
Stability of the flow of a viscoelastic fluid past a deformable surface
in the low Reynolds number limit

Paresh Chokshi and V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

�Received 18 May 2007; accepted 6 September 2007; published online 17 October 2007�

The stability of the plane Couette flow of a viscoelastic fluid adjacent to a flexible surface is
analyzed with the help of linear and weakly nonlinear stability theory in the limit of zero Reynolds
number. The fluid is described by an Oldroyd-B model, which is parametrized by the viscosity �,
the relaxation time �, and the parameter �, which is the ratio of solvent-to-solution viscosity; �
=0 for a Maxwell fluid and �=1 for a Newtonian fluid. The wall is modeled as an incompressible
neo-Hookean solid of finite thickness and is grafted to a rigid plate at the bottom. The neo-Hookean
constitutive model parametrized by the shear modulus G, augmented to include the viscous
dissipation, is used for the solid medium. Previous studies for the Newtonian flow past a compliant
wall predict an instability as the dimensionless shear rate �= ��V /GR� is increased beyond the
critical value �c. The present analysis investigates the effect of fluid elasticity, in terms of the
Weissenberg number W=�G /�, on the critical value of the imposed shear rate �c for various
parameters. The fluid elasticity is found to increase �c, indicating the stabilizing influence of the
polymer addition on the viscous instability. For dilute polymeric solutions with ��0.5, the flow is
stable when the Weissenberg number is increased beyond a maximum value Wmax, and Wmax

increases proportional to the ratio of solid-to-fluid thickness H. For concentrated polymer solutions
and melts with ��0.5, the flow becomes unstable when the strain rate increases beyond a critical
value for any large Weissenberg number. The weakly nonlinear analysis reveals that the bifurcation
of the linear instability is subcritical when there is no dissipation in the solid. The nature of
bifurcation, however, changes to supercritical when the viscous effects in the solid are taken into
account and the relative solid viscosity �r is large such that ��r /H�1. The equilibrium amplitude
and the threshold strain energy for the solid have been calculated, and the effect of parameters H,
�, �r, and interfacial tension on these quantities is analyzed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2798069�

I. INTRODUCTION

Recently, there has been a renewed interest in low Rey-
nolds number flows due to their importance in microfluidic
applications. The rate of transport of mass and heat in such
systems can be enhanced if the laminar nature can be ren-
dered unstable to generate a well-mixed flow. Making the
surface flexible is a potential candidate, as the wall flexibility
is known to induce an instability by surface oscillations. De-
formable surfaces have been an object of research for many
years since the pioneering experiments of Kramer, who
found that the compliant nature of the surface is instrumental
in delaying the onset of transition to turbulence in the bound-
ary layer flows.1 Many theoretical and experimental studies
have been carried out in various flow regimes and diverse
flow geometries to exploit the benefits of the oscillatory
waves generated by the elastic surface in order to serve the
numerous technological applications. For Newtonian flow
through a gel-walled tube, the experiments by Krindel and
Silberberg2 indicated the transition Reynolds number to be
much lower than 2100, the corresponding value for the rigid
tube. Moreover, the transition Reynolds number was influ-
enced by the elasticity of the surface in addition to the fluid
properties, indicating that the wall dynamics plays a signifi-
cant role in transition. Motivated by this observation, exten-

sive studies of the linear stability analysis of the Newtonian
fluid flow in tubes and channels bounded by gel walls have
been carried out.3–7

The relevant studies for the Newtonian fluid will be re-
viewed first. Kumaran et al.3 analyzed the linear stability of
a shear flow past a flexible surface in the low Reynolds num-
ber regime, where Re���VR /��	1, and �V� /GR��1.
Here, V is the velocity of the top plate, � is the density of the
fluid, � is the viscosity of the fluid, R is the channel width,
and G is the shear modulus of the gel wall. The deformable
wall was modeled as an incompressible linear viscoelastic
solid. The authors observed that the coupling between the
fluid flow and the wall dynamics renders the flow unstable
even in the absence of fluid inertia.3 The instability, which
occurs when the imposed shear rate, �=V� / �GR�, exceeds a
certain critical value �c, is driven by a discontinuity in the
strain rate across the fluid-gel interface. The destabilizing
mechanism is the transfer of energy from the mean flow to
the fluctuations due to the shear work done by the mean flow
at the interface. A similar analysis of viscous instability in
flow through a flexible tube was performed by Kumaran.4

For a plane Couette flow, the strain in the solid is O�1�
when the viscous stresses in the fluid are comparable to the
elastic stresses in the solid. For such a case, the classical
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linear elasticity theory, which is valid for small strain, is
insufficient and it is necessary to incorporate the finite strain
terms in the constitutive relation for the elastic solid. This
argument led Gkanis and Kumar8 to analyze the viscous in-
stability using the more appropriate neo-Hookean elastic
model, which is a generalization of the classical linear con-
stitutive equation, valid for the finite displacement
gradients.9 The viscous flow stability problem for the neo-
Hookean constitutive model exhibits a nonzero first normal-
stress difference in the base-state under simple shear, which
was absent in the analysis of Kumaran et al.3 The linear
stability analysis of Gkanis and Kumar examined the role of
finite deformations in the viscous instability, and it was ob-
served that the discontinuity in the first normal-stress differ-
ence across the interface results in a shortwave instability in
the absence of inertia and interfacial tension. The neo-
Hookean solid results in smaller values of the critical shear
rate �c and larger values of the critical wavenumber 
c, com-
pared to the linear elastic model.8 The difference, however,
diminishes as the ratio of solid-to-fluid thickness H in-
creases, and becomes insignificant for H�10. The analysis
was extended to the pressure-driven creeping flow in a chan-
nel bounded by walls modeled as a neo-Hookean solid.10

The experimental confirmation of the viscous instability
was reported by Kumaran and Muralikrishnan,11 who used
silicone oil of thickness 300−1000 �m on a polyacrylamide
gel of thickness about 4.5 mm in a parallel-plate rheometer.
They observed a sharp increase in the apparent viscosity
�calculated by assuming the flow to be laminar� when the
imposed shear rate exceeds a certain critical value. The ex-
perimental value of critical shear rate required for the onset
of instability was found to be in good agreement with the
theoretical predictions of Ref. 3 for a wide range of gel thick-
nesses and elastic moduli.11,12 As the gel thickness H was
greater than 5 in these experiments, the results for the neo-
Hookean model are in agreement with those for the linear
elastic model.

