. This modified defini-
tion of the Weissenberg number follows by nondimensional-
izing time with � /G, instead of V /R used in this paper. Even
though Ref. 4 adopted � /G as the scaling for time, we, like
Ref. 11, scaled time with V /R. This scaling enabled us to
continue the viscous GL modes for the solid wall �G→ 
 � to
the wall with nonzero flexibility for a finite value of Weis-
senberg number W. The value of critical parameter �
= �V� /GR� for any Weissenberg number W remains the same

for the new Weissenberg number W̄=W /�. The behavior of

the unstable mode in terms of the Weissenberg number W̄ is
presented in this section.

Figure 16 shows the variation of �c with W̄ for �r=0 and
different values of � and H. This figure is the same as Fig. 11

for the flow-independent Weissenberg number W̄ in place of
W. For ��0.23, the fluid elasticity has a stabilizing influ-
ence on the KFP mode for the Newtonian fluid and the un-

stable mode ceases to exist upon increasing W̄ beyond a

certain value W̄max. This W̄max scales as H for H�1. For
0.23���1.0, the influence of fluid elasticity is still stabi-

lizing, but the instability persists for any large value of W̄

and there exists a plateau in �c, independent of both W̄ and

H, for W̄�1. As discussed earlier, this plateau represents the
shortwave mode of instability and this mode becomes critical

for W̄ /H�1. A similar plot for nonzero �r is shown in Fig.
17 for �=0.8 and H=10. An increase in �r tends to increase
�c for both the finite wave-number mode as well as the short-

wave mode. Moreover, the value of W̄, at which the cross-

over from the finite wave-number mode being critical to the
shortwave mode being critical takes place, decreases upon
increasing �r.

Figure 18 shows �c as a function of H for �=0.5 and

different values of W̄. The curve for W̄=0 represents the
Newtonian fluid. The stabilizing effect of fluid elasticity on
the Newtonian viscous mode is visible. The finite wave-
number mode is the critical mode of instability for very thick

solids with approximately H /W̄�1. For this mode, �c de-
creases proportional to H−1 for H�1. On the other hand, for

the thin solids with H /W̄�1, the shortwave mode becomes
the most critical mode of instability, and for this case, �c is

independent of both W̄ as well as H. The value of �c for the
shortwave mode is seen to be smaller than the value of �c for

FIG. 16. Variation of �c with the flow independent Weissenberg number W̄
for �r=0, T=0, and different values of � and H. This figure is merely a

replotting of Fig. 11 using the definition W̄=W /�.

FIG. 17. Variation of �c with the flow independent Weissenberg number W̄
for nonzero �r. The parameters are �=0.8, H=10, and T=0.

FIG. 18. Effect of solid thickness H on the critical parameter �c for different
values of flow independent Weissenberg number, keeping �=0.5 and �r

=0. The curve for W̄=0 represents the KFP mode for the Newtonian fluid.
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the Newtonian mode for H�0.6, indicating the destabilizing
effect of polymer addition for very thin solids.

After analyzing the effect of various parameters on �c

corresponding to the finite wave-number mode and the short-
wave mode, the issue that needs to be addressed is to clearly
specify the regions where one of these two unstable modes is
critical. Figure 19 identifies such regions in the parametric

space H-W̄ for a typical case of �=0.5 and �r=0. For a set
of parameters within the lower region, with approximately

W̄ /H�1 for H�1, the finite wave-number mode is the criti-

cal mode, whereas for the highly elastic fluid with W̄ /H
�1 for H�1, the instability is driven by the shortwave
mode. We can infer from Fig. 16 that the line of demarcation
between the two regions shifts marginally upward for �
higher than 0.5 up to ��1 and it shifts marginally down-

ward for 0.23���0.5. As shown earlier, �c for the short-
wave mode diverges in the limit �→0.23, and for ��0.23,
the finite wave-number mode is the only mode of instability.
The important findings of our study in both regions are sum-
marized in Table I. Here, the effect of all the parameters
considered in the present analysis and the key scalings are
tabulated for the finite wave-number mode as well as the
shortwave mode of instability. A few of the findings listed,
especially those related to the critical wave number kc, are
not illustrated by figures for the sake of brevity. The value of
�c diverges for a certain value of H for �r�0 �see Fig. 14�.
The scalings near the point of divergence are summarized in
Table II. These scalings for the viscoelastic fluid are com-
pared with those obtained for the Newtonian fluid.4 Unlike
for the Newtonian fluid, where the scalings are different for
the �r=1 and �r�1 regimes, the scalings are uniform for all
values of ��1 and for �r�1, and they are different from
the Newtonian scalings. �c is found to diverge faster for the
viscoelastic fluid than for the Newtonian fluid.