For the viscoelastic fluid, a considerable amount of work
has been done to study the stability of a shear flow past a
rigid surface, to investigate the nature of the eigenspectrum
for the growth rate.13–15 In most studies, the viscoelastic fluid
is described either by the upper convected Maxwell �UCM�
model or the Oldroyd-B model, wherein the polymer chains
are treated as the elastic dumbbells. For the flexible surface,
Shankar and Kumar16 have studied the linear stability of the
UCM fluid in plane Couette flow in the creeping flow limit.
The flexible wall is described by an incompressible linear
viscoelastic solid model. The analysis predicts an unstable
viscous mode when the dimensionless strain rate �
=V� / �GR� exceeds a certain critical value. Their analysis
recovers the stable modes for UCM fluid flow past a rigid
surface reported by Gorodtsov and Leonov13 �the GL modes�
as well as the unstable viscous mode for Newtonian fluid
flow past gel of Kumaran, Fredrickson, and Pincus3 �the KFP
mode�. The analysis of Shankar and Kumar shows that the
wall elasticity has a destabilizing effect on one of the two
discrete GL modes, whereas the fluid elasticity has a stabi-
lizing influence on the unstable KFP mode for the Newtonian
fluid.16 Since the UCM model ignores the viscous contribu-

tion due to the solvent, the model is suitable for the polymer
melt. In the present study, we consider a more general
Oldroyd-B fluid that takes into account the solvent contribu-
tion, and hence represents the polymer solution of varying
concentration. Further, we use the more realistic neo-
Hookean model to describe the dynamics in the solid. Re-
cently, Chokshi and Kumaran17 analyzed the linear stability
of an Oldroyd-B fluid flow past a linear viscoelastic solid.
They found, for the dilute polymeric solutions, an unstable
shortwave mode that is absent for the UCM fluid.16 This
shortwave instability is in addition to the finite wavenumber
KFP mode modified for the viscoelastic fluid. The present
analysis, which uses the neo-Hookean model, shows that the
nature of shortwave instability is greatly influenced by the
finite deformation terms ignored in the linear elastic model.

The above discussed studies were restricted to the linear
stability of the base flow, which determines whether the flow
is stable or unstable to infinitesimal disturbances, but does
not provide information about the evolution of the flow after
transition. In the present analysis, we use a finite-amplitude
weakly nonlinear stability analysis to determine the nature of
bifurcation. The weakly nonlinear analysis is based on an
equation for the disturbance amplitude of the form dA1 /dt
=s�0�A1+s�1�A1

3+¯. Here s�0� is the linear growth rate, and
s�1� is called the first Landau constant. The bifurcation is
supercritical if s�1� is negative, indicating that the saturation
amplitude of the disturbance increases continuously from
zero as the scaled strain rate is increased above its critical
value. The bifurcation is subcritical if s�1� is positive, indi-
cating that perturbations that are stable in the linear analysis
become unstable to perturbations with amplitude larger than
��s�0�� /s�1��1/2. The weakly nonlinear theory has been devel-
oped based on the pioneering works of Stuart18 and
Watson,19 which treat the nonlinearities using an amplitude
expansion. This involves the assumption that the higher har-
monics are generated by the nonlinear interactions of the
fundamental mode at the onset of instability. For a flow past
a flexible surface, the nonlinearities appear in the boundary
conditions applied at the fluid-wall interface, in addition to
the nonlinearities present in the governing equations. A
weakly nonlinear analysis for the unstable viscous mode in
the Newtonian flow was performed by Shankar and
Kumaran,20 using the linear viscoelastic constitutive equa-
tion for the flexible solid. The authors found the bifurcation
to be subcritical for a wide range of parameters. The recent
experiments conducted with a layer of viscous fluid on the
cross-linked polydimethylsiloxane �PDMS� gel in a parallel-
plate rheometer confirmed the subcritical nature of the vis-
cous instability.21

We carry out the linear and weakly nonlinear stability
analyses of an Oldroyd-B fluid flow past a neo-Hookean vis-
coelastic solid. The neo-Hookean model, which describes the
rubberlike materials, is supplemented with the viscous ef-
fects likely to be present in the polymeric gel-like solids. The
viscous stresses are modeled using an upper convected Max-
well model. The rest of this paper is organized as follows.
The fluid and solid governing equations in Eulerian frame-
work are provided in Sec. II. The weakly nonlinear stability
analysis is described briefly in Sec. III. The results of the
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linear and the weakly nonlinear analyses are presented and
discussed in Sec. IV. The important conclusions are summa-
rized in Sec. V.

II. PROBLEM FORMULATION

The base flow configuration and the coordinate system
are shown in Fig. 1. The system consists of an incompress-
ible viscoelastic fluid of density � and viscosity � occupying
the domain 0�y*�R. Here, the superscript * for the y co-
ordinate implies that it is dimensional; the scaled y coordi-
nate is defined as y= �y* /R�. The fluid is supported on an
incompressible deformable solid medium of shear modulus
G, density �, viscosity �g, and thickness HR. The top plate at
y*=R is set moving in the x direction with velocity V, where
as the bottom rigid wall at y*=−HR is held stationary. In the
nondimensionalization scheme used here, the distance is
scaled with R, time with � /G, velocity with GR /�, and pres-
sure and stresses in fluid as well as in wall are scaled with G.
The scaled fluid continuity and momentum balance equations
in the absence of inertia are as follows:

� · v = 0, �1�

� · � = 0, �2�

where v denotes the fluid velocity field. For the viscoelastic
fluid modeled as an Oldroyd-B fluid, the total stress tensor �
consists of the isotropic fluid pressure pf, the viscous stress
due to the solvent �� s�, and the polymeric stress �� p�:

� = − pfI + � s + � p, �3�

where I is the identity tensor. The dimensionless viscous
stress arising due to the solvent viscosity ��s� is of the form

� s = ���v + ��v�T� , �4�

where the superscript T indicates the transpose. The param-
eter �=�s /� is introduced to represent the solvent contribu-
tion to the solution viscosity �, where �=�s+�p. The poly-
mer contribution is given by �1−��=�p /�.

The polymeric stress � p is expressed in terms of the
polymer chain conformation tensor c, which is given by the
single relaxation time constitutive model,

Dt*c
* = −

�c* − c*eq�
�

. �5�

The material time derivative Dt*c
* is the upper convected

time derivative of c defined as

Dt*c
* = �t*c

* + v* · �c* − c* · ��v*� − ��v*�T · c*. �6�

Under no-flow conditions, the equilibrium chain conforma-
tion is c*eq= �kBT /H��ij, where H is the spring constant and
kBT is the thermal energy. The polymeric stress, which is
proportional to the departure of the conformation tensor from
its equilibrium value, is given by the expression

�*p =
�pH

�kBT
�c* − c*eq� . �7�

We nondimensionalize the conformation tensor c* by
�kBT /H�, �*p with G and time with � /G, to obtain the fol-
lowing constitutive model:

Dtc =
�c − I�

W
, �8�

� p = �1 − ��
�c − I�

W
, �9�

where the Weissenberg number W= ��G /�� is the dimen-
sionless relaxation time of the Oldroyd-B fluid.

Substituting the expressions of � s and � p in the momen-
tum conservation equation �2�, we obtain

0 = − �pf + ��2v + � · � p. �10�

The momentum conservation equation for the Newtonian
fluid is recovered in the limit W→0 as well as for �=1, and
the governing equation for the upper convected Maxwell
�UCM� fluid is obtained for �=0.