Finally, we comment on the typical parameter regime in
which the recent experiments analyzing the flow past a de-
formable solid have been conducted.5,6,17 The shear modulus
G of the aqueous polymer gels used in these experiments
was estimated to be around 1000–5000 N/m2 and the gel

FIG. 19. Regions in the parametric space �W̄-H� where each of the two
classes of modes are found to be critical. The line of demarcation is obtained
for a typical case �=0.5 and �r=0.

TABLE I. Summary of viscous instability modes and the dependence of �c and kc on various parameters.

Finite wave-number mode Shortwave mode

Existence Exists for 0���1 Exists for 0.23���1

For small fluid elasticity For highly elastic fluid

Critical Approx. W̄ /H�1 for H�1 Approx. W̄ /H�1 for H�1

�see Fig. 19� �see Fig. 19�
Effect of W �c�W, kc�W−1 �c and kc independent of W

�c diverges at W̄max

Effect of W̄ kc drops to zero at W̄max �c and kc independent of W̄

W̄max�H

Effect of H �c�H−1, kc�H−1 for H�1 �c independent of H

�see Table II for �r�0� kc�H−1for H�1

Effect of � �c increases upon decreasing � See W=104 line in Fig. 13

kc decreases upon decreasing � kc approx. independent of �

W̄max reduces as �r increases �c increases and kc decreases

Effect of �r �c diverges as ��r /H→1 for �r�1 upon increasing �r

�c��H−��r�−2, kc��H−��r�3/2

TABLE II. Scalings of �c and kc with H near the point of divergence for
�r�0.

Regime �=1 0.23���1 0.12���0.23 ��0.12

�r�1 �c= finite �c= finite �c= finite �c�H−3

H→0 kc�H−1 kc�H−1 kc�H−1 kc= finite

�r=1 �c��H−1�−1/2 For finite k mode �c��H−��r�−2

H→1 kc�1.05 being critical,

�r�1 �c��H−��r�−1 �c��H−��r�−2 kc��H−��r�3/2

H→��r kc��H−��r�1/2 kc��H−��r�3/2
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viscosity can be estimated as �g�103 N s/m2. The viscosity
of the Newtonian fluid used in the experiments was �
�1 N s/m2. However, the viscosity of a polymeric fluid is
around ��10–100 N s/m2 and the relaxation time � is any-
where between 0.001 and 0.1 s, depending on the concentra-
tion of the polymer chains. For these estimates, the flow-

independent Weissenberg number W̄ can be in the range
0.01–50 and �r around 10–100. The present analysis covers
this experimentally feasible parameter regime. In this re-
gime, both the finite wave-number mode and the shortwave
mode of instability may be observed depending upon the
value of solid-to-fluid thickness ratio H. However, for �r

close to and above 100, the instability might be observed
only for H�10, and the finite wave-number mode is likely
to excite the instability.

G. Comment for the diffusive Oldroyd-B model

The striking feature in the present analysis, different
from the behavior of the UCM fluid,11 is the plateau in �c for
0.23���1 and W�1 �see Fig. 11�. Along the plateau, the
length scale of the disturbances is O�1/W� near the fluid-
solid interface and they decay away from the interface.
Hence, this highly elastic instability is similar in nature to the
shortwave instability, where the relevant length scale is
O�1/k�. As we have seen before, the interfacial tension up to
T=100 fails to eliminate this interfacial instability �see Fig.
12�. In this section, we make an attempt to further examine
the behavior in the limit W�1. As imaginary parts of the
wave speed, ci, for the continuous spectra are given by
−1/ �kW� and −1/ �k�W�, both continuous spectra approach
the neutrally stable discrete mode in the limit W→
. In this
limit, ci for the least stable discrete mode follows the scaling
ci�1/W �see Fig. 8�b��. This may suggest that the least
stable discrete mode is affected by the presence of continu-
ous spectra nearby. The continuous spectra are the result of
singularity in the fluid governing Eq. �29� which, in turn, is
due to the hyperbolic nature of the evolution equation for the
conformation tensor �Eq. �8��. The addition of an artificial
diffusive term is known to eliminate the singularity and
hence destroy the continuous spectra.18 The Oldroyd-B
model with artificial diffusivity looks like

Dtc = −
�c − I�

W
+

1

Pe
�2c , �41�

where the Peclet number is defined as the ratio of polymer
diffusion time scale to the flow time scale, Pe=RV /Dtr, with
Dtr being the translational diffusivity of the polymer chains.
The classical Oldroyd-B model is recovered in the limit Pe
→
. For the boundary conditions for the conformation ten-
sor, necessitated by the additional diffusive term, Sureshku-
mar and Beris18 suggested the use of the classical Oldroyd-B
model at the wall. That means the evolution equation �41� for
c with Pe→
 is forced to satisfy at the top wall and at the
fluid-gel interface. Analyzing the stability of the diffusive
Oldroyd-B fluid, we construct the neutral stability diagram in
the �t-W plane for different values of the Peclet number, as
shown in Fig. 20. The stability curve for the diffusive
Oldroyd-B model is on top of the curve for the classical

Oldroyd-B model up to W�100, whereas for the large Weis-
senberg number, the behavior is drastically different for both
models. The flat region present for the classical Oldroyd-B
fluid is nonexistent and the unstable mode ceases to exist for
W�1. The variation of �t with wave number k is shown in
Fig. 21 for Pe=105. Here, the shortwave instability present
for the classical Oldroyd-B model disappears by the addition
of a diffusive term. Also, there exist two local minima along
the �-k curve and the global minimum, which corresponds to
the critical point �kc ,�c�, shifts from the first minimum to the
second one for W�100. Figure 22 shows the variation of �c

with the flow-independent Weissenberg number W̄ for Pe
=106. As a significant departure from the classical
Oldroyd-B behavior, the plateau in �c does not exist, and the
system is found to be stable for highly elastic fluid. The

FIG. 20. Variation of �t with Weissenberg number W for the Oldroyd-B
model with an artificial diffusivity. The scaled diffusivity is given by the
inverse of the Peclet number. The parameters are k=0.05, �=0.5, H=20,
and �r=0. In the limit Pe→
, the classical Oldroyd-B fluid is recovered.

FIG. 21. Neutral stability curve �t versus k for the diffusive Oldroyd-B
model for H=10, �=0.5, and �r=0. The corresponding curves for the clas-
sical Oldroyd-B model are also shown in the limit Pe→
.
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results for the diffusive Oldroyd-B model are presented only
to highlight the discrepancy between the two models in the
limit of large Weissenberg number. In this limit, the short-
wave instability for the classical Oldroyd-B fluid seems to be
the feature specific to the model. Such instability modes are
shown to disappear for the diffusive Oldroyd-B model. How-
ever, the addition of diffusivity in a homogeneous polymeric
solution is physically unreasonable and only serves to stabi-
lize the numerical scheme. Since the polymer diffusion is a
consequence of local nonhomogeneity, it is essential to in-
corporate the polymer number density and its spatial varia-
tions in the model. A model capturing the rheology and mass
transfer phenomenon in a dilute polymer solution with spa-
tially varying distribution has been derived by a number of
researchers.19–21 The stability behavior of such nonhomoge-
neous polymeric fluids in the limit of high elasticity may be
investigated in future studies.