The deformable wall is modeled as an incompressible
neo-Hookean viscoelastic solid continuum wherein the neo-
Hookean constitutive model is augmented with a viscous
stresses to account for the viscous dissipation in the solid.
The neo-Hookean elastic solid model has been used in the
previous studies of linear stability analyses of a Newtonian
flow.8,10 In the Eulerian description, the dynamics of the elas-
tic solid is described by a displacement field u, given by the
displacement of a particle from the initial reference configu-
ration, X, to a configuration x at any time t as

x = X + u�x,t� . �11�

The deformation tensor in spatial configuration is given by

f =
�X

�x
= �I − �u� . �12�

The mass conservation condition for an incompressible solid
is given by either

det f = 1 �13�

or

� · vg = 0, �14�

where det indicates the determinant and vg is the dimension-
less Eulerian velocity field in the wall medium given by

vg = �tu + vg · �u . �15�

The dimensionless momentum balance equation, in the ab-
sence of inertia, is

FIG. 1. Schematic diagram of plane Couette flow over a flexible surface
showing the dimensional coordinate system.
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� · � = 0. �16�

The total stress tensor in the solid, scaled by the shear modu-
lus G, is

� = − pgI + 2e + �V, �17�

where pg is the isotropic pressure, the elastic contribution �E

is proportional to the strain e, and the viscous contribution
�V is proportional to the strain rate. The strain tensor in the
neo-Hookean elastic solid is given by9

e = 1
2 �I − fT · f� �18�

or

eij =
1

2
	 �ui

�xj
+

�uj

�xi
−

�uk

�xi

�uk

�xj

 . �19�

The viscous stress tensor is described by a single relaxation
time upper convective Maxwell model,

�V + De��t�
V + vg · ��V − �V · ��vg� − ��vg�T · �V� = 2�rė ,

�20�

where the Deborah number is the relaxation time ��g� scaled
with the flow time scale, De=�gG /� and �r=�g /�, the ratio
of the wall viscosity to the fluid viscosity. The strain rate
tensor ė for the neo-Hookean solid is given by9

ė = 1
2 ���vg�T + �vg� − �e · ��vg�T + �vg · e� �21�

or

ėij =
1

2
	 �vi

g

�xj
+

�v j
g

�xi

 − 	eik

�vk
g

�xj
+

�vk
g

�xi
ekj
 . �22�

A model similar to above has been used by Phan-Thien22 to
describe a class of soft viscoelastic materials that includes
bread dough and some biological tissues. This model incor-
porates both the neo-Hookean rubberlike response and the
viscoelastic response modeled by a Maxwell-type equation.
In the limit De→0, the viscous stress is given by the simple
expression of Newton’s law. Even for a finite Deborah num-
ber, the nonlinear terms in the upper convected time deriva-
tive part in the expression �20� are identically zero for the
linear stability problem, because vg=�V=0 for the base state
considered in the present study. Furthermore, as �V=0 for
zero viscosity in the wall, the neo-Hookean elastic model is
recovered in the limit �r→0. For a major part of the present
analysis, the value of �r is kept zero, thus the stability be-
havior is studied for the neo-Hookean elastic solid. Later, the
effect of wall viscosity on the critical shear rate is analyzed
for a set of parameters using the above-described constitutive
model for the viscous stresses.

For the steady-state base flow shown in Fig. 1, the fluid
velocity, the wall displacement, and velocity fields are given
as

v̄ = ��y,0,0�, ū = ���y + H�,0,0�, v̄g = �0,0,0� , �23�

where �=V� / �GR� is the dimensionless velocity of the top
plate and hence is the shear rate for fluid. The base state
stresses in the fluid and wall medium are

̄xx = − p̄f + 2�1 − ��W�2, ̄xy = �, ̄yy = − p̄f , �24�

�̄xx = − p̄g, �̄xy = �, �̄yy = − p̄g − �2, �25�

p̄f = p̄g = const.

In addition to the no-slip conditions, v̄x=� at y=1 and zero
displacement for a wall fixed at y=−H, the base state also
satisfies the normal and tangential velocity and stress conti-
nuity conditions at the fluid-wall interface, which, for the
mean flow, is flat at y=0. The nonzero value of the first
normal-stress difference �̄xx− �̄yy =�2 for the elastic solid is a
consequence of the neo-Hookean constitutive model, which
retains the terms quadratic in displacement gradient �. This
additional stress, which was absent in the linear viscoelastic
solid analyses,3,16,17 affects the linear stability of the base
state, especially when the shear rate ��1, as found by Gka-
nis and Kumar.8 The viscoelastic fluid also exhibits the non-
zero first normal-stress difference ̄xx− ̄yy =2�1−��W�2.
This additional stress vanishes in the limit of Newtonian
fluid ��=1 or W→0�.

III. WEAKLY NONLINEAR ANALYSIS

In addition to the fluid and the solid governing equa-
tions, the nonlinearities also arise from the fluid-wall inter-
face boundary conditions.20,23 While the interface in the un-
disturbed flow is flat at y=0, its position in the perturbed
flow is different and has to be obtained as a part of the
solution. As illustrated schematically in Fig. 2, a material
point �x ,0� on the undisturbed interface moves to a position
�x+� ,�� due to the perturbations, where � and � are Lagrang-
ian displacement of the material point at the interface. The
matching conditions at the perturbed interface are

��t · v��x+�,� = ��t · vg��x+�,�, �26�

��n · v��x+�,� = ��n · vg��x+�,�, �27�

��t · � · n��x+�,� = ��t · � · n��x+�,�, �28�

��n · � · n��x+�,� = ��n · � · n��x+�,� + T���s · n��x+�,�. �29�

Here, the scaled interfacial tension T=� /GR, where � is the
dimensional surface tension and �s is the gradient along the
interface. n and t are the unit vectors normal and tangent to
the perturbed interface �see Fig. 2�. Denoting F and G as a
dynamical variable in the fluid and wall, respectively, the
interface conditions have the following generic form:

�F�x+�,� = �G�x+�,�. �30�

In a weakly nonlinear analysis, the amplitudes of the pertur-
bation quantities are assumed to be small but finite. Conse-
quently, the quantities at the perturbed interface �x+� ,�� can

FIG. 2. Schematic illustrating the perturbed fluid-solid interface.
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be approximated as a Taylor expansion about their values at
the unperturbed interface �x ,0�. Thus, the generic expression
of the interface conditions, Eq. �30�, becomes

�F�0 + ��xF�0� + ��yF�0� + 1
2 ��x

2F�0�2 + 1
2 ��y

2F�0�2

+ ��x�yF�0�� + ¯

= �G�0 + ��xG�0� + ��yG�0� + 1
2 ��x

2G�0�2 + 1
2 ��y

2G�0�2

+ ��x�yG�0�� + ¯ , �31�

where �¯�0 denote quantities evaluated at the unperturbed
interface �y=0�. Here � and � are obtained using the follow-
ing Taylor expansions:

� � ux�x + �,�,t�

= �ux�0 + ��xux�0� + ��yux�0� + 1
2 ��x

2ux�0�2 + 1
2 ��y

2ux�0�2

+ ��x�yux�0�� + ¯ , �32�

� � uy�x + �,�,t�

= �uy�0 + ��xuy�0� + ��yuy�0� + 1
2 ��x

2uy�0�2 + 1
2 ��y

2uy�0�2

+ ��x�yuy�0�� + ¯ . �33�

The expressions for � and �, in terms of displacement com-
ponents ux and uy and their derivatives evaluated at y=0, can
be obtained from the above expansions up to the desired
order of wall perturbation amplitude.

The theory of weakly nonlinear analysis is briefly dis-
cussed next. A two-dimensional perturbation of small but
finite amplitude A1�� with axial wavenumber 
 and
wavespeed c �frequency �=−
c� is superimposed on the
base state at the critical condition. Here,  is the slow time
scale, which will be defined later. Using the definition
E�x , t�=exp�i�
x+�t�� for convenience, a general field � is
expanded in a harmonic-amplitude series as follows:18,19

��x,y,t� = �̄�y� + �
k=0

�

�
n=k,n�0

�

�A1���n�Ek�̃�k,n��y�

+ E −k�̃�k,n�†
�y�� , �34�

where the overbar represents the base flow quantity, the su-
perscript † denotes the complex conjugate, and �
= �v , pf ,u , pg�. Here and in what follows, k denotes the har-
monic index and n denotes the asymptotic order. The pertur-
bation amplitude A1��, which varies on the slow time scale
, is a small parameter and is written as A1��=�A��, where
� is the small parameter in the expansion and A���O�1�. It
should be noted that A1�� is a real quantity, since the tem-
poral oscillations are included in E�x , t�.

In the vicinity of the point of critical stability, the distur-
bance amplitude is assumed to satisfy the following equation
known as the Landau equation:

A1��−1dt A1�� = sr
�0� + A1��2sr

�1� + ¯ , �35�

where the constant sr
�0� is the real part of the linear growth

rate s�0�, which emerges as an eigenvalue from the classical
linearized stability analysis. The linear growth rate is related
to the wavespeed as s�0�=−i
c. The constant sr

�1� is the real

part of the first Landau constant s�1�. If the flow is neutrally
stable to infinitesimal disturbance, that is, sr

�0�=0, then the
sign of sr

�1� determines the growth or decay of a weak distur-
bance. In the neighborhood of neutral stability such that ��
−�c�	1, the linear growth rate can be expressed as sr

�0�

= ��−�c��dsr
�0� /d��. If sr

�1� is O�1�, then the second term on
the right-hand side of Eq. �35� is O��2�, and the balance with
the first term is achieved if ��−�c��dsr

�0� /d����2. For defi-
niteness, let ��−�c�=�2�2, where �2 is O�1�. In order to
establish a balance between the right and left sides of Eq.
�35�, we introduce the slow time scale  such that the time
derivative dt is written as dt→dt+�2d. Hence, there exist
multiple time scales in the system: a fast time scale �t� cor-
responding to the inverse of the frequency of oscillations,
and a slow time scale �� corresponding to the rate of growth
or decay of the disturbance amplitude. Since A1�� is inde-
pendent of the fast time scale t, the scaled dynamical equa-
tion for the amplitude becomes

A��−1dA�� = �2
dsr

�0�

d�
+ A��2sr

�1� + ¯ . �36�

The imaginary part of the first Landau constant provides the
correction of the perturbation frequency due to the nonlinear
interactions.

The objective of the rest of the analysis is to determine
the first Landau constant s�1�, which in turn determines
whether the nature of viscous instability is supercritical
�sr

�1��0� or subcritical �sr
�1��0�. Upon expanding all the dy-

namical quantities in the harmonic-amplitude series, as
shown in �34�, and extracting the governing equations at
various orders, the inhomogeneous terms appear in the fluid
and the wall governing equations and the interface condi-
tions. In general, the problem at order �k ,n� contains inho-
mogeneous terms of order �j ,m�, where m�n and j+m�k
+n. In the hierarchy of problems at various orders, the Lan-
dau constant s�1� first appears in the problem with k=1 and
n=3. Therefore, in the weakly nonlinear analysis, where the
objective is to calculate only the first Landau constant, only
few selected problems at orders �1,1�, �0,2�, �2,2�, and �1,3�
need to be solved, necessarily in that order. The �1,1� prob-
lem is the linear stability analysis, which provides the critical
point around which the harmonic-amplitude expansion is
carried out; the �0,2� problem provides O�A1

2� correction to
the mean flow, often termed the base flow distortion; the
�2,2� problem is the first harmonic of the fundamental mode
which manifests at order A1

2; and the �1,3� problem is the
nonlinear correction to the least stable fundamental mode, at
which order the Landau equation �35� is recovered. For de-
tails of the solution procedure, the readers are referred to
Refs. 24–26.

IV. RESULTS AND DISCUSSIONS

A. Linear stability analysis

1. Neo-Hookean elastic solid

In this section, we discuss the results of the linear stabil-
ity analysis for the neo-Hookean solid with the relative vis-
cosity of solid set equal to zero, �r=0. The transition param-
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eter �t, determined by setting the leading-order growth rate
sr

�0�=0, depends on the wavenumber 
, the solid-to-fluid
thickness ratio H, the fluid Weissenberg number W=�G /�,
the polymer concentration parameter �=�s /�, and the inter-
facial tension T=� /GR. Figure 3 shows typical neutral sta-
bility diagrams for different sets of parameters. The plots for
�=1 correspond to the Newtonian fluid analyzed by Ref. 8.
For a neo-Hookean solid, there exist two classes of modes,
viz., the finite wavenumber mode, for which �t is minimum
for a finite wavenumber, and the shortwave mode, character-
ized by a plateau in �t in the limit of large wavenumber. For
a neo-Hookean solid, the shortwave instability is due to a
jump in the first normal-stress difference across the fluid-
solid interface that is absent for the linear elastic solid.8 Such
a jump is known to excite a shortwave instability at the in-
terface between two flowing viscoelastic fluid layers in the
absence of interfacial tension and inertia.14 For H=1, Fig.
3�a� shows that the value of �t for the shortwave instability is
lower than the value of �t observed for the finite wavenum-
ber instability. Thus, the critical value �c lies in the high
wavenumber region. The shortwave modes are upstream
traveling waves with negative wavespeed, whereas the finite
wavenumber modes are downstream traveling waves. While
�t for the shortwave instability is independent of the solid
thickness H, the value of �t for the finite wavenumber insta-
bility decreases upon increasing H. Hence, for H=10, the

critical point �
c ,�c� lies on the finite wavenumber part of
the neutral stability diagram, as shown in Fig. 3�b�.

For relatively thin solids with H=1, for which case the
shortwave mode is the critical mode of instability, Fig. 4�a�
shows the variation of the critical value of the imposed shear
rate �c with Weissenberg number for different values of �.
For ��0.5, which represents the dilute polymeric solutions,
�c diverges at Weissenberg number W�1. Thus, the viscous
instability ceases to exist for W�1. However, for ��0.5,
which represents the concentrated polymeric solutions and
the polymer melts and also includes the case of a Maxwell
fluid ��=0�, the shortwave instability is found to persist even
in the high Weissenberg number limit. As the shortwave in-
stability is an interfacial mode �the eigenfunctions are con-
fined to a region of thickness comparable to the disturbance
wavelength near the fluid-solid interface�, the value of �c for
this mode is independent of solid thickness H. Figure 4�b�
shows the effect of the Weissenberg number on the critical
shear rate �c for thick solids with H=10 and 100. For this
case, the critical mode of instability in the Newtonian limit
�W→0� is the finite wavenumber mode. The Weissenberg
number is found to have a stabilizing influence on this mode,
as �c increases with W, and there exists Wmax such that for
any Weissenberg number W�Wmax, the finite wavenumber
instability ceases to exist. Wmax is found to increase propor-
tional to H. However, for ��0.5, the shortwave instability

FIG. 3. Neutral stability curve showing the transition shear rate �t as a
function of wavenumber 
 for �a� H=1, W=0.15; �b� H=10, W=5. For both
plots, �r and T are kept zero.