IV. CONCLUSIONS

A linear stability analysis of plane Couette flow of a
viscoelastic fluid modeled as an Oldroyd-B fluid past a linear
viscoelastic solid surface has been carried out in the flow
regime Re�1 to analyze the viscous modes of instability.
Beginning with the growth rate eigenspectrum for the rigid
wall problem,10 the wall is made compliant by assigning a
nonzero value to the wall flexibility parameter �=V� / �GR�,
and the evolution of the eigenspectrum with an increasingly
flexible surface is studied. It was found that a few new
modes emerge from the continuous spectra upon increasing
the wall flexibility. But these modes remain stable for any
large value of �. However, one of the discrete modes exist-
ing for the hard wall becomes unstable when the wall elas-
ticity parameter � exceeds a certain critical value �c, indi-
cating the destabilizing effect of wall flexibility. Similar
destabilization in the flexible wall limit is reported for the
upper convected Maxwell �UCM� fluid,11 which is the spe-

cial case of the Oldroyd-B model for zero solvent viscosity
��=0�. The unstable polymeric viscous mode is, in fact, the
continuation of the viscous instability for the Newtonian
fluid flow past a flexible surface �referred to as the KFP
mode�4 to the fluid with finite elasticity. The influence on the
critical parameter �c, of the numerous parameters, like the
Weissenberg number, the solvent viscosity parameter �, the
thickness ratio of solid-to-fluid layers H, and the ratio of
gel-to-fluid viscosity �r, is studied. An important feature of
the present problem is the existence of the additional short-
wave instability modes, apart from the finite wave-number
modes. While the later modes of instability were present in
the previous analyses, the shortwave nature of instability was
absent for the limiting cases of the Newtonian fluid ��=1�
and the UCM fluid ��=0�. These shortwave instability
modes, which are believed to be due to a jump in the first
normal stress difference for the base state across the inter-
face, become the fastest growing modes for a highly elastic
fluid. It was shown that the surface force with dimensionless
interfacial tension T as large as 100 fails to eliminate the
shortwave instability for fluids with Wiessenberg number
W�1.

The fluid elasticity has a stabilizing effect on the un-
stable KFP mode for the Newtonian fluid. For ��0.23, the
shortwave instability is absent and the flow becomes stable

for any value of flow independent Weissenberg number W̄

�W̄max. This finding is qualitatively similar to the behavior
of the UCM fluid.11 The maximum Weissenberg number for

the instability to exist, W̄max, increases proportional to H for
H�1. For 0.23���1, both the shortwave and the finite
wave number modes coexist. For low to moderate Weissen-

berg number �approximately W̄ /H�1�, the finite wave-
number mode is found to be the most critical for transition.
For this case, �c decreases proportional to H−1 for H�1 and
it increases monotonically upon reducing � from �=1, indi-
cating the stabilizing influence of polymer addition. On the

other hand, for highly elastic fluids �approximately W̄ /H
�1�, the most unstable modes are of a shortwave nature. In

this case, the instability persists for any large value of W̄, and

�c is independent of W̄ as well as the dimensionless solid
thickness H. Upon reducing �, the value of �c for the short-
wave mode decreases initially for very dilute solutions ��
close to 1� and then increases such that �c diverges in the
limit �→0.23. Thus, the shortwave instability ceases to exist
for ��0.23. The regions showing each kind of mode being

critical are shown in the parametric space �W̄-H�. The solid-
to-fluid viscosity ratio �r has a stabilizing effect on both
classes of modes such that for large �r, the instability ceases
to exist for a finite Weissenberg number fluid. It is shown
that �c diverges in the limit ��r /H→1 for H�1 and the
flow becomes stable for ��r /H�1. The important findings
of the present analysis are summarized in Table I.

An important outcome of the present study, the instabil-

ity in the limit W̄�1, appears to be specific to the
Oldroyd-B model used to represent the viscoelastic fluid.
This instability can be attributed to the existence of the con-
tinuous spectra, which are the characteristics of the

FIG. 22. Variation of �c with the flow-independent Weissenberg number W̄
for the diffusive Oldroyd-B model for Pe=106, �=0.5, and �r=0 and dif-
ferent values of H. The plateau in �c for the classical Oldroyd-B model is

eliminated, rendering stability for W̄�1.
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Oldroyd-B model. This was suggested by a brief study using
the diffusive Oldroyd-B model, which is known to eliminate
the continuous spectra. It is shown that by introducing a
small artificial diffusion term in the evolution equation of the
polymer chain conformation tensor, the shortwave instability
disappears and only the finite wave-number modes of insta-
bility are present. Consequently, the instability in the limit

W̄�1 ceases to exist and the system was found to be stable

for any Weissenberg number W̄�W̄max.
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