FIG. 4. Variation of the critical shear rate �c with Weissenberg number: �a�
H=1. The instability in thin solids is driven by the shortwave mode; �b�
H=10 and 100. The plateau in �c represents the highly elastic shortwave
mode. For both plots, �r and T are kept zero.

104103-6 P. Chokshi and V. Kumaran Phys. Fluids 19, 104103 �2007�

Downloaded 01 Jan 2011 to 203.200.35.31. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



exists for high Weissenberg number as shown in Fig. 4�a�,
hence the critical mode crosses from the finite wavenumber
mode to the shortwave mode at W=Wmax, as indicated by the
plateau in �c for a high Weissenberg number. For ��0.5, the
shortwave instability is absent in the high Weissenberg limit,
and hence the flow becomes stable for W�Wmax, where
Wmax�H.

The above discussed results are now presented in terms
of various parameters in order to provide a comprehensive
picture of the stability boundaries in different parameter do-
mains. Figure 5 shows �c against � for H=10 and different
values of W. Beginning with the Newtonian viscous mode
��=1�, the effect of polymer addition, reflected by reducing
�, is found to be stabilizing, resulting in an increase in �c.
The shortwave instability that is present for ��0.5 becomes
critical in the limit of large Weissenberg number �W /H�1�,
and an increase in � results in an increase in �c for the
shortwave mode. Thus, the solvent viscosity has a stabilizing
influence on the upstream traveling shortwave mode of in-
stability. Figure 5 further shows that for the high Weissen-
berg number flow, the shortwave instability is absent for the
dilute polymeric solutions, as �c for this mode diverges as �
approaches the value of 0.5. The variation of �c with solid
thickness H is shown in Fig. 6 for �=0.5 and different values
of W. The plateau in �c for H�1 and W�1 indicates the
shortwave mode. For the finite wavenumber mode, which is
critical for the thick solids, �c is shown to decrease propor-
tional to H−1 for H�1. The scalings of �c and Weissenberg
number with H are shown in Fig. 7, where �c vs W is plotted
for �=0.8 and H�10. The results for different values of H
are shown to collapse onto a single curve in the limit H�1,
when �cH is plotted against the scaled Weissenberg number
W /H. This figure further establishes that the Weissenberg
number Wmax beyond which the finite wavenumber instabil-
ity ceases to exist scales with H for H�1. This finding for
the dilute polymer solutions is similar to the behavior of the
UCM fluid past a linear viscoelastic solid.16

Since interfacial tension is known to eliminate the short-
wave instability,8,14 the role of interfacial tension T was ex-
amined. For the finite wavenumber mode, the interfacial ten-
sion tends to increase �c, indicating the stabilizing influence
of T. However, we observe that the interfacial tension as high
as T=1000 does not affect �c for the shortwave instability to
a considerable extent, and the plateau in �c for W�1 re-
mains unchanged upon introducing the interfacial tension.

To summarize the stability behavior, we construct a plot
in parametric space specifying the regions where the finite
wavenumber instability and the shortwave instability are pre-
dicted. Figure 8 indicates the instability regions in the para-
metric space W /H-� for H�1 and �r=0. For a small Weis-
senberg number �W /H�1�, the finite wavenumber
instability is present for all values of �. As mentioned earlier,
�c for this mode increases with W and diverges at W /H�1,

FIG. 5. Effect of � on the critical shear rate �c for H=10, �r=0, and
T=0.

FIG. 6. Effect of wall thickness H on the critical shear rate �c for �=0.5,
�r=0, and T=0. The plateau in �c for thin solids represents the shortwave
instability.

FIG. 7. �cH as a function of the scaled Weissenberg number W /H for �
=0.8, �r=0, and T=0. The data for different values of H fall on a single
curve in the limit H�1.
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leading to the disappearance of finite wavenumber instability
for W�1. In the limit of high Weissenberg number, the
shortwave instability is, however, present for ��0.5. As �c

for the shortwave mode diverges as � approaches the value
of 0.5, there is no instability in the high Weissenberg limit in
the region of 0.5���1, representing the dilute polymer
solutions.

Finally, we comment on the typical parameter values of
relevance to recent experiments.11,12,21 The shear modulus G
of the aqueous polymer gels used in these experiments was
estimated to be around 1000–5000 N/m2. The viscosity of
the Newtonian fluid used in the experiments was �
�1 N s/m2. However, the viscosity of a polymeric fluid is
around ��10–100 N s/m2 and the relaxation time � is any-
where between 0.001 and 0.1 s, depending on the concentra-
tion of the polymer chains. For these estimates, the Weissen-
berg number can be in the range 0.01–50. The present
analysis covers this experimentally feasible parameter re-
gime in which both the finite wavenumber mode and the
shortwave mode of instability may be observed depending
upon the value of solid-to-fluid thickness ratio H and poly-
mer concentration parameter �. The gel viscosity can be es-
timated as �g�103 N s/m2, which means the relative vis-
cosity �r is around 10-100. Therefore, the viscous stresses in
the solid medium need to be taken into consideration. The
influence of �r on the instability will be discussed later.

2. Comparison with the linear elastic solid

The linear stability of the flow of an Oldroyd-B fluid
past a linear viscoelastic solid was analyzed by Chokshi and
Kumaran17 and the results of that analysis are seemingly in
contradiction with the present results. We analyze this differ-
ence in detail before proceeding to the weakly nonlinear
analysis. Figure 9 shows the regions of critical stability in
W /H-� space for H�1 constructed using the linear elastic
constitutive model. As for the neo-Hookean solid, the insta-

bility is excited by the finite wavenumber mode for W /H
�1. Since the additional finite deformation terms in the neo-
Hookean model are proportional to the base-state strain in
the solid, and �c is known to scale as 1/H for H�1,3,16 the
behavior of the finite wavenumber mode is similar for both
models for H�1. The striking difference, however, is the
behavior of the shortwave instability. The range of � for
which the shortwave mode is unstable is 0.23���1 for the
linear elastic solid,17 whereas it is 0���0.5 for the neo-
Hookean solid. To investigate further, we carry out an
asymptotic analysis of the shortwave disturbance mode.

In the shortwave asymptotic analysis, the characteristic
length scale is the inverse of the wavenumber, �=1/
, for
wavenumber 
�1. Keeping ��W�O�1�, the cross-stream
distance from the interface, and the wavespeed, are scaled by
�. The leading-order fluid velocity and solid displacement
eigenfunctions are O�1� and the stresses are O�1/��. The
leading-order governing equations for the solid can be solved
analytically for both the linear and neo-Hookean elastic
models. In the fluid side, the governing equations admit ana-
lytical solutions for the case of UCM fluid, that is, for
�=0.16 After imposing the interface conditions on the solu-
tions, we obtain the leading-order complex wavespeed c as
the eigenvalue. Table I shows the wavespeed c from the
asymptotic analysis and compares them with the numerically
obtained wavespeed for wavenumber 
=10 for both models.
Note that in addition to the discrete modes, there is a con-
tinuous spectrum of eigenvalues that remains stable for all
values of Weissenberg number and �. For �=0, one of the
three discrete modes is unstable �ci�0� for the neo-Hookean
solid, whereas all the discrete modes are stable for the linear
elastic solid. Thus, the normal-stress difference arising due to
finite deformations in the neo-Hookean model drives an in-
stability; this normal-stress difference is absent for the linear
elastic solid, which is stable. The jump in the normal-stress
difference across the interface excites a shortwave instability
in the Newtonian flow.8 The shortwave instability for the
polymeric fluid is the continuation of the instability in the
Newtonian flow �refer to Fig. 4�a��. Like the Newtonian

FIG. 8. Stability behavior in the parametric space W /H-� for �r=0 and T
=0. This plot holds for H�1. For any point along the solid line, �c for the
finite wavenumber mode diverges as W is increased, and for any point along
the broken line, �c for the shortwave mode diverges as � is increased.

FIG. 9. Stability behavior for the linear elastic solid for H�1.
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fluid, the unstable shortwave mode for the viscoelastic fluid
is an upstream traveling disturbance, as indicated by the
negative sign of the real part of the wavespeed.

For ��0, the fluid eigenfunctions are in the form of
hypergeometric functions and the eigenvalues are obtained
numerically by an iterative procedure starting with an initial
guess value. The variation with � of the growth rate of the
unstable mode is shown in Table I for both models. The
leading-order value of c is found to be in good agreement
with the numerically calculated wavespeed for 
=10. Refer-
ring to the three eigenvalues listed for �=0 as mode 1, 2, and
3 in the order of listing, the variation of ci for mode 1 and
mode 2 with � is plotted in Fig. 10. It should be noted that
mode 1 is an upstream traveling wave, while mode 2 is a
downstream traveling disturbance. As shown in Fig. 10�a�,
the shortwave instability in the neo-Hookean solid is an up-
stream traveling mode and the instability is present for �
�0.5. For � close to 1, ci becomes positive, as the shortwave
mode is known to be unstable for the Newtonian fluid ��
=1�. Interestingly, for the linear elastic solid, the upstream
traveling mode �that is, mode 1� remains stable for all values
of �, as shown in Fig. 10�b�. However, mode 2, which is the
downstream traveling mode, becomes unstable as � in-
creases beyond 0.4 for �=10. For � larger than 10, the in-
stability appears for � as low as 0.23.17 Thus, while the
instability in both of the solids is of a shortwave nature, there
are subtle differences between them. The one for the neo-
Hookean solid is an upstream traveling wave and is under-
stood to arise due to the normal-stress difference in the solid,
which is why this instability is qualitatively similar to the
one observed in the Newtonian flow past a neo-Hookean
solid. On the other hand, the instability for the linear elastic

solid is a downstream traveling wave and is absent for the
flow of Newtonian fluids. As this instability does not con-
tinue in the limit W→0, it is referred to in Ref. 17 as the
highly elastic instability.

3. Effect of solid viscosity

Having studied the influence of W, �, and H on �c for a
nondissipating elastic medium, we now analyze the effect of
solid viscosity on �c. The viscous stresses are modeled using
a Maxwell-type equation �20� with Deborah number De as
the dimensionless relaxation time in the solid. Figure 11
plots �cH against the scaled parameter ��r /H for H=10 and
W=10. While the results are plotted for De=10, it should be
noted here that the plot does not change significantly for
De=0–20. For Deborah number larger than 20, the numeri-
cal value of �c varies, but the qualitative nature of the graph
remains unchanged. For a Newtonian fluid ��=1�, the linear
viscoelastic solid analyzed by Ref. 3 predicts that the insta-

bility ceases to exist for ��r /H�1. However, as shown in
Fig. 11, the unstable traveling waves exist even for ��r /H
�1 for the neo-Hookean solid. Interestingly, an increase in
�r is found to cause contrasting variations in �c in the ranges
��r /H�1 and ��r /H�1. While increasing �r has a stabi-
lizing influence on �c in the regime ��r /H�1, the influence
is destabilizing �as increase in �r tends to reduce �c� in the
regime ��r /H�1. This opposing effect of �r is specific to

TABLE I. Complex wavespeed c estimated from the shortwave asymptotic
analysis carried out for the neo-Hookean as well as the linear elastic solid
for different values of �. The asymptotic value is compared with the nu-
merically calculated c.

Neo-Hookean solid: W=1, �=3, 
=10

Shortwave asymptotic Numerical

�=0 −0.0528333+0.0119862i 0.052833328+0.011986242i

0.0402700−0.0297675i 0.040269972−0.029767540i

0.0599975−0.1537430i 0.059997521−0.153743009i

�=0.2 −0.0576291+0.0076315i −0.057629096+0.007631493i

�=0.4 −0.0637346+0.0018509i −0.063734611+0.001850861i

�=0.6 −0.0722768−0.0054382i −0.072276774−0.005438176i

�=0.8 −0.0875634−0.1238660i −0.087563381−0.012386588i

Linear elastic solid: W=1, �=10, 
=10

Shortwave asymptotic Numerical

�=0 −0.0088985−0.0015213i −0.008898477−0.001521282i

0.0498296−0.0178490i 0.049829608−0.017849025i

0.0502094−0.1797640i 0.050209385−0.179763832i

�=0.2 0.0555289−0.0101962i 0.055528908−0.010196195i

�=0.4 0.0608055+0.0009938i 0.060805535+0.000993846i

�=0.6 0.0636685+0.0135064i 0.063668536+0.013506351i

�=0.8 0.0709075+0.0232392i 0.070907512+0.023239215i

FIG. 10. Variation of the imaginary part of c for the first two discrete modes
with � for W=1 and 
=10. �a� Neo-Hookean elastic solid with shear rate
�=3; �b� linear elastic solid with �=10.
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the neo-Hookean expression of the strain rate tensor �22�,
since it is not present in the linear viscoelastic model. The
peak value of �c at ��r /H=1 increases upon introducing the
polymer chains in the solvent. For ��0.8, there exists
a stable region around ��r /H=1 that widens upon decreas-
ing �.

B. Weakly nonlinear stability analysis

Following the procedure outlined in Sec. III, the first
Landau constant s�1� is calculated at the critical point
�
c ,�c�. For the Newtonian fluid �W→0�, the sign of sr

�1� is
found to be positive, indicating that the bifurcation is sub-
critical. This observation is consistent with the earlier finding
of Shankar and Kumaran,20 who, using the linear viscoelastic
solid, reported that sr

�1� is always positive for a wide range of
parameters H and �r. As the fluid elasticity is increased, the
value of sr

�1� is found to decrease. The bifurcation, however,
remains subcritical for the polymeric viscous mode. A quan-
tity of interest in a nonlinear stability analysis is the equilib-
rium amplitude A1e

. For a subcritical instability, the system is
unstable to finite-amplitude disturbances even when the
strain rate is below the critical value �c, and the equilibrium
amplitude is the minimum amplitude required to render the
system unstable for ���c. The equilibrium amplitude, ob-
tained by setting dA /d=0 in the scaled Landau equation
�36�, is given as

A1e
2 =

�dsr
�0�/d����c − ��

sr
�1� . �37�

It is important to note that the numerical values of the Lan-
dau constant, and hence the values of A1e

2 , depend upon the
normalization condition used to obtain the eigenfunctions of
the linear stability problem. In the present study, the normal-
ization condition ṽ y

�1,1�= �1+ i� at y=0 has been used.

The variation of the equilibrium amplitude with Weis-
senberg number is shown in Fig. 12 for H=10 and 100 and
�=0.5 and 0.8, for which the system goes unstable due to the
finite wavenumber instability. The equilibrium amplitude is
nearly a constant for low W, but it decreases sharply at Wmax,
beyond which the linear stability analysis predicts that the
perturbations are always stable. The small symbols on the
plots for H=10 indicate the equilibrium amplitude,

A1e
/���c−��, estimated from the unscaled Landau equation

�35� wherein the actual linear growth rate sr
�0� is used instead

of expanding it as ���−�c��dsr
�0� /d����=�c

. For this, the equi-
librium amplitude is calculated at shear rate ��c−�� /�c

=0.1. As discussed in Sec. IV A 1, Wmax increases propor-
tional to H for H�1. In this limit, the equilibrium amplitude
A1e

/���c−�� is found to decrease proportional to H−3/2.
Next, we analyze the shortwave mode, which, for the

case H�1, becomes the most unstable mode for ��0.5 and
W /H�1. We mentioned earlier that the critical shear rate �c

does not show much variation as the interfacial tension T is
increased, but the critical wavenumber 
c is significantly re-
duced for nonzero T. As the eigenfunctions for the shortwave
mode for T=0 are confined to a very thin layer of thickness
O�1/
c� near the fluid-solid interface, the numerical scheme
used in the present study does not work satisfactorily when

c�1, especially for the case W�1. Because of the numeri-
cal issues and the fact that the interfacial tension is nonzero
in a real system, we consider a nonzero value of T to analyze
the shortwave instability in the limit of high Weissenberg
number. The value of sr

�1� for the shortwave modes is found
to be very large. Thus, the linear instability is highly subcriti-
cal. Figure 13 shows the variation of the equilibrium ampli-
tude with the fluid Weissenberg number for the upper con-
vected Maxwell fluid. For W�6, the instability is driven by
the finite wavenumber mode and for W�6, the only mode of
instability present is the shortwave mode. For the former
class of instability, the equilibrium amplitude decreases
sharply at W�6, and for the latter mode, the amplitude de-
creases proportional to W−2 for W�6. As the numerical

FIG. 11. Effect of �r on �c plotted on the scaled coordinates �cH vs ��r /H
for H=10, W=10, De=10, T=0, and different values of �. The gray shaded
curve represents the Newtonian fluid. The curve for �=0 �UCM fluid� de-
picts the shortwave mode.

FIG. 12. Variation of the equilibrium amplitude A1e /���c−�� with Weis-
senberg number for H=10 and 100. �r and T are kept zero. The symbols on
plots for H=10 are explained in the Discussion section.
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scheme fails for the shortwave instability in the limit W�1,
the calculations were possible only up to W /H�3. A similar
plot showing the equilibrium amplitude as a function of the
fluid elasticity for thin solids is shown in Fig. 14 for H=1
and T=1.

Another quantity of interest is the energy of perturba-
tions due to the deformation of the solid, which is indepen-
dent of the normalization scheme employed. The rate of
work done at the fluid-solid interface, which is given by the
expression A�n ·� ·v+n ·� ·vg�dA, where A is the surface
area of the interface, is the power input to the disturbance
energy. In general, a part of this deformation work is dissi-
pated in the fluid and the solid domain, while the remaining
is stored as the elastic energy of deformation and the kinetic
energy of the fluid.4 For the flow in the limit of zero Rey-

nolds number, the disturbance kinetic energy is small
compared to the elastic energy of deformation, which is de-
fined as

Eg
s =

A1e
2

2
�

−H

0

�̃e
�1,1� ẽ�1,1�dy . �38�

For a subcritical instability, this energy represents the thresh-
old energy required for destabilizing the system when the
strain rate is below the transition value. Figure 15 provides
the threshold strain energy in the form Eg

s / ��c−�� as a func-
tion of the solid thickness H for �=0.5 and T=0. It was
shown in Sec. IV A 1 that for �=0.5 and W�1, the instabil-
ity is excited by the shortwave mode for thin solids with H
�2 and the finite wavenumber mode for thick solids with
H�1 �refer to Fig. 6�. The threshold energy for both of these
modes is shown in Fig. 15. The discontinuity in the plots for
W=1 is due to the crossover from the shortwave mode being
critical to the finite wavenumber instability being critical.
For W�1, the shortwave instability is absent and the thresh-
old energy for the finite wavenumber mode, which is an O�1�
quantity, diverges as the shear rate �c diverges.

Next, we analyze the effect of viscosity of the solid on
the nature of the bifurcation, and find that an increase in
viscosity in the solid changes the nature of the bifurcation
from subcritical to supercritical. For the supercritical bifur-
cation, the Landau constant sr

�1� is negative, and a perturba-
tion that is unstable in the linear analysis saturates to a value

A1e
2 =

�dsr
�0�/d���� − �c�

�sr
�1��

�39�

for ���c. The effect of �r, the solid-to-fluid viscosity ratio,
on the finite-amplitude instability is presented in Fig. 16,

where the threshold strain energy is plotted against ��r /H
for the case H=10, W=10, and De=10. Here, the solid lines
represent the energy Eg

s / ��c−�� for the subcritical instabil-
ity, and the broken lines show the energy Eg

s / ��−�c� when
the bifurcation is supercritical. It has been shown in the lin-
ear stability analysis �refer to Fig. 11� that there are two

FIG. 13. Variation of the equilibrium amplitude A1e /���c−�� with Weis-
senberg number for H=10 and �=0. �r is kept zero.

FIG. 14. Variation of the equilibrium amplitude A1e /���c−�� with Weis-
senberg number for H=1, T=1, and �r=0. As H�1.2, the instability is
excited by the shortwave mode for all values of Weissenberg number.

FIG. 15. Variation of the threshold strain energy for the elastic solid,
Eg

s / ��c−��, with solid thickness H for �=0.5, �r=0, and T=0.
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regimes where the effect of solid viscosity is qualitatively
different: for small ��r /H, the solid viscosity stabilizes per-
turbations, while for large ��r /H, perturbations are destabi-
lized by an increase in solid viscosity. The present nonlinear
analysis reveals that, correspondingly, the bifurcation for
��r /H�1 is subcritical, whereas that for ��r /H�1 is
supercritical. For very dilute polymeric solutions with
�=0.95, the supercritical stability is limited only in a narrow
band of ��r /H�1–10, whereas the bifurcation is subcritical
for very large ��r /H.

It is of practical interest to determine the reduction in the
critical shear rate from its value predicted by the linear
theory ��c� for the subcritical bifurcation, due to finite-
amplitude nature of the disturbances. We take the normal
displacement of the fluid-wall interface as the representative
quantity for the disturbance amplitude. The normal displace-
ment of the interface, correct to O���, is given by

�uy��y=0 = A1e
�ũy

�1,1��y=0. �40�

Table II provides the percentage reduction in � from �c for
different levels of normal displacement of the interface. For
H=1, where the shortwave mode is the most unstable, the
reduction in critical shear rate is significant, as the finite-
amplitude nonlinear effects are strongly destabilizing. Hence,
for a given level of disturbance, the shortwave instability can
be observed at a shear rate significantly smaller than its value
predicted by the linear stability. However, for the remaining
set of parameters, where the finite wavenumber mode is the
most unstable, the reduction in �c is about 10% for a distur-
bance of magnitude 0.1. For this case, the finite-amplitude
disturbances do not result in a significant reduction in the
critical shear rate from the predictions of the linear stability
theory.

V. CONCLUSIONS

The stability of a plane shear flow of a viscoelastic fluid
in the limit of creeping flow past an incompressible neo-
Hookean solid was studied using both the linear and weakly
nonlinear stability analyses. The viscoelastic fluid is de-
scribed by an Oldroyd-B model. The previous analysis for
the Newtonian fluid past a neo-Hookean solid had observed
two classes of instability modes: the shortwave instability,
which is due to the jump in the first normal-stress difference
across the fluid-solid interface and is the most unstable mode
for thin solids �H�1.2�, and the finite wavenumber instabil-
ity, which is the most unstable mode for relatively thick sol-
ids �H�1.2�.8 In the present study, the effect of fluid elas-
ticity on both classes of modes is studied. The fluid
Weissenberg number has a stabilizing influence on both
kinds of modes, as it tends to increase the critical shear rate
�c, thus delaying the onset of instability. The stability behav-
ior for the highly elastic fluid with W /H�1 is found to
depend upon the parameter �, which represents the influence
of polymer chains on solution viscosity. For ��0.5, which
represents the dilute polymeric solutions, the viscous insta-
bility ceases to exist beyond a certain Weissenberg number
Wmax, which increases proportional to H. For ��0.5, which
includes the special case of upper convected Maxwell fluid
��=0� and represents the case of concentrated polymeric so-
lutions and the polymer melts, the shortwave instability is
present in the limit W�1. The highly elastic shortwave in-
stability results in a plateau in �c for W�1. The viscous
effects in the solid are also taken into account by supple-
menting the neo-Hookean elastic model with the viscous
stresses modeled using a Maxwell-type equation. Using this
augmented neo-Hookean viscoelastic model, the effect of

FIG. 16. Effect of �r in the form ��r /H on the total strain energy for the
solid for H=10, W=10, De=10, and T=0. Eg

s / ��c−�� is positive for the
subcritical bifurcation and is negative for the supercritical bifurcation. For
the latter case, Eg

s / ��−�c� is plotted as broken lines. Thus, the broken lines
indicate the supercritical stability.

TABLE II. Reduction in the critical velocity � required for instability when
the flow is subcritical. Here �c is the critical velocity obtained from the
linear stability analysis and � is the critical velocity for the finite-amplitude
disturbance. Here, the normal displacement of the interface is taken as the
representative of the perturbation amplitude.

� W T
Interface displacement

amplitude, �uy��y=0

% reduction in �
��c−�� /�c�100

H=1 0 1 1 0.010 1.408

0 1 1 0.100 140.85

0.2 1 0 0.010 2.937

0.2 1 0 0.025 18.354

0.2 1 0 0.100 293.66

0.5 1 0 0.025 23.967

0.5 1 0 0.100 383.47

H=10 0 5 0 0.025 0.722

0 5 0 0.100 11.559

0.5 10 0 0.025 0.825

0.5 10 0 0.100 13.201

0.8 20 0 0.025 0.718

0.8 20 0 0.100 11.492

H=100 0 50 0 0.025 0.769

0 50 0 0.100 12.299

0.8 200 0 0.050 2.257

0.8 200 0 0.100 9.026
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relative viscosity of the elastic medium �r on the stability is
analyzed. The influence of �r on critical shear rate �c is
stabilizing in the regime ��r /H�1, whereas for ��r /H�1,
an increase in �r tends to decrease �c, indicating a destabi-
lizing influence of the solid viscosity.

The weakly nonlinear analysis was carried out at the
critical point �
c ,�c� to investigate the role of the nonlineari-
ties present in the governing equations and the matching con-
ditions at the deformed interface. The first Landau constant
s�1�, whose real part provides the nonlinear correction to the
linear growth rate, was calculated for a range of parameters.
For a neo-Hookean elastic solid, the real part sr

�1� was found
to be positive for both classes of instability modes, indicating
a subcritical bifurcation. By balancing the linear damping
and nonlinear growth in the vicinity of �=�c, we obtained
the equilibrium disturbance amplitude A1e, which is the
threshold amplitude for the subcritical instability at shear
rate ���c. For ��0.5, when the instability ceases to exist
at Weissenberg number Wmax, the amplitude in the form
A1e /���c−�� decreases sharply at W=Wmax for both classes
of modes, and it scales as H−3/2 for H�1. For ��0.5, the
equilibrium amplitude for the highly elastic shortwave insta-
bility decreases slowly with an increase in the Weissenberg
number, following an approximate scaling of W−2 for W /H
�1. The subcritical nature of bifurcation for �r=0 changes
to supercritical when the viscous effects in the solid are taken
into account. For ��r /H�1, the instability bifurcates to a
supercritically stable flow. In this regime, the bifurcation
again changes to subcritical in the limit �r�1 for very dilute
polymeric solutions ���0.8�. However, for ��0.8, the su-
percritical nature of nonlinear bifurcation persists for �r�1.

For the subcritically unstable flows, we also calculated
the % reduction in � from its value �c for the flow to be
destabilized by a finite-amplitude disturbance. For the finite
wavenumber instability, when the disturbance amplitude is
2.5% of the channel width R, the reduction in the critical
shear rate is very small, up to about 1%. However, for the
shortwave mode of instability, the reduction in � for W=1 is
about 20% for the same level of disturbance amplitude, in-
dicating a strong destabilizing influence of the nonlinearities
on the shortwave instability.

There are two important conclusions from the present
analysis. The first is that the nature of the instability is sen-
sitive to the details of the wall model used, and the results for
the neo-Hookean wall model are different from those for a
linear elastic wall model. In the case of a Newtonian fluid,
the flow past a neo-Hookean solid has an additional short-
wave instability due to the first normal-stress difference, as
first reported by Gkanis and Kumar,8 and this could become
the most unstable mode for thin solids. However, for vis-
coelastic modes, we find that the effect of the Weissenberg
number and the polymer concentration parameter � is very
different for the linear and the neo-Hookean solid, and it is
necessary to use the correct solid model in order to be able to
predict the stability characteristics. The other important con-
clusion is that the dissipation in the solid has a complicated
and nonintuitive effect on the stability characteristics. The
solid viscosity is stabilizing, as expected, in the limit of

small ��r /H, but it is destabilizing in the limit of large
��r /H. The nature of the bifurcation is also significantly
affected by dissipation in the solid: whereas the bifurcation is
subcritical for small ��r /H, it is supercritical for large
��r /H. An accurate description of the dissipation in the solid
is, therefore, necessary for quantitatively predicting the sta-
bility limits.
